Bachelor Thesis: A Modern Turing Test
Bot detection in MMORPG's

Adam Cornelissen

Spring 2008

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

Contents

5

[I.1 Bot consequences| 5
.2 Related workl 7

2 Experiments| 9
RI1 Constraintgo 9
.............................. 9
2.3 Packet Analyzer|, 10
231 Packetd 11
RA7Sessionl. - - . v oo 11
2.5 Feature Vector] 11
2.6 Analyzer|.o 12
2.7 Classification| 13
[2.7.1 Vector Angles|. 13

.72 Neural Networksl 14
B_Results 17
3.1 Vector Angles| 17
3.2 Neural Networkl 17
4__Discussion| 21
[6"Acknowledgements| 23
6 Appendix]| 25
6.1 Appendix A: Terms and abbreviations| 25
6.2 Appendix B: Packet Structure|.o 27
6.3 Appendix C: Packet Database Reader Sourcecode|. 28
6.4 Appendix D: Analyzer Sourcecode| 30
6.5 Appendix E: Session Sourcecode] 45
6.6 Appendix F: MovePacket Sourcecode|. 56
6.7 Appendix G: Run Sourcecode| 58
6.8 Appendix H: VectorMath Sourcecode|. 63

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

Chapter 1

Introduction

Modern online multiplayer games have become increasingly popular with
gamers all around the world. This applies in particular to the kind of games
that can be played with hundreds to thousands of players simultaneously,
the so called 'massively multiplayer online games’, often simply referred to
as MMOG or MMO (or, in the case of a Role-Playing Game, a MMORPG).

In these games players play as a virtual character taking on the role
of a knight, priest, mage or some other heroic character to defeat enemies,
to complete tasks (widely known as ’quests’) or to compete in battles with
other players.

While doing this, players receive items (such as gold or potions), new
equipment (such as swords, shields and armor) or increased experience (how
well your character is able to do a certain task) as a reward for their effort.

Not everyone plays according to the rules of the game though. A mul-
titude of ways to cheat in games exist. In this bachelor thesis research I
will try to find a method to automatically detect a kind of cheating where
players use programs to automate their actions; the use of game bots.

Normally, a player character is operated by a human being who is playing
the game. However, tools exist to let your character play automatically,
without human interaction. A character not being operated by a real person
but by a computer program is called a ’'game bot’ or simply a ’bot’, which
is an abbrevation for 'robot’.

Bots and more importantly the detection of bots are the topic of this
research paper.

1.1 Bot consequences

As mentioned earlier players advance in the game through completing quests,
competing with other players and by defeating enemies. In the beginning
every player has the weakest equipment in the game and very little expe-
rience at different actions (bad offense, bad defence, no knowledge in how

5

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

to do something such as item crafting, ..) but throughout the game players
can gain better equipment and higher experience.

To get higher experience players might choose to kill enemies. Certain
types of enemies are often slain by using a similar strategy over and over
again every time a player encounters such an enemy. While doing this, play-
ers gain experience which allows them to access newer and better features
in the game.

People that enjoy playing the game but who simply lack the time to
engage in the aforementioned repetitive gameplay might consider using bots
for this repetitive and non-entertaining task.

Another reason why people use bots is to get better items and equipment.
After slaying an enemy there is a change that it will drop a certain item.
Thus, if an item has a 0.001% chance to be dropped by a certain enemy,
the item will drop approximately once when slaying a thousand of these
enemies. By using a bot, getting such an item is merely a matter of letting
the bot run a long time instead of actually playing for hours.

Lack of time and/or lust to play the repetitive elements in the game and
the will to easily get better in-game items and experience are the primary
reasons for the use bots.

At first glance it might seem that there is no reason for disallowing the
usage of bots to handle the repetitive gameplay or to get items. However,
there are some downfalls in allowing bots.

The most apparent and logical reason for not allowing bots is that they
break the game.

The use of bots can break the balance of power in the game. When killing
monsters over and over again (much more than one would normally do) the
chances of getting a powerful item which rarely drops increases significantly.

Also, because bots can handle things repetitively and often very quickly,
they can outplay human-controlled characters, giving them an unfair advan-
tage over legitimate players.

For almost the same reason as breaking the balance of power in the game,
the use of bots can also break the economy of the game. In almost any game
enemies can drop some kind of currency (cash, gold, zeny, ..). Letting a bot
kill a lot of enemies gives the bot owner a lot of this currency, making him
(a lot) more wealthier than the average player. The process of letting a bot
kill enemies to gain more in-game currency is very common and known by
gamers as 'gold farming’ or farming’.

Another reason to disallow bots is that they have a negative influence
on the gaming experience of normal players. The use of bots is viewed as
‘unfair’ behaviour by the majority of the gaming community.

The most shocking notion about bot might be this: It is known that
sometimes in-game items and currency gathered by bots are sold for real
money on auction websites. This shows that bots do not only have an

6

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

influence on the virtual economy, but also on the real economy.

For these (and other) reasons, companies running online games often
disallow the use of bots in their Terms of Service (ToS) or End-User License
Agreement (EULA).

1.2 Related work

Due to the fact that bots have several unwanted effects, it is relevant to
detect people who are using them.

Most of the time bot detection is done ’by hand’. Players observe an-
other player behaving in a strange way and 'report’ this to one of the game
maintainers (often called 'game master’ or ’gm’). This person then has to
go to the spot the potential bot was spotted and try to figure out if it is
really a bot or not. This is a very tedious and time consuming process.

There has been more research in the field of bots, their detection and
their prevention.

Kuan-Ta Chen has researched the possibility to detect bots with a traffic
analysis approach. He proposes strategies to distinguish bots from human
players based on their traffic characteristics such as command timing, traffic
burstiness and reaction to network conditions. Kuan-Ta Chen has published
his research in his paper Identifying MMORPG Bots: A Traffic Analysis
Approachll].

Roman V. Yampolskiy and Venu Govindaraju have published a paper
titled Embedded Noninteractive Continuous Bot Detection[2]. They show
how an embedded non-interactive test can be used to prevent bots from
participating in online games.

The purpose of my research is to automatically detect whether or not people
are using a bot. I will not only use the packets themselves but also the infor-
mation they contain unlike Chen et al. The methods I use will not interfere
with the gaming experience of regular players such as might be the case in
the bot detection method presented by Yampolskiy and Govindaraju.

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

Chapter 2

Experiments

2.1 Constraints

In my research to bot detection I am (ofcourse) unable to handle all aspects
of bots and the detection of them. The topic is a broad one. However, in the
section 'Related Work’ one can find more information on different aspects.

To succesfully finish my research I will have to apply some constraints
and set some boundaries within which I will work:

e Game limitation: Ragnarok Online.
e Packet limitation: Most obvious packets will be dealt with.
e Relationship limitation: Between a normal player and a bot.

Research will be limited to only one game, Ragnarok Online. Creating a
bot detection method for more games is too much work in this short times-
pan. More importantly, the detection method might be portable to different
games (This will, however, not be investigated further in this paper).

The game has hundreds of different kinds of packets for every action in
the game (move, drop item, take item, etc). However, not all packets are
usable in my research. I will only pay attention to the packets that have an
obvious chance of showing a relation between a bot and a real player, such
as the movement packet (it is not unlikely that a bot will move different
than a normal player).

With so many packets, many relationships between a player and its pack-
ets, and between a bot and its packets, will exist. I will not pay attention
to every packet in the game, thus I will automatically limit myself with the
number of possible relationships as well.

2.2 Strategy

The strategy for my research is roughly divided in these separate steps:

9

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

—_

. Study background information and related work.

2. Familiarity with the game and its network controls (packet handling,

3. Writing a packet analyzer (in JAVA).
4. Compare packet analyzes of players and bots.

5. Detect relationships, patterns and/or differences between players and
bots.

6. Create a detection method to detect bots.

To start, it is necessary to research some background information: What
are online games, what are bots, why do people use bots, etcetera. This is
essential to get a proper view of the domain in which the research will take
place and to get a feeling of "what is going on’ around the topic of bots and
bot detection.

Because I will use the game Ragnarok Online for my research, some
familiarity with its engine (and in particular its packet handling related
workings) is absolutely necessary.

Knowledge of these inner workings is also necessary to be able to write
a packet analyzer. I will use this packet analyzer to capture the actions of
players and bots.

After filtering out the necessary packets, I will built a ’'feature vector’
which will contain information about the behaviour of the player/bot. Ex-
amples of pieces of information that will be stored in that feature vector are
average time between move packets, average move distance, loot time after
a kill and more.

