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Abstract

In this Bachelor thesis the functional language F-lite is extended with the func-
tionality of generic programming. This extension is called G-lite and it uses a
compiler, which will translate the generic code in G-lite to ordinary F-lite code.
The basic principles of generics are explained and some existing implementa-
tions are shown. A prototype compiler for the new language is developed and
the performance of this language is tested in terms of number of lines of code.
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Chapter 1

Introduction

“Generic programming allows you to write a function once, and use it many
times at different types.” This is stated by Hinze and Jones in [7]. Generic
programming makes it possible to write a function for a few data types, such
that it will work for all other data types. This is very useful when a certain
class of functions is used by many data types and is quite similar for each data
type.

The Reduceron:“a special-purpose graph reduction machine . . . using an FPGA”.
The design of the Reduceron is explained by Naylor and Runciman in [14] and
[15]. In the latter they introduce a language to use with the Reduceron, called F-
lite. “F-lite is a core lazy functional language, close to subsets of both Haskell
and Clean”. The Reduceron is designed for faster evaluation of a functional
language, because traditional Von-Neumann architectures are not optimal for
functional languages.

To have both the advantages of fast execution of the Reduceron and of
generic programming, I did research on the possibilities of generic program-
ming for F-lite and developed a generic version of F-lite, based on the following
research question and subquestions:

• How can generic programming be achieved in F-lite?

– What are the consequences of the untyped structure of F-lite.

– What are the results of using generics in F-lite.

In this report I will present the results of this research. First I will explain
the Reduceron and F-lite (chapter 2). After that generics will be explained
in general (chapter 3) and then some implementations of generics in other lan-
guages will be considered: Clean (chapter 4) and Haskell (chapter 5). Thereafter
a short comparison of the different approaches will be made (chapter 6). Then
G-lite (chapter 7) and the prototype compiler (chapter 8) will be explained.
This compiler is then tested (chapter 9) and the results are presented (chapter
10). Finally there is a discussion of the results (chapter 11) and a conclusion
with some future work (chapter 12).
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Chapter 2

F-lite

Programming in a functional language can have some advantages over program-
ming in an imperative language, e.g. more readable code and the use of pattern
matching. However functional programs are not always as fast as imperative
ones. Naylor and Runciman state this in [14]: in the traditional Von Neumann
architectures memory intensive applications “are limited by the rate that data
can travel between the CPU and the memory”, but the operational basis of
standard lazy functional languages is graph reduction: a prime example of a
memory intensive application. Therefore the Von Neumann architecture is not
optimal for a functional language.

This is the reason why Naylor and Runciman developed the Reduceron: “a
special-purpose graph reduction machine . . . using an FPGA”. This machine is
special designed for fast execution of functional programs. In [21] Reich, Naylor
and Runciman give a method to make the execution of functional programming
even more fast, by adding supercompilation, “a metaprogramming technique . . .
with corresponding performance gains at execution time, to the Reduceron.

The design of the Reduceron is explained in [14] and [15]. In the latter they
introduce a language to use with the Reduceron, called F-lite. This is a lazy
functional language with a syntax close to Clean and Haskell.

In figure 2.1 the syntax of the language is showed as given by Naylor and
Runciman [15].

e ::= ~e (Application)
| case e of {~a} (Case Expression)
| let {~a} in e (Let Expression)
| n (Integer)
| x (Variable)
| p (Primitive)
| f (Function)
| C (Constructor)

| < ~f > (Case Table)
a ::= C~e -> e (Case Alternative)
b ::= x = e (Let Binding)
d ::= f~x = e

Figure 2.1: Syntax of F-lite [15]
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In [15] the authors give the following example. Note that the primitives (+),
(-) and (<=) are predefined in the core language.

t r i n = case of (<=) n 1 of
{ False −> (+) ( t r i ((−) n 1) ) n ; True −> 1 }

A special F-lite compiler, compiles an F-lite program to template code which
can be processed by the Reduceron. This happens in the following way [15]:

1. Primitives can only handle integer arguments which are fully evaluated.
Therefore statements using primitives need to be translated with two rules.
The statement will be translated first with the following rule:

pe0e1 → (e1(e0p)) (2.1)

When compiled the tri function will first be translated using this rule to:

t r i n = case 1 (n (<=) ) of
{ False −> n ( t r i (1 (n (−) ) ) (+) ) ; True −> 1 }

Along with rule (2.1) another rule is used when dealing with primitives:

ne→ en (2.2)

The authors explain this rule with the reduction of the statement (+) (tri 1) (tri 2),
which will be translated to tri 2 ((tri 1) (+)) at compile time with
rule (1):

t r i 2 ( ( t r i 1) (+) ) { t r i 2 eva lua t e s to 3}
= 3 ( ( t r i 1) (+) ) { Rule (2 ) }
= ( t r i 1) (+) 3 { t r i 1 eva lua t e s to 1}
= 1 (+) 3 { Rule (2 ) }
= (+) 1 3

2. After the primitives, the compiler handles case statements. These are
mainly transformed as follows:

case e of {C1 ~x1 → e1; . . . ;Cm ~xm → em}

is translated into:

e(alt1 ~v1 ~x1) . . . (altm ~vm ~xm) (2.3)

where vector ~vi contains the free variables occurring in the ith case alter-
native and each alti for i in 1 . . .m has the following definition:

alti~vi ~xi = ei (2.4)

After this some more refinements are made, but the details are omitted
here. For more information on those refinements is referred to [15].

