
Analysing Onion Routing

Bachelor-Thesis

Steffen Michels

June 22, 2009

Abstract

Although methods for reaching security goals such as secrecy, integrity and authentication are widely
used in the Internet, there is no widely-used solution providing anonimity. Among all existing ap-
proaches to provide anonimity onion routing is a very promising one.

In this paper the security goals concerning anonymity are given and it is shown that onion routing
can in principle provide solutions for the most important ones. Still there are many open problems
and solutions trying to solve some of them, like universal re-encryption, introduces new problems by
themselves. The only solution that is mature enough and also has enough participants to provide a
reasonable level of anonymity is TOR. But still anonymity provided by it is far from being perfect.

1 Introduction

Nowadays methods for reaching security goals such
as secrecy, integrity and authentication are widely
used in the Internet. This is reached by using en-
cryption, digital signatures and certificates. But
even when using an encrypted connection with an
authenticated server, it is still possible to determine
who is communicating with whom by listening to
the traffic. But anonymity is also a very important
part of privacy and solutions for this are needed.

Why is anonymity important? For people who
are living in countries, in which it is prohibited
to communicate with people having opinions that
are against the ideas of the government or visiting
websites which contain such ideas, it might be dan-
gerous to do so. For these people anonymity is a
very important issue. But also people who live in
democratic countries might not want other people
to know what they are doing in the Internet. Peo-
ple like journalists or companies may have the need
for anonymity, too.

Despite of this there is no widely used solution
to achieve anonymity, although there are some at-
tempts. One of these is onion routing which is
a technique for anonymous communication over
a public network. With this technique messages

travel from source to destination via a sequence of
onion routers which routes the messages via an un-
predictable path.

The goal of this paper is to make a security analy-
sis of onion routing. The most important issue here
is how strong the anonymity is. But this question
cannot simply be answered because it depends on
the situation. There are different kinds of appli-
cations and also some different ways how to define
what anonymity means in certain circumstances.
Also there are a number of different approaches how
to use the basic idea of onion routing, which might
provide different levels of anonymity for different
cases. So I focus on the differences between these
variants.

First in Section 2 a security analysis of anony-
mous communication is given and existing solutions
are given. After this the idea behind onion routing
and possible attacks are given in Section 3. Then a
number of different approaches to implement onion
routing are discussed. It is discussed for which sit-
uation these approaches try to provide which kinds
of anonymity, what the possible attacks are and
which vulnerabilities of previous variants they try
to fix. The approaches which are discussed are: the
first implementation (Section 4), TOR (Section 5)
and approaches based on Universal Re-Encryption

1

(Section 6). In Section 7 the variants are compared
and the anonymity that can be reached with onion
routing in general is discussed together with the
open problems. Finally conclusions are drawn in
Section 8.

2 Anonymity

Here a security analysis of anonymous communica-
tion is done.

2.1 Stakeholders and Assets

Stakeholders of the system are all parties who want
to communicate anonymously for one of the rea-
sons already discussed in the introduction. But
there are different kinds of anonymity that someone
might want to achieve. For example someone might
want to communicate with someone and authen-
ticate to her, but no external observer should be
able to know about this communication. It is also
possible that a person wants to access information
anonymously and that not even the server knows
her identity. Another possibility is that someone
wants to publish information anonymously.

So the primary asset depends on what the stake-
holder wants to achieve and can consequently be
the information who is communicating with whom,
who accessed which information or who published
with information. Of course, secret keys are also
assets of the system.

There are also different levels of anonymity that
the stakeholder might want to achieve. Someone
could only want to make traffic analysis difficult
such that it is not feasible to make a profile of her
communication behaviour, but does not mind if sin-
gle connections can be traced with much effort. But
also there are persons who really wants to keep the
fact that they are communicating with one other
specific person secret.

2.2 Attacker Model

There are also different kinds of attackers who want
to achieve different goals. One could try to make
profiles of a large group of people for commercial
reasons. But also one can try to analyse the com-
munication data of a single person to take advan-
tage from that or to see if the person does some-

thing which is prohibited. Also an attacker might
want to verify if two persons are communicating or
not.

The possibilities of an attacker have to be taken
into account, too. There might be a global observer
who can observe all traffic between all nodes of the
anonymous network. Other assumptions about the
attacker can be that she can only observer a small
part of the network or only has one node of the
network under control.

2.3 Security Requirements

The information that should be protected can be
seen as a kind of confidential data and so the main
security requirement is the confidentiality of this
information. Of course there are also some derived
security goals such as the confidentiality of the keys
used. The goal of solutions for anonymous com-
munication is not to provide confidentiality or in-
tegrity of the messages send. For this users can run
protocols providing this on top of the anonymous
connection.

In the following only the primary security re-
quirements dealing with anonymity are given, as-
suming the situation that Alice establishes a con-
nection to communicate with Bob. The first se-
curity requirements focuses only on the involved
parties and not on an external attacker:

SR1 Alice does not know the identity of Bob.

SR2 Bob does not know the identity of Alice.

The first requirement is important if someone wants
to publish information but wants to stay anony-
mous. For example Bob wants to run a web-server
but people connecting to it cannot get to know the
real address of it but only connect to it with help
of a pseudonym what gives no information about
the real identity. The case that someone wants to
communicate with someone without revealing her
identity is reflected by the second requirement.

More important is the situation in which there
is an external attacker who wants to compromise
anonymity. In the following requirements this at-
tacker is called Eve.

SR3 Eve cannot get to know with whom Alice is
communicating.

2

SR4 Eve cannot get to know with whom Bob is
communicating.

SR5 Eve cannot confirm whether Alice and Bob are
communicating.

There is an essential difference between the first
two and the last requirement. In the first case Eve
starts with one person and should not be able to
get the information to whom this person connects
(SR3) or from whom the person receives connec-
tions (SR4). In the case of SR5 Eve focuses on a
pair of persons, for instance because she has an ev-
idence that those persons are communicating, and
tries to confirm that. In practise this last require-
ment is very difficult to achieve.

In some cases it is desirable to achieve SR3 and
SR4 but not SR1 and SR2. This is possible by
using a protocol providing authentication on top
the the anonymous connection. So Alice and Bob
are mutually authenticated and know with whom
they are communicating but no external party does.

A last very strong property is steganography,
which means that it is impossible to confirm that
Alice is using anonymous communication:

SR6 Eve cannot confirm that Alice is communicat-
ing via an anonymous connection.

2.4 Differences with Other Solutions

There are many different solutions for providing
anonymous communication for different kinds of
technologies and assumptions. Here some solutions
are discussed and the assumptions for which they
are built are compared to those for onion routing.

Unlike proposals for providing anonymity in for
example ISDN networks [16] where a circuit is
build and used to transport the data during one
connection, onion routing is designed to be used in
a public packet-based networks such as the Inter-
net, where each single packet is routed from one
router to the next one until the receiver is reached.
So each packet has to contain not only the mes-
sage but also routing information such that each
router knows to which next router the packet must
be send. In the most simple case the routing in-
formation is just the address of the receiver. Even
if the message is encrypted such that only the in-
tended receiver can read it, the routing information
has to be readable by all routers. So someone who

can read the messages processed by the routers can
get to know who is communicating with whom.

In contrast to for instance Chaum’s MIX net-
works [2], which provides anonymity for services
where a large latency can be introduced such as
email, onion routing is designed to work for ser-
vices which require real-time communication such
as HTTP or SSH. This property makes some at-
tacks, especially timing attacks, more likely.