Later on I will compare the feature vectors from players with those from
bots to find out if there are any oddities, patterns, relationships of differences
between the values.

If all goes well, these findings will allow me to create a detection method
that will detect a bot as being a bot and a player as being a player.

2.3 Packet Analyzer

To be able to distinguish bots from human players a way has to be found
to somehow acquire the information on what is going on. This information
is available in the form of packet traffic: The packets travelling between
the Client (the player) and the Server (the game host). This packetstream
includes packets for authentication, movement, messages, and more.

10

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

2.3.1 Packets

A packetstream can best be viewed in a hexadecimal format. An example
of a 'received’ (as seen by the server, thus sent by the client) packetstream
in hexadecimal format:

9B 00 64 00 82 & 1E 00 00 F2 49 02 00 61
39 64 00 7 41 D5 4E E4 A7 81 0C 01 1D 02
00 00 00 00 7D 00 8 00 35 00 3B AF 81 0C
4D 01 4F 01 00O 00 00 OO0 4F 01 00 00 00 00
4F 01 01 00 00 00 8 00 62 00 23 DE 81 0C
8 00 34 00 05 OD 8 0C 8 00 65 00 E7 3B
82 0C 8 00 61 00 C8 6A 82 0C 8 00 30 00

The packetstream can be saved to a file on the server. This file will be
the input of the packet analyzer program to provide some insight as to what
is being sent or received. The above example packetstream on its own says
nothing to us, it is just a bunch of numbers. The packet analyzer however
can work with this stream: It can figure out where a packet starts, what
packet it is, if it is needed for further analysis, what parts of the packet to
use and figure out where the packet ends. A more detailed description of
the packet structure can be found in Appendix B.

2.4 Session

The featurevector is stored in a Session. A Session (sourcecode included in
Appendix E) is used to store information gained directly from the packet
stream file and to store information that was derived from those values.

From these values the feature vector (see also the next section) is con-
structed.

2.5 Feature Vector

The feature vector contains several values which will be used to detect
whether we’re dealing with a bot or not. These values are:

e Number of packets per second.

e Average time between 'Move’ packets.

Average distance between coordinates of "Move’ packet.

Average distance between just the X-coordinates of '"Move’ packet.

Average distance between just the Y-coordinates of '"Move’ packet.

11

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

Average time between 'Take Item’ packets.

Average time between ’Change Direction’ and 'Take Item’ packet.

Average time between a kill and the first following "Take Item’ packet.

e Number of ’continuous’ attacks per second.

As the name implies these values are stored in a vector within the Session.

2.6 Analyzer

The Analyzer program (sourcecode included in Appendix D) is used to an-
alyze packetstream files.

"To analyze’ in this context means that the program will try to extract
relevant data out of the packetstream file. It will store this information in
what is commonly refered to as a ’feature vector’. This feature vector (and
other possibly relevant information) is stored in a Session.

An analysis roughly goes as follows: The analyzer gets a packetstream
file or a directory filled with packetstream files. For all of these files it will
create a Session (some files may include multiple play sessions so you can
get multiple sessions from one file actually), read the packetstream, extract
and derive information for relevant packets, create a feature vector and store
this information in variables in the Session.

As is obvious from the above, not all packets are used to extract and
derive information. What the program should do with the current packet
depends on the kind of packet. For some packets the program does nothing
at all (eg, the "Ticksend’ packet) while other packets require a more in-depth
analysis or some other action.

Some packets that require action:

Packet 0x0000 - Null End of file has been reached. Stop.

Packet 0x009B - Want To Connection A new connection has been made.
A new session should be created. A "Want To Connection’ packet nor-
mally appears at the start of a packetstream file, but it can also appear
multiple times. Either way, a new session with a new featurevector is
created.

Some packets that require more analysis:

Packet 0x0085 - Change Direction It saves the current time to a vari-
able to be used later (See "Take Item’ (0x00F5) packet).

Packet 0x00A7 - Move The information about the coordinates as well as
the time the packet was sent is saved in the Session to be used later
to calculate several (possibly) interesting features.

12

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

Packet 0x00F5 - Take Item Used to calculate the difference with a Change
Direction packet, the average time between different Take Item packets
and the average time to take an item after a kill.

Packet 0x0190 - ActionRequest The ActionRequest packet is used for
multiple actions: Attack Once, Attack Continuous, Sit and Stand.
Both of the Attack actions are needed to calculate the number of
‘single’ attacks per second and the number of ’continuous’ attacks per
second in the feature vector.

Packet 0x009B - Want To Connection Besides simply creating a new
Session object when a "Want To Connection’ packet is found, the ana-
lyzer also has to retrieve who exactly is connecting. Although it is not
used in the feature vector it is nice to see who’s data you are working
with.

A more elaborate view on how exactly information is retrieved from the
packets can be read in the Analyzer sourcecode (see Appendix).

After reading and cleaning the packet database file, reading the packet-
stream files, extractinging information from them and creating feature vec-
tors it is time to put them to good use: A way has to be found to classify
bots as bots and players as players.

2.7 Classification

The classification method determines whether or not an unknown feature
vector came from a bot or from a human player. I have used two classification
methods: Vector Angles and Neural Networks.

2.7.1 Vector Angles
Detection Method

A feature vector looks just like a normal vector. This means that the prop-
erties of vectors also work for feature vectors. In the Vector Angles classi-
fication method we use these properties. The Vector Angles classification
method uses the property that different vectors point to a different direction.
The angle between two vectors can be calculated using several formulas:

u.v=/|ul|v|cos(a)
where
inproduct: u. v = u;vy + ugve 4+ ugvs + ... + u,v,

13

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

length: |u| = \/u% +ud+ui+... +ul

We can calculate the length of two vectors and their inproduct. From
these we can calculate the angle between them by using the first of the above
formulas. The ability to calculate angles between different vectors can be
used to determine if a feature vector came from a player or a bot. To do this,
we need a collection of feature vectors of which we know where they came
from (player or bot). We then calculate the angle between the unknown
feature vector and the known feature vectors. We then select the vector
of which the angle was the smallest; The unknown feature vector looks the
most like this feature vector. If this feature vector came from a bot then
the unknown feature vector also came from a bot, if the feature vector came
from a player then the unknown feature vector also came from a player.

Implementation

The sourcecode of an implementation of the Vector Angle method can be
found in Appendix H.

2.7.2 Neural Networks

A neural network is a model based on biological neural networks.

"A biological neural network describes a population of physically intercon-
nected neurons or a group of disparate neurons whose inputs or signalling
targets define a recognizable circuit. The interface through which they in-
teract with surrounding neurons usually consists of several dendrites (input
connections), which are connected via synapses to other neurons, and one
axon (output connection). If the sum of the input signals surpasses a certain
threshold, the neuron sends an action potential (AP) at the axon hillock and
transmits this electrical signal along the axon.’ E|

The neural network model we use mimics this process; the neurons and
the communication between them is simulated by a computer program.

A regular neural network consists of three layers; an input layer, a hidden
layer and an output layer. In figure 2.1 such a network is shown. It has four
neurons on the input layer, six on the hidden layer and three on the output
layer.

'Description taken from: http://en.wikipedia.org/wiki/Biological_neural_network

14

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

RN

Figure 2.1: A neural network (cortex.snowcron.com)

Implementation

In our implementation the input neurons were set to a value in the feature
vector. Since we had nine attributes in our feature vector, we have nine neu-
rons in our input layer. We only need to know if a feature vector retrieved
was from a player or a bot, so we only need one neuron in the output layer
giving us a value between 0 and 1 indicating how much the behaviour of
the analyzed file corresponds with botlike-behaviour. The hidden layer con-
sisted of the same number of neurons as the input layer (nine).

The neurons in the input layer send their values to the neurons in the hid-
den layer. Each neuron in the hidden layer has a certain threshold. Only
when the sum of the input values the neuron receives from the input layer
surpasses this threshold the neuron sends its value to the output layer. The
height of this threshold has to be learned by the neural network. A neural
network is trained using a training set consisting of feature vectors of which
we know they came from either bots or players. In other words, we know
what the value of the output layer should be (it should be ’1’ for a bot, ’0’
for a player). By repeatedly giving the neural network the feature vectors
on its input layer and the corresponding 0 or 1 value on the output layer
the network learns the best threshold for each of the neurons on the hidden
layer. By adjusting the thresholds the neural network error rate for the
training set decreases.