These transformations lead to the following tri function:
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t r i n = 1 (n (<=) ) <f a l s eCase , trueCase> n
f a l s e C a s e t n = n ( t r i (1 (n (−) ) ) (+) )
trueCase t n = 1

3. Thereafter the code is transformed to template code. The template code
defines what is saved where in the memory of the Reduceron. The following
shows the syntax of the template code:

> data Atom =

> FUN Arity Int -- Function with arity and address

> | ARG Int -- Reference to a function argument

> | PTR Int -- Pointer to an application

> | CON Arity Int -- Constructor with arity and index

> | INT Int -- Integer literal

> | PRI String -- Primitive function name

> | TAB Int -- Case table

The code of this program [15]:

main = t r i 5
t r i n = let x = n (<=) in 1 x <f a l s eCase , trueCase> n
f a l s e C a s e t n =

let {x0 = t r i x x1 (+) ; x1 = 1 x2 ; x2 = n (−)} in
n x0

trueCase t n = 1

results in the following template code:

> tri5 :: Prog

> tri5 = [ (0, [FUN 1 1, INT 5], [])

> , (1, [INT 1, PTR 0, TAB 2, ARG 0],

> [[ARG 0, PRI "(<=)"]])

> , (2, [ARG 1, PTR 0],

> [[FUN 1 1, PTR 1, PRI "(+)"],

> [INT 1, PTR 2],

> [ARG 1, PRI "(-)"]])

> , (2, [INT 1], []) ]

In [14] Naylor and Runciman give a figure of the memory of the Reduceron
filled with a factorial function. “The bytecode for fact, as it would appear
relative to address a in memory”:
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Note the slightly different syntax:

node ::= Start ii (first node of a function body: arity and size of function)
| Int i (primitive integer)
| Ap i (application node: a pointer to a sequence of nodes
| End node (the final node in a node sequence)
| Prim p (primitive function name)
| Fun i (pointer to a function body)
| Var i (variable representing a function argument)

In this chapter an explanation of the compilation from F-lite to the Reduc-
eron byte code is given. However, in the remainder of this thesis, the focus will
lie on F-lite and not the Reduceron itself.
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Chapter 3

Generics

Generic programming is writing a function once and for all. As Hinze and Jones
state in [7]: “a generic ... function is one that the programmer writes once, but
which works over many different data types.”

As is stated by Gibbons [4] and Jeuring et al. [9], there are many types of
generic programming, which differ on what is made generic [4]:

• “parametrization by value”

• “parametrization by type”

• “parametrization by function”

• “parametrization by structure”

• “parametrization by property”

• “parametrization by stage”

• “parametrization by shape”

The definition of generic programming used in this Bachelor thesis is the
notion parametrisation by shape, because generic function are defined over the
structure of types.

In the following section generic programming will be explained, using the
example of equality functions, this example is also used by Alimarine and Plas-
meijer in [1]. In this section, the functional language Clean will be used for the
examples.

3.1 Equality, a typical case for generic program-
ming

The equality function is a very common function, which can be useful for any
data type. So it can be very useful to have a class of equality functions:

c l a s s eq a : : a a −> Bool

This states that there is a class, eq, of functions. Each function in this class
is initiated with one type and for each type a the function type is:
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a a −> Bool

Therefore each equality function gets two instances of the same type as a pa-
rameter and returns a boolean as answer.

First the equality function for lists is shown. Lists could be defined as follows:

: : L i s t a = Ni l | Cons a ( L i s t a )

This declaration states that a list of type a is either an empty list, Nil or a
node, Cons, with an element of type a and another list of type a, where type a
can be substituted by any type. In the case of a Cons the element of type a is
called the head of the list and the combined list is called the tail.

In general two lists are equal when at each position x the element of one list
is equal to the element on position x of the other list. So two lists are equal
when:

• the lists are both empty, or

• the head of both lists are equal and the tails are equal too.

In every other case the two lists are not equal.
This results in the following function definition:

i n s t anc e eq ( L i s t a ) | eq a
where

eq Ni l Ni l = True
eq ( Cons x xs ) ( Cons y ys ) = eq x y && eq xs ys
eq x y = False

This states that there is an eq function for elements of type List a, given
there is an eq function for elements of type a. When, e.g. two lists of integers
are compared, there needs to be a function to test if two integers are equal.
Using, e.g., the predefined integer equality:

i n s t anc e eq Int
where

eq x y = x == y

The same can be done for trees. The following is a declaration of a binary
tree with elements of type a, which can be substituted by any other type.

: : Tree a = Leaf | Node a ( Tree a ) ( Tree a )

Given this declaration two trees are equal, when:

• both trees are just leaves, i.e. empty

• the first element of the trees are equal and the branches of both trees are
equal too

Otherwise the trees are not equal.
This results in the following function:

i n s t anc e eq ( Tree a ) | eq a
where

eq Leaf Leaf = True
eq (Node x l r ) (Node y l l r r ) = eq x y && eq l l l &

& eq r r r
eq x y = False
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It is even possible to have another tree definition, which is initiated by two
types. One type for elements in the nodes and another one for the elements in
the tips:

: : Tree2 a b = Tip a | Bin b ( Tree2 a b) ( Tree2 a b)

Given this definition two trees are equal, when:

• both trees are tips and the elements of the tips are equal

• the node element of the trees are equal and the branches of both trees are
equal too

Otherwise the trees are not equal.
This results in the following equality function:

i n s t anc e eq ( Tree2 a b) ( Tree2 a b) | eq a & eq b
where

eq ( Tip x ) ( Tip y ) = eq x y
eq ( Bin x l r ) ( Bin y l l r r ) = eq x y && eq l l l &

& eq r r r
eq x y = False

When comparing the three given functions, it is easy to see they are quite
alike. As Alimarine and Plasmeijer state in [1]: “All these instances have one
thing in common: they check that the data constructors of both compared
objects are the same and that all the arguments of these constructors are equal.”

