
Object Relational Mappings
First step to a formal approach

Bachelor thesis

Tom van den Broek

January 30, 2007

Contents

1 Introduction 2

2 The two models 4
2.1 The object model . 4

2.1.1 Concepts . 5
2.2 The relational model . 7

2.2.1 Concepts . 8

3 Impedance mismatch 10
3.1 Object Identity . 10
3.2 Inheritance . 11
3.3 Structure vs. Behavior . 11
3.4 State . 11
3.5 Access Rules . 12

4 Object Relational Mapping 13
4.1 Object identity . 13
4.2 Mapping inheritance . 15

4.2.1 One class hierarchy single table 15
4.2.2 One concrete class single table 16
4.2.3 One class single table 17
4.2.4 Meta-model in relational structure 18

5 Comparison 19
5.1 The simple approach . 19

5.1.1 Comparison . 19
5.1.2 Uses . 20

5.2 One table per concrete class 20

CONTENTS 2

5.2.1 Comparison . 20
5.2.2 Uses . 20

5.3 One table per class . 21
5.3.1 Comparison . 21
5.3.2 Uses . 21

5.4 Generic schema . 21
5.4.1 Comparison . 21
5.4.2 Uses . 22

6 Conclusions 23

Abstract

The conceptual and technical difficulties that are often encountered when a
relational database management system is being used by a program writ-
ten in an object-oriented programming language are the object relational
impedance mismatch. From theoretical viewpoint this is because the dif-
ference between the Object and Relational model. There is little scientific
research on the topic of Object Relational Mappings this paper tries to give
take a first step to a formal approach.

Chapter 1

Introduction

Many of the popular programming languages in use today are object ori-
ented. The (information) systems created with these languages often also
follow the object oriented paradigm and are designed/modeled according the
object oriented approach by using underlying concepts such as encapsulation,
inheritance, interfaces, and polymorphism.

In an optimal situation the information contained in these systems would
be stored in a form which has the same semantics as it has in their originating
system. In this case it would be preferable to store the information as objects.
This is possible by using a so called Object Databases System (ODBS).
However while gaining popularity, they are used in specialist niche area’s
like telecommunications, and scientific areas such as high energy physics and
molecular biology.

Instead, by far the most used storage solution is a Relational Database
System (RDBS). These database systems are often called traditional databases
because they have been in use since the early 70’s [1] and are based on well
understood and proved principles.

The combination of an object oriented system and a relational database
is the most common solution for object oriented systems which have a need
for persistent storage. However, in order to use a relational database for the
storage of objects, a translation mechanism from object to relational data
is needed. Such a mechanism is most commonly referred to as an Object
Relational Mapping (O/RM). A object relational mapping most often takes
the form of a software layer or library that is mapping the objects to relational
equivalents while hiding this process from the programmer.

3

The relational model and the object model are two different models for de-
scribing a (information) universe. These models are fundamentally different
in the way they represent information.

Due to the intrinsic differences between the two models, the combination
of the two have proven to create a lot of, both practical and theoretical diffi-
culties. This set of problems are often called the object-relational impedance
mismatch.

The existence of the many different object-relational mapping software
packages implies that at least the problem has been addressed from a practi-
cal viewpoint. However, there is little literature describing the theory behind
the differences between the Object model an the Relational model especially
when focusing on the feasibility of an Object Relational Mapping.

When looking at the theoretical feasibility of an Object-Relational Map-
ping the fundamental question that arises is: ‘How can an object oriented
model be transformed in a relational model?’.

This paper will try to find an answer on how the object model can be
transformed into a relational model. In order to be able to do this, a large
part of the paper will consist of an effort to define the impedance mismatch
by specifying the difference between the two models not only from a practical
level, but also on a more abstract level.

It would be outside the scope of the bachelor thesis to create and prove a
full transformation algorithm for the transformations between the two mod-
els. The focus will be on describing the different transformation approaches
and creating a starting point for a complete transformation model for the
object an relational model.

Chapter 2

The two models

In an object relational mapping there are two models relevant: the object
model and the relational model. In order to be able to define the differences
between the two models and be able to look into the transformations between
those models the two different models need to be well defined.