There are other simply designs with similar goals
as onion routing. One example for this is the
Anonymizer [1]. Here the data is send to an
anonymizing proxy which then sends the request
to the destination. The problem with this design
is that users have to trust a single proxy. Onion
routing is designed in such a way that a number
of proxies are used and anonymity is reached if at
least one of them is not compromised.

3 Onion Routing

In this section the goals, the principles and the pos-
sible vulnerabilities of onion routing are given.

3.1 Goals of Onion Routing

In its basic form onion routing tries to achieve SR2 -
SR5, although none of the existing solutions are
designed for reaching the last one entirely. Some
variants of onion routing also gives the possibility to
provide anonymous services to others (SR1). The
goal of onion routing is not to hide who is connected
to the network (SR6).

The goal of onion routing is not confidential-
ity and integrity of the data sent via the network.
Users should be aware that the confidentiality and
integrity of data transfered with protocols not pro-
viding this via the Internet is never ensured and
should use protocols providing confidentiality or in-
tegrity if they want to achieve it.

3.2 Design of Onion Routing

Rackoff and Simon proposed a protocol similar to
onion routing for the first time [17], but they did
not use the name onion. Later Goldschlag, Reed
and Syverson introduced the name onion routing
and made a first proposal for a design usable to
make an implementation [10].

3

3.2.1 Routes

With onion routing a fixed route which is deter-
mined by the sender is used to do the routing. This
is done in such a way that each router only knows
the previous and the next router in the route. If
someone wants to know with whom the sender is
communicating she has to control all routers of the
route. Even if only one router is not under her
control it is impossible to figure out the recipient.
However this is only true for an idealized situation,
because there are many possible attacks as will be
discussed later. Sending messages is done using
onions. How onions are constructed is described
later.

In Figure 1 an example is given in which Alice
wants to send message m to Bob using three
routers. Alice first has to construct OnionA. A
knows who Alice is but can’t get to know m or who
Bob is. A can only construct OnionB and knows
that this has to be send to B. B only knows who
A is and that it has to send the next onion to C.
C knows m and that the intended receiver of m is
Bob, but there is no possibility to get to know that
the original sender is Alice.

Figure 1: An Onion Routing Example

3.2.2 Onions

An onion is a recursive data-structure, encrypted
with a key KR, such that only the intended recipi-
ent R of the onion can decrypt it. KR can be a pub-
lic key of R or a symmetric key which is known by
R and the constructor of the onion. The encrypted
onion contains the next node R′ in the route as
first part. This information is readable by R after
decryption. After this the onion contains another
onion encrypted with a key KR′ such that it can
be decrypted by R′. The only exception is the case
that R is the last node of the route. Then the onion
contains the data intended for the receiver instead
of another onion.

An example of a an onion with three layers in
which the first parts contain the next recipient of

the onion is:

{B, {C, {Bob, data}KC
}KB
}KA

(1)

3.2.3 Sending Messages with Onions

The main idea is that if a router receives an onion
it only knows the previous router in the route and
can get to know the next one, since its identity
is included in the first part of the onion which is
readable after decryption. It is unable to decrypt
the next onion, the only thing it can do is to relay
it to the next router in the route. Only the first
router knows the original sender of a message and
only the last one knows the intended recipient.

The example given in Figure 1 can be realized
using the onion in Equation 1. Alice has to know
all Ki to construct the onion. In practise it is not
trivial to give all the senders access to the keys of
all nodes of the network, but this is discussed later.
Alice can then send the onion to A. A can decrypt
the onion and knows that it must send the second
part of the onion to B. Finally C gets the last
onion and can send m to Bob in plaintext.

Below the whole protocol is given:

Alice→ A : {B, {C, {Bob,m}KC
}KB
}KA

(2)
A→ B : {C, {Bob,m}KC

}KB
(3)

B → C : {Bob,m}KC
(4)

C → Bob : m (5)

3.3 Attacks

There are two types of attacks: passive and active
ones. Passive here means that the attacker has no
own nodes in the network and cannot modify mes-
sages, but can only listen to traffic. Assuming that
an attacker can listen to all the traffic might be
paranoid if you consider for instance the Internet.
But still a government or intelligence organizations
might record a huge amount of Internet traffic or
get access to particular interesting traffic, for ex-
ample the communication of one person.

For active attacks the attacker modifies messages
and controls a fraction of the nodes. One of the
ideas of onion routing is that the user does not trust
a single server but uses a route of nodes and as-
sumes that at least one of them is not compromised.
It has to be assumed that an attacker can only con-
trol a fraction of nodes such that the chance that

4

all nodes of one route are controlled by her is small
enough. But even with only a small fraction of
nodes there are some possible attacks.

The content a user sends could also possibly tell
something about her identity. Examples for this are
information a browser sends to a website like refer-
rers or cookies. Note that the content may not be
encrypted between the last node of the onion net-
work and Bob. Also Bob self could be the attacker.
Those attacks are outside the scope of onion rout-
ing since it does not change the content of messages
itself, there are other solutions for this.

Below a number of different attacks applicable to
onion routing in general are given. The list is not
complete, since there is a large number of possible
attacks.

3.3.1 Passive Attacks

Reconstructing Onions A simple attack,
which is e.g. given in [12], is based on the fact
that it can be possible to re-construct the onion
a node has received before from the one that is
send further to the next node after decrypting it.
For example assume that an attacker records all
incoming traffic for a node B for a small amount of
time. B receives an onion from A and then sends
the included onion o to C:

A→ B : {C, o}KB
(6)

B → C : o (7)

The attacker observing o can reconstruct {C, o}KB
,

because the public key of the node KB and the
destination C of the outgoing onion is known. The
attacker can use the recorded incoming traffic for B
to find out that B received {C, o}KB

from A. This
can be done for each node until the attacker knows
the entire route.

Decreasing Onion Size Another problem with
the simple scheme given in the previous section is
that onions become smaller and smaller while trav-
eling along the route. This can reveal the route of
a message.

Fingerprint Attacks Fingerprints mean char-
acteristic file sizes, access patterns and latencies
for either nodes of the network or services which
are potentially used. For example a collection of

website fingerprints can be used by an attacker to
verify if someone is visiting one of those.

End-to-End Attacks End-to-end attacks are
attacks where an attacker observes two potential
ends of a connection and tries to confirm if they
are really the ends of a connection. Those attacks
try to break SR5.

One of such attacks would be to simply count
the packets coming in and out and try to find a
correlation.

A more sophisticated attack is a timing attack.
Even if not considering the content or the size of
onions an attacker can see that messages are send.
This information can be used for a statistical anal-
ysis. An important factor is how much the network
is used. If more users use the same nodes, a statis-
tical analysis becomes more difficult. But still it is
always possible if collecting enough data.

Of course this attack can also be used to get to
know a route one-by-one instead of confirming if
two persons are communicating, but of course this
requires much more effort.

3.3.2 Active Attacks

Evil Nodes The most obvious attack is to run
nodes of the network by yourself. But since onion
routing is designed with the assumption that not all
nodes are trustworthy, it is not enough to simply
run one evil node. In the case that all nodes of
a route are compromised, of course anonymity is
broken.

In [18] probabilities for such attacks are calcu-
lated under some assumptions. If the network con-
sists of r nodes and c are under the control of an
attacker, the probability that an attacker controls
the end and the begin point is c2/r2. Controlling
the begin and end point is enough to compromise
all the content and also it is very easy to confirm
that source and destination are communicating as
discussed before. This shows that the size of the
network is essential for the anonymity provided.