Generic programming makes use of this resemblance. Instead of writing sim-
ilar functions for each data type, generic programming states that it is sufficient
to write the function for some basic types and combinators, since all other data
types can be reduced to these basic data types and combinators.

3.2 Basic data types and combinators

Bird, de Moor and Hoogendijk introduce in their article [2] three basic construc-
tors/types, which can along with primitive types, define every other algebraic
data type:

• 1, “[which] consists of just one member and serves as the source type for
constants”

• ×, Cartesian product

• +, disjoint sum

Alimarine and Plasmeijer state that a generic representation of a data type
can be computed out of the structure of a data type [1]. As given in [1], the
following data type:

:: Ta1...an = K1t11...t1l1 |...|Kmtm1...tmlm

can be regarded as:

T ◦a1...an = (t11 × ...× t1l1) + ...+ (tm1 × ...× tmlm)

When using this as a rewriting rule, the following generic representations
are obtained for the data types defined above:
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• List:

: : L i s t a = Ni l | Cons a ( L i s t a )
L i s t ◦ a = 1 + ( a × ( L i s t a ) )

• Tree:

: : Tree a = Leaf | Node a ( Tree a ) ( Tree a )
Tree◦ a = 1 + ( a × ( Tree a ) × ( Tree a ) )

• Tree2:

: : Tree2 a b = Tip a | Bin b ( Tree2 a b) ( Tree2 a
b)
Tree2◦ a b = a + (b × ( Tree2 a b) × ( Tree2 a b)

)

Note the use of the unit constructor, 1. When one of the possible formats
(the parts separated by | ) of a data type, is just a constructor with no extra
terms/arguments, like the first one in:

:: Ta = K1|K2 a

it will be empty in the generic representation using the rewriting rule from
above. To fill this empty clause the unit constructor is used as a constant.

There is only one problem with this (theoretic) generic representation and
that is the use of the symbols 1, + and ×, because those symbols are most likely
already reserved in a programming language. In the follow-up of this chapter
the representation given by Alimarine and Plasmeijer [1] will be used:

• UNIT, as a representation of the 1 type. The UNIT constructor is used as
a constant as shown above for the 1 constant.

• PAIR, as a representation of the Cartesian product. The PAIR constructor
is used with two parameters, which will be glued together as a pair.

• EITHER, as a representation of the disjoint sum. The EITHER constructor
gets two parameters to be distinguished from one another, like the —
symbol does in the declaration of the data type.

Using this representation will lead to the following generic representations:

• List:

: : L i s t a = Ni l | Cons a ( L i s t a )
: : ListG a = EITHER UNIT (PAIR a ( L i s t a ) )

• Tree:

: : Tree a = Leaf | Node a ( Tree a ) ( Tree a )
: : TreeG a = EITHER UNIT (PAIR a (PAIR ( Tree a ) (
Tree a ) ) )
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• Tree2:

: : Tree2 a b = Tip a | Bin b ( Tree2 a b) ( Tree2 a
b)
: : Tree2G a b = EITHER a (PAIR b (PAIR ( Tree a b) (
Tree a b) ) )

Note the difference in use of these constructors, the original theoretical sym-
bols used infix notation, whereas these are used as constructors with parameters.

The original symbols are close to their actual mathematical relations, but
to reason about the relation between a data type and its generic representation
is much easier when using the names given by Alimarine and Plasmeijer. Just
compare the two generic representations of lists and an explanation of them in
words:

• L i s t ◦ a = 1 + ( a × ( L i s t a ) )

Hinze and Peyton Jones say the following about this generic representation
of lists: “a List is a sum (+) of two types: a product (×) of the element
type a and a List, and the unit type (1).”

• : : ListG a = EITHER UNIT (PAIR a ( L i s t a ) )

A list of type a is either a unit, i.e. a Nil, or a pair of an element of type
a and a list of type a.

The first one is more mathematical than the second one, where the link
between original data type and generic representation is clear.

3.3 Conversion between data type and generic
representation

So now it is clear how a generic representation is obtained, it is possible to make
functions that convert between a data type and its generic representation.

Until now the generic representation was just another representation of the
data type. However, a data type by itself is nothing, the instances of the data
type are what count. For instance the data type List Int cannot be used by
itself, it only declares that something is of that type, whereas Nil, can be used
as an instance of List Int and can be used by functions. Therefore to use the
generic representations given in the previous section, it is necessary to make
instances of them. This can be done by using the generic constructors as the
following types:

: : UNIT = UNIT
: : PAIR a b = PAIR a b
: : EITHER a b = LEFT a | RIGHT b

The use of UNIT and PAIR is pretty straightforward, only the use of EITHER
needs some explanation. The type EITHER makes a division between two pa-
rameters, it is either the one or the other, never both or none. To make this
distinction the keywords LEFT and RIGHT are used.
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The next few examples are instances of List and the generic representation
of the instances. Recall the definition of List and the generic representation of
the data type:

: : L i s t a = Ni l | Cons a ( L i s t a )
: : ListG a = EITHER UNIT (PAIR a ( L i s t a ) )

An instance of a list will either be an empty list (Nil) or a non-empty list
(Cons ...), which are respectively UNIT and PAIR... in the generic represen-
tation, i.e. there is a one-to-one mapping between instances of List and ListG,
its generic representation. This is shown in the following examples:

• The empty list []:

N i l // o r i g i n a l
LEFT UNIT // g e n e r i c

Nil is the left option in the definition of list, so LEFT is used with its
parameter UNIT

• The list [1]:

Cons 1 Ni l // o r i g i n a l
RIGHT (PAIR 1 Ni l ) // g e n e r i c

Cons is the right option in the definition of list, so RIGHT is used with an
instance of its parameter PAIR a (List a): PAIR 1 Nil.