In this chapter each of the two models will be described and given a
clear definition. In the next chapter these definitions will be used in order to
compare these models. The definition of the two models is inspired by the
paper of M. Fussel [2].

2.1 The object model

Object modeling is an approach to structure an information universe into
entities called objects.

A much used modeling language for the visualization of object models
is Unified Modeling Language (UML) [3]. The language defines a rich set
of modeling notions together with a graphical notation which contains the
elements used to visualize them. For this reason where possible UML is used
for the examples (i.e. figure 2.1).

Most of the time we perceive the world around us in a manner that is
close to the principles behind the Object model as used in this paper. All
that we perceive can be classified as objects. So in a sense one could say
that everything is an object. This view of a simplistic concept of an objects
is better explained by the following example.

When walking in a forest there are objects called trees, bushes, animals.

2.1 The object model 5

John:Person

name =’john’
age =22

Mark:Person

name = ’Mark’
age = 53

John:Person

name =’john’
age =22

Figure 2.1: Three objects of the class ‘Person’

Each tree can be looked at as a specific kind of tree. An Oak or for example
an Conniver, but they are both still trees.

2.1.1 Concepts

With the object model there are some concepts that define for a major part
the dynamics of the model. This section will try to give an overview of the
concepts relevant in the context of this paper.

Identity

Each object is uniquely identifiable. This means that every object in a uni-
verse is distinguishable from any other object in the same universe even when
its state is the same. A real world analogy would be: If you see two footballs
it is clear that both balls are different balls. When it would be very hard or
even impossible to distinguish them, they still would be different balls.

State

The state of an object is also called the ‘internal’ state, it consists of the
values of the attributes from an object. In figure 2.2 you see a simple object
instance of the type Address. It has three attributes which have assigned
to them the values ‘mainstreet’,‘6565TS’ and ’New Hill’. The specific values
assigned to the attributes of the object are considered the state in which the
object resides.

Behavior & Encapsulation

Behavior and encapsulation are two closely related concepts. Within the
object model it is impossible to directly manipulate the ‘state’ of an object.

2.1 The object model 6

Home:Adress

street = ’mainstreet’
zipcode = ’6565TS’
City = ’New Hill’

Figure 2.2: An object instance which shows its internal state

Instead the values of the internal attributes of an object can only be manip-
ulated through methods. The set of operations on an object of a certain type
is called an interface and is often referred to as the ‘behavior’ of the object.

As stated above, all possible transformations of the state of an object
occur trough the interface. This means the state is never directly manipu-
lated, but only trough the operations defined by the behavior. This concept
is called encapsulation, which does exactly what the name implies: shield
the internal state from direct manipulation. This can be understood when
imagining that the internal attributes of an object are encapsulated inside
the object and thus only accessible through predefined behavior of the object.

Class & Type

A type is a specification of the interface an object supports. Two objects
are of the same type when they implement the same interface. In theory
an object can implement multiple interfaces at the same time. The type
of an object that implements multiple interfaces would be defined by the
interface consisting of the combination of the multiple interfaces. Often in
object oriented models the Class concept is used instead of Type. The only
differences is that the class concept defines not only a type but also gives a
base implementation for an object of that type. In other words a class is a
blueprint of an object of a type. Since the similarities in their definition and
meaning, often the concept of a class instead of type is used when discussing
the type of an object.

Inheritance

Inheritance is a mechanism that can apply on types and classes. When a class
inheritances from another class it means that it will use the implementation

2.2 The relational model 7

Person

-Gender

-Name

+getName()

+getGender()

Customer

-address: Address

+getAdress()

+setAdress()

Employee

-Salary: int

+getSalary()

+setSalary()

Figure 2.3: A class diagram which consist three classes which inherit from
each other

of the its base class. It is also possible that some of the implementation is
overridden in the resulting class.

For example, in figure 2.3 there are three classes: Person, Employee, Cus-
tomer. Employee and customer both inheritance from the class person. This
means that an object of class Employee would also implement the method
‘getName()’ and ‘getGender()’ from the class Person.

A real world example: An oak is a type of tree. There are certain charac-
teristics that are true for all trees, for instance they all have leafs. Yet there
are specific characteristics for oaks, such as the form of its leafs.