15

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

16

Chapter 3

Results

3.1 Vector Angles

The Vector Angles classification method did not give any good results. After
inspection it seemed that two different vectors could get an angle of zero.
An example illustrates this:

x1 = {10,20,3000}
x2 = {10,10,3000}

length x1 = /(102 + 20% + 3000%) = /9000500 = 3000.08
length x2 = /(102 + 10% + 3000%) = 1/9000200 = 3000.03

x1 normalized = {10/3000.08, 20,/3000.08, 3000/3000.08} = {0.0033, 0.0067,
1.0000}
x2 normalized = {10/3000.03, 10/3000.03, 3000/3000.03} = {0.0033, 0.0033,
1.0000}

inproduct x1 and x2: 0.0033*0.0033 + 0.0067*0.0033 + 1.0000%1.0000 =
0.00001 + 0.00002 + 1.0000 = 1.0000..

As shown in the above example, the inproduct of the vectors x1 and x2
is 1 (round off errors) despite the fact that the second attribute of vector x2
is significantly bigger (it’s two times as much as the corresponding value in
vector v1!). This classification method did not show to work good enough
for our problem.

3.2 Neural Network

We trained our network using 40 feature vectors. 20 of these came regular
player sessions and 20 came from bots sessions. The minimal playtime for

17

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

each of these sessions was 10 minutes. The network was trained until the
error rate was below 0.001. We then took 10 feature vectors which were not
in the training set to test our network. Five of these were bots and five were
players. The results:

Feature vector 1: 00,0030
Feature vector 2: 00,0026
Feature vector 3: 00,9997
Feature vector 4: 00,9996
Feature vector 5: 0,0067
Feature vector 6: 00,0026
Feature vector 7: 00,9997
Feature vector 8: 00,9997
Feature vector 9: 00,0026
Feature vector 10: 0,9996

Table 3.1: Output activations for players/bots

These numbers indicate how 'botlike’ a feature vector was. As you can
see vectors 3, 4, 7, 8 and 10 are pretty close to the value ’1’, indicating
they probably came from bots. The vectors 1, 2, 5, 6 and 9 are almost ’0’,
indicating they probably came from players. The results we got are accurate
with reality: The vectors the network identified as bots all came from bots,
the vectors the network identified as players all came from players.

Besides this test, another test method was also applied. Since the dataset is
relatively small, we decided to create a trainingset of 49 sessions, and a test-
set of 1 single session. This procedure is repeated 50 times (leaving out every
player/bot once). The results are presented in table The results show
extremely good classification results, except for Player 13, Player 17, Bot
19 and Bot 22. Some further investigation learned that both player 13 and
17 used a special levelling technique (called mobbing) in which large groups
of monsters are collected and killed together. It is possible that the char-
acter’s movement during the collection phase has a mechanical touch and
misinterpreted by the network. Both Bot 19 as 22 appeared to have rested
long periods during their sessions. Since there was one player who spent her
complete session sitting, it is possible that in those cases not enough feature
information was present to enable proper determination.

All scores combined yield an average score of 94%. Thresholding at 0.5
would mean 4 errors in 50, so 92%.

18

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

test activation test activation
Player 1 0.0004 Bot 1 0.9999
Player 2 0.0006 Bot 2 0.9997
Player 3 0.0005 Bot 3 0.9999
Player 4 0.0010 Bot 4 0.9999
Player 5 0.0003 Bot 5 0.9999
Player 6 0.0053 Bot 6 0.9999
Player 7 0.0003 Bot 7 0.9971
Player 8 0.0003 Bot 8 1.0000
Player 9 0.0002 Bot 9 0.9994
Player 10 0.0013 Bot 10 0.9999
Player 11 0.0004 Bot 11 0.9998
Player 12 0.0007 Bot 12 0.9999
Player 13 0.9975 Bot 13 1.0000
Player 14 0.0004 Bot 14 1.0000
Player 15 0.0007 Bot 15 0.9997
Player 16 0.0010 Bot 16 0.9999
Player 17 0.7023 Bot 17 0.9998
Player 18 0.0002 Bot 18 0.9999
Player 19 0.0007 Bot 19 0.0098
Player 20 0.0008 Bot 20 0.9999
Player 21 0.0008 Bot 21 0.9999
Player 22 0.0009 Bot 22 0.6731
Player 23 0.0001 Bot 23 0.9999
Player 24 0.0006 Bot 24 0.9999
Player 25 0.0007 Bot 25 0.9841

Table 3.2: Output activations for players/bots

19

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

20

Chapter 4

Discussion

Although the method presented in this paper is only validated in a small
scale experiment, the results look promising. Knowing that (for now) only
simple features were used and the session times where short, there appears to
be enough room for improvements. A valuable feature might be the average
angle between moves: bots often appear to make strange course corrections,
while human players tend to move smoother, according to a plan.

The set of features can be changed to stay a step ahead of the bot
creators: If they adjust their bots to prevent a detection feature one could
simply pick another feature to use in the feature vector.

Future research might consider the asymmetry in the decision making:
having false positives (recognizing players as a bots) is worse then having
false negatives (bots are recognized as human players). For example, if
the network’s outcome is connected to an automatic jailing Systenﬂ people
might be rightfully upset if they are jailed without doing anything wrong.

!'Ragnarok Online has a jail, in which players are placed if they violate the rules.

21

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

22

Chapter 5

Acknowledgements

I would like to thank Franc Grootjen for his dedicated help with my re-
search, paper and presentation. Without him this research would not have
been possible. Thank you very much!

I would also like to thank the following people Alchemist, Aligner, Bam-
Bam, buf priest, Cartimandua, dark acolyte, Datsylel, Ewan, Frea, Henkie,
icarus, ilene, Kugutsu, maat van Ruben, Ophelia, Othello, Pebbles, Raio,
Rhytor, Ruin, Rydia, Scarva, sniperboy, sniperboy’s priest, and Xena for
helping out with the experiments.

23

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

24

Chapter 6

Appendix

6.1

Appendix A: Terms and abbreviations
Bot - A computer controlled character.

Character - The virtual representation of a player or bot in an online
game.

Client - Een programma dat gebruikt maakt van de diensten van een
server.

EULA - Abbrevation of "End-User License Agreement’.

End-User License Agreement - An End User License Agreement is a
legal contract between the author/publisher of a software application
and the user of that application.

Farming - Killing enemies over and over again to gain wealth.

Game Master - A Game Master is a player who acts as organizer,
arbitrator, and officiant in rules situations.

GM - Abbrevation of 'Game Master’.
Looting - Picking up items from killed enemies.

Packet - A packet is the unit of data that is routed between an origin
and a destination on the Internet.

Player - A character controlled by a human being.
MMOG/MMO - Abbrevation of 'Massively Multiplayer Online Game’.

Server - Een computer/programma met services voor externe client-
computers of toepassingen.

25

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

e Terms of Service - A list of the terms that must be agreed on by a user
of a particular service.

e TOS - Abbrevation of "Terms of Service’

26

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

6.2 Appendix B: Packet Structure

Per packet the following information is saved: a 4 byte tag (0x4144414D,
"ADAM’ in Little Endian format), 4 bytes time in seconds, 4 bytes time in
microseconds and the actual packet itself.

To be able to make sense of all the numbers of the packet information the
analyzer has to know what they all mean. Some sort of 'Packet Database’
to know what packets exist and how the different packets are build up is
necessary.

Among the Ragnarok Online sourcecode, there is a file (packet_db.txt)
in which all packets are described for every version of the game. A small
example of this file:

0x0084,2
0x0085,5,walktoxy,2
0x0086,16

0x0087,12

0x0088,10
0x0089,7,actionrequest,2:6
0x008a,29

0x008b,2
0x008c,-1,globalmessage,2:4

Every line starts with a hexidecimal number. This number is called the
‘packet id” and is used to identify a packet.

The number following the packet id is the ’packet length’. The packet
length shows how many bytes (including the packet id) are used. A value of
-1’ indicates a dynamic length. If a packet has a dynamic lenght the next
two following bytes will give the size.

The next two tokens are optional and represent a function name (such
as 'walktoxy’) and its arguments (in the 'walktoxy’ example this argument
is ’2’). The functions are looked up in the Ragnarok sourcecode file "clif.c’.

The file ’clif.c’ is what the server uses to handle packets. Not all packets
have functions in the database file. The reason that some packets do have
a function name followed by their arguments is because Gravity Corp (the
creator of Ragnarok) changed the format of these packages a lot, probably
partly to make matters difficult for private servers.