• The list [1,2]:

Cons 1 ( Cons 2 Ni l ) // o r i g i n a l
RIGHT (PAIR 1 ( Cons 2 Ni l ) ) // g e n e r i c

Cons is the right option in the definition of list, so RIGHT is used with an
instance of its parameter PAIR a (List a): PAIR 1 (Cons 2 Nil).

Note that the list at the end of a Cons statement is not converted to its
generic representation. The reason for this is lazy evaluation and will be ex-
plained later. For now it is enough to know that in the generic representation
of a recursive data type, the recursive part can refer to the original data type
and does not need to be transformed to a generic representation.

The examples above show how a List can be converted to a ListG. This
results in the following functions:

• From original data type to generic:

f romList : : ( L i s t a ) −> ( ListG a )
f romList Ni l = LEFT UNIT
fromList ( Cons x xs ) = RIGHT (PAIR x xs )

• From generic to original data type:

t o L i s t : : ( ListG a ) −> ( L i s t a )
t o L i s t (LEFT UNIT) = Ni l
t o L i s t (RIGHT (PAIR x xs ) ) = Cons x xs
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The same can be done for Tree and Tree2. Recall the following definitions
and generic representations:

• Tree:

: : Tree a = Leaf | Node a ( Tree a ) ( Tree a )
: : TreeG a = EITHER UNIT (PAIR a (PAIR ( Tree a ) (
Tree a ) ) )

• Tree2:

: : Tree2 a b = Tip a | Bin b ( Tree2 a b) ( Tree2 a
b)
: : Tree2G a b = EITHER a (PAIR b (PAIR ( Tree a b) (
Tree a b) ) )

• Tree:

– From original data type to generic:

fromTree : : ( Tree a ) −> ( TreeG a )
fromTree Leaf = LEFT UNIT
fromTree (Node x l r ) = RIGHT (PAIR x (PAIR l r

) )

– From generic to original data type:

toTree : : ( TreeG a ) −> ( Tree a )
toTree (LEFT UNIT) = Leaf
toTree (RIGHT (PAIR x (PAIR l r ) ) ) = Node x l r

• Tree2:

– From original data type to generic:

fromTree2 : : ( Tree2 a b) −> ( Tree2G a b)
fromTree2 ( Tip x ) = LEFT x
fromTree2 ( Bin x l r ) = RIGHT (PAIR x (PAIR l r

) )

– From generic to original data type:

toTree2 : : ( Tree2G a b) −> ( Tree2 a b)
toTree2 (LEFT x ) = Tip x
toTree2 (RIGHT (PAIR x (PAIR l r ) ) ) = Bin x l r

3.4 Making generic functions

In the previous section it is shown how to convert a data type to its generic
representation in terms of UNIT, PAIR and EITHER. Because it is possible to
convert any non-primitive data type to a generic representation, it is enough to
define functions in terms of these generic types. In other words, it suffices to
write a function for the types UNIT, PAIR, EITHER and any other primitive data
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type that is used, to use that function for any other data type. The following
functions are instances for the types UNIT, PAIR and EITHER of the equality
function:

• UNIT

i n s t anc e eq UNIT | eq a
where

eq UNIT UNIT = True

• PAIR

i n s t anc e eq (PAIR a b) | eq a & eq b
where

eq (PAIR x y ) (PAIR xx yy ) = eq x xx && eq y yy

• EITHER

i n s t anc e eq (EITHER a b) | eq a & eq b
where

eq (LEFT x ) (LEFT y ) = x && y
eq (RIGHT x ) (RIGHT y ) = x && y
eq x y = False

Instead of writing an equality function for a data type, it is now possible
to use the generic equality function. The function call for the generic equality
function for the list and trees are as follows:

• List:

i n s t anc e eq ( L i s t a ) | eq a
where

eq x y = eq ( f romList x ) ( f romList y )

• Tree:

i n s t anc e eq ( Tree a ) | eq a
where

eq x y = eq ( fromTree x ) ( fromTree y )

• Tree2:

i n s t anc e eq ( Tree2 a b) | eq a & eq b
where

eq x y = eq ( fromTree2 x ) ( fromTree2 y )

As can be seen in the definitions, every time a function is called, its argu-
ments are transformed to their generic representations. Therefore it is not nec-
essary to transform recursive parts of a data type immediately to their generic
representations. Because when those recursive parts are evaluated, the function
called will make sure that they are transformed, so the generic functions will be
used.
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3.5 Mapping functions

This approach works well for the cases shown above, because all the functions
work on types of the same kind. Before explaining what these are, the problem
will be described with the map function as example.

The map function can be very useful for many different data types and are
quite similar, just like equation functions as shown above:

• List:

mapList : : ( a −> b) ( L i s t a ) −> L i s t b
mapList f Ni l = Ni l
mapList f ( Cons x xs ) = Cons ( f x ) ( mapList f xs )

• Tree2:

mapTree2 : : ( a −> c ) (b −> d) ( Tree2 a b) −> Tree2 c
d

mapTree2 f g ( Tip x ) = Tip ( g x )
mapTree2 f g ( Bin x l r ) = Bin ( f x ) ( mapTree2 f g

l ) ( mapTree2 f g r )

The examples are quite similar, but the approach described above will not
work in this case. The reason for this is the functions have different arities. This
is also explained in [24]: “map is datatype-generic in that many different data
structures support a mapping operation. ... However, map is also arity-generic
because it belongs to a family of related operations that differ in the number of
arguments.” The functions, like equality as explained above, are what Weirich
and Casinghino call datatype-generic. But functions like the mapping functions
are arity-generic as well. This results in a problem, because different instances
of the same function cannot have different arities.

