Timed Model-Based Conformance Testing

A Case Study Using TRON

Testing Key States of Automated Trust Anchor Updating

(RFC 5011) in AUTOTRUST

Bachelor Thesis

Carsten Rtz

Radboud Universiteit Nijmegen
The Netherlands

Supervisors

Julien Schmaltz
Open Universiteit
The Netherlands

Jan Tretmans
Radboud Universiteit Nijmegen
The Netherlands

June 20, 2010

Abstract

We investigate the usability of Timed Model-Based Testing in a case study: Con-
formance of the implementation AUTOTRUST with Automatic Trust Anchor Updating,
a protocol to help securing DNS. We present models for timing aspects of the proto-
col. Definition of checks on quiescence in the model are proven to be possible. Latency
during input application can yield false test results. We present a model to validate
a security-relevant missing feature of AUTOTRUST. Reuse of an existing model of the
protocol, designed for model-checking, is shown to be infeasible. Finally, we show that
the implementation AUTOTRUST behaves according to the tested part of its specification.

Contents
1 Introduction
2 DNSSEC Trust Anchor Updating — An Introduction

2.1 DNS . o
2.2 DNSSEC e
2.3 Trust Anchor Updating
2.4 Autotrust

Timed Model-Based Testing
3.1 Overview e e
3.2 Uppaal-Tron

Results

4.1 Adapter Development
4.2 Intermediary States, Quiescence and Coverage
4.3 Adapter Caused Latency
4.4 A Missing Feature
4.5 Model Reuse Difficult oo
4.6 Used Tools Did Well

Discussion

5.1 Adapter Development
5.2 Intermediary States, Quiescence and Coverage
5.3 Adapter Caused Latency

Conclusions

Acknowledgements

All Tests

A1 Single Key Test o o o e
A.2 Single Key Test with Timing
A3 Multiple Keys o o e

Test Setup

B.1 Test Files e e e e e e e e e
B.2 BIND and the Zone Files e
B.3 PStreams Libraryo
B.4 Autotrust e
B.5 Tron . . . o e e e e e e e e e e e

11
11
11
12

12

13

14
14
14
14

1 Introduction

Testing is a way of quality assessment of programs to determine if a program ’does what it has to do’.
Testing is time-consuming, sometimes taking up to 50% of the overall development time. Therefore,
Model-Based Testing uses models describing the desired behaviour of a program to automate this
task. Generation, execution, and checking the results of tests are combined to simplify and speed
up testing. With Timed Model-Based Testing [7, 12, 14, 8, 9, 17], the timing of test stimuli and
reactions can be considered as well, yielding more areas to apply this technique to. Embedded
systems, for example, mostly involve strict timing constraints. These could be tested using Timed
Model-Based Testing. Fly-by-wire systems in modern air planes are an example for such embedded
systems: If a pilot hits the brakes, the breaking system should engage almost immediately to ensure
secure travelling. Timed Model-Based Testing is a way of black-box conformance testing. Thus,
no knowledge about the internal workings of the program to be tested is used and the tests are
limited to the functional and timing properties.

Timed Model-Based Testing is a recent technique that has not been used much. Is it applicable
to a practical problem at all? TRON, a tool that implements this testing technique, was used in
this case study to conduct timed testing. Up to now, it has been used in few case studies only.
A refrigeration controller [12], a train gate [13], a smart lamp [15], and some illustrative examples
[11] were tested using Timed Model-Based Testing with TRON as yet.

We tested an implementation, AUTOTRUST, of an administrative helper protocol for securing
DNS. We focussed on timing aspects that are defined in the protocol and quiescence, meaning that
no output is produced within finite time. We included checks on quiescence in the model instead
of in the adapter — responsible for applying the tests to the implementation — as in other research
[6].

We created models for specific parts of the protocol and showed that it is possible to include checks
on quiescence in the model. Furthermore, we discovered that latency during input application can
lead to false test results. We also developed a model to validate a security-relevant missing feature
of AUTOTRUST. Moreover, reuse of an existing model of the protocol, designed for model-checking,
proved infeasible. Finally, we showed that the implementation behaves according to the tested part
of the specification. All in all, we showed that Timed Model-Based Testing is indeed usable for this
case study.

In the following, we will give an introduction to Automated Trust Anchor Updating (Section 2)
and the theory of Timed Model-Based Testing (Section 3). Then, we will describe our results in
detail (Section 4), discuss limitations and possible generalisations of those (Section 5), and draw
conclusions (Section 6). In the appendices, we show the models of all executed tests (Appendix A)
and give instructions on how to install all necessary tools for testing (Appendix B).

2 DNSSEC Trust Anchor Updating — An Introduction
2.1 DNS

The Domain Name System (DNS) [16] is a hierarchical system whose main purpose is to translate
domain names into IP addresses. DNS data are represented in a tree hierarchy with a root, top level
domains (TLD), and domains at lower levels in the tree. This tree is logically divided into zones.
Each zone consists of a coherent — possibly multi-level — part of the tree. DNS is a client-server
system. The data tree is spread over many DNS servers providing information to resolvers at the
client side that can ask for translation of domain names into IP addresses and other information.

2.2 DNSSEC

Domain Name Security Extensions (DNSSEC) [3] add data origin authentication, data integrity,
and a way of public key distribution to DNS, as the data provided by DNS servers can easily be

tampered with [4].

Asymmetric key cryptography is used to digitally sign DNS data and thus achieve data origin
authentication and data integrity. Asymmetric key cryptography differentiates between public-
and private keys. One or more public/private key pairs are bound to a zone. Within the scope of
DNSSEC, the latter are kept private and used to create digital signatures. The former are published
and used to check if signatures created with the corresponding private keys are valid. Hence, public
keys — keys for short — have to be distributed to all resolvers. For an introduction to asymmetric
key cryptography see for example the book Computer Networks by Tanenbaum [19].

Keys can be distributed manually or automatically; Manual distribution is not considered here.
Automatic, trustworthy key distribution through DNS servers makes use of the hierarchical struc-
ture of DNS. Keys situated higher in the hierarchy can vouch for keys beneath by signing them.
Therefore, a resolver can try to build a chain of trust from a — yet untrusted — key up to a trusted
key higher in the hierarchy. One manually distributed ’top’ key, which is trusted by the resolver,
could vouch for all keys down the hierarchy. All other keys could be distributed automatically
without endangering security. Thus, the root or the TLDs of DNS would be signed at best. But
neither the root nor most TLDs are signed yet!'. Therefore, so called islands of security arise. Con-
sequently, a resolver "may need to know literally thousands of [manually distributed] trust anchors
to perform its duties” [18].