2.2 The relational model

The relational model, developed by E.F. Codd [1] in early 70’s, is based on
the predicate logic and set theory. The basic concept of the relational model
is that all information is described as predicates and truth statements. This
is also called the Information Principle. Which states that all information
should be represented by data that participate in a relation.

A Relational model describes the only things that are true in the real
world. The model is used to create a representation of information by cap-
turing the data as truth statements about the real world.

Each relation represents some real-world person, place, thing, or event
about which information is collected.

2.2 The relational model 8

A relational database is a collection of two-dimensional tables. The or-
ganization of data into relational tables is known as the logical view of the
database. That is, the form in which a relational database presents data.

2.2.1 Concepts

With the relational model there are some concepts that define for a major
part the dynamics of the model. This section will try to give an overview of
the concepts relevant in the context of this paper.

Relation

A relation is the basic form in the relational model. It defines a relation in
a universe together with the attributes which play a role in the predicate.
As can be seen in the rest of this chapter a relation can be interpreted as a
truth predicate.

One aspect of a relation which is important but often not explicitly stated
is the meaning of a relation.

For example in the relation Person as shown below. Without the meaning
it can be very ambiguous what the meaning of the attributes in the relation
are.

Person: {Name, Gender, Date of birth}

The meaning of this relation could be. There exists a person which has the
name ‘Name’, is of the gender ‘Gender’ and is born on ‘Date of birth’. This
is a quite logical example, but one can see that there are situations in which
without the explicit meaning the relation could be easily misinterpreted.

Attribute

Attributes are the elements that participate in a relation. They are defined
by a name and a domain of the value it can store. Such a domain define what
values are allowed for the attribute. A domain specifies the possible value
for the data and the operations available on the data. Examples of domains
are Strings and Integers.
For example of a relation with the domains of the attributes specified see
below.

2.2 The relational model 9

person:Person
Name Gender Zipcode Country
John male 4321BA Netherlands
Susan female 4321BD Spain
Mark male 9876QZ Netherlands

Table 2.1: Table view of the relational variable ‘person’ of the relation ‘Per-
son’

Person: {Name : STRING , Gender: ENUM(male,female), Zipcode:ZIPCODE,
Country: STRING}

Relation value & Relation variable

The value of a relation is the complete set of all the tuples that satisfies the
relation. While the relational variable or relvar is the variable that contains
the relation value

An example of a relation value could be the collection of the next three
tuples.

{{“John”, male, 4321BA, “Netherlands”}, {“Susan”, female, 4321BD, “Spain”},
{“Mark”, male, 9876QZ, “Netherlands”}, }

Often a relation variable is displayed in the form of a table. This can be
seen in Table 2.1.

Chapter 3

Impedance mismatch

In the previous chapter the two different models are described. This was
done with the intention to bring the reader up to speed in order to be able to
discuss the differences and problems related to using a combination of both
models.

As stated in the introduction of this paper, the set of conceptual and
technical difficulties which are often encountered when a relational database
management system is being used by a program written in an object-oriented
programming language or style is often referred to as the object relational
impedance mismatch.

When looking from a more theoretical viewpoint it becomes clear that
this actually is comparable with the problems encountered when trying to
transform from the object model to the relational model and the other way
around.

The impedance mismatch is not a clearly defined definition and thus is
only used as a convenient term when referencing to the problems stemming
from the global differences between the object and relational model. The
members of the impedance mismatch are not only theoretical differences.
There are also differences from a more philosophical and practical viewpoint
when looking at the manner of how the two models are used.

3.1 Object Identity

The object and relational model have a different concept of identity. In the
object model as shown before the identity is an intrinsic part of an object

3.2 Inheritance 11

and does not depend on the rest of the model.
In the relational model identity has a completely different interpretation.

Two relation values, rows, in relational database are considered identical.
Objects however, always have a unique identity. Two objects which hap-

pen to have the same state at a given point in time are not considered to be
identical. Relations, on the other hand, are viewed as data records with no
concept of identity.

3.2 Inheritance

One of the most distinguishing concepts in the object model is inheritance.
Inheritance makes it possible for an object to be derived from another object.
The problem when transforming an object model to a relational equivalent is
that in the relational model there is no such concept as inheritance. Several
approaches are possible to be able to model inheritance in a relational model.
This topic will be further explored in section 4.2 which is about possible
transformations solutions.