The difference between functions like mapping function and functions like
equality functions, is that functions like map do not focus on the data types
itself, but on the structure of the data types. For a mapping function only the
structure of a data type, e.g. a list, is important, it does not matter what type
of elements it has.

The difference becomes more clear when looking at the function headers of
mapList and eq for lists:

eq : : ( L i s t a ) ( L i s t a ) −> Bool | eq a
mapList : : ( a −> b) ( L i s t a ) −> L i s t b

The equality function works on lists of arbitrary elements, given there is an
equality function for the data type of those elements. However this restriction is
not present when using the mapping function for lists. This shows that mapping
works on lists instead on lists with elements of a certain type. The functions have
an extra abstraction, the data type of the elements is hidden for the function.
Indeed an extra function to process the elements is given as an argument.

This is where kinds come into view. Because of the abstraction mentioned
above, the mapping function does not work on types of the same kind. However,
before proceeding this discussion, some information about the notion of kinds
is needed.
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3.5.1 Kinds

First of all there are primitive types, like integers, booleans and strings. There
are also types, which use the primitive types to build a new type: algebraic data
types, like lists and trees. These data types are nothing on their own, but need
some primitives to exist. For example, a list on its own is quite abstract and
cannot be used, but a list of integers is concrete and can be used. Therefore to
use a list, it needs something to be complete. List Int, e.g., is a list of integers,
but List itself is nothing, because it needs a type as an argument before it can
be used.

Therefore like functions, algebraic data types, e.g. List and Tree, can have
arguments. Whereas functions have a type to show what kind of arguments it
has and what the result will be, types have kinds.

The details about kinds are omitted and for a more detailed description of
kinds and how to derive them from types, will be referred to the article of Hinze
[5]. To show the problem with respect to generic programming, the following
information will do:

• Predefined data types, like Int, Bool, String . . . , have kind *. The
generic constructor UNIT has kind * as well.

• List and Tree1 as defined above have kind * -> *. Note that, e.g.
(List Int) has kind *, the type constructor List which is * -> * gets
Int as an argument with kind *, so (List Int) has kind *.

• The generic constructors PAIR and EITHER have kind * -> * -> *.

3.5.2 Solution

The solution is not that difficult to understand. The problem is that it is not
possible to define one function class for types of different kinds. Therefore a
type class for every kind is created:

c l a s s map0 t : : t −> t
c l a s s map1 t : : ( a −> b) ( t a ) −> t b
c l a s s map2 t : : ( a −> b) ( c −> d) ( t a c ) −> t b d

The following instances could be used as generic functions:

i n s t anc e map0 UNIT
where

map0 UNIT = UNIT

in s t ance map2 PAIR
where

map2 f g (PAIR x y ) = PAIR ( f x ) ( g y )

i n s t anc e map2 EITHER
where

map2 f g (LEFT x ) = LEFT ( f x )
map2 f g (RIGHT x ) = RIGHT ( g x )
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However, the function call of the generic functions is not as easy as before.
For instance to make an instance for List a, because different functions are
used:

• processing a Nil will result in UNIT. Therefore map0 needs to be used.

• processing a Cons x xs will result in PAIR x xs. Therefore map2 is used.

However, the functions that need to be used can be found in the generic
representation of List:

EITHER UNIT (PAIR a ( L i s t a ) )
| | | | |

map2 (map0) (map2 f (map1) )

Therefore the instance for List will be as follows:

i n s t anc e map1 L i s t
where

map1 f x = t o L i s t (map2 (map0) (map2 f (map1) ) (
f romList x ) )

This instance works as follows:

• fromList results in either LEFT UNIT or a RIGHT (PAIR x xs):

– in the case of LEFT UNIT the EITHER instance of the function map2 is
called, because it is a LEFT, the first function will be used to process
the element, so map0 is called with UNIT, which results in a UNIT.

– in the case of RIGHT (PAIR x xs) the RIGHT case of the EITHER

instance of map2 is called, with f as function to process the element
x and map1 is used to process the tail of the list, which results in a
recursive call to the List instance.

This solution works well for the mapping functions, but the equality function
has to be revised as well:

c l a s s eq0 t : : t t −> Bool
c l a s s eq1 t : : ( a a −> Bool ) ( t a ) ( t a ) −> Bool
c l a s s eq2 t : : ( a a −> Bool ) (b b −> Bool ) ( t a b) ( t a b