Repetitive Attack One other attack is a repet-
itive attack. The problem is that two equal onions
one node receives results in two equal onions which
are send to the next node. For example assume
that the attacker Eve is a node herself. She gets

5

an onion from node A and sends the next onion to
node B. The next node on the route is C:

A→ Eve : {B, {C, o}KB
}KEve

(8)
Eve→ B : {C, o}KB

(9)
B → C : o (10)

Eve does not know o and consequently also not that
C is part of the route. If Eve observes all outgoing
traffic of B after she sent {C, {D, o}KC

}KB
to this

node, she can reveal C. To do this she has to send
the same message to B again. This will lead the to
same onion o send to C. By finding the duplicate
message o in the outgoing traffic of B, Eve now
knows the receiver of o and therefore the next node
in the route which is C.

Iterated Compromise Another active attack is
to compromise all nodes of a route after the onions
have been send. If the attacker has one recorded
onion and gets to know the private key of the re-
ceiver, she can decrypt it and reveal the next node
in the route. This can be done for the whole route.
There are several ways to compromise the nodes.
Possibilities are to hack them all or to get physical
access to them. Also a court may force the owners
of the nodes to give them the keys.

3.3.3 Directory Attacks

In large scalable networks the list of nodes has to
be distributed in some way. This is an interesting
attacking point because manipulating the directory
system in such a way that clients have different
knowledge makes traffic analysis easier. Also an
attacker could force clients to use nodes under her
control.

4 First Version

The first idea how to implement onion routing was
given by Goldschlag, Reed and Syverson [10]. To
make onion routing work for the Internet without
the need to change the existing infrastructure or
the used applications, it is implemented to work as
a proxy server. The disadvantage of this approach
is that it works only for application layer protocols
which are supported by the implementation and the
used applications must also be able to use proxy

servers. But still it is possible to provide an im-
plementation for the most important Internet pro-
tocols, such as HTTP and many applications, like
web-browsers, can be configured to use proxies.

4.1 General Design

The design consists of a network of routing nodes
which can communicate with each other. On the
Internet this is simply a TCP connection between
each of them. For the communication they use
asymmetric cryptography. So each node must be
aware of at least a number of other nodes and have
their public keys. In this design it is not dealt with
the problem how to keep the list of nodes up to
date, because it is intended to be a prototype with
only a few nodes. In later versions there are solu-
tions how to distribute the list of nodes and their
keys.

If Alice wants to communicate with Bob she sim-
ply uses the entry point into the network as a proxy.
The connection between Alice and the proxy is
unsecured and reveals all information about with
whom Alice is communicating. So the connection
has to be done via a trusted network. The simplest
solution would be that the software Alice uses and
the first node are running on the same computer.
The first router chooses a route through the onion
network and sets up a virtual circuit. Details about
virtual circuits are given in the next section. Then
messages from Alice are send through the route to
the last node. The communication between the
nodes does not reveal with whom Alice is com-
municating, as described in Section 3.2. The last
node then makes a connection to Bob and sends the
messages to him. Note that this last connection is
not encrypted (if the protocol Alice uses to com-
municate with Bob does not do that) and reveals
the messages. But according to the goals of onion
routing (Section 3.1) this is not a problem because
an attacker cannot determine the originator of the
messages.

Answers from Bob are send back to Alice through
to route the other way around. No-one, not even
Bob, knows the destination of the messages. He
only knows the node where the message left the
onion network.

6

4.2 Virtual Circuits

In the implementation onions are not used to trans-
port data but only to build virtual circuits which
uses repeated symmetric encryption. This is be-
cause it is much more efficient than using onions,
which requires asymmetric cryptography, and also
the same anonymity as for onions can be achieved.
In this section it is described how to build these cir-
cuits using onions and how they are used to send
data.

4.2.1 Creating Circuits

To create a new circuit the first node has to con-
struct an onion which describes a fixed sequence of
nodes and sends it to the first node of the chosen
route. The sequence of nodes is encoded by nested
onions.

Each node can decrypt the onion it receives. To
prevent repetitive attacks each onion has an expiry
time. Expired onions are not accepted. Addition-
ally a list of all not expired onions has to be kept by
each node and for each onion it has to be checked if
it was received before. If the onion is valid the node
chooses a virtual circuit identifier. Each circuit has
different identifiers for each connection between two
nodes in the route. The node stores this identifier
together with two cryptographic function/key pairs
which are included in the onion and are later used
to send data through this circuit, as described in
the next section. If the node is not the last one
in the route the payload, which then contains an-
other encrypted onion, is send to the next node. To
keep the size of all messages fixed random padding
is added to each onion. Because the payload is en-
crypted no one, except the last node of the route,
can tell where the padding begins. This is impor-
tant because otherwise the decreasing size of the
onion would reveal too much information.

In detail an onion used for this looks like this:

{exp time, n hop, Ff ,Kf , Fb,Kb, payl}PKx
(11)

The fields have the following meaning:

• exp time: the time the onion expires (used to
prevent replaying)

• n hop: the next router in the circuit

• Ff ,Kf : a cryptographic function/key pair
which is used for data traveling in forward di-
rection

• Fb,Kb: a cryptographic function/key pair
which is used for data traveling in backward
direction

• payl: another onion (with added padding) or
only random padding if the receiver is the last
router in the circuit

• PKx: the public key of the receiver

The constructed circuit can then be used to ex-
change messages between Alice and Bob. If it is not
needed any more or an error occurred, the circuit
can be destroyed by any node by sending a special
destroy-message.

4.2.2 Sending Data

If the Alice wants to send data she first splits the
incoming packets into chunks such that they can be
send inside the payload of messages. Then all cryp-
tographic operations are applied to this payload in
reverse order and it is send as a data-message to-
gether with the correct circuit identifier.

If a router in the middle of the circuit receives a
data-message it can look op the cryptographic func-
tion/key pair for the corresponding circuit identi-
fier. If data is traveling in the forward direction
the first function/key pair is used. For the other
case (data is traveling in the backward direction)
the second function/key pair is used. After the
payload is decrypted it is send to the next node
together with the circuit identifier for the connec-
tion between the current and the next node, which
is stored in the current node’s table.

If the last router decrypts the payload it actually
has the data in plaintext and it can be forwarded
to the responder.

This also works the other direction around from
the responder’s to the initiator’s proxy in a sym-
metric way.

4.2.3 Example

If for instance Alice wants to communicate with
Bob using the onion nodes A, B and C the result-
ing virtual circuit looks like in Figure 2. The con-
nection between Alice and A and the connection

7

Figure 2: Virtual Circuit Example

between C and Bob is unencrypted. The circuit
has two identifiers in this case for each connection
between nodes.

The information stored in the nodes for this cir-
cuit are given in Table 1. The initiator of the circuit
A knows all the function key pairs used in the cir-
cuit. Nodes in the middle of the circuit (here only
B) have to know the next hop, the next identifier
(ID2) and the function/key pair to apply (forward)
for each possible incoming circuit identifier (ID1).
The last node in the route C does not need a sec-
ond identifier because the message is send to the
next destination Bob in plaintext.

ID1 next ID2 forward backward
...
- B IDAB PfB , PfC PbB , PbC

...
(a) Table of A

ID1 next ID2 forward backward
...

IDAB C IDBC PfB PbB

...
(b) Table of B

ID1 next ID2 forward backward
...