3.3 Structure vs. Behavior

The object model primarily focuses on ensuring that the structure of the
model is reasonable whereas a relational model focus on what kind of behav-
ior the resulting run-time system has. Object-oriented methods generally
assume that the primary user of the object-oriented code and its interfaces
are the application developers. In relational systems, the end-users’ view of
the behavior of the system is considered as more important.

The difference in focus between the object and relational model can be
clearly seen when looking at important aspects of the object model as inher-
itance an encapsulation.

3.4 State

One of the problems is where the state resides in the different models. In a
relational model the state of the system resides in the relation variables or
tables. This means that the database is the only authoritative repository of
state.Any copies of such state held by an application program are just that

3.5 Access Rules 12

temporary copies which may be out of date, if the underlying relation was
subsequently modified by a transaction.

This view of a central leading state is a contradiction to the approach
preferred in object oriented systems. There the state is viewed as an in
memory representations of the objects and the database is used as a backing
storage and persistence mechanism. This can lead to all kind of consistency
problems when mixing these views.

3.5 Access Rules

In the object model all the operations on the objects attribute are performed
through methods which are defined in the objects own type. This is called
the objects interface and defines how the object can ‘behave’. In the rela-
tional model the state can only be accessed or altered by using the relational
operators available in the relational model.

Chapter 4

Object Relational Mapping

Many of the popular programming languages in use today are object oriented.
While the most used database systems are relational database. This results
in need for translation mechanism from objects to relational data. Such a
mechanism is most commonly referred to as an Object Relational Mapping
or O/RM.

4.1 Object identity

When transforming an object model to a relational model one of the primary
obstacles is how to represent the unique object identity in the relational
model. The most common solution is to model each object as an ID attribute
with a primary key constraint.

In the relational model the primary key constraint defines a unique tuple
in a relation. This means that the use of the primary key is a simple method
to model object identity.

This is done by adding to each relation an attribute with a function to
be a unique key used for identifying the object. How exactly this is done
is shown in the next section. In some of the approaches an attribute needs
to reference to an other object. This can be solved by the Foreign Key
constraint that specifies that the value a attribute in a relation should be the
same as a value present in an attribute in another relation. This way when
needed a reference to an object can be simulated by having a foreign key to
the objects Primary Key.

In the following section a lot of the examples will make use of this tech-

4.1 Object identity 14

Figure 4.1: simplified UML object model of example structure

4.2 Mapping inheritance 15

nique. See figures 4.2,4.3,4.4.

4.2 Mapping inheritance

When trying to transform the object model to a relational model one of the
biggest differences is the lack of a concept of inheritance in the relational
model. The transformation of this feature of the object model causes more
difficulties than most other features of the model as described in Section 2.1.
This is also the reason that most approaches for transforming the object
model to a relational model focus mainly on how the concept of inheritance
is modeled.

There are four main approaches on mapping an object model. The first
three are methods that mainly focus on how to model the concept of inher-
itance the fourth is a completely different approach on the transformation.
In the rest of this section there will occasionally be made use of examples
to clarify these methods. These examples examples make use of the case in
which the object model as displayed in 4.1 is needed to be transformed in an
equivalent relational structure.

4.2.1 One class hierarchy single table

The first approach is the most straight forward. Each class hierarchy is
modeled into one relation. This means that all objects of the same type
or of a generalized type are stored in one single relation. In the example
shown in figure 4.2 each of the derivable classes is transformed in the same
relation. The Executive, Employee and Customer although different from
each other all inherit direct or indirect, in the case of Executive class, from
the abstract class Person. The relation shown in the example exploits the
attribute of inheritance that each type that generalizes from a base class can
be represented by the type of that base class. This means that an Object
of type Customer can be represented as type Person since Customer inherits
from Person.

In the example two attributes are added to the relation PersonID and
PersonType. The first column is used to identify the objects by use of a
Primary Key as explained in Section 4.1. The second column ‘PersonType’
is used to store the actually type of class of the object stored. For example
an object of class Customer would have a value corresponding with the Class

4.2 Mapping inheritance 16

Figure 4.2: Example of a relational diagram which shows the one class hier-
archy to a single relation approach.