The packet information for all versions of the game is contained within a
single packet database textfile. A small Java program (PacketDBReader.java)
was written which can extract the packets from the latest game version out
of the database file. The sourcecode of this program is included in Appendix

C.

27

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

6.3 Appendix C: Packet Database Reader Source-

code

package nl.ru.ai.turingtest.analyzer;

import java.io.BufferedReader;
import java.io.FileReader;

import java.io.lIOException;
import java.util.ArrayList;
import java.util.Hashtable;
import java.util.StringTokenizer;

Vit
* @author Adam Cornelissen
x @Quersion June 20, 2008

*/

public class PacketDBReader {
/% x

x Reads in a packet database file and remowves
entries. Only entries
from the most recent game version are saved.

@param fileName

EE R S

packetinfo (length ,
* <function>, <arguments>) as wvalue

«/

“old’

Filename of the packet database file
Q@return A hashtable with the packet id as key and

public static Hashtable<Integer , ArrayList<String>>

read (String fileName) {

Hashtable<Integer , ArrayList<String>> packetList =
new Hashtable<Integer , ArrayList<String>>();

try {
BufferedReader in = new BufferedReader (new
FileReader (fileName)) ;
String line = 77
while ((line = in.readLine()) != null) {
if (line.startsWith(”70x”)) {

StringTokenizer packetlisttokenizer = new

StringTokenizer (

28

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

}
}

line);
ArrayList<String> packetInfo = new ArrayList
<String >();

// Get the packet number, eg 0rAAAA
Integer packetld = Integer.decode(
packetlisttokenizer
.nextToken (”,”));

Ve

x Search for more tokens: — Length — Name (
optional) — More

x info (optional)

*/

while (packetlisttokenizer.hasMoreTokens())

packetInfo.add(packetlisttokenizer.

nextToken ());

packetList.put(packetld, packetInfo);

in.close () ;

} catch (IOException e) {
System.err.println (” File_.input_error”);
System. exit (1);

}

return packetList;

}
}

29

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

6.4 Appendix D: Analyzer Sourcecode

package nl.ru.ai.turingtest.analyzer;

import java.io.File;

import java.io.FilelnputStream;
import java.io.lIOException;
import java.io.InputStream;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.util.ArrayList;
import java.util.Hashtable;
import java.util.List;

VAt

x @author Adam Cornelissen
x Q@Quersion June 24, 2008
*/

public class Analyzer {
private int bytesRead;

Ve

x The packet database containing all the
information

x regarding RRO packets.

*/

private Hashtable<Integer , ArrayList<String>>
packets;

/% ok
x Analyser constructor. Reads in the packet
database file.

@param packetDbFileName
Name of the packet database file

*
*
*
x @param string

*/

public Analyzer(String packetDbFileName) {
packets = PacketDBReader.read (packetDbFileName) ;
}

Vit

x Analyzes the named file , if file is a directory

30

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

it

x will analyze all files in it (recursively)

*

* @param fileName

* Name of file (or directory of files)
to

* analyze .

x @return List of sessions stored in the file(s)
*/

public List<Session> analyze(String fileName) {
return analyze (new File (fileName));

}
/%%

x Analyzes a file, if the file is a directory it
will
analyze all files in it (recursively)

*
*
* @param file
* File (or directory of files) to
analyze
x @return List of sessions stored in the file(s)
v/
public List<Session> analyze(File file) {
List<Session> sessions = new ArrayList<Session >();
if (file.isFile()) {
/%
* Read the packetstream
*/
ByteBuffer byteBuffer = readFile(file);

/%
* Process the packetstream:
*/
sessions.addAll (processPacketStream (byteBuffer ,
file));

} else if (file.isDirectory()) {
if (!file.getName().equals(”.svn”)) {
File [] files = file.listFiles();
for (File f : files)
sessions .addAll(analyze(f));
}

} else {

31

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

System . err.println (” File.’"+file .getAbsolutePath

()

+ 7’ _not.found”);

}

return sessions;

}
/% k

x* Read in the saved packet stream in a bytebuffer
*
x @param file
x @return bytebuffer containing the file’s contents
v/
private ByteBuffer readFile(File file) {
try {
ByteBuffer byteBuffer =
ByteBuffer.wrap(getBytesFromFile(file));
byteBuffer.order (ByteOrder.LITTLE_.ENDIAN) ;
return byteBuffer;
} catch (IOException e) {
e.printStackTrace () ;
return null;

}
}

private List<Session> processPacketStream (
ByteBuffer byteBuffer,
File file) {
double packetTime = 0;
List<Session> sessions = new ArrayList<Session >();
Session session = new Session ();
while (byteBuffer.hasRemaining()) {
Ve
x Detect and handle the ’tag’ and ’time’
x information of a packet.
v/
packetTime = extractTimelnformation (byteBuffer
packetTime) ;
if (!byteBuffer.hasRemaining())
break;
/%
x Get the packet id
+/
int packetld = byteBuffer.getShort () ;

32

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

if (packetld = 0x00) // End of file
break;
bytesRead = 2;

/%

x Check the packet id

*/

if (!packets.containsKey(packetld)) {

System.out.println (” Packet _Id.”

+Integer.toHexString (packetld)
+ 7_in_file.’” + file.getAbsolutePath ()
4+ 77, _offset 0x”
+ Integer.toHexString (byteBuffer.position

()

+ 7 _not._found._in_packet_database!”);
break;

}
Ve
* Get packet info
*/
ArrayList<String> packetInfo = packets.get(
packetld);
if (packetInfo.isEmpty()) {
System.out.println (” Packet_.Info._is_empty!”);
System . exit (1) ;
}
/%
* From the packet info, retrieve the size of a
packet.
x If this walue is '—1° the packet has a
varitable size.
x The next two bytes (Short) contain this size.
v/
int packetSize = Integer.parselnt(packetInfo.get
(0));
if (packetSize = —1) {
packetSize = byteBuffer.getShort () ;
bytesRead 4= 2;
}
/*
* If we have a Want To Make Conmnection packet
we have
* to store old session and create a mew one.

*/

33

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

if (packetld = 0x9b) {
if (session.getPacketsTotal() != 0) {
session .setTimePlayStop (packetTime) ;
sessions.add(session);
}
session = new Session ();
}
Ve
x Handle packet
*/
session .countPacket () ;
if (!session.isTimePlayStartSet())
session .setTimePlayStart (packetTime) ;
handlePackets (packetld, byteBuffer, session
packetTime) ;
Ve
x Next packet
v/
byteBuffer.position (byteBuffer.position ()+
packetSize—bytesRead) ;
}

/%

x Add last collected session

*/

if (session.getPacketsTotal() != 0) {
session .setTimePlayStop (packetTime) ;
sessions .add(session);

}

return sessions;

}

private double extractTimelInformation (ByteBuffer

byteBuffer ,

double oldPacketTime) {

double packetTime = oldPacketTime;

/%
Extract the support information from the
packetstream: A packet normally starts
with the time (seconds and microseconds)
and the actual packet. However, the server
sometimes sends multiple commands in a single
packet. The solution to this phenomenon 1is
the use of a tag. The tag ’ADAM’ (0x4D414441
in hex, reversed due to LITTLE_ENDIAN) is put

L R S S S

34

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

x in front of the time. Thus a packet is preceded

x as follows:

*

x 4 bytes 4 bytes 4 bytes tag seconds
microseconds

x 41 44 41 4D ss ss ss ss mm mm mm mm <packet>

*/

while (byteBuffer.hasRemaining()) {
int tag = byteBuffer.getInt ();
if (tag = 0x4D414441) {
// Tag found, retrieve the time
double timePacketSeconds = byteBuffer.getInt ()

double timePacketMicroSeconds=byteBuffer.
getInt () ;
packetTime = timePacketSeconds*1000L
+ timePacketMicroSeconds /1000;
} else {
// No tag found, so it must be another packet
byteBuffer. position (byteBuffer.position() — 4)

)

return packetTime;

}
}

return packetTime;

}

private void handlePackets(int packetld, ByteBuffer
byteBuffer ,
Session session , double packetTime) {
String information;
switch (packetld) {
case 0x00:

information = "End_of_Session”;
break ;

case 0x007D:
information = ”Load_End_Ack” ;
break;

case 0x0085:
session .setLastChangedDirectionTime (packetTime) ;
information = ”Change._dir”;
break;

case 0x0089:

35

Modern Turing Test: Bot detection in MMORPG’s

Adam Cornelissen

information =
break ;

case 0x008C:
information =
break ;

case 0x0096:
information =
break;

case 0x0090:
information =
break ;

case 0x009B:
information =

session);

break;

case 0x009F:
information =
break ;

case 0x00AT7:
information =

break ;

case 0x00A9:
information =
break ;

case 0x00B2:
information =
break;

case 0x00BS8:
information =
break ;

case 0x00B9:
information =
break ;

case 0x00BB:
information =
break;

case 0x00C1:
information =
break ;

case 0x00C5:
information =
break ;

case 0x00C8:

”Ticksend” ;

” Get .Char_Name_Request” ;

” Whisper” ;

"NPC_Selected”;

handlePacket009B (byteBuffer

?Use._ltem” ;

handlePacketO0A7 (byteBuffer ,
session ,packetTime) ;

"Equip.Item” ;

”Restart”;

"NPC_Select _Menu” ;

"NPC_Next._Clicked” ;

”Status _Up”;

"How_Many_Connections” ;

"NPC_Buy/Sell_Selected”;

36

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

information = "NPC_Buy._List_Send”;
break;

case 0x00C9:
information = "NPC_.Sell_List._Send”;
break ;

case 0x00F5:
information = handlePacketOOF5 (byteBuffer ,

session ,packetTime) ;

break ;

case 0x0116:
information = ”"Drop.ltem”;
break ;

case 0x0146:
information = "NPC_Close._Clicked”;
break;

case 0x014D:
information = ” Guild_Check._Master” ;
break ;

case 0x014F:
information = 7 Guild_.Request_Info”;
break;

case 0x0190:
information = handlePacket0190 (byteBuffer ,

packetTime , session) ;

break ;

case 0x021D:
information = ”got0x21D:_Anti—Cheat” ;
break;

default :
information = "—_Unknown.Packet” ;
break ;

}

// System.out.println (information);

}

private String handlePacketO0AT7 (ByteBuffer

byteBuffer ,

Session session , double packetTime) {
Ve

WalkToXY packet is 8 bytes: bytes 0,1: Variable
ecmd (packetld), used to find the packet in the
database .
bytes 2,3,4: Not used (skipped)
bytes 5,6: Used to calculate =

* X X X X

37

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

}

bytes 6,7: Used to calculate y

cmd = RFIFOW(fd ,0) ;

x =RFIFOB(fd,5)x4+(RFIFOB(fd,5+1) >> 6);

y =((RFIFOB(fd,5+1)60x3f)<<4)+(RFIFOB(fd,5+2)
>>4);
*/

int x, y;

int moveByteb, moveByte6, moveByte7;

* Kk X X X

// Bytes 0 and 1 (e¢cmd) were initialized previously
as packetld

// Bytes 2, 8 and 4 are skipped
byteBuffer.get () ;
byteBuffer. get () ;
byteBuffer.get () ;

// Bytes &5, 6 and 7 initialization

moveBytes = byteBuffer.get () & 0xff;
moveByte6 = byteBuffer.get () & 0xff;
moveByte7 = byteBuffer.get () & 0xff;

// Calculate coordinates according to ’clif.c’
code

x = moveBytes * 4 + (moveByte6 >> 6);

y = ((moveByte6 & 0x3f) << 4) + (moveByte7 >> 4);

// Update the number of bytes read
bytesRead += 6;

// Store information regarding position and time
session .add (new MovePacket(x, y, packetTime));

return 7 _Walking_to_.(” + x + 7,7 +y + 7)”;

private String handlePacketOOF5 (ByteBuffer

byteBuffer ,
Session session , double packetTime) {

Ve
* map_object_id =
x RFIFOL(fd,packet_db[sd—>packet_ver |[RFIFOW(fd

,0)].pos[0]);

38

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

x map_object_id = RFIFOL(fd ,4);

*/

// Bytes 0 and 1 were initialized previously as
packetld

// Bytes 2 and 3 are skipped

byteBuffer. get () ;

byteBuffer.get () ;

// Get the map_object_id (item)
int item = byteBuffer.getlnt ();

bytesRead += 6;
session .addTakeltemTime (packetTime) ;

if (session.isLastChangedDirectionTimeSet ())
session.addChangeDirectionTakeltemInterval (
packetTime—session . getLastChangeDirectionTime

());

if (session.isAttacking()) {
session.addAttackFirstLootInterval (packetTime
— session.getLastAttackTime());
session.setAttacking (false);

}

return ”"Take_ltem.” + item + ”___.Time_ChDir—Pickup

”

-

+ (packetTime—session .
getLastChangeDirectionTime ()) ;

}

private String handlePacket0190 (ByteBuffer
byteBuffer ,
double packetTime, Session session) {
String result;
/%
x* 0x0190,19,actionrequest ,5:18 wvoid
clif_-parse_ActionRequest

*

x clif_-parse_ActionRequest_sub (sd,

x RFIFOB(fd,packet_db[sd—>packet_ver |[RFIFOW(fd
0)].pos (1)),

« RFIFOL(fd,packet_db[sd—>packet_ver |[RFIFOW(fd
0)]-pos[0]),

x gettick());

39

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

*

x clif-parse_ActionRequest_sub (sd ,RFIFOB(fd ,18),
RFIFOL(fd ,5),

x gettick())

*/

// Bytes 0 and 1 were initialized previously as
packetld

// Bytes 2, 3 and 4 are skipped

byteBuffer. get () ;

byteBuffer.get () ;

byteBuffer.get () ;

// Target ID (Byte 5,6,7,8)
int targetld;
targetld = byteBuffer.getlnt ();

// Bytes 9,10,11,12,183,14,15,16,17 are skipped
byteBuffer. get () ;
byteBuffer.get ()
byteBuffer. get ()
byteBuffer. get ()
byteBuffer. get () ;
byteBuffer.get () ;
()
()
()

)
9

)

byteBuffer. get
byteBuffer. get
byteBuffer. get

I

I

)

// Action ID (Byte 18)
int actionld;
actionld = byteBuffer.get () & 0xff;

switch (actionId) {
case 0x00: // once attack
session .countOnceAttack () ;
result =
7 Attack .—_Once_(”
+ Long.toHexString (targetId)
+)7
session.setAttacking (true);
session .setLastAttackTime (packetTime) ;
break ;
case 0x07: // continuous attack
session .countContinuousAttack () ;

40

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

result =
7 Attack —_Continuous.(”
+ Long.toHexString (targetId)
+)7
session.setAttacking (true);
session .setLastAttackTime (packetTime) ;

break ;

case 0x02: // sitdown
result = 7 Sit._down” ;
break ;

case 0x03: // standup
result = ”Stand_up”;
break;

default:
result = 777
break ;

}

bytesRead += 17;
return result ;

}

private String handlePacket009B (ByteBuffer
byteBuffer ,
Session session) {
/%
+ cmd = RFIFOW(fd ,0) ;
account_id = RFIFOL(fd,packet_db[packet_ver]/
emd].pos[0]);
* char_id = RFIFOL(fd,packet_db[packet_ver][cmd].
pos[1]);
x login_idl = RFIFOL(fd,packet_db[packet_ver][cmd
/- pos[2]);
« client_tick = RFIFOL(fd,packet_db[packet_ver]]
ecmd].pos[3]);
x sex = RFIFOB(fd,packet_db[packet_ver]|[cmd]. pos

[4]);

cmd = RFIFOW(fd ,0) ;
account_id = RFIFOL(fd, });
char_id = RFIFOL(fd,9) ;
login_id1 = RFIFOL(fd, 17);
client_tick = RFIFOL(fd, 18);
sex = RFIFOB(fd, 25);

* X X X K K X X

41

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

x Strange information: Reading 4 bytes from
position

x 17 and reading 4 bytes from position 187!
However,

x we’'re not interested in these wvalues so leave
it be.

x Only interested in ’account_id’ (accountld) and
x 'char_id’ (charld). The rest is not saved.