) −> Bool

i n s t anc e eq0 Int
where

eq0 x y = x == y

in s t anc e eq0 UNIT
where

eq0 UNIT UNIT = True

i n s t anc e eq2 PAIR
where

eq2 eqa eqb (PAIR x1 y1 ) (PAIR x2 y2 ) = ( eqa x1 x2 ) &
& ( eqb y1 y2 )
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i n s t anc e eq2 EITHER
where

eq2 eqa eqb (LEFT x ) (LEFT y ) = eqa x y
eq2 eqa eqb (RIGHT x ) (RIGHT y ) = eqb x y
eq2 = False

i n s t anc e eq1 L i s t
where

eq1 eqa l 1 l 2 = eq2 ( eq0 ) ( eq2 eqa eq1 ) ( f romList l 1 )
( f romList l 2 )

i n s t anc e eq0 ( L i s t a ) | eq0 a
where

eq0 l 1 l 2 = eq1 eq0 l 1 l 2

3.6 The advantages of generic programming

The great advantage of generic programming is that a function only needs to
be available for the generic types and any primitive data type that is used. As
shown above there has to be a generic representation of the other data types,
conversion functions and instances of the needed function for each data type,
which calls the conversion functions and the generic functions. However those
are all so straightforward and systematic that this can be done by a computer.
As is shown in the next two chapter, generic programming is already imple-
mented in Clean and Haskell, where the conversions between representations
are automated.
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Chapter 4

Generics in Clean

The implementation of generics in Clean is described by Alimarine and Plas-
meijer in [1]. The notation used in Clean is already been introduced in the
previous chapter. As said in the previous chapter, much work can be done by
the compiler when using generics:

• create the generic representation of a given data type

• create the corresponding conversion functions

• create the instance of the given data type for the function needed

The programmer only needs to deliver the following:

• instances of the function for the generic types: UNIT, PAIR and EITHER

• the definition of the new data type

• a request for using generics

Alimarine and Plasmeijer give the following definition of a generic equality
function in Clean:

g e n e r i c eq t : : t t −>
Bool

i n s t anc e eq Int where
eq x y = eqInt x y

in s t anc e eq UNIT where
eq x y = True

i n s t anc e eq PAIR where
eq eqx eqy (PAIR x1 y1 ) (PAIR x2 y2 ) = eqx x2 &&

eqy y1 y2
in s t anc e eq EITHER where

eq eq l eqr (LEFT x ) (LEFT y ) = eq l x y
eq eq l eqr (RIGHT x ) (RIGHT y ) = eqr x y
eq eq l eqr x y = False

i n s t anc e eq L i s t g e n e r i c
i n s t anc e eq Tree g e n e r i c
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Note that in the case of generics a class of functions is not created with the
class keyword (as is shown at the beginning of the previous chapter), but with
the keyword generic instead. Looking at the example, it is also clear that the
implementation supports types of different kinds, because it uses the solution
presented in the previous chapter.

The last two statements of the example request the creation of the generic
equality function for lists and trees. Such a statement yields the following
operations as given in [1]:

1. “Create the class gk for the kind k of the data type T , if not already
created. The instance on T becomes an instance of that class.”

2. “Build the generic representation T ◦ for the type T . Also build the con-
version functions between T and T ◦.”

3. “Build the specialization of g to the generic representation T ◦.”

4. ”Generate an adaptor that converts the function for T ◦ into the function
for T .”

5. “Build the specialization to the type T. It uses the specialization to T ◦

and the adaptor. The instance on gk on T is the specialization of the
generic function g to the type T .”

However the syntax in the paper written by Alimarine and Plasmeijer [1]
has been changed a lot. Look at the difference between the generic mapping
function in [1]:

g e n e r i c map a1 a2 : : a1 −> a2
in s t anc e map Int where

map x = x
in s t anc e map UNIT where

map x = x
in s t anc e map PAIR where

map mapx mapy (PAIR x y ) = PAIR (mapx x ) (mapy y )
in s t anc e map EITHER where

map mapl mapr (LEFT x ) = LEFT ( mapl x )
map mapl mapr (RIGHT x ) = RIGHT (mapr x )

i n s t anc e map L i s t g e n e r i c
i n s t anc e map Tree g e n e r i c

and the generic mapping function as defined by Hinze et al. in [6]:

g e n e r i c map a b : : a −> b
map{ |UNIT | } x = x
map{ | Int | } i = i
map{ |Char | } c = c
map{ |EITHER| } mapa mapb (LEFT x ) = LEFT (mapa x )
map{ |EITHER| } mapa mapb (RIGHT y ) = RIGHT (mapb y )
map{ |PAIR | } mapa mapb (PAIR x1 x2 ) = PAIR (mapa x1 )

(mapb x2 )
map{ |CONS| } mapa (CONS x ) = CONS (mapa x )
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map{ |FIELD | } mapa (FIELD x ) = FIELD (mapa x )
map{ |OBJECT| } mapa (OBJECT x ) = OBJECT (mapa x )

This syntax is also the one that is currently implemented in the Clean com-
piler. The reason the “old” syntax is shown, is that it is more related to the
syntax given in the previous chapter, with the generics done by hand.

The new syntax even has more generic types: CONS, FIELD and OBJECT. CONS
is used to give extra information about the constructors of the original types. In
the case of print and parse functions, the functions need more information than
just the structure of the types. For example when printing an instance of some
type to a file, to save it for later use. When parsing this file, the parser needs to
know what kind of data it needs to process, i.e. it needs to know which instance
of the parser it has to use. Therefore the CONS type is added to show these
functions which type it original was, so the compiler can use this information
to choose the parses for the right type.

The use of FIELD is similar to CONS, but instead of information about con-
structors, it gives information about record types and OBJECT gives the necessary
information about objects.

The following example shows why Cons is necessary in some cases. When
printing lists and trees to a file using generic functions, the following can be
printed to the file:

LEFT UNIT

As is shown in the previous chapter, this can either be a Nil or a Leaf,
but given only this information the compiler cannot make a distinction between
both, so the compiler needs more information:

LEFT (CONS ”Tree” UNIT)

This gives the compiler the original type in a string, and a parser can use
this string with pattern matching to get the right instance of the parse function.