2.3 Trust Anchor Updating

Automatic Trust Anchor Updating (RFC 5011 [18], called the RFC hereafter) automates the se-
cure adding and updating of keys at specific places in the hierarchy. It is not about the manual
distribution of the first key. Updating and adding keys is necessary as on the one hand the lifetime
of a key can expire. On the other hand, with more than one key at a specific place in the hierarchy,
a compromised key can be replaced by revoking it and adding a new one.

A trust anchor, as defined in the RFC, is a public key bound to a specific point of a signed
part of the DNS hierarchy. Still, we will use the term key to denote a public key throughout this
document — regardless of it being a trust anchor or not.

We will focus on key states and key events from the resolver’s point of view (Figure 1). Key
events cause a key to change to another state. There are six key states:

Sart
KeyRem NewKey
AddTime
KeyPres ——resul
DNS server que
KeyRem RevBit server side qtl:ry rtsLIts
_______T 44444 r—_ ___________ [T S —— -
j dient side
resolver autotrust
read/' e :
— i x
read write read write read
4 [|
trustanchor.file statefile autotrust.conf
Figure 1: Key States of RFC 5011 Figure 2: AUTOTRUST and its environment

'From 15th July 2010, this is not true any more. The root is now signed, see www.root-dnssec.org. But the
protocol remains useful, according to Matthijs Mekking, because many TLDs are still not signed.

Start The key does not yet exist as a trust anchor at the client side. It has either not yet been
seen at the client side or was seen but was absent in the result of the last query to the DNS
server (KeyRem event).

AddPend The key has been seen and validated by (one or more) already existing trust anchors at
the resolver. For security reasons, there is a hold-down time for the key before it can be used
as a trust anchor.

Valid The key has been seen at the client side for at least the hold-down time and has been included
in all validated results of queries to the DNS server. If the key has been used to sign other
keys, the created signatures can now be validated with it.

Missing An abnormal state where the key remains a valid trust anchor but was not seen in the
last validated result of a query to the DNS server. This happens for example if the key is
removed from the DNS server without prior revoking.

Revoked The key has been revoked and must not be used as a valid trust anchor any more.

Removed After a hold-down time, all information about a revoked key may be removed. This
state is more or less equivalent to the Start state, but in practice a removed key should not
be re-introduced.

And there are six key events:

NewKey The client side sees a validated result of a query to the DNS server with a new key.

KeyRem At the client side a validated result of a query to the DNS server is seen, which does not
contain this key.

KeyPres The key has reappeared in the DNS server query result.
AddTime The new key has been in every validated DNS query result for the add hold-down time.
RevBit The key has appeared in a DNS server query result marked as revoked.

RemTime A revoked key stayed in the revoked state for at least the remove hold-down time.

These descriptions are almost exact quotes from the RFC. Hold-down times when accepting or
removing keys, solve security problems. See the RFC, section 2.

2.4 Autotrust

AUTOTRUST is an implementation of Automated Trust Anchor Updating, developed by Matthijs
Mekking at NLnet Labs?. We tested version 0.3.1 here.

AUTOTRUST is used at the client side of a DNSSEC environment (Figure 2). The server side
consists of a DNS server, whereas the client side comprises the resolver and AUTOTRUST with its
files. Autotrust.conf is the configuration file for settings concerning AUTOTRUST. In the trust
anchor file, all preconfigured trust anchors and keys that were received later and reside in the valid
state are stored. The state file contains current state information on every key, including all trust
anchors from the trust anchor file. The resolver can query the DNS server to translate domain
names into IP addresses, among others. To validate the signatures of received results, it gets the
appropriate trust anchors from the trust anchor file.

For each key, AUTOTRUST queries the corresponding DNS servers for updated information and
proceeds according to the transition system described above. For the scope of our case study,
AUTOTRUST has to be called explicitly to perform these updates.

2yww.nlnetlabs.nl

©

coin?
x=0 I
X >=1 B coin
weakCoffee! x==3 x=0
strongCoffee! ‘
x>5
— —_ |
X <=3 x <=5 Xx>=3 X <=5 req
req? req? ‘
x=0 x=0 weakCoffee? strongCoffee? strongCoffee?
(a) IUT model (b) ENV model 1 (¢) ENV model 2

Figure 3: Coffee Machine

3 Timed Model-Based Testing

3.1 Overview

With Timed Model-Based Testing, automated test generation is based on a model that describes
the specification of the Implementation Under Test (IUT). Tests can either be generated online
(on-the-fly) or offline. The first way combines generation, execution, and checking of the results
at the same time. Thus, there are no intermediary test suites. With the second way, however, all
tests are generated before they are executed. For a discussion of the (dis)advantages of both see
[7].

Generated tests stimulate the IUT with inputs, which reacts with outputs that are then checked
on their correctness with respect to the specification. Correctness includes the timing of inputs and
outputs. If the output itself or its timing is unexpected, the test fails.

Timed automata [2] are the formalism used to describe the specification. They are finite state
machines extended with clock variables — clocks for short — that increase automatically as time
passes. First, clock variables may be reset when taking a transition. Furthermore, they may be
used as guards on transitions, stating when a transition may be taken. Finally, clocks can be used
with invariants for states, denoting how long a system may reside in a state. Semantics of 1/O
timed automata are defined in terms of a timed input/output transition system (TIOTS) [7]. This
is a labelled transition system with inputs, outputs, and special delay labels as actions. From the
TUT’s perspective, inputs are suffixed with a ’?’ and outputs with a ’!’.

A model of a simple coffee machine is shown as an illustrative example (Figure 3). The IUT
model (Figure 3(a)) accepts a coin and a request for coffee (inputs). Depending on when the request
for coffee is issued, weak or strong coffee (outputs) is produced. Clock x is reset when the input
coin arrives. Clock guards determine which transitions can be taken based on the timing of the
request (z < 5, z > 3). A clock invariant (z < 3) on the left side defines that this state must be
left before a deadline. Note the non-determinism when the request is issued in the time interval
[3,5].

A conformance relation between an implementation and its specification defines correctness with
respect to a specification. Here, the relativised timed input/output conformance relation (rtioco) [7]
is used. It is based on the input/output conformance relation (ioco) by Jan Tretmans [20]. rtioco
extends ioco with explicit environment assumptions and takes timing into account. It is also used
to derive test cases from a specification automatically.

i rtioco, s = Vo € (s,e). out((i,e) after o) C out((s,e) after o) (1)

Informally, equation 1 says: The implementation ¢ is rtioco under environment e with respect
to specification s means that ”after any input/output trace possible in [...] the specification s and
environment |[...] e, the implementation ¢ in environment e may only produce outputs and timed
delays which are included in the specification s under environment e.” [12].

abstract output real output

TRON Ada er It
pt

Figure 4: General TRON test setup

With rtioco, the testing model is partitioned into an IUT- and an environment part. The former
describes the expected behaviour of the IUT in terms of stimuli (input) and reactions to those
stimuli (output). The latter, however, replaces the real environment of the IUT and defines stimuli
to apply to it. Due to this separation, testing can be limited to certain parts of the IUT (model).