IDBC Bob - PfC PbC

...
(c) Table of C

Table 1: Example Tables of Onion Nodes

In the following example Px(m) means that the
function/key-pair Px is applied to m and P−1

x (m)
means that its inverse it applied to m. If Alice
wants to send a message m through this virtual
circuit she just sends it to A in plaintext. A then

applies the inverse of all function key-pairs to m in
reverse order and sends it to the next node together
with the correct circuit identifier:

Alice→ A : m (12)

A→ B : {IDAB , P
−1
fB (P−1

fC (m))}KB
(13)

B can look up the corresponding function/key pair
for IDAB , compute PfB(P−1

fB (P−1
fC (m))) = P−1

fC (m)
and send this to C together with the second iden-
tifier stored in the table:

B → C : {IDBC , P
−1
fC (m)}KC

(14)

Finally C can compute m = PfC(P−1
fC (m)) and

send it to Bob:

C → Bob : m (15)

For data sent from Bob to Alice the backward
function/key pairs are used and A can get the plain-
text by applying the inverse of all operations.

4.3 Reply Onions

For some applications it is desirable that the re-
ceiver is able to send an answer after the original
circuit is broken. This is for example the case for
e-mails. For this reply onions are used. With these
onions a new virtual circuit is established after the
original one is broken. The reply onion is send by
the last node of the original circuit to the initiator
which then can establish a new circuit. This circuit
behaves as each virtual circuit once it is set up. For
this the innermost payload contains all information
which is determined by the initiator in the normal
case, that is all function/key pairs.

4.4 Vulnerabilities

Here for the attacks described earlier it is discussed
how likely they are with this design. Also some

8

attacks not directly connected to onion routing but
only to the implementation are discussed.

4.4.1 Passive Attacks

Listening on Connection to First Node
With designing the begin of a route as a proxy it
is assumed that the connection from the initiator
to the proxy is done via a trusted network. This
obviously introduces new vulnerabilities. The most
secure variant would be that the proxy is running
on the same computer than the initiator’s software.

Reconstructing Onions The fact that a ran-
dom padding is used prevents the re-construction
of previous onions. The same is true for the data
messages through the virtual circuit. They have
a fixed size and previous messages cannot be re-
constructed because the symmetric cryptographic
functions and keys are only known by the node pro-
cessing that onion.

Decreasing Onion Size The simple padding
mechanism ensures that all onions have the same
length and so no information is revealed from the
size of onions.

Fingerprint Attacks In the design there is no
protection against this kind of attacks. But the
fixed size of messages complicated this kind of at-
tacks in practise.

End-to-End Attacks The design is very vulner-
able to this kind of attacks because of the real-time
character of the communication.

4.4.2 Active Attacks

Compromised First Node With designing the
begin of a route as a proxy it is assumed that the
first proxy node in the route can be trusted, be-
cause it has to know the destination. The most
secure variant would be that the proxy is running
on the same computer than the initiator’s software,
as already discussed.

Of course this computer can also be compro-
mised, but in this case anonymity is broken any-
how, because an attacker can record all user ac-
tions.

Evil Nodes In this design it is not dealt with
this question because the nodes are build into the
software and are assumed to be trusted.

Repetitive Attack This attack is not possible
for onions here. For this onions include the ex-
piry time. For messages encrypted with symmetric
cryptography it depends in the way how it is imple-
mented. If the same inputs also leads to the same
output a replay attack would be possible. Using an
encryption scheme such as counter mode prevents
this attack.

Iterated Compromise This is possible since the
scheme used to encode the route consists of an
onion which could be decrypted with all private
keys of nodes inside this route.

4.4.3 Directory Attacks

In this design all nodes are build into the software
because it is only intended as a prototype. So there
is no directory distribution system.

5 TOR

TOR was designed by Dingledine et al. [7]. It
is not only implemented as a prototype but it is
free software and there is an open network which
can be used by everyone to communicate anony-
mously [19]. Consequently it is under continuous
development. In this section not only the original
design but also changed to the protocol as far as
they are relevant for anonymity are discussed.

5.1 General Design

Because TOR should be used in the real world the
design also focuses on usability. To make it work
with much software without the need to modify it,
it uses a SOCKS proxy which works for almost each
TCP/IP based protocol. Also many non-expert
users should use the system. This is because more
users also means more anonymity. Since better us-
ability means more users, usability is called a secu-
rity requirement in the design. In another paper [6]
the designers explain in detail why usability is that
important for anonymising networks. The usability
of TOR was analysed in 2007 [3] and it was shown

9

that still it is very difficult to configure TOR in a
good way for novice users. This can also reduce the
anonymity if they configure things wrongly.

Also nodes should be run by different persons. So
everyone should have the possibility to run servers.
For this a mechanism is needed to distribute the
list of servers in a secure way. Also server opera-
tors might want to have the possibility to limit the
bandwidth used by TOR.

Misusing the TOR network for illegal or socially
disapproved goals is also a possible threat to the
whole network, because it can lead to server opera-
tors getting into trouble or to a lower the reputation
of the whole network. This finally leads to less par-
ticipants and consequently to less anonymity. This
might not be the goal of people misusing the net-
work. Most of them would misuse the network to
do illegal actions anonymously. To reduce the cases
of abuse server operators can restrict the services
her server can be used with. This can be done with
so called exit policies. It is even possible to config-
ure a server in such a way that is only used in the
middle of a route but never connects to a service
directly.

In 2008 a study was done for showing misuse of
the TOR network [14]. In the experiment the net-
work was misused by clients for breaking copyright
laws or for hacking attempts. Also the network was
misused by server operators to log user traffic. This
is possible because there is no encryption between
the exit node and the destinations if the user is not
using an encrypted protocol. TOR was misused
to collect passwords for insecure protocol such as
HTTP or Telnet.

The general design is similar to the one discussed
in Section 4. The first node acts as a proxy, a vir-
tual circuit is constructed and messages are send
along them to the last node which connects to the
responder. But there are some differences, dis-
cussed below, especially how the circuits are cre-
ated.

5.2 Creating Circuits

There is not one onion containing the whole route
but the route is constructed incrementally by the
first node. So the route is expanded one-by-one
using the already existing part of the route to relay
messages to the node that is added. The first node
negotiates a symmetric key, which is used for doing

128-bit AES cryptography in counter mode, with
each node in a Diffie-Hellman [5] like way. The
protocol looks like this:

Alice→ Bob : {gx}EBob
(16)

Bob→ Alice : gy, H(K|”handshake”) (17)

Here Alice is the first node and Bob the node added
to the circuit. EBob is Bob’s public key, K = gxy

is the negotiated key and | means concatenation.
With the hash Bob authenticates to Alice because
to construct the key he has to be able to decrypt
the first message encrypted with his public key. In
this way there can be no man-in-the-middle attack.

With this protocol it is achieved that the key is
only known by Alice and Bob and it is not possible
to retrieve the key from the messages send, even
if the private key of Bob is known. This is called
perfect forward secrecy and prevents that a route
can be revealed by compromising the node’s keys
one by one, as discussed in Section 5.7.

To limit the time an attacker has to compromise
one circuit, periodically each nodes closes them if
they are not used any more and build new ones.

5.3 Sending Messages

Sending messages works in a way similar to the
original design. Messages are used to create and
destroy circuits and to send data. But there are
some differences.

For all connections end-to-end integrity check is
done. For this a 48-bit SHA-1 digest [8] is used
which is computed by the first node and checked
by the last one. For all nodes in between the digest
is meaningless because it is encrypted. The reasons
for having integrity checking are that an internal at-
tacker, who can guess the content of messages, can
change the content of the messages and therefore
for example change the destination of a message.

Another difference is that TOR has a leaky-pipe
circuit topology. This means that the message can
leave the circuit at any point and not only at the
last node. This can for example be necessary be-
cause of different exit policies of the nodes. Also
this can make some kinds of attacks more difficult
as discussed later. If a node received a valid digest
the message is processed by this node, otherwise it
is send to the next node in the circuit. If the last
node receives a message with an invalid digest the

10

circuit is closed immediately which makes it impos-
sible for an attacker to guess correct digests.