4.1 Application with generics in Clean

Functional programming is becoming more popular, but still the main usage
of functional programming languages is research. However, generics in Clean
go beyond the interest of research. Indeed several applications in Clean use
generics.

4.1.1 iTasks

An application that makes use of a lot of generics is the iTasks system as
described by Plasmeijer, Achten and Koopman in [19] and [20]. iTasks is a
work-flow system and is build upon iData, a domain specific language embed-
ded in Clean. “Work flow systems are automated systems in which tasks are
coordinated that have to be executed by humans and computers.” [19]. Be-
cause it is implemented in a functional language, the iTasks system offers more
features than other work flow systems, e.g. more combinators, but because it
uses Clean it is also strong typed. “Compared with . . . commercial systems,
the iTask system offers several further advantages: tasks are statically typed,
tasks can be higher order, the combinators are fully compositional, dynamic and
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recursive work flows can be specified, and last but not least, the specification
is used to generate an executable web-based multi-user work flow application”
[20]. As said in [12]:“The iTask combinator language is designed for declarative
specification of workflows. This means that the specifications describe what has
to be done, not how.”

In that article [12] Lijnse and Plasmeijer introduce a new version of iTasks
where a new user interface has been added as is shown in the figures below.
This interface can be used to run the tasks defined in the work flow.

As said before iTasks also uses generics, however not just for the implemen-
tation of the system itself, but also for setting up a work flow in the system.
The following code creates an entry of the type student in the system, which
is user defined and all the needed function are derived using generics:

module Student iTask

import iTasks

Start : : ∗World −> ∗World
Start world = s ta r tEng ine [ workflow ”make student ”

studentTask ] world

studentTask : : Task Student
studentTask = ente r In fo rmat ion ” student ” ” ente r a l l

inputs ”

: : Student = { person : : Person
, student number : : Int
}

: : Person = { f i r stName : : String
, surName : : String
, dateOfBirth : : Date
, gender : : Gender
}

: : Gender = Male | Female

de r i v e c l a s s iTask Student , Person , Gender
de r i v e bimap Maybe , ( , )

This results in the following input fields in the system:
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By just entering the type student the system knows kind of input values it
needs. As can be seen in the screenshots above.

4.1.2 G∀ST

G∀ST is a testing system embedded in Clean as is explained in the article of
Koopman et al. [10]. It can be used for functional testing, which includes the
following:

• “formulation of a property to be obeyed: what has to be tested”

• “generation of test data: the decision for which input values the property
should be examined”

• “test execution: running the program with the generated test data”

• “test result analysis: making a verdict based on the results of the test
execution”

Three of these operations can be done automatically by the G∀ST system.
At the point of generating test data, generics are used. The so called ggen

function is a generic function and can be derived for any type.
The two applications iTasks and G∀ST can even be combined, as is shown

by Koopman, Plasmeijer and Achten in their article about the semantics is
iTasks [11]. The semantics of iTasks were implemented in Clean and tested
for some properties with the G∀ST system. They even found a counter example
for a property of which the authors thought it would hold, but G∀ST proved this
was not the case. This shows that the implementation can become so complex
that some properties do not hold although it may seem that they do.
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Chapter 5

Generics in Haskell

As there are many different Haskell compilers, there are also many different
approaches to generic programming in Haskell. In the following section some of
those approaches will be discussed:

• Generic H∀SKELL, as described by Clarke and Löh in [3]

• PolyP and PolyLib, as described respectively by Jansson and Jeuring in
[8] and Norell and Jansson in [18]

• Template Haskell, as described by Sheard and Peyton Jones in [23] and
Norell and Jansson [17]

5.1 Generic H∀SKELL

Generic H∀SKELL is an extension of Haskell, which provides Haskell with
generic programming and is described by Clarke and Löh in [3]. It uses the
following types to create the generic representations:

data a :+: b = I n l a | I n l b
data a : ∗ : b = a : ∗ : b
data Unit = Unit
data Con a = Con ConDescr a
data Lab a = Lab LabDescr a

These types include the three types given by Bird, de Moor and Hoogendijk
in their article [2]:

• :+: is the sum of two types, which is + in [2]

• :*: is the Cartesian product of two types, which is represented as × in [2]

• Unit is the constant type, which is 1 in [2]

However, in Generic H∀SKELL there are two extra generic types: Con and
Lab.

Con gives information about the constructors of the type. This is needed,e.g.
for printing/parsing functions as is explained before in the case of the Cons type
of Clean.
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Lab is a label for elements inside the type. Whereas Con specifies information
about the constructors of the type, Lab specifies information about the elements
inside the type.

The authors give in [3] a Tree definition as an example to show how their
generic representation is used:

data Tree a = Leaf
| Node{ r e f : : a , l e f t : : Tree a , r i g h t : :

Tree a}

This results in the following generic representation:

type Tree ‘ a = Con Unit
:+: Con (Lab a : ∗ : Lab( Tree a ) : ∗ : Lab ( Tree

a ) )

The following code represents a generic mapping function [3]:

gmap<Unit> = id
gmap<:+:> gmapA gmapB ( I n l a ) = I n l (gmapA a )
gmap<:+:> gmapA gmapB ( Inr b) = Inr (gmapB b)
gmap<:∗:> gmapA gmapB ( a : ∗ : b ) = (gmapA a ) : ∗ : (gmapB b)
gmap<Con c> gmapA (Con a ) = Con c (gmapA a )
gmap<Lab l> gmapA (Lab a ) = Lab l (gmapA a )

Unlike Clean, the creation of instances for other types is implicit. Whereas
Clean uses a derive statement, Generic H∀SKELL creates instances for the
other types, when the instance is used:

gmap<Tree> (+1) t

In this case (given in [3] but slightly adapted), the instance for Tree is
created and gmap is used with an increment function over t.