Considering the coffee machine example (Figure 3), an environment model for testing the whole
IUT model (Figure 3(b)) and one for testing only the strong coffee part of the model is given. The
latter is achieved by issuing the request only after a minimum time of waiting (x > 5). The time
unit for testing is not defined yet. Note that the notation for inputs and outputs in the environment
models are interchanged compared to those in the IUT model.

Quiescence is used to denote silence and not internal stability as in the ioco theory [20]. It means
that no output actions from the IUT can be observed [6] — the IUT remains quiet. Theoretically,
this cannot be detected in finite time. Practically, however, the IUT is considered quiet if no output
is observed after a finite time limit.

3.2 Uppaal-Tron

"UPPAAL is an integrated tool environment for modelling, validation and verification of real-time
systems modelled as networks of timed automata”3. It provides an editor, a simulator, and a veri-
fication engine for timed automata. Defined timed automata can work in parallel and synchronise
on matching input/output actions. The created models are templates that can be parametrised
and instantiated multiple times. UPPAAL also comprises a powerful description language, among
which committed states (when entered they must be left immediately), C-style functions, and data
structures. A practical introduction is given in [5].

UppPAAL-TRON?, TRON for short, is an extension to UPPAAL using timed automata models for
Timed Model-Based Testing. It was formerly known as T-UPPAAL. We will use version 1.5-linux
here. TRON is based on the rtioco theory described above. The specification model is partitioned
into an IUT- and ENV part based on user-defined input-/output channels and testing is done on-
the-fly. To generate tests, the testing algorithm first computes all possible input/output actions
and allowed time delays in the current state. Then it chooses one of the inputs or delays or it
observes an output and checks if it is correct according to the current state of the model. This is
repeated until a user-defined time-out is reached or the test run fails. The result is one of 'pass’
(time-out reached), 'fail’ (incorrect — timing of an — output) or ’inconclusive’ ("env model could
not be updated with unexpected output from the IUT” [11]). For more details, see [7].

A test setup with TRON (Figure 4) consists of the TRON executable for test generation, execution
and checking, an adapter, and the IUT. The adapter maps abstract inputs from the models to real
inputs for the IUT and vice versa for outputs. It is always developed specifically for an IUT. Several
example adapters come with TRON, including a Trace Adapter providing a text interface to test
models manually. Others are developed open-source in JAVA and C++4, demonstrating commu-
nication with TRON via sockets (TCP/IP) and employing thread programming for asynchronous
input acceptance and processing.

A few parameters of TRON are important for the understanding of this document. Timing
behaviour of TRON can be influenced to define how long to delay before an input is generated
by the environment (parameter -P). Options are, among others, a random delay or the shortest

3www.uppaal.com
*www.cs.aau.dk/~marius/tron/

real | | input Ut =
TRON | Socket autotrust | rogapy UT TestAPl | autotrust |
engine | Adapter adapter | 3 | g | T |
statefile || TAsfile || autotrust.conf
abstract output real || output | —JTT T
L |
(a) Overview (b) TUT Details

Figure 5: Specific TRON Test Setup

possible delay (eager). Initialisation of the random number generator (-X) can also be configured
manually. This results in almost exactly repeatable test runs, which is useful when running first
tests.

TRON provides many more features, like lab conditions for timed testing (virtual time), which
are explained in the user manual [11].

4 Results

Having introduced the methods, we will present our results here. First, we will describe the
developed adapter. Second, we will explain what problems occurred during the modelling process
and solutions to them. Third, we will describe latency problems and their influence on testing.
Fourth, we present a model validating a missing feature of AUTOTRUST. Fifth, we will discuss
problems concerning the reuse of an existing model. Finally, we will comment on the used tools.

4.1 Adapter Development

The specific test setup for AUTOTRUST includes TRON and its internal Socket Adapter for commu-
nication, the AUTOTRUST adapter with a Test API, and the IUT (Figure 5(a)). Communication
between TRON’s internal Socket Adapter and the AUTOTRUST adapter is done via TCP/IP. The
AuToTRUST adapter and Test API communicate with function calls and the Test API communi-
cates with the IUT via file reading and writing as well as via the command line.

The adapter and Test API translate abstract inputs into real ones and vice versa for outputs.
The Test API abstracts from the technical details of input application and output analysis to or
from the IUT, respectively. These inputs correspond to key events and the outputs to key states.
Both of them are linked to keys, e.g. the input NewKey/1] denotes the key event NewKey for key 1
and the output AddPend[1] means that key 1 has reached the AddPend state. All key event inputs
include a call to AUTOTRUST to make sure AUTOTRUST notices them. ConfTrustAnchor[keyID],
ResetKeylkeyID], and CallAutotrust/keyID] are additional inputs, not defined in the RFC. The first
preconfigures a key as trust anchor by putting it into the trust anchor file; the second resets a key
by removing it from the state file; and the third calls AUTOTRUST directly. Although the third
one is linked to a key, within the adapter all calls to AUTOTRUST are the same regardless of the
key they were issued for. Furthermore, input acceptance and processing in the adapter is done
asynchronously to keep the adapter from blocking when processing a computationally complex
input. Therefore, abstract inputs are first put into a buffer. Another thread then consumes the
inputs and calls the appropriate Test API functions. The same thread also sends back abstract
outputs.

The TUT comprises, besides AUTOTRUST, the DNS server, a state file, a trust anchor file
(TAs.file), and a configuration file (Figure 5(b)). The resolver is not included in the IUT any
more, because it is not concerned with updating keys. Big arrows in the figure depict the gen-
eral information flow, small ones show additional interactions between the IUT and the Test APIL.
These additional interactions are explicit calling of AUTOTRUST and direct manipulation of the

start start

—0 —0

Start[keyID]! NewKey[keyID]? Start[keylD]? NewKey[keyID]!
g=0
q < Quiescence @) @ o <auiEescence O O
KeyRem[keyIDO]’? AddPend[keyID]! KeyRem(keylD]! AddPend[keyID]?
q =

ddPend
<>a :> addPend

AddTime[keyID]?
q=0 AddTimel[keyID]!

@ o <auiescence O

Valid[keyID]! _
Valid[keyID]?
valid .
Q O valid
(a) IUT Key Model (b) Environment Key Model

Figure 6: Intermediary States and Quiescence

state file and trust anchor file. Inputs are fed indirectly to AUTOTRUST through a DNS server. As
we want to test AUTOTRUST only, we assume that the DNS server works correctly and neither the
DNS server nor the above mentioned files are manipulated by any other process. As DNS server
implementation we use BIND®, which supports DNSSEC. Reloading DNS data — zone reloading —
with BIND is only possible once a second, because BIND relies on file timestamps, which are exact
to the second only. A workaround to reliably reload zone data involves repeated querying of the
DNS server to check on a serial number which is increased with every update.