5.4 Distributing the Directory

Nodes of the system have to know about all other
nodes to be able to pick a route randomly. Dis-
tributing the list of servers (called directory) is a
crucial and also security relevant point of the sys-
tem. There are many attacks on the directory
breaking the anonymity as will be discussed later
in more detail.

In TOR three different versions for the directory
system were used, because of problems with the
previous ones. In the following the differences be-
tween those versions are explained. Detailed speci-
fications can be found in the specification directory
of TOR’s repository [21].

5.4.1 Version 1

In the original design the directory is provided by
a small number of trusted directory servers. A list
of all server and their keys is preloaded into the
node’s software. Each node can load the signed di-
rectory from a server. Because signatures are used
the directories can also be cached.

Nodes send signed state information (called de-
scriptors) to the directory servers. Before a node is
actually added to the directory the administrator
has to manually include it. This prevents an at-
tacker to add a large number of nodes at the same
time. The directory servers have to synchronize,
because differences in the directories could assist
an attacker.

5.4.2 Version 2

There are several problems with the original design.
One problem is that an increasing number of nodes
causes more traffic and therefore bandwidth prob-
lems for the server. One reason for this is that the
directory has to include all nodes of the network.
Adding more directory servers increases synchro-
nization problems and is therefore no solution. So
the old design was not scalable for an increasing
number of nodes. Also each directory server is a
trust bottleneck because it can provide a number of
clients with wrong information for some time which
can be used to attack anonymity.

So a second version for directory distribution is
used for TOR 0.1.1.x and 0.1.2.x. To save band-
width network status documents, which does only
include a list of the nodes with only a hash of
the descriptor, are used. Each client can decide
of which node it does not have the recent descrip-
tor and download only the changed ones. There is
also a number of directory servers but they are only
semi-trusted. They do not synchronize but pro-
vide the network status documents of many servers.
Each client accepts a descriptor as valid if it is in-
cluded in the network status documents of half of
the directory servers. For this they need a mini-
mal number of documents but not the documents
of all directory servers, before circuits can be build.
Another difference is that each node can act as di-
rectory mirror and provide a number of network
status documents. If they are outdated, the docu-
ments are not used any more and requested again.

5.4.3 Version 3

In this version it is returned to a system were the
authority servers agree on a single network status
document instead of letting the clients decide based
on a number of different network status documents.
This is done because this can lead to clients with
different knowledge of the network which can help
attackers. Also the keys of the directory servers
are protected better by using signing keys which
are certified by the server’s keys. So the keys do
not have to be stored on the servers.

An open problem is that with some network size
it is not practicable that each node knows each
other one any more.

5.5 Hidden Services

TOR allows to offer a TCP server without leaking
the IP address to people using that service. This
corresponds to SR1.

In TOR so called rendezvous points are used for
this. If Bob wants to of offer a service he chooses
some nodes to act as introduction points for his
service. So the service does not rely on a single
node making it more robust. To identify his ser-
vice he uses a public key pair. The public key is
sent to all introduction points. Then he advertises
his service, the corresponding public key and the
list of introduction points to a lookup service us-

11

ing a pseudomyn for his service. This information
is signed by the public key identifying the service
such that it cannot be manipulated by anyone not
knowing the service’s private key. The pseudonym
bounded to a public key gives his service a long-
term pseudonymous identity.

If Alice wants to use the service she looks it up
in the lookup service, chooses one node of the net-
work as rendezvous point and informs one of Bob’s
introduction points about that. For this she gives
a randomly chosen rendezvous cookie and the first
half of the handshake to it. Bob is now informed
about this by the entry point and can now decide
if he want to make a connection with Alice which
gives him the possibility to avoid denial-of-service
attacks. If he wants Alice to make a connection
he send the rendezvous cookie together with the
second half of the handshake to Alice’s rendezvous
point. The rendezvous point does not know the
identity of Alice or Bob since all communication is
done via the TOR network. It can now connect
Alice’s and Bob’s circuits such that Alice can send
a request to Bob’s service.

5.6 Changes to the TOR design

TOR is a project which is under constant develop-
ment. Here the changes to the protocol retrieved
from the project’s release notes [20] which are rel-
evant for the security are given. Most security
relevant improvements are about implementation
issues, for instance buffer overflows or wrong be-
haviour for malicious input, issues were the imple-
mentation did not fit to the specification or param-
eters which could be security relevant, for example
how often to rotate some keys.

Apart from changes to the directory protocol
which are already described earlier there was one
major security relevant change to the protocol
which is the introduction of entry guards. They are
specified in the Tor Path Specification document in
the specification directory [21]. The goal is to re-
duce the likelihood that an attacker controls both
the entry point and the end point of a route. In
this situation it is possible to carry out statistical
attacks.

If an attacker controls C out of N servers the
probability that she controls both the entry and the
exit point is (C

N)2. The problem is that if different
nodes are chosen at random over a long period of

time the chance that the attacker will have a sample
of (C

N)2 of the traffic goes to 1.
The solution is to use a number of fixed nodes

as entry points. Because nodes can be temporary
unavailable an ordered list is maintained which is
stored persistently. For each connection one of the
first nodes which is working at the moment is cho-
sen. If there are too less available nodes new nodes
are added at the end without removing the first
ones. Nodes are only removed if they are not avail-
able for a long period of time. With this approach
the chance that the entry point is bad is decreased.
In the ideal situation were always the same node is
used the probability is C

N .

5.7 Vulnerabilities

Here for the attacks described earlier it is discussed
how likely they are with the TOR network. Also
some attacks especially developed for the TOR net-
work are given.

5.7.1 Passive Attacks

DNS Information Leakage The fact that a
socks proxy is used for all applications leads to a
vulnerability which is not directly related to TOR.
The problem is that some application do not give
the host-name to the proxy but first resolve it to
get the IP address. This is done by connecting to
a DNS server. But if this connection is not done
via the TOR network, anonymity is compromised
because the host-name is transfered in plaintext to
the DNS server and it is obvious that someone who
gets the IP address of someone else also wants to
communicate with her.

Reconstructing Onions This attack is not pos-
sible because of the random padding used.

Decreasing Onion Size This attack is not pos-
sible because cells have a fixed length.

Fingerprint Attacks There are some character-
istics of TOR which makes such an attack difficult.
The first one is that streams are multiplexed within
the same circuit. If the network is heavily used it
is very difficult to tell which messages belongs to
the same connection. Also the the fixed cell length
complicates the analysis.

12

End-to-End Attacks The design is not com-
pletely immune to them as also stated in the de-
sign article. If users are running their own nodes
this can make the analysis more difficult because
not all data that is sent is related to the user but
could also be caused to other ones. How much this
helps depends on the usage of the network.But the
network is never completely immune to such at-
tacks, if an attacker gathers a sufficient amount of
information.

5.7.2 Active Attacks

Evil Onion Routes This attack can be a seri-
ous problem for the network because it relies on
many different people running nodes. Because of
this an attacker can try to control a large number
of nodes. In practise with a growing number of
nodes it becomes very difficult for an attacker to
control a significant number of nodes. Also in the
directory system there are countermeasures to pre-
vent attackers from adding a large number of nodes
at the same time.

Repetitive Attacks Replay attacks are not pos-
sible any more because if during the handshake a
message is send twice it will result in a different an-
swer each time. For communication using symmet-
ric cryptography in counter mode replay attacks are
also not possible.