‘Customer’ when stored in this structure.

Undefined values

One of the problems when using this approach is that is suffers of possible
undefined values in the resulting relational model. The problem is that in the
relational model it is in theory not allowed to have so called ‘NULL’ value in
a relational variable. These undefined values impose all kind of difficulties
on the relational model when allowed.

While most agree that undefined values are bad manner when applied in a
relational model there is yet no conclusive stand on if they should be allowed.
This discussion is a bit moot since most available relational database do allow
undefined values and they are often (mis)used in practical application. For
more information the reader is encouraged to look at the paper of Carlo
Zaniolo about null values in databases [4] for a more in depth discussion of
this topic.

Our solution however does not take into account the problems allowing
null values in your relational model could produced. When this wouldn’t be
allowed this solution would be invalid in its current form. However it is quite
possible that with some refactoring this solution would be possible without
the need for allowing undefined values.

4.2.2 One concrete class single table

With this approach a table is created for each concrete class, each table
including both the attributes implemented by the class and its inherited at-

4.2 Mapping inheritance 17

Figure 4.3: Example of a relational diagram which shows the three different
concrete classes mapped to three tables

tributes. Figure 4.3 shows the object model transformed to a relational model
using this approach. There are tables corresponding to each of the Customer
and Employee classes because they are concrete, objects can instantiated
from them. There is no Person Table since the person class in an abstract
class which means that no objects can be instantiated from this class.

Again each table has its own primary key to be able to identify the dif-
ferent objects. These fields are customerID, employeeID and executiveID.

4.2.3 One class single table

This approach is reasonable straight forward. Each class is directly mapped
to its own table. This approach differs from that previous approach that not
only concrete classes are mapped but also that each table only consists of
the attributes that are defined in that class and not those who are inherited.
The linkage between the inherited classes is provide by a baseID field. This
field is a foreign key to the base class of the object.

The example, in figure 4.4, shows the different classes linking to each
other by use of the ‘PersonID’ field as a foreign key to the id field of the base
class of that object.

4.2 Mapping inheritance 18

Figure 4.4: Example diagram of the mapping of each class to its own table

Figure 4.5: simplified UML object model of example structure

4.2.4 Meta-model in relational structure

The final method uses a different approach from storing an object hierarchy
in a relational structure. instead of transforming each new object universe to
a relational equivalent, it consists of a relational representation of the object
model in a relational structure. This means that each object universe should
be able to be stored in this structure without changes to the relations.

In Figure 4.5 you can see an example diagram of the relations for storing
generic objects. It should be noted that this is only a simple example which
is far from complete. It probably would be a lot more complex in its final
form.

Chapter 5

Comparison

In this chapter the different approaches to transforming an object model to a
relational model are evaluated. Hopefully this creates a coherent overview of
their strengths and weaknesses, for each of the four techniques are compared
and there possible uses are discussed.

5.1 The simple approach

This straight forward approach is about using one relation to store all objects
with the same base class.

5.1.1 Comparison

Below a number of points on which this method has been evaluated.

+ Fast data access. All the object from one hierarchy reside in one rela-
tion. It will be fast and efficient when accessing or manipulation objects
since all objects only exist of one row each in the relational model.

+ Although, not discussed in depth in this paper this approach makes it
easy to change the type of class by simply changing the ‘objectType’
attribute of the row. This is also called polymorphism

- Expensive in the operations on the object hierarchy. When the object
hierarchy changes in any way, the relation has to be modified, which
means that for all stored object rows need to be modified. This applies
for all operations on the class structure or the class tree structure.

5.2 One table per concrete class 20

- Since each class is transformed to the same relation, possibly quite a
lot of storage is wasted in the relation. Since for each object attributes
in the relation are reserved which are not part of this object.

- Tables can grow quickly for large hierarchies.

- This solution depends on allowing undefined values (NULL) in the
database tables. This is considered bad practice.

5.1.2 Uses

This approach is an easy and quick solution for simple class hierarchies whose
structure does not change. However due to its inefficiency for large class
hierarchies and lots of objects this approach will quickly lose its usefulness.