Testing is not yet fully automated. Depending on the type of test, different hold-down times
have to be configured manually in the AUTOTRUST configuration file.

4.2 Intermediary States, Quiescence and Coverage

Models developed for testing the key state conformance of AUTOTRUST generally follow the state
transition system of the RFC. As a convention for the models the state names start with a letter
in lower-case, whereas the input and output names start with a letter in upper-case. Furthermore,
we name a transition after the input or output action that is linked to it. A transition with output
Valid[1] is thus called the Valid transition.

Anonymous intermediary states between each pair of key states are present in all models (Figure
6). To issue an input, we need to define a transition for it. Once AUTOTRUST reaches a certain state
after it has consumed the input, the state change has to be communicated back to TRON by an
output. But it is not possible to put two input (or output) actions on a single transition with I/O
timed automata. Therefore, we need another transition to test for the occurrence of the output.
Thus, we need an intermediary state between each pair of key states, which was unnecessary in the
original state transition system of the RFC.

We encountered two situations in modelling quiescence: Either there is a time gap between the
consumption of input and the generation of output or there is no time gap. No time gap means

Swww.isc.org/software/bind

start start

— 0 —(

Start[keylID]! NewKey[keyID]? Start[keylD]? NewKey[keyID]!
q=0
g < QUIESCENCE C) C) q < QUIESCENCE C) C)

AddPend[keyID]! AddPend[keylD]?
holddown < holddown = 0 IcalledAutotrust x=0,
ADD_HOLDDOWN_TIME 420 ' KeyRem(keyID]! calledAutotrust = false
KeyRem[keyID]?
q=0 >addPend DaddPend

Xx>=1
CallAutotrust[keyID]!
CallAutotrust[keyID]? holddown 2 [key!D]

- X N !
>= ADD_HOLDDOWN_TIME calledAutotrust = true
&& Valid[keyID]?
q < QUIESCENCE

Valid[keyID]!

lid valid
O @)

(a) TUT Key Model (b) Environment Key Model

Figure 7: Quiescence With Time Gap

that zero time passes, not considering computation time.

Without a time gap, we reset the quiescence clock ¢ in the IUT key model with every input
arrival (Figure 6(a)). We expect the IUT to react within finite time (variable QUIESCENCE), so
we introduced the state invariant ¢ < QUIESCENCE at the intermediary state. Now, the IUT
has to leave the intermediary state before the time limit is reached by producing an appropriate
output. Otherwise, the test fails. Clock ¢ is local to the model, so every instantiation of the model
has its own.

A time gap did occur when we replaced the artificial key events AddTime and RemTime with
actual waiting for the hold-down time to pass (Figure 7). Proceeding from the AddPend state to
the Valid state by an AddTime/Valid input/output combination is now substituted with a single
Valid transition. This transition may only be taken after the add hold-down time has passed.
Therefore, it includes the local holddown clock in the guard holddown > ADD_HOLDDOWN_TIME.
We abstracted from the real hold-down time defined in the RFC and the one recommended by
AUTOTRUST, which are in the order of 30 days, to make testing feasible. We chose three seconds,
because on the one hand this is long enough for AUTOTRUST to do its work and on the other hand
it does not slow down testing too much. As quiescence limit we chose ten second, as this is greater
than the hold-down time but does not slow down testing too much either. Now, the quiescence
clock ¢ is reset when reaching the AddPend state. Successive calls to AUTOTRUST every second
(Figure 7(b)) should eventually report the state change to the Valid state. If the quiescence limit
has passed without any output, the test fails due to the quiescence guard on the Valid transition.

To achieve fair coverage of the whole model, it was necessary to limit the input choices in the
AddPend state. For the Valid transition to be taken, AUTOTRUST has to be called after the hold-
down time. Therefore, the test algorithm has to delay until after the hold-down time or has to issue
multiple successive calls to AUTOTRUST. After that, AUTOTRUST needs to be called (again). There
are three choices in the AddPend state of the environment model: a) wait, b) call AUTOTRUST after
one second of waiting, or c¢) generate a KeyRem event. a) is not chosen, as we configured TRON
not to wait before generating an input (-P parameter with option eager). We did not change this,
as it is still a desirable setting for the rest of the model. Choices b) and c¢) are left, which are
chosen with equal probability. But the KeyRem- and the Valid transition are not chosen with
equal probability, because for the Valid transition to be taken, the algorithm has to choose option

ConfTrustAnchor[0]! NewKey[2]! AddPend[2]? ConfTrustAnchor[1]! RevBit[0]! Revoked[0]? t>ADD_HOLDDOWN_TIME
t=0 o - Removed[0]?

t=0 t=0 CallAutotrust[2]!

Figure 8: Missing Feature — Environment Model

b) at least n times in a row — for a hold-down time of n seconds. As there are n moments of choice
between options b) and ¢), the chance for option b) to be taken n times in a row is only 0.5" if only
one key is tested. To solve this, we limited the repeated moments of choice to just one by setting
a boolean flag (calledAutotrust) if AUTOTRUST is called. Because of the guard /called Autotrust on
the KeyRem transition, the KeyRem input cannot be generated any more once AUTOTRUST has
been called for the first time.

4.3 Adapter Caused Latency

Latency caused by computation time of the adapter is a problem we discovered while concurrently
testing multiple keys. With latency, we mean the time between the sending of an input at TRON
until its arrival at the TUT.

Say, testing has proceeded to the AddPend state for key z and the adapter has delivered all
inputs to AUTOTRUST. TRON starts the add hold-down timer in the IUT model for key x. Then,
other inputs are generated and put into the buffer at the adapter. Assume that for key x TRON
then chooses the KeyRem event and it proceeds to the intermediary state in the IUT key model.
There it awaits the output Start[x]. Processing of all buffered input actions at the adapter causes
the hold-down time for key = to pass before the KeyRem input is delivered to AUTOTRUST. Now,
there is a call to AUTOTRUST among the inputs before the KeyRem event for key x. The state
change to the Valid state of key x is reported to TRON. But the IUT key model of key x cannot be
updated with this — correct — output, as it already awaits the Start output for key x. This yields
a false negative test result.

Suppressing the problem partially with the guard holddown < ADD_HOLDDOWN_TIME on
the KeyRem transition is possible (Figure 7(a)). Nevertheless, it does not completely solve the
problem. An increased hold-down time would not completely solve the problem either. So the
problem is still open.

4.4 A Missing Feature

Here, we will show how a strict environment can be used to validate a missing feature of Au-
TOTRUST. Furthermore, we will describe an extended IUT model that is able to detect the missing
feature without a special environment.