Iterated Compromise The attack to compro-
mise the route one-by-one is not possible any more,
because of perfect forward secrecy that is pro-
vided by the protocol. Because the symmetric keys
are created using a handshake protocol, they are
only known by the two involved nodes and can be
deleted after the circuit is closed. There is no way
reconstructing them.

Compromising Directory Servers By com-
promising directory servers it is possible to influ-
ence the directory partially. But because includ-
ing a node into the directory requires the directory
servers to agree, a significant number of directory
server has to be controlled in order to be able to
have a large impact on the directory accepted by
the clients.

But at least with the first version of the protocol
a single server could manipulate the directory for
some client for a short period of time.

Measuring Node Loads It is possible to mea-
sure the load of a TOR node by using the latency of
connections through this node. This is because dif-
ferent connections interfere with each other. Since
TOR is designed for low latency no large random
delays can be added and there is a correlation be-
tween a node’s load and a larger latency for con-
nections.

An attack developed by Murdoch and
Danezis [15] uses a single malicious TOR node to
measure theses latencies by making connections
to certain nodes. So the attacker does not needed
to be able to observer network traffic but gets the
information only based on latencies for connections
made to other nodes. In their attack they want
to reveal the identity of users connecting to the
attackers service. This means breaking SR2. For
this they send data with a special pattern (for
example in short bursts) to the client. Then the
attacker can observe the latency of nodes to see
if there is a correlation and can eventually reveal
the user’s entry point. The attacks turned out to
be very effective in 2004 but with an increasing
number of nodes it becomes more difficult to
perform the attack since the load of a larger
number of nodes has to be measured to find one
for with the load correlates to the traffic pattern
sent.

5.7.3 Attacks on Hidden Services

For breaking the anonymity of hidden services ba-
sically the same attacks are possible than for each
communication via the TOR network. Additionally
there are denial-of-service attacks. Also it would
be very bad if someone could replace a hidden ser-
vice. But since this is not directly connected to
anonymity it is not analysed in detail here.

6 Universal Re-Encryption

Universal re-encryption [11] is an interesting tech-
nique which can be used for onion routing. In [12] a
scheme is proposed for which the authors claim that
it is immune against repetitive attacks. It makes it

13

also easy to find attackers disturbing the commu-
nication.

Also with universal re-encryption it is possible to
make a design where the route does not have to be
determined by the first node but can be determined
by trusted servers or can dynamically be extended
[13].

6.1 Basics of Universal Re-
Encryption

Universal re-encryption is based on the El-Gamal
encryption scheme [9]. This scheme has the inter-
esting property that the cyphertext of the same
plaintext with the same key yields different results
every time. Even stronger it is not possible to tell
that two cyphertexts were created with the same
key if the private one is not known. The interest-
ing property for re-encryption is that everyone can
re-encrypt a cyphertext. This means making an-
other cyphertext representing the same plaintext
without decrypting the messages. But for this the
public key is required with the original scheme.

In contrast universal re-encryption can be done
without the knowledge of the public key. This is
done in this way. First the same things as for El-
Gamal are needed: a cyclic group G, a generator g,
a random private key x < p−1 and the correspond-
ing public key y = gx. For universal re-encryption
the ciphertext actually consists of two El-Gamal
ciphertext: the one of the message m and the ci-
phertext of 1. So the ciphertext of m is:

UREx(m) =(α0, β0, α1, β1) (18)

=(m ∗ yk0 , gk0 , 1 ∗ yk1 , gk1) (19)

Here k0 and k1 are random numbers.
The plaintext can be retrieved by calculating

α0/β
x
0 while α1/β

x
1 is always 1 but is needed for

the re-encryption.
The re-encryption can simply be done by calcu-

lating (again k′0 and k′1 are random):

(α0 ∗ α
k′0
1 , β0 ∗ β

k′0
1 , α

k′1
1 , β

k′1
1) (20)

Because k′0 and k′1 are random the result is different
for re-encrypting the same message multiple times,
but still the plaintext after decryption is the same.

It is also possible to additionally encrypt a mes-
sage with an arbitrary new private key x′ and cor-
responding public key y′ = gx′ without knowing

the original private key:

UREy+y′(m) = (21)

(m ∗ yk0 ∗ y′k0 , gk0 , 1 ∗ yk1 ∗ y′k1 , gk1) (22)

6.2 Onions Based on Universal Re-
Encryption

To be useful for onion routing this scheme can be
used in the following way. Each server has a private
key xi and public key yi. For a route of servers
1, . . . , n a message m is encrypted in the following
way:

UREx1,x2,...,xn(m) = (α0, β0, α1, β1) = (23)

(m ∗ (y1 · · · yn)k0 , gk0 , 1 ∗ (y1 · · · yn)k1 , gk1) (24)

Each server s can partially decrypt
URExs,xt,...,xn

(m) by computing:

URExt,...,xn
(m) = (α0/β

xs
0 , β0, α1/β

xs
1 , β1) (25)

Then the retrieved new cyphertext can be re-
encrypted as described above and send to the next
server.

The content of such a block is only readable by
the last node. For server s this is done with the key
x1, x2, . . . , xs. So for encoding a route one block for
each server must be send. This means that an onion
consists of a number of blocks. The content of the
blocks is the next hop of the route. Only the block
for the last node contains the message. So an onion
looks like this:

UREx1(”to S2”), UREx1,x2(”to S3”), . . . , (26)
UREx1,...,xn−1(”to Sn”), UREx1,...,xn

(m) (27)

Each node must partially decrypt and re-encode
all onions and send them to the next server. In the
proposed protocol the order of the onions is even
permutation randomly.

6.3 Prevention Against Repetitive
Attacks

With this scheme each time an evil server replays an
old onion, the generated onion will be different. So
the attacker cannot observer equal messages send
be the attacked server.

14

But there is another attack called multiplica-
tive attack. Assume that an adversary controls at
least two server on a route. The first server pro-
cesses a number of blocks UREki(mi). Assume
that UREkS

(mS) = (α0, β0, α1, β1) is readable by
the second server S which is under the control of
the adversary and the first server replaces α0 by
α0 ∗ γ where γ is chosen arbitraryly. Server S re-
ceives mS ∗ γ instead of mS and if it knows about
γ it can reconstruct mS and carry on with the pro-
tocol.

Of course the first server can only guess if there
is an onion for a second server under her con-
trol. So the attack consists of trying to manip-
ulate blocks. If the block is not intended for an
adversary’s server, at one point the address of the
next node is invalid and the message does not reach
the destination. So by trying to manipulate blocks
randomly an adversary can get some information
about the route, but this attacks is not as bad as
a repetitive attack, because the adversary has to
guess which of the blocks to manipulate.

If the wrong block is manipulated one of the
servers will discover that there is no valid address
for the next node. In this case it knows that some
of the previous servers is dishonest. A protocol is
proposed for finding out the dishonest server which
is then rejected from the protocol. The protocol for
finding out the dishonest server is based on a proof
each server has to do. It is possible to proof that
the re-encryption was done in a good way without
revealing the private key by showing the equality
of some logarithms.

Onions based on universal re-encryption are pro-
tected again repetitive attacks at least in the orig-
inal form, but as discussed later a similar attack
is possible. The advantage compared to the hand-
shake based solution in TOR which also provides
protected against those attacks is that no bidirec-
tional communication is needed and there is a lower
latency. However for real-time services where bidi-
rectional communication is needed anyhow there is
not a problem with TOR’s solution since only when
opening a circuit the handshake protocol is needed.
For the actual data also universal re-encryption is
not useful since it is very inefficient compared to
symmetric cryptography.