5.2 One table per concrete class

This approach uses a relation for each concrete class.

5.2.1 Comparison

Below a number of points on which this method has been evaluated.

+ The same as with the previous method. Only this time each concrete
class has its own relation. Still, it will be fast and efficient when ac-
cessing or manipulating objects, since all objects only exist of one row
each in the resulting relational model.

- When you modify a class you need to modify its table and the table
of any of its subclasses. This is less expensive than with the previous
approach, since now only the relation of the class and its subclasses
need to be modified and not all classes in the hierarchy.

5.2.2 Uses

This approach is best used when the object hierarchy is relatively simple and
is not likely to change a lot.

5.3 One table per class 21

5.3 One table per class

5.3.1 Comparison

Below a number of points on which this method has been evaluated.

+ Easy to understand because of the one-to-one mapping.

+ Supports polymorphism very well as you merely have rows the appro-
priate tables for each type.

+ Very easy to modify classes and add new subclasses as you merely need
to modify/add one relation.

+ Data size grows in direct proportion to growth in the number of objects.

- There are many tables in the database, one for every class.

- Since each object consist of multiple rows it is complex to manipulate
one complete object. How severe this will impact the performance
depends on how this operation is implemented how severe this will
impact the performance (the use of views, etc).

5.3.2 Uses

This approach is different from the previous methods in that its focus is
more on the manipulation of the structure of the object hierarchy and less
on efficient behavior when dealing with large numbers of objects.

5.4 Generic schema

The final method was about creating a relational implementation of the ob-
ject model or a so called meta model.

5.4.1 Comparison

Below a number of points on which this method has been evaluated.

+ Due to the type of the approach it is very easy to change the funda-
mentals of the object model. If a change to the object model would
occur it would be easy to extend the meta model.

5.4 Generic schema 22

+ Is very efficient when dealing with manipulation of the structure of
objects or object hierarchies.

- It is the most complex approach and thus can be hard to implement.

- Each object consists of many rows. For this reason the performance is
slow compared to the other solutions.

5.4.2 Uses

This method is very useful when dealing with a complex object universe in
which the object structure is likely to change and the number of objects stay
with in known boundaries.

Chapter 6

Conclusions

In this paper the goal was to create an overview of the main difficulties when
considering the concept of an object relational mapping from a theoretical
viewpoint.

As stated in the introduction the main research question was the fol-
lowing: ‘How can an object oriented model be transformed in a
relational model?’.

In order to answer this question first the Object model and Relation model
were formalized in chapter 2. With use of the description of the models and
how they relate to eachother an overview of the problems, all together called
the impedance mismatch, was given. In the final part of this paper the dif-
ferent approaches to transforming an object model to a relational model are
introduced and finally compared.

The methods discussed for transforming the object model certainly show
that it is possible from a theoretical viewpoint to create a theory on object
relational mapping. Each of the different methods discussed has its own
strengths and weaknesses. For now it is not possible to recommend one of
the approaches as the best. Which solution is best suited depends on the
kind of needs of the situation.

Future research could focus on creating a complete formalization of the
concept of Object Relational Mapping. For now this paper could serve as an
introduction to the subject.

Bibliography

[1] E.F. Codd. Derivability, redundancy and consistency of relations stored
in large data banks. IBM Research Report, 1969.

[2] Mark L. Fussell. foundations of object-relational mapping. White Paper,
ChiMu Corp, 1997.

[3] Object Management Group. Unified modeling language (uml) specifica-
tion, version 2.0. 2006.

[4] Carlo Zaniolo. Database relations with null values. In Symposium on
Principles of Database Systems, pages 27–33, 1982.

	Introduction
	The two models
	The object model
	Concepts

	The relational model
	Concepts

	Impedance mismatch
	Object Identity
	Inheritance
	Structure vs. Behavior
	State
	Access Rules

	Object Relational Mapping
	Object identity
	Mapping inheritance
	One class hierarchy single table
	One concrete class single table
	One class single table
	Meta-model in relational structure

	Comparison
	The simple approach
	Comparison
	Uses

	One table per concrete class
	Comparison
	Uses

	One table per class
	Comparison
	Uses

	Generic schema
	Comparison
	Uses

	Conclusions