The author of AUTOTRUST notes in the todo list for version 1.0 that it misses a security-relevant
feature described in RFC 5011 [18]:

If all of the keys that were originally used to validate this key are revoked prior to the
timer expiring, the resolver stops the acceptance process and resets the timer.

We used a strict environment model (Figure 8) that drives the IUT key model(s) into a situation
where it becomes obvious that AUTOTRUST misses this feature indeed. Furthermore, we used an
IUT model that is incapable of detecting the missing feature directly (a part of it is shown in figure
7(a)).

For testing, three keys are used. Key 0 is preconfigured as a trust anchor; Key 2 is introduced
as a new key and was thus signed with key 0. After that, key 1 is introduced as a second trust
anchor and the first trust anchor, key 0, is revoked. At this moment, AUTOTRUST should have
also reported, that the acceptance process for key 2 was stopped, by reporting its state change to
the Start state. As we do not accept this output in the environment model, the test would have
failed in this case. But the output is not generated. The next call to AUTOTRUST after the add

start

A
©

NewKey[keylD]?
Start[keyID]! g=0, . .
rememberUsedTrustAnchors() !Su;??[;;lsé’?mhorssmlval'd()
g < QUIESCENCE C) () d < QUIESCENCE
AddPend[keyID]!
holddown < ADD_HOLDDOWN_TIME holddown =0,
KeyRemlkeyID]? q=0
q=0 A\ addPend
)

CallAutotrust[keyID]? :;

holddown >= ADD_HOLDDOWN_TIME &&
g < QUIESCENCE &&
usedTrustAnchorsStillValid()

Valid[keyID]!
TrustAnchorlsValid(keylD)

lid
O val

Figure 9: Missing Feature — IUT model

hold-down time should only report that key 0 reached the Removed state, because we configured
the add and remove hold-down time the same. However, AUTOTRUST also reported that key 2
reached the Valid state and the test failed.

Automatic detection of the missing feature would have been possible with an IUT model us-
ing the extended modelling capabilities of UPPAAL (Figure 9). We present this model as an
idea of how to model this specific part of the RFC; We did not fully implement nor tested Au-
TOTRUST with it. In the model, UrPPAAL’s C-style functions are used, which can be called when
a transition is taken, as well as be used in guards. When a new key is introduced, all trust an-
chors used to sign it are remembered (rememberUsedTrustAnchors()). From the AddPend state,
the key may only proceed to the Valid state if all trust anchors used to sign this key are still
valid (bool usedTrustAnchorsStillValid()). On proceeding to the Valid state, the function
TrustAnchorIsValid(keyID) is called to store the fact that the key is now a valid trust anchor.
If not all trust anchors are valid any more (!'usedTrustAnchorsStillValid()), the newly intro-
duced key changes to the Start state again. A global data structure could be used by the described
functions to communicate whether a key is currently a valid trust anchor.

4.5 Model Reuse Difficult

Aarts, Houben, and Uijen developed a model for checking the protocol of auto trust anchor updating
[1]. This was done for a case study on model-checking with UpPAAL. The developed model includes
the server side with a DNS server and the client side with a resolver and key states for several keys.

Reusing this model for Timed Model-Based Testing proved difficult. First of all, the model was
designed for model- checking, not Model-Based Testing. Therefore, there are no intermediary states
included which separate the sending of a key event from the reception of a state change from the
IUT. Therefore, their model is closer to the original state transition system in the RFC (Figure 1).
Furthermore, the model was too complex to start testing with. It involves exact descriptions of
interactions between the DNS server and the client side. But we wanted to focus on the IUT and
test only a small part of it.

Thus, we did not further investigate the reuse of this model.

10

4.6 Used Tools Did Well

First of all, AUTOTRUST passed all tests, except for the missing feature. Documentation on AU-
TOTRUST was good and AUTOTRUST was easy to use with a manipulatable DNS server. Second,
TRON was suitable for all executed tests with respect to timing. Support for broadcast channel
synchronisations would have been helpful, especially to model a single call to AUTOTRUST having
an effect on all IUT key models. Although broadcast channels are supported by UPPAAL, TRON is
not yet capable of deriving tests from models using these [11].

5 Discussion

5.1 Adapter Development

Key reintroduction, possible with the ResetKey input, is not recommended in the RFC in practice.
For testing, however, it enabled us to test key state conformance of a single key multiple times in
one test run.

Indirect feeding of input is also worse than feeding it directly to the implementation. But imple-
menting a mechanism to recognise DNS queries from AUTOTRUST and answering them correctly,
would have been more difficult and error prone. We chose the first solution, because it was more
feasible.

BIND was given preference to NSD®, another DNS server implementation, to ensure independence
from AUTOTRUST: NSD is developed by the same organisation the author of AUTOTRUST works
for.

To speed up zone reloading and thus the whole testing process, we could have manipulated BIND
directly. But, to the best of our knowledge, there is no way to force BIND to reload zone data more
than once a second with a parameter or other configuration options. Thus, we would have had to
change the (open-)source code of BIND. We did not try this yet. Slow testing because of technical
limitations can be considered as a more general problem with other projects as well.

Expenditure of time for adapter development was more than 50% of the overall testing process.
The current adapter and Test API consist of more than 2,000 lines of code. Thus, much time had
to be spent before actual testing could take place. However, with manual testing on this level of
abstraction, a similar TestAPI would have to be developed. Thus, the necessary effort is not a
disadvantage of Model-Based Testing itself.

5.2 Intermediary States, Quiescence and Coverage

The need for intermediary states between input and output combinations that we discovered will
more generally occur with tests for state conformance of other implementations as well. This is
because with I/O timed automata a transition can only represent one input or output.

Concerning quiescence, the described results are valid only if the time of input consumption
is controllable. With that we mean that the actual time of input reception at the IUT can be
controlled. Say, on the contrary, that AUTOTRUST would periodically call the DNS server, instead
of being explicitly told to do so (this is actually possible by running AUTOTRUST as a daemon). We
could still manipulate the DNS server, i.e. generate input, but could not control the consumption
of this input by AUTOTRUST. We had to account for this by choosing a different quiescence time
limit. Thus, with the presented solution the start of quiescence time measurement may be too
early, yielding false test results.

Resetting the quiescence clock is possible at two alternative moments for the quiescence with time
gap case (Figure 7(a)), yielding three possibilities altogether: a) before the first call to AUTOTRUST,
as in the presented solution; b) at the first call to AUTOTRUST, after one second of waiting; or ¢) with
each call to AUTOTRUST.

Snlnetlabs.nl/projects/nsd

11

With case a) — theoretically — there is a flaw. Say, testing has proceeded to the AddPend state and
no call to AUTOTRUST is generated before the quiescence time limit. By then, ¢ > QUIESCENCE
holds and the Valid transition cannot be taken any more. Now, AUTOTRUST is called, reporting
the Valid state change, resulting in a false negative test result.