6.4 On-line and Off-line Onion En-
coding

In all previous described designs the first node
chooses the whole route. The disadvantage is that
the initiator has to know the whole network topol-
ogy, which leads to the difficulty with distributing
a directory, especially for dynamic networks.

In [13] two more dynamic ways are given based
on universal re-encoding: off-line and on-line onion
encoding.

6.4.1 Off-line Onion Encoding

The idea of off-line encoding is that a navigator can
be prepared by a specialized server. This navigator
already includes the route. A user can include the
message into it and send it via the network without
knowing the actual route.

Message Insertion With universal re-
encryption it is possible to prepare a ciphertext
into which a message m can be included later.
This is done by first preparing the ciphertext of 1:

(1 ∗ yk0 , gk0 , 1 ∗ yk1 , gk1) (28)

To retrieve the ciphertext of m the first field is mul-
tiplied by m. To do this no knowledge about the
key is needed.

Navigators A navigator is an onion which en-
codes a special void message. As described before
an onion consists of a number of blocks. A nav-
igator to a certain node N is created in such a
way that N retrieves the special void message as
plaintext and so knows that it is the last node in
the route. A navigator from node A to B is de-
noted as Nav[A,B]. Additionally to an naviga-
tor a ciphertext containing 1 with decryption key
x is used when the onion is created. The whole
onion looks like this: Nav[A,B], UREx(1). An
arbitrary message m can be inserted by a client
as described earlier. So the whole onion becomes
Nav[A,B], UREx(m) and can be used to route m
via a route from A to B.

Advantages The advantage of this is that clients
do not need to know anything about the network
topology any more. So the chance that a traf-
fic analysis becomes possible because of different

15

knowledge of clients is lowered. Also a navigator
can be used as anonymous return address. For ex-
ample this can be used to achieve SR1. The advan-
tage compared to for example rendezvous points of
TOR is that the servers do not have to remember
anything. The disadvantage of this scheme is that
there has to be a single trusted server which has to
know the whole network topology. But in fact this
is the same situation than with the TOR network,
where a user has to trust the first node and each
node has to now the whole dictionary.

6.4.2 Merging Navigators

To solve the problem that a user has to trust a
single server a scheme is proposed for merging nav-
igators from different sources to a new one, which
encodes a longer route.

The two navigators Nav[A,B] and Nav[C,D]
can be merged for sending m to Bob in this way:

Nav[A,B], URExA
(C), URExA

(Nav[C,D]), (29)
URExA+xB

(Bob), URExA+xB+xBob
(m) (30)

6.4.3 On-line Merge Onions

For this scheme the sender has to know at least
some nodes of the network. The sender chooses
a route of nodes through which the messages is
send and encodes it with a navigator, but the com-
munication between the nodes of this route is not
done directly but also via the network via a route
with arbitrary nodes, which are freely chosen by
the nodes in the sender’s original list.

The advantage of this is that the length of paths
can be adopted on-the-fly depended on the load of
the network. This can make differences in network
load smaller complicating traffic analysis. Also it
reduces the traffic for long routes because the num-
ber of initial nodes in the route can be small com-
pared to the actual length of the route.

6.5 Vulnerabilities

Although the solutions given in this section should
prevent some kinds of attacks it is possible to break
them as schown by Danezis [4].

6.5.1 Repetitive Attack

Although Gomulkiewicz et al. [12] claim that there
design is immune against repetitive attacks, a sim-
ply scheme for doing such an attack is introduced
by Danezis [4]. For this a label is attached to the
onion by a malicious node. The label L is encrypted
in that way:

UREyi+ym
(L) (31)

The output of the next node will contain:

UREym(L) (32)

This is readable by the attacker who has the private
key belonging to ym. So the attacker has the same
information as with the normal repetitive attack.

6.5.2 Replace Blocks

Another attack described by Danezis [4] works
by replacing the blocks of an onion. Each block
UREx1,...,xn

(”to Sn+1”) is replaced with:

UREx1,...,xn
(”to Eve”), (33)

UREx1,...,xn+xEve
(”to Sn+1”) (34)

Node Sn processes the onion and sends it to Eve
since the partially decrypted onion contains this as
next destination. The onion send to Eve contains
this for the next node of the route:

URExEve
(”to Sn+1”) (35)

Eve can decrypt that and retrieve the next node
of the route in this way. This attack can then be
repeated for each node of the route until it is en-
tirely revealed. The resulting route is illustrated in
Figure 3. The message is routed from Eve to each
node of the original route and then back to Eve.

7 Anonymity Provided By
Onion Routing

Here it is evaluated what kinds of anonymity can
be achieved by onion routing and how strong this
anonymity is. Also open problems are discussed.

16

Figure 3: Attack on Universal Re-Encryption

7.1 Evaluation of Security Require-
ments

For all security requirements given in Section 2.3
it is evaluated how good it is achieved by solutions
examined in this paper and if it can be achieved by
onion routing in general.

SR1 If Bob wants to provide an anonymous ser-
vice that can be achieved by using TOR’s hidden
services. It can also be achieved by a solution based
on universal re-encryption. This requirement is
weaker than SR3. If an external attacker can get to
know to whom Alice is communicating, Alice can
also get to know.

SR2 This security requirement can be achieved
by all onion routing solutions. Again there is a
strong related security requirement, which is SR4.
If an external attacker can get to know to whom
Bob is communicating Bob can also get to know.
Of course, it is possible that SR4 holds but Bob
knows the identity of Alice because an authentica-
tion protocol is used on top of the onion connection.

SR3 and SR4 There is no essential difference be-
tween those two properties from the point of view of
an attacker. It is about getting to know with which
other parties someone communicated through the
onion network. Who set up the connection does
not really matter.

This is the main goal of onion routing and con-
sequently all solutions tries to provide this. In
practise there are many possible attacks to break

this, but with a heavily used network as TOR the
anonymity provided is reasonable. Still solutions
are improved and the level of security in respect to
these requirements is becoming higher.

SR5 Onion routing makes the confirmation diffi-
cult but with some effort it is possible to confirm
if two parties are communicating by using a tim-
ing attack. Statistical attacks are a fundamental
problem of onion routing and it is impossible to
achieve that with the concepts used now. There
seems to be a fundamental trade-off between the
latency provided by an anonymity network and the
likelihood that timing attacks can be performed.

SR6 None of the solutions analysed in this paper
provides steganography.

7.2 Open Problems

One of the biggest problems of low-latency net-
works is that they leak much information by corre-
lations between packets sent and the load of nodes.
At the moment there seems to be a trade-off be-
tween achieving a low-latency for interactive web
services such as the WWW and hiding information
by introducing extra delays and reorder packets.

Further with an increasing network it is difficult
to handle the directory. The first problem is that
it becomes infeasibly for each client to download
the whole directory, but on the other hand dif-
ferent knowledge among the clients is a threat for
anonymity. The on-line encoding scheme provided

17

by universal re-encryption could be a possible solu-
tion, but it still has many problems and solutions
based on this seems not to be very mature yet. The
second problem is that it becomes too much work
to manually remove misbehaving nodes from the
directory and automatic methods to test of a node
behaves in a good way are needed.

One last very important point is that the network
has to be used by non experts. Such a network is
only useful when it is actually used to provide peo-
ple with anonymity and also the anonymity of each
user increases with increased usage of the network.
The fact that each user should run an own node to
make end-to-end attacks difficult complicates the
installation. There has to be a user-friendly solu-
tion to use such a network in a good way.

8 Conclusions

Onion routing provides no perfect anonymity.
There are many kinds of active attacks for which no
solution can provide real protection. Also a timing
attack to verify whether two parties are communi-
cation is always possible in a low latency network.