*/

// Bytes 0 and 1 were initialized previously
// as packetld

// Bytes 2 and 3 are skipped

byteBuffer.get () ;

byteBuffer. get () ;

// Account ID(Bytes 4, 5, 6, 7)
session .setAccountld (byteBuffer.getInt ());

// Byte 8 is skipped
byteBuffer.get () ;

// Char ID (Bytes 9, 10, 11, 12)
session .setCharld (byteBuffer. getInt ());

// Bytes 13, 14
byteBuffer. get (
byteBuffer. get (
byteBuffer. get (
byteBuffer. get (

15 and 16 are skipped

)
)
).
)

9

)

// Login Id (Bytes 17, 18, 19, 20) (Not needed)
byteBuffer.getInt () ;

// Not reading Client tick (Not needed)
// Bytes 21, 22, 238 and 2/ are skipped
byteBuffer.get () ;

byteBuffer.get ()
byteBuffer. get () ;
byteBuffer.get ()
// Sex (Byte 25) (Not needed)

42

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

byteBuffer.get () ;

bytesRead += 24;
return "Want_To_Connect” ;

}

// Source getBytesFromFile: The Java Developers
Almanac 1.4

// http://exampledepot.com/egs/java.io/
File2ByteArray . html

private byte[| getBytesFromFile(File file) throws
IOException {
InputStream is = new FilelnputStream(file);

// Get the size of the file
long length = file.length();

// You cannot create an array using a long type,

// it needs to be an int type.

// Before converting to an int type, check to

// ensure that file is not larger than Integer.
MAX VALUE.

if (length > Integer .MAXVALUE) {
System.out.println (" File_is_too_large”);
System. exit (1);

}

// Create the byte array to hold the data
byte|[] bytes = new byte[(int) length |;

// Read in the bytes
int offset = 0, numRead = 0;
while (offset < bytes.length
&& (numRead = is.read(bytes, offset ,
bytes.length — offset)) >= 0)
offset 4= numRead;

// Ensure all the bytes have been read in
if (offset < bytes.length)
throw new IOException(” Could.not_.completely._read
_filel”
+ file .getName());

// Close the input stream and return bytes

43

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

is.close();
return bytes;

}
}

44

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

6.5 Appendix E: Session Sourcecode

package nl.ru.ai.turingtest.analyzer;
import java.util.ArrayList;

import java.util.List;
import java.util.Vector;

Vit

x The Session is used to store and calculate certain
x properties of a packetstream log. These properties

will be used to determine whether a log
from a human player or a bot.

@author Adam Cornelissen
@uersion June 16, 2008

EE I N

*/

public class Session {

18

private static final int DISTANCE.OUTLIER = 1000;
private static final double TIME OUTLIER = 7000;

private List<MovePacket> movePackets;

private List<Double>
changeDirectionTakeltemIntervals;

private List<Double> takeltemTimes;

private List<Double> attackFirstLootInterval;

private boolean timePlayStartSet;
private double timePlayStart;

private double timePlayStop;

private double packetsTotal;

private int onceAttack;

private int continuousAttack;

private int accountld;

private int charld;

private double lastChangedDirectionTime

private boolean lastChangedDirectionTimeSet ;

private boolean attacking;

private boolean looting;

private double lastAttackTime;

/*

* Derived values

v/

private boolean derivedValuesCalculated;
private double timePlayedTotal;

45

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

private double packetsPerSecond;

private double averageMoveDistanceX;

private double averageMoveDistanceY ;

private double averageMoveDistanceXY ;

private double averageMoveTime;

private double averagePickupTimeDifference;
private double averageTimeBetweenChDirAndPickup;
private double averageFirstLoot;

private double onceAttackPerSecond;

private double continuousAttackPerSecond;

/% x

x Create a new session

*/

public Session () {
movePackets = new ArrayList<MovePacket>();
changeDirectionTakeltemIntervals = new ArrayList<

Double >();

takeltemTimes = new ArrayList<Double>();
attackFirstLootInterval = new ArrayList<Double>();
timePlayStartSet = false;
lastChangedDirectionTimeSet = false;
attacking = false;
looting = false;
derivedValuesCalculated = false;

}
Ve

x Calculates the average time between ’move’
x packets (0x00A7). Times longer than timeQutlier
x are not used in the calculation.
v/
private void calcAverageMoveTime () {
double nrMoves = 0;
double timeDifference = 0, timeTotal = 0;

for (int position = 1;
position < movePackets.size ();
position++) {
MovePacket packetCurrent = movePackets. get (
position);
MovePacket packetPrevious = movePackets. get (
position —1);

46

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

timeDifference = (packetCurrent.getTime ()
— packetPrevious.getTime());
if (timeDifference < TIME.OUTLIER) {
timeTotal += timeDifference;
nrMoves++;
} else {
//System . out. println ("time outlier used”);
}
}
if (nrMoves = 0)
averageMoveTime = TIME_OUTLIER;
else
averageMoveTime = timeTotal / nrMoves;

}
/%%

x Calculates the average distance between moves.
* Distances larger than distanceOutlier are not
* used wn the calculation.

*/
private void calcAverageMoveDistance () {

double totalX = 0;

double totalY = 0;

double totalXY = 0;

int nrMoves = 0;

for (int position = 1;
position < movePackets. size () ;
position++) {
MovePacket packetCurrent = movePackets. get (
position);
MovePacket packetPrevious = movePackets. get (
position —1);

double differenceX = Math.abs(packetCurrent.getX
()
— packetPrevious.getX());

double differenceY = Math.abs(packetCurrent.getY
)
— packetPrevious.getY ());

double differenceXY = Math.sqrt (differenceX x
differenceX
+ differenceY x differenceY);

47

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

if (differenceX < DISTANCE.OUTLIER
&& differenceY < DISTANCE.OUTLIER
&& differenceXY < DISTANCE.OUTLIER) {
totalX += differenceX;
totalY += differenceY ;
totalXY += differenceXY ;
nrMoves++;
} else {
//System . out. println (”distance outlier used”);

}

}

if (nrMoves = 0) {
averageMoveDistanceX = 0;
averageMoveDistanceY = 0;
averageMoveDistanceXY = 0;

} else {
averageMoveDistanceX = totalX /nrMoves;
averageMoveDistanceY = totalY /nrMoves;

averageMoveDistanceXY = totalXY /nrMoves;

}
}

/% x

x Calculates the average time between ’take item
x packets (0xz00F5). Times longer than timeQOutlier
x are not used in the calculation.

v/
private void calcAveragePickupTime () {

double sumTimes = 0;

int totalTimes = O0;

2

Vector<Double> pickupTimeDifferences = new Vector<
Double >();

for (int position = 1;
position < takeltemTimes.size () ;
position++) {
double pickupTimeCurrent = takeltemTimes. get (
position);
double pickupTimePrevious = takeltemTimes. get (
position — 1);

double pickupDifference=pickupTimeCurrent—
pickupTimePrevious;

48

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

if (pickupDifference < TIME.OUTLIER) {
pickupTimeDifferences.add(pickupDifference);
sumTimes += pickupDifference;
totalTimes++;

} else {

//System.out. printin ("time outlier used”);

}
}

if (totalTimes = 0)
averagePickupTimeDifference = TIME_.OUTLIER;
else
averagePickupTimeDifference = sumTimes/
totalTimes

}
/%%

* Calculates the average time between ’chdir’

x packets (0x0085) and ’take item ’ packets

x (0x00F5). Times longer than timeQutlier are

* not used in the calculation.

*/

private void calcAverageTimeBetweenChDirAndPickup ()

{

double sumTimes = 0;
int totalTimes = 0;

for (Double time
changeDirectionTakeltemIntervals)
if (time < TIME.OUTLIER) {
sumTimes += time;
totalTimes—++;
}

if (totalTimes = 0)
averageTimeBetweenChDirAndPickup = TIME_OUTLIER;
else

averageTimeBetweenChDirAndPickup = (sumTimes/
totalTimes) ;

}

private void calcAverageFirstLoot () {
double sumTimes = 0;
int totalTimes = O0;

49

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

for (Double time : attackFirstLootInterval) {
if (time < TIME.OUTLIER) {
sumTimes += time;
totalTimes++;
}
}

if (totalTimes = 0)
averageFirstLoot = TIME OUTLIER;
else
averageFirstLoot = (sumTimes/totalTimes):;

}
/%%

x @return total number of packets
*/
public double getPacketsTotal () {
return packetsTotal;
}

/% ok
Shows the playtime in a ’‘normal’ form.
Instead of ’x milliseconds’ it shows ’x days,

*
*

%)

x T hours, x minutes, x seconds and x milliseconds
*

*

*

)