Resetting the clock at the first call of AUTOTRUST, case b), seems better. But it has a similar
problem as option a). Assuming AUTOTRUST is called once before ¢ has reached the hold-down
time, and the next time when ¢ > QUIESCENCE. The second call would report the correct state
change, but due to the quiescence guard on the Valid transition it is rejected, resulting in a false
negative test result as well.

Option ¢) presents a problem as well: Say, AUTOTRUST would never produce the Valid output
at all. According to the model, AUTOTRUST can be called infinitely often from the AddPend state
until testing times out. It would not be noticed that the Valid output has not been produced,
yielding a false positive test result. Generally, this holds for both other options as well.

In the presented solution, we circumvented the theoretical flaw of a) by forcing the test algorithm
to generate inputs without delay (-P parameter). The problem described for ¢) could be solved by
forbidding calls of AUTOTRUST after the quiescence time limit. Forcing the AddPend state to be
left before a finite time limit by adding an invariant could also solve the problems of a) and b).

The described chance for the Valid transition to be taken, in order to achieve fair coverage, is
strictly limited to testing only one key. More instantiated models would generate independent calls
to AUTOTRUST and increase this chance. However, for only one key, this result can be generalised
to k input options and the need to wait n time units. The chance for a single input option to be

chosen n times is ()"

5.3 Adapter Caused Latency

A possible solution to the latency problem is to include the adapter and its latency in the test
models [11]. Adding latency time intervals to time constraints in the original specification could
also solve the problem partially, but it would make testing less exact.

Latency can also cause false positive test results [6]: If the model allows for an input i to be
generated at time t € [a, b] but latency time d causes the input to arrive at the IUT at ¢ > a + d,
the test can never check input i for the time interval [a,a + d]. Even worse, input 7 might never
arrive before b, if d > b — a. These are serious problems for test coverage.

6 Conclusions

We were able to show that Timed Model-Based Testing is indeed usable for a practical problem.
But the technique also involves problems, which should be investigated more closely.

Nevertheless, Timed Model-Based Testing proved to be a suitable for testing timed requirements.
Therefore, it can be considered as a promising technique that is applicable to embedded systems
as well.

Compared to manual testing, the technique adds the ease of automated test generation, which
increases test coverage in many cases.

Further research concerning this case study could include more concurrency in testing key states
by separating key events from immediate calls to AUTOTRUST. This would increase interleaving of
key events from different keys. Furthermore, testing could be extended to the whole RFC, including
more detailed tests. Moreover, an experiment on latency caused by the developed adapter could
reveal test coverage problems. Analysing timing coverage of tests a posteriori could show if varying
ranges of input choices with respect to timing were covered with the executed tests.

More general, investigating timing coverage and latency of TRON could be part of further research.
Furthermore, comparing the modelling capabilities usable with TRON to those usable with similar

12

tools could be interesting. Finally, discovering possible rules to develop models for both Model-
Based Testing and model-checking could make (Timed) Model-Based Testing even more usable.

7 Acknowledgements

First, I want to thank my supervisors Julien Schmaltz and Jan Tretmans for fruitful discussions
and all their help with this project. Special thanks to Julien for his patience and for supporting
me a little longer than planned. Furthermore, I want to thank Matthijs Mekking, the developer of
AUTOTRUST, for his advice and comments on this thesis. Finally, I want to thank all friends who
helped me with discussions — of technical and non-technical nature — and hints for improvement.

13

A All Tests

We will describe all developed and executed tests and their models here, except for the missing
feature test. For the latter, all relevant parts of the model were shown in the results section already.
Focussing on key state conformance, we started with a single key, then we modified this test to
include more timed testing, and finally, we concurrently tested multiple keys.

For all models, we did a 'no deadlock’ check with UPPAAL to make sure that testing is not
influenced by a technical modelling error. Furthermore, we used the UPPAAL simulator to manually
verify that every state of the models can be reached and every transition can be taken; Again, to
avoid influence on testing, as unreachable parts of the models could cause unnoticed skipping of
tests. With the tests described in the following, we used a time unit of 1 second. Smaller time units
would not have speeded up testing due to the DNS zone reload problem. The tests were generally
executed with a fixed random seed to get repeatable results. Changing this could be part of future
work.

A.1 Single Key Test

For the single key test, an IUT key model (Figure 10(a)) and a corresponding environment model
(Figure 10(b)) are made, the latter allowing for testing every part of the IUT key model. All
models follow the structure of the key state transition system of the RFC (Figure 1). Although we
want to test only one key, two instantiations of the IUT key model are needed: The first one acts
as a preconfigured trust anchor to sign the second one, whose key states are then tested. But the
environment model is instantiated only once. To allow for multiple instantiation for different keys,
the IUT key model is parametrised with a key ID.

In the environment model, key 0 is made a preconfigured trust anchor (ConfTrustAnchor[0]);
the rest of the model is almost a mirrored version of the IUT key model, to test all possible
key events. Contrary to the IUT key model, the environment model is not parametrised but
refers to instantiations of the IUT key model. Furthermore, the environment model involves non-
deterministic choices in the AddPend, Valid, and Missing states.

A.2 Single Key Test with Timing

Compared with the single key test, we replaced the ’artificial’ key events AddTime and RemTime
with actual waiting for the hold-down time to pass (Figure 11). For the rest, the test is the same.

Proceeding from the AddPend state to the Valid state by an AddTime/Valid input/output com-
bination is now substituted with the Valid transition only. A guard denotes that the transition may
only be taken after the add hold-down time has passed (holddown > ADD_HOLDDOWN_TIME).
The same holds for the transition from the Revoked state to the Removed state. To make testing
feasible, we abstracted from the real hold-down time defined in RFC 5011 and the one recommended
by AUTOTRUST, which are in the order of 30 days. We chose three seconds, as this is smaller than
the quiescence time limit but did not slow down testing too much.

In the environment model, the part between the AddPend and Valid state was changed accord-
ingly. As AUTOTRUST has to be called explicitly to report key state changes, it is called repeatedly
in the loop transition at the AddPend state. This transition is provided with a guard (z > 1) to
limit possibly huge number of successive AUTOTRUST calls to a single one per second. Again, an
equivalent explanation can be given for the transition between the Revoked and Removed state.