At the moment TOR is the only mature solution
which also has a network that is large enough to
provide a reasonable level of anonimity.

To judge the level of anonymity it is important
to take the intention of the attacker into account
because it has to be evaluated if the effort is worth
the benefit for an attacker. Onion routing provides
protection against adversaries who what to gather
a large amount of information by doing traffic anal-
ysis for example for commercial reasons. For such
adversaries there is no benefit of getting only com-
munication data of a small number of persons and
attacking a large number of parties costs too much
effort. But if the goal is to really hide with whom
one is communicating it is always possible to reveal
hat.

The risk has also to be compared with other pos-
sible ways to break anonymity, for instance by in-
stalling malicious software on the computer. A per-
sonal computer is an insecure environment anyhow
and there is a chance that an attacker can get to
know all communication that is done with it.

References

[1] The anonymizer. http://www.anonymizer.
com/.

[2] D. Chaum. Untraceable electronic mail, re-
turn addresses, and digital pseudonyms. Com-
munications of the ACM, 1(1):84–88, February
1981.

[3] Jeremy Clark, P. C. van Oorschot, and Carlisle
Adams. Usability of anonymous web browsing:
an examination of Tor interfaces and deploy-
ability. In Proceedings of the 3rd Symposium
on Usable Privacy and Security (SOUPS ’07),
pages 41–51, New York, NY, USA, July 2007.
ACM.

[4] George Danezis. Breaking four mix-related
schemes based on universal re-encryption. In
Proceedings of Information Security Confer-
ence 2006. Springer-Verlag, September 2006.

[5] W. Diffie and M. Hellman. New directions in
cryptography. IEEE Trans. Inform. Theory
IT, pages 644–654, November 1976.

[6] Roger Dingledine and Nick Mathewson.
Anonymity loves company: Usability and the
network effect. In Ross Anderson, editor, Pro-
ceedings of the Fifth Workshop on the Eco-
nomics of Information Security (WEIS 2006),
Cambridge, UK, June 2006.

[7] Roger Dingledine, Nick Mathewson, and Paul
Syverson. Tor: The second-generation onion
router. In Proceedings of the 13th USENIX
Security Symposium, August 2004.

[8] D. Eastlake 3rd and P. Jones. US Secure Hash
Algorithm 1 (SHA1). RFC 3174 (Informa-
tional), September 2001. Updated by RFC
4634.

[9] Taher El Gamal. A public key cryptosystem
and a signature scheme based on discrete loga-
rithms. In Proceedings of CRYPTO 84 on Ad-
vances in cryptology, pages 10–18, New York,
NY, USA, 1985. Springer-Verlag New York,
Inc.

18

http://www.anonymizer.com/
http://www.anonymizer.com/

[10] David M. Goldschlag, Michael G. Reed, and
Paul F. Syverson. Hiding Routing Informa-
tion. In R. Anderson, editor, Proceedings of In-
formation Hiding: First International Work-
shop, pages 137–150. Springer-Verlag, LNCS
1174, May 1996.

[11] Philippe Golle, Markus Jakobsson, Ari Juels,
and Paul Syverson. Universal re-encryption for
mixnets. In Proceedings of the 2004 RSA Con-
ference, Cryptographer’s track, San Francisco,
USA, February 2004.

[12] M Gomulkiewicz, M Klonowski, and M Kuty-
lowski. Onions based on universal re-
encryption - Anonymous communication im-
mune against repetitive attack. In Lim, CH
and Yung, M, editor, INFORMATION SE-
CURITY APPLICATIONS, volume 3325 of
LECTURE NOTES IN COMPUTER SCI-
ENCE, pages 400–410. SPRINGER-VERLAG
BERLIN, HEIDELBERGER PLATZ 3, D-
14197 BERLIN, GERMANY, 2005.

[13] Marcin Gomulkiewicz, Marek Klonowski, and
Miroslaw Kutylowski. Anonymous communi-
cation with on-line and off-line onion encod-
ing. In Proceedings of Workshop on Informa-
tion Security Applications (WISA 2004), Au-
gust 2004.

[14] Damon McCoy, Kevin Bauer, Dirk Grunwald,
Tadayoshi Kohno, and Douglas Sicker. Shin-
ing light in dark places: Understanding the
Tor network. In Nikita Borisov and Ian Gold-
berg, editors, Proceedings of the Eighth In-
ternational Symposium on Privacy Enhancing
Technologies (PETS 2008), pages 63–76, Leu-
ven, Belgium, July 2008. Springer.

[15] Steven J. Murdoch and George Danezis. Low-
cost traffic analysis of Tor. In Proceedings of
the 2005 IEEE Symposium on Security and
Privacy. IEEE CS, May 2005.

[16] A. Pfitzmann, B. Pfitzmann, and M. Waid-
ner. Isdn-mixes: Untraceable communication
with very small bandwith overhead. GI/ITG
Conference on Communication in Distributed
Systems, pages 451–463, February 1991.

[17] Charles Rackoff and Daniel R. Simon. Cryp-
tographic defense against traffic analysis. In

STOC ’93: Proceedings of the twenty-fifth an-
nual ACM symposium on Theory of comput-
ing, pages 672–681, New York, NY, USA,
1993. ACM.

[18] Paul Syverson, Gene Tsudik, Michael Reed,
and Carl Landwehr. Towards an Analysis of
Onion Routing Security. In H. Federrath, edi-
tor, Proceedings of Designing Privacy Enhanc-
ing Technologies: Workshop on Design Issues
in Anonymity and Unobservability, pages 96–
114. Springer-Verlag, LNCS 2009, July 2000.

[19] Tor: anonymity online. http://www.
torproject.org/.

[20] Tor release notes. https://git.torproject.
org/checkout/tor/master/ReleaseNotes.

[21] Tor specification directory. https:
//git.torproject.org/checkout/tor/
master/doc/spec/.

19

http://www.torproject.org/
http://www.torproject.org/
https://git.torproject.org/checkout/tor/master/ReleaseNotes
https://git.torproject.org/checkout/tor/master/ReleaseNotes
https://git.torproject.org/checkout/tor/master/doc/spec/
https://git.torproject.org/checkout/tor/master/doc/spec/
https://git.torproject.org/checkout/tor/master/doc/spec/

	Introduction
	Anonymity
	Stakeholders and Assets
	Attacker Model
	Security Requirements
	Differences with Other Solutions

	Onion Routing
	Goals of Onion Routing
	Design of Onion Routing
	Routes
	Onions
	Sending Messages with Onions

	Attacks
	Passive Attacks
	Active Attacks
	Directory Attacks

	First Version
	General Design
	Virtual Circuits
	Creating Circuits
	Sending Data
	Example

	Reply Onions
	Vulnerabilities
	Passive Attacks
	Active Attacks
	Directory Attacks

	TOR
	General Design
	Creating Circuits
	Sending Messages
	Distributing the Directory
	Version 1
	Version 2
	Version 3

	Hidden Services
	Changes to the TOR design
	Vulnerabilities
	Passive Attacks
	Active Attacks
	Attacks on Hidden Services

	Universal Re-Encryption
	Basics of Universal Re-Encryption
	Onions Based on Universal Re-Encryption
	Prevention Against Repetitive Attacks
	On-line and Off-line Onion Encoding
	Off-line Onion Encoding
	Merging Navigators
	On-line Merge Onions

	Vulnerabilities
	Repetitive Attack
	Replace Blocks

	Anonymity Provided By Onion Routing
	Evaluation of Security Requirements
	Open Problems

	Conclusions