@param timelnMilliSeconds
Q@return human form time
«/
private String getTimeHumanForm (double
timeInMilliSeconds) {
int days, hours, minutes, seconds, milliSeconds;

days = (int) (timeInMilliSeconds / (1000% 60 * 60

x 24));

timeInMilliSeconds —= (days * (1000 % 60 * 60 x
24));

hours = (int) (timeInMilliSeconds / (1000 x 60 =
60));

timeInMilliSeconds —= (hours % (1000 % 60 % 60));

minutes = (int) (timeInMilliSeconds / (1000 * 60))

timeInMilliSeconds —= (minutes % (1000 * 60));

50

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

seconds = (int) (timeInMilliSeconds / 1000);
timeInMilliSeconds —= (seconds * 1000);

milliSeconds = (int) timeInMilliSeconds;

return (days + 7.day(s).” + hours + ”_hour(s).” +
minutes
+ 7 _minute(s).” + seconds + ”_second(s).
+ milliSeconds + ”_millisecond(s)”);

” 7

}
/%%

* @param packet

*/

public void add(MovePacket packet) {
movePackets.add (packet) ;

}
/%%

* @return True is the start time 1is
x already set, false otherwise

«/

public boolean isTimePlayStartSet () {
return timePlayStartSet;

}
/%%

* @param packetTime
* Time to use as the start time of the game
+/
public void setTimePlayStart (double packetTime) {
timePlayStart = packetTime;
timePlayStartSet = true;

}
/%%

* @param packetTime

*/
public void setTimePlayStop (double packetTime) {
timePlayStop = packetTime;

}

public void countPacket () {
packetsTotal++;

o1

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

}

public void countOnceAttack() {
onceAttack++;
}

public void countContinuousAttack () {
continuousAttack++;
}

public void addChangeDirectionTakeltemInterval(
double interval) {
changeDirectionTakeltemIntervals.add(interval);

}

public void addTakeltemTime(double packetTime) {
takeltemTimes.add (packetTime) ;
}

public void addAttackFirstLootInterval (double
interval) {
attackFirstLootInterval.add(interval);

}

public void setAccountld (int accountlId) {
this.accountld = accountld;
}

public void setCharld (int charld) {
this.charld = charld;
}

public void setLastChangedDirectionTime (double
packetTime) {
lastChangedDirectionTime = packetTime;
lastChangedDirectionTimeSet = true;

}

public boolean isLastChangedDirectionTimeSet () {
return lastChangedDirectionTimeSet ;
}

public double getLastChangeDirectionTime () {
return lastChangedDirectionTime ;

52

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

}

public boolean isAttacking () {
return attacking;
}

public void setAttacking(boolean value) {
attacking value;
}

public double getLastAttackTime () {
return lastAttackTime;
}

public void setLastAttackTime (double packetTime) {
lastAttackTime = packetTime;
}

public String toString() {
calculateDerivedVales () ;

StringBuffer

stringBuffer .
stringBuffer.
stringBuffer.
stringBuffer.

timePlayedTotal)
.append
.append
.append (”\npackets/second:.");

.append (packetsPerSecond) ;

.append (”\naverage _X_.move_distance:.”)

stringBuffer
stringBuffer
stringBuffer
stringBuffer
stringBuffer
stringBuffer
stringBuffer

stringBuffer
stringBuffer
)
stringBuffer
stringBuffer.
;_4”) ’
stringBuffer.
stringBuffer .

stringBuffer = new StringBuffer () ;
append (" charId:.”);

append (charld) ;

append (" \ntime._played:.");
append (get TimeHumanForm (

)
(”\nnumber.of_packets:.”);
(packetsTotal);

(

(

(

.append (averageMoveDistanceX) ;
.append (”\naverage._Y_move_distance:.”)

.append (averageMoveDistanceY) ;
.append (”\naverage XY_move_distance: .’

)

.append (averageMoveDistanceXY) ;

append (”\naverage._time._between._.moves:

append (averageMoveTime) ;
append (" \naverage._pickup._time.

difference:.”);

53

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

stringBuffer .append(averagePickupTimeDifference) ;

stringBuffer .append (”\naverage _time._between._chdir.
and_pickup:.”);

stringBuffer .append (
averageTimeBetweenChDirAndPickup) ;

stringBuffer .append(”\naverage_first_loot:.”);

stringBuffer.append(averageFirstLoot);

stringBuffer .append(”\nonce_attacks/second:.”);

stringBuffer .append (onceAttackPerSecond) ;

stringBuffer .append(”\ncontinuous._attacks/second: .
")

stringBuffer .append(continuousAttackPerSecond);

stringBuffer .append(”\n”);

e N N

return new String(stringBuffer);

}

private void calculateDerivedVales () {
if (derivedValuesCalculated)
return;
timePlayedTotal = timePlayStop—timePlayStart ;
packetsPerSecond = packetsTotal /(timePlayedTotal

/1000) ;

onceAttackPerSecond = onceAttack/(timePlayedTotal
/1000) ;

continuousAttackPerSecond = continuousAttack /

(timePlayedTotal /1000) ;
calcAverageMoveDistance () ;
calcAverageMoveTime () ;
calcAveragePickupTime () ;
calcAverageTimeBetweenChDirAndPickup () ;
calcAverageFirstLoot () ;
derivedValuesCalculated = true;

}
Vit

x @return feature wvector for this session
*/
public Vector<Double> getVector () {

Vector<Double> vector = new Vector<Double>();
calculateDerivedVales () ;
vector .add(packetsPerSecond);
vector .add (averageMoveDistanceX) ;
vector .add (averageMoveDistanceY) ;

o4

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

vector .add
vector .add

averageMoveDistanceXY) ;
averageMoveTime /100) ;

vector .add(averagePickupTimeDifference/1000);
vector .add (averageTimeBetweenChDirAndPickup /1000) ;
vector.add(averageFirstLoot /1000) ;

// wvector.add(onceAttackPerSecond);
vector.add(continuousAttackPerSecond);

return vector;

}
/%%

* @return Returns the character id
*/
public int getCharld () {

return charld;

}
/%%

x Checks if a session is long enough to be wvalid.
* The minimal time limit is set as 10 minutes.
*

o~ o~~~

*x @return

*/

public boolean isValid () {
calculateDerivedVales () ;

return (timePlayedTotal > 10%60%1000);

}

55

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

6.6 Appendix F: MovePacket Sourcecode

package nl.ru.ai.turingtest.analyzer;

/%%

* @author Adaem Cornelissen
x @uersion June 20, 2008

*/

public class MovePacket {
private int x, y;
private double time;

/

*

Constructor

@param

The z—coordinate of the position
@param vy

The y—coordinate of the position
@param time

EE R S S G R S SR

Time at which the packet was sent (in
milliseconds)
v/
public MovePacket(int x, int y, double time) {
this.x = x;
this.y = y;
this.time = time;

}
/xok

x @return z—coordinate of the position

v/

public int getX () {
return x;

}

/% ok

x @return y—coordinate of the position

v/

public int getY () {
return y;

}

56

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

/%%
* @return Time at which the packet was sent (in
milliseconds)
*/
public double getTime() {
return time;
¥
}

o7

Modern Turing Test: Bot detection in MMORPG’s

6.7 Appendix G: Run Sourcecode

package nl.ru.ai.turingtest.analyzer;

import
import
import
import

import
import

Vit
*
*
*
*
*

*/

public

java.util . ArrayList;
java.util.List;
java.util .Map;
java.util.Vector;

nl.ru.ai.turingtest.network.BackPropagation;
nl.ru.ai.turingtest.network.Network;

Main routine to run analyzer on input
files and train the mneural network.

@author Adam Cornelissen
@uersion June 24, 2008

class Run {

/% k

x Main routine which will create feature
x vectors for all the player files

x in the playerDirectory wvariable and

x for all the bot files in the

x botDirectory variable.