A.3 Multiple Keys

For concurrent testing of multiple keys, we reused the IUT key model and the environment key
model of the single key test with timing (Figure 11). The IUT key model is left unchanged, but
the former environment key model is now also parametrised with a key id (Figure 12). This is
because five IUT key- and environment key model pairs are instantiated. A choice between the

14

start ConfTrustAnchor[keylID]?

e N

Start[keyID]! NewKey[keylD]?
q=0
g < QUIESCENCE . . g < QUIESCENCE

KeyRem(keyID]? AddPend[keyID]!

q=0 I addPend
AddTime[keyID]?
q=0
@ q<ouiescence
Valid[keyID]!
A <QUIESCENCE /i incuiy, valid

KeyRemkeylD RevBit[keyID]?

q=0

. q < QUIESCENCE
q < QUIESCENCE

KeyPres[keyID]?
q=0
Missing[keyID]!

Revoked[keyID]!

g < QUIESCENCE

missing revoked

RevBit[keyID]? Revoked[keyID]!

q=0 RemTimelkeylD]?

q=0
. 0 < QUIESCENCE

Removed[keyID]!

. removed ResetKey[keyID]?

(a) IUT Key Model

Figure 10: Single Key Models

15

@

ConfTrustAnchor[0]!
start
()
[N\
Start[1]? NewKey[1]!
KeyRem[1]! AddPend[1]?
:> addPend
AddTime[1]!
Valid[1]?
Valid[1]? valid
e
O)
KeyRem[1]! -
RevBit[1]!
KeyPres[1]! C)
Missing[1]? i
Revoked[1]~
missing A\ /) revoked
RevBit[1]! uRevoked[l]? N
RemTime[1]!
Removed[1]?
ResetKey[1]!

d
O remove

(b) Environment Key Model

Figure 10: Single Key Models (con’t)

16

start

ConfTrustAnchor[keyID]?

Start[keyID]!

g < QUIESCENCE .

holddown < ADD_HOLDDOWN_TIME
KeyRem[keylID]?
q=0

CallAutotrust[keylD]?

d <QUIESCENCE |/ i ineviD)

NewKey[keylID]?
a=0

@ o <ouiescence

AddPend[keyID]!
holddown = 0,
q=0

addPend

holddown >= ADD_HOLDDOWN_TIME
&&
g < QUIESCENCE

Valid[keyID]!

valid

KeyRem[keyID

KeyPres[keyID]?
q=0

=

issing[keyID]!

missing g < QUIESCENCE

0 < QUIESCENCE

RevBit[keylID]?
q=0

@ o <ouiescence

Revoked[keyID]!
holddown =0,
q=0

revoked

RevBit[keylID]?
a=0

Revoked[keyID]!
holddown = 0,
q=0

CallAutotrust[keylD]?

holddown >= REM_HOLDDOWN_TIME
&&
q < QUIESCENCE

Removed[keyID]!

removed

ResetKey[keyID]?

(a) IUT Key Model

Figure 11: Single Key Models with Timing

17

KeyPres[1]!

missing

@

ConfTrustAnchor[0]!
start
(/\ 1\
N\
Start[1]? NewKey[1]!
AddPend[1]?
IcalledAutotrust X =0,
KeyRem[1]! calledAutotrust = false
) addPend
x>=1
CallAutotrust[1]!
x=0,

calledAutotrust = true

Valid[1]?

Valid[1]?

O

Missing[1]?

()

/) valid

RevBit[1]!

O

Revoked[1]?
x=0

revoked

RevBit[1]!

Revoked[1]?

()

x>=1
CallAutotrust[1]!
x=0

Removed[1]?

removed ResetKey[1]!

J

O

(b) Environment Key Model

Figure 11: Single Key Models with Timing (con’t)

18

missing

internalTA[keyID]?

internallnit[keylD]?

start

ConfTrustAnchor[keyID]!

internalTA_done[keyID]!

Start[keylD]?

IcalledAutotrust
KeyRem[keyID]!

x>=1
CallAutotrust[keyID]!
x=0,

calledAutotrust = true

Valid[keylD]?

NewKey[keyID]!

AddPend[keyID]?
X =0,
calledAutotrust = false

addPend

Valid[keylD]?

valid

KeyRem[keyID]!

KeyPres[keyID]!

Missing[keylID]?

RevBit[keyID]!

Revoked[keyID]?
x=0

revoked

RevBit[keyID]!
x=0

Figure 12: Multiple Keys — Environment Key Model

Revoked[keylID]?

x>=1
CallAutotrust[keyID]!
x=0

Removed[keylD]?

l removed

N

trustAnchor ’

ResetKey[keyID]!

19

configuration as a trust anchor or as a usual key is added. The first means that the key remains a
trust anchor for the rest of the test run, while the second leads to the same full key state test as
before.

A new general environment model (Figure 13) starts up the test for each key. It configures key 0
as a preconfigured trust anchor and key 1-4 as usual keys. For that, internal transitions — they are
neither configured as inputs nor outputs — are used. We chose to test five keys at the same time,
because RFC 5011 requires support for managing at least 5 keys at the same time. Nevertheless, our
test setup is still very limited concerning this requirement, because we used only one preconfigured
trust anchor to sign other keys. We did not revoke this trust anchor nor use other keys residing in
the Valid state for signing.

testing

internalTA[O]! internalTA_done[0]? internallnit[1]! internallnit[2]! internallnit[3]!
[0] _onel0P @ 2@ (3]

o ©
N4 &/ &/ &/ &/

internallnit[4]!

©

Figure 13: Multiple Keys — Environment Model

B Test Setup

We will describe the installation of all necessary programs and files to reproduce the tests on
AUTOTRUST. Installation is limited to Linux systems, because AUTOTRUST itself, the AUTOTRUST
adapter, and the TestAPI are developed specifically for it. In detailed steps, we will explain the
installation on a Ubuntu 10.04 (Lucid Lynx) Linux distribution, referred to as Ubuntu hereafter.
For other Linux systems, check if similar packages are available. Otherwise, a manual installation is
necessary. Except for some hints, we refer to the installation instructions of each piece of software,
in the latter case.

First, we will show which specific test files are needed. Then we will describe the installation of
the DNS server BIND and its configuration. Furthermore, we will install the PStreams library for
calling programs from C++ code, followed by the installation of AUTOTRUST itself. Finally, we
will install the test tool TRON.

B.1 Test Files

A test file package with all models, the adapter, and the TestAPI is available at www.cs.ru.
nl/~julien/Julien_at_Nijmegen/rutz_bt.html; Download and extract it. You should find a
directory called autotrustTesting. All models used for testing are in the subdirectory models;
AUTOTRUST configuration- and working files are stored in the subdirectory autotrust. The source
code of the adapter is in the autotrustTesting directory itself and the TestAPI source code in
the autotrustTestAPI subdirectory. There is documentation in the doc/ subdirectories of both.

B.2 BIND and the Zone Files

We will describe the installation of BIND and the tool rndc that is used to administrate BIND.

Unbuntu provides version 9.7.0, at least version 9.x is required. For a manual installation, download

BIND from www.isc.org/software/bind and compile it with crypto support (- -with-openssl).
Installing BIND on Ubuntu is done with the following command:

sudo apt-get install bind9 bindO9utils

For the configuration, we assume the configuration files are in /etc/bind/. If this differs on your
system, change it in the following instructions accordingly. Unfortunately, you will have to change
it manually in the code of the TestAPI as well (autotrustTesting/autotrustTestAPI.cpp).

To configure a sample zone, add this to /etc/bind/named.conf.local:

20

zone "example.local" {

type master;

file "/etc/bind/db.example.local.signed";
s

Furthermore, copy the file autotrustTesting/zoneData/example.local.withKeys.signed to
/etc/bind/db.example.local.signed. Then restart bind to see if the configuration is accepted:

sudo /etc/init.d/bind9 restart

To make the administration tool rndc communicate with BIND, we create a key that is made
known to BIND and rndc.

sudo rndc-confgen -a
-c /etc/bind/rndc.conf
-k dnsadmin -b 128

creates a configuration file rndc.conf in /etc/bind with a key for a user dnsadmin. Add an
options section to this file, where YourSecret is the key generated for you, to make it look like:

key "dnsadmin" {
algorithm hmac-md5;
secret "YourSecret";

s
options {
default-key "dnsadmin";
default-server 127.0.0.1;
s

To make this key known to BIND and restrict connections with BIND to that key and the local
host, we add the following to /etc/bind/named.conf .options, where YourSecret is the one from
above.

key "dnsadmin" {
algorithm hmac-md5;
secret "YourSecret";

};

controls {

inet 127.0.0.1 port 953

allow { 127.0.0.1; } keys {"dnsadmin";};
};

Finally, restart BIND to finish the configuration:

sudo /etc/init.d/bind9 restart

To test the configuration, we make sure that rndc is working, by executing
sudo rndc status

which should give some status output of the server, with on the last line server is up and running.
To see if we can reload the example.local zone, execute

sudo rndc reload example.local

which should give the output zone reload up-to-date as we did not change the zone file since the
last restart of BIND.

21

B.3 PStreams Library

For Ubuntu, the installation is completed with one command:
sudo apt-get install libpstreams-dev

For a manual installation, visit the website” of the library.

B.4 Autotrust

AUTOTRUST depends on some DNS libraries which we will install first:
sudo apt-get install libldnsl libldns-dev ldnsutils libunbound2 libunbound-dev

For a manual installation, get Idns® and Unbound? and see the included documentation for an
installation procedure. As Unbound is a DNS server as well, make sure to permanently stop the
server to avoid interference with BIND.

As we want to test AUTOTRUST, we will install it from the sources; get it from the AUTOTRUST
website!V. In this case study we used version 0.3.1. Extract the downloaded archive and change to
the extracted directory. Then run:

./configure
make
sudo make install

to compile and install AUTOTRUST. If configure does not find libldns and/or libunbound, see the
file doc/HOWTO section 2c¢ for details on how to make the libraries known to the configure script.
Testing the installation by calling

autotrust

on the command line, should result in AUTOTRUST finishing with the line [autotrust] exit status:
error loading configfile which is all right for now.

B.5 Tron

For this case study, we used version 1.5 of TRON'!. Get the archive and extract it. Then copy the
autotrustTesting directory from above into this extracted directory.

Finally, copy the files Executable.cpp, SocketReporter.cpp, SocketReporter.h, and sockets.cpp
from the button-remote directory to the empty directory autotrustTesting/tron-src.

To test the installation, run the following command in the TRON directory:

cd autotrustTesting
sudo make

This should start the first test. We need to use super user privileges, because testing involves
manipulating the DNS server. For other tests, see the Makefile for make targets.

7pstreams.sourceforge.net

Snlnetlabs.nl/projects/ldns

“unbound.nlnetlabs.nl
OnInetlabs.nl/projects/autotrust
"www.cs.aau.dk/~marius/tron

22

References

1]

2]

Fides Aarts, Fred Houben, and Johan Uijen. Case study: Automated updates of DNS security
(DNSSEC) trust anchors. Technical report, Radboud University Nijmegen (NL), January 2009.

R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science, 126:183—
235, 1994.

R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. DNS Security Introduction and
Requirements. RFC 4033 (Proposed Standard), March 2005.

D. Atkins and R. Austein. Threat Analysis of the Domain Name System (DNS). RFC 3833
(Informational), August 2004.

G. Behrmann, A. David, and K.G. Larsen. A tutorial on uppaal. Formal methods for the
design of real-time systems, pages 200-236, 2004.

HC Bohnenkamp and AFE Belinfante. Timed model-based testing. Tangram: Model-based
integration and testing of complex high-tech systems, pages 115-128, 2007.

A. Hessel, K. Larsen, M. Mikucionis, B. Nielsen, P. Pettersson, and A. Skou. Testing real-time
systems using uppaal. Formal Methods and Testing, pages 77-117, 2008.

M. Krichen and S. Tripakis. Black-box conformance testing for real-time systems. Model
Checking Software, pages 109-126, 2004.

M. Krichen and S. Tripakis. Conformance testing for real-time systems. Formal Methods in
System Design, 34(3):238-304, 2009.

K.G. Larsen, M. Mikucionis, and B. Nielsen. Online testing of real-time systems using uppaal.
Formal Approaches to Software Testing, pages 79-94, 2005.

K.G. Larsen, M. Mikucionis, and B. Nielsen. Uppaal Tron User Manual. 2009.

K.G. Larsen, M. Mikucionis, B. Nielsen, and A. Skou. Testing real-time embedded software
using UPPAAL-TRON: an industrial case study. In Proceedings of the 5th ACM international
conference on Embedded software, page 306. ACM, 2005.

M. Mikucionis, K.G. Larsen, and B. Nielsen. Online on-the-fly testing of real-time systems.
Citeseer, 2003.

M. Mikucionis, KG Larsen, and B. Nielsen. T-uppaal: Online model-based testing of real-time
systems. In Proceedings of the 19th IEEE international conference on Automated software
engineering, pages 396-397, 2004.

M. Mikucionis and E. Sasnauskaite. On-the-fly Testing Using UPPAAL. 2003.
J. Postel and J.K. Reynolds. Domain requirements. RFC 920, October 1984.

J. Schmaltz and J. Tretmans. On conformance testing for timed systems. Formal Modeling
and Analysis of Timed Systems, pages 250-264.

M. StJohns. Automated Updates of DNS Security (DNSSEC) Trust Anchors. RFC 5011
(Proposed Standard), September 2007.

Andrew Tanenbaum. Computer Networks. Prentice Hall Professional Technical Reference,
2002.

GJ Tretmans. Test generation with inputs, outputs and repetitive quiescence. Software—
Concepts and Tools, 3(TR-CTIT-96-26), 1996.

23