*

x @param args

* Unused

v/

public static void main(String[] args) {
final String playerDirectory = "players”;
final String botDirectory = ”"bots”;
final String unknownDirectory = ”unknown” ;

Analyzer analyzer = new Analyzer (”packet_db.txt”);

Map<Integer ,String> chars=CharReader.read (”

Ve

*

*/

rrochars.txt”);

Create feature wvectors for all player files

List <Vector<Double>> playerVectors =

o8

Adam Cornelissen

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

new ArrayList<Vector<Double>>();
List<String> playerNames =
new ArrayList<String >();

List<Session> sessions = analyzer.analyze(
playerDirectory) ;
for (Session session : sessions) {

if (session.isValid()) {
// System.out.println (chars.get(session.
getCharld()));
Vector<Double> vector = session.getVector ()
playerVectors.add(vector);
playerNames.add(chars.get (session.getCharld())
) ;
}
}
Ve
x Create feature wvectors for all bot files
*/
List<Vector<Double>> botVectors =
new ArrayList<Vector<Double>>();
List<String> botNames =
new ArrayList<String >();
sessions = analyzer.analyze(botDirectory);
for (Session session : sessions) {
if (session.isValid()) {
Vector<Double> vector = session.getVector();
botVectors.add(vector);
botNames.add(chars. get (session.getCharld()));

}
}

/%
x (Create feature wvectors for all unknown files
*/
List <Vector<Double>> unknownVectors =
new ArrayList<Vector<Double>>();
List<String> unknownNames =
new ArrayList<String >();

sessions = analyzer.analyze (unknownDirectory);
for (Session session : sessions) {
if (session.isValid()) {
Vector<Double> vector = session.getVector();

unknownVectors.add(vector);

59

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

unknownNames. add (chars . get (session.getCharld ()

)) s
}

}
/*
* Loop, leaving out a single wvector,
* train with the rest
*/
for (int leaveOut = 0; leaveOut < playerVectors.
size ()
+ botVectors.size(); leaveOut++) {
boolean playerSkip;
int skipNumber;
if (leaveOut < playerVectors.size()) {
playerSkip = true;
skipNumber = leaveOut;
} else {
playerSkip = false;
skipNumber = leaveOut — playerVectors.size();
¥
/%
x Create a network
«/
int inputNodes = playerVectors.get (0).size ();
int hiddenNodes = playerVectors.get(0).size ();
Network network = new BackPropagation (inputNodes

hiddenNodes, 1);

int max = Math.max(playerVectors.size (),
unknownVectors. size ());

double error = 10;
/%

x Train it

*/
while (error > 0.0001) {

error = 0;

for (int i = 0; i < max; i++) {

/%

First a player feature wvector will
be added to the mnetwork, then a
bot feature wector, then a player
feature wvector again, etc.

* X X X

60

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

*

x For each feature wvector the input

x nodes of the neural network will

x be set to the wvalue of the

x corresponding field in the feature

x vector.

«/

f (i < playerVectors.size ()
&& !(playerSkip && i == skipNumber)) {

Vector<Double> vector = playerVectors. get (
1)

for (int j = 0; j < vector.size(); j++)
network.setInputActivation(j, vector.get

(i));

i

network . propagate () ;

// System.out.printin(” 0.0 — 7 +
// metwork. getOutputActivation (0));
double [| desired = new double[1];
desired [0] = 0; // player

network . backPropagate (desired) ;
error += network. getError();

}

if (i < botVectors.size ()

&& ! (!playerSkip && i == skipNumber)) {
Vector<Double> vector = botVectors.get (i);
for (int j = 0; j < vector.size(); j++)

network.setInputActivation(j, vector.get

(3));

network . propagate () ;

// System.out.printin(” 1.0 — 7 +
// metwork. getOutputActivation (0));
double [| desired = new double[1];
desired [0] = 1; // bot

network . backPropagate (desired) ;
error += network.getError();

}
}

// System.out.printin(error);
}
/*

61

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

x Run on skipped one
+/
Vector<Double> vector;
if (leaveOut < playerVectors.size()) {
vector = playerVectors.get (skipNumber) ;
for (int i = 0; i < vector.size(); i++) {
network .setInputActivation (i, vector.get(i))

}

network . propagate () ;
System.out.printf (”%—18s.%.4f\n" ,
playerNames. get (leaveOut) ,
network . getOutputActivation (0));
} else {
vector = botVectors. get (skipNumber) ;
for (int i = 0; i < vector.size(); i++) {
network.setInputActivation (i, vector.get(i))

}

network . propagate () ;
System.out.printf(”Bot.%2d_%.4f\n" ,
leaveOut ,
network . getOutputActivation(0));

)

)

62

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

6.8 Appendix H: VectorMath Sourcecode

package nl.ru.ai.turingtest.analyzer;

import java.util.Vector;

Vit

x @author Adam Cornelissen
x @uersion June 16, 2008
*/

public class VectorMath {

/%%

x* Constructor

*/

public VectorMath () {

¥
/

*

Returns the length of a wvector
according to:

(a0°2 + al"2 + ... + an"2)70.5

@param vector
Vector of which to calculate the

XK K X X K ¥

length
x Qreturn The length of the wector
«/
public static double calculateVectorLength (
Vector<Double> vector) {
double sumOfSquares = 0;
for (double attribute : vector)
sumOfSquares += (Math.pow(attribute , 2));
return Math. sqrt (sumOfSquares) ;

}
/

*

Normalizes a vector according to:

(1 / |[{a0,al,..,an}|) * {a0,al,.., an}
(| vector| is the wvector length

(see ’calculateVectorLength (vector)
function).

E L R T S

63

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

x @param vector

* Vector to normalize
x @param wvectorLength

* Length of the wector
x @return A normalized vector

public Vector<Double> normalizeVector (Vector<Double>
vector ,
double vectorLength) {
Vector<Double> vectorcopy =
(Vector<Double>) vector.clone();

for (int i = 0; i < vectorcopy.size(); i++)
vectorcopy.set (i, (vectorcopy.elementAt(i) /
vectorLength));

return vectorcopy;

}

/% x

x Calculates the inproduct of two

x vectors according to:

x {a0,al,..,an}.{b0,b1,..,bn} =

x a0xb0 + alxbl + .. + anxbn

x ASSUMPTION: Both wectors are the

* same Size.

*

x @param vectorOne

* Vector one of two to calculate the
inproduct

x @param wvectorTwo

* Vector one of two to calculate the
inproduct

x @return Inproduct of wvectorOne and vectorTwo
«/
public double inProduct(Vector<Double> vectorOne,
Vector<Double> vectorTwo) {
double inproduct = 0;
Vector<Double> vectorlcopy = (Vector<Double>)
vectorOne. clone () ;
Vector<Double> vector2copy = (Vector<Double>)
vectorTwo. clone () ;

for (int i = 0; i < vectorlcopy.size(); i++) {

64

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

double elementl = vectorlcopy.elementAt(i);
double element2 = vector2copy.elementAt(i);
double product = elementl * element?2;

inproduct += product;

}

return inproduct;

}
/%%

* Calculates the angle between two vectors
according to:

x {a0,al,..,an}.{b0,b1,.. bn} =

x |[{a0,al,..,an}| x [{b0,b1,..,bn}| x cos(angle)

*

* @param wvectorOne

* Vector one of two to calculate the
angle

* @param wvectorTwo

* Vector one of two to calculate the

angle
* @return The angle between wvectorOne and vectorTwo
v/
public double calculateAngleBetweenVectors(Vector<
Double> vectorOne ,
Vector<Double> vectorTwo) {
Vector<Double> vectorOneCopy =
(Vector<Double>) vectorOne.clone ();
Vector<Double> vectorTwoCopy =
(Vector<Double>) vectorTwo.clone ();

Vector<Double> vectorOneNorm = null;
Vector<Double> vectorTwoNorm = null;

double lengthOne = calculateVectorLength (

vectorOneCopy) ;

double lengthTwo = calculateVectorLength (
vectorTwoCopy) ;

vectorOneNorm = normalizeVector (vectorOneCopy ,
lengthOne) ;

vectorTwoNorm = normalizeVector (vectorTwoCopy ,
lengthTwo) ;

double inproduct = inProduct (vectorOneNorm ,

65

Modern Turing Test: Bot detection in MMORPG’s Adam Cornelissen

vectorTwoNorm) ;
return inproduct;

}
}

66

Bibliography

[1] Identifying MMORPG Bots: A Traffic Analysis Approach
Kuan-Ta Chen, National Taiwan University

[2] Embedded Noninteractive Continuous Bot Detection
Roman V. Yampolskiy & Venu Govindaraju, University at Buffalo, Buf-
falo

67

	Introduction
	Bot consequences
	Related work

	Experiments
	Constraints
	Strategy
	Packet Analyzer
	Packets

	Session
	Feature Vector
	Analyzer
	Classification
	Vector Angles
	Neural Networks

	Results
	Vector Angles
	Neural Network

	Discussion
	Acknowledgements
	Appendix
	Appendix A: Terms and abbreviations
	Appendix B: Packet Structure
	Appendix C: Packet Database Reader Sourcecode
	Appendix D: Analyzer Sourcecode
	Appendix E: Session Sourcecode
	Appendix F: MovePacket Sourcecode
	Appendix G: Run Sourcecode
	Appendix H: VectorMath Sourcecode