The Generic H∀SKELL compiler does the following, as is described by Clarke
and Löh in [3]:

1. “translating generic definition into Haskell code”. The authors give the
following example as a translation of the :+: ans Con cases of the gmap

function.

gmap Sum : : ( a −> c ) −> (b −> d) −> a :+: b −> c :+:
d

gmap Sum gmapA gmapB ( I n l a ) = I n l (gmapA a )
gmap Sum gmapA gmapB ( Inr b) = I n l (gmapB b)
gmap Con : : ConDescr −> ( a −> b) −> Con a −> Con b
gmap Con c gmapA (Con a ) = Con c (gmapA a )

2. “translating calls to generic functions into an appropriate Haskell expres-
sion”. The statements are as followed rewritten:

poly<F A> = poly<F> ( poly<A>)

where poly is a generic defined function. The following example is given
by the authors:

gmap<Either [ String ]>
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is transformed into

gmap<Either> (gmap<[]> (gmap<String>) )

After this these functions are renamed to for example gmap__Either.

3. “specialising generic entities to the types at which they are applied” This
process is split into two parts:

(a) “the generic function is specialised to the named type’s structure
type” For example when the gmap function for Tree needs to be
generated, first the function for its generic representation, Tree‘ is
created. As given by the authors:

gmap Tree ‘ : : ( a −> b) −> Tree ‘ a −> Tree ‘ b
gmap Tree ‘ a =

gmap Con a
‘ gmap :+ : ’

gmap Con ( gmap Lab a ‘ gmap : ∗ : ’ gmap Lab
( gmap Tree a )

‘ gmap : ∗ : ’ gmap Lab (
gmap Tree a ) )

(b) “the resulting specialised function is converted using a generic wrap-
ping to a specialisation for the original named type” After the case
for the generic representation, the instance of the original type is
created. Like the following given by Clarke and Löh:

gmap Tree : : ( a −> b) −> Tree a −> Tree b
gmap Tree a = bimap Expr ( gmap Tree ‘ a )

The bimap function takes care of the the conversion between Tree‘

and Tree.

5.2 PolyP

In the Haskell extension PolyP, designed by Jansson and Jeuring [8], polytypic,
i.e. generic, functions can be created. Using the polytypic construct the
PolyP compiler will generate code and translate PolyP to Haskell, i.e. to run
PolyP code it has to be compiled/translated to Haskell and then using a Haskell
compiler to run the code. It uses the following grammar for functors, which are
similar to generic representations as shown before:

F ::= f |F + F |F × F |()|Par|Rec|D@F |Con τ

The sum and the Cartesian product are the same as described before for the
generic representations. () is the empty statement, which is like the 1 or UNIT in
the generic representations as shown before. Par returns the data type, which
was given as a parameter, e.g. when using a list of integers, par will return the
type Int. Rec is a recursion of the type. D@F is used to define a data type in
terms of another user-defined type and Conτ is used for constants.

List is represented in PolyP as follows [8]
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FList = ( ) + Par + Rec

The following is an example of generics in PolyP [8]:

po ly typ i c f l : : f a [ a ] −> [ a ] =
case f of

g + h −> either f l f l
g ∗ h −> \(x , y ) −> f l x ++ f l y
( ) −> \x −> [ ]
Par −> \x −> [ x ]
Rec −> \x −> x
d @ g −> concat . f l a t t e n . pmap f l
Con t −> \x −> [ ]

However according to [18] PolyP has a new version called PolyLib with the
following notations of the generic types:

data ( g :+: h) p r = InL ( g p r )
| InR (h p r )

data ( g : ∗ : h ) p r = g p r : ∗ : h p r
data Empty p r = Empty
newtype Par p r = Par {unPar : : p}
newtype Rec p r = Rec {unRec : : r }
newtype (d :@: g ) p r = Comp {unComp : : d ( g p r ) }
newtype Const t p r = Const {unConst : : t }

Unlike PolyP, PolyLib is a library extension of Haskell instead of a compiler,
so it can be used with ordinary Haskell.

As stated by Norell and Jansson in [18] the compilation is as follows: “the
compilation of a PolyP program consists of three phases. . . . In the first phase
. . . the pattern functor [i.e. the generic representation] of each regular data
type is computed and an instance of the class FunctorOf is generated, relating
the datatype to its functor. The second phase . . . deals with the polytypic
definitions. For every polytypic function a type class is generated and each
branch in the type class is translated to an instance of this class. The third phase
. . . consists of inferring the class constraints introduced by our new classes.”

5.3 Template Haskell

Template Haskell as described by Sheard and Peyton Jones in [23] is an extension
of Haskell in the form of a library and it extents Haskell with “compile-time
meta-programming” and it is implemented in the Glasgow Haskell Compiler. It
adds many new features to Haskell.

Norell and Jansson describe in their article [17] how they use the Template
Haskell libraries to implement both Generic H∀SKELL and PolyP. The differ-
ence with their original implementations, except for PolyLib, is that Template
Haskell works with libraries instead of new compilers. Indeed “with this ap-
proach, generic functions are written in Haskell (with the Template Haskell
extension), so there is no need for an external tool.”
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Chapter 6

Comparing generic
approaches

Using the comparisons by Hinze et al. in [6] and Rodriguez et al. in [22],
a comparison is made between the described implementations of generic pro-
gramming:

• Clean

• Generic H∀SKELL

• PolyP/PolyLib

Template Haskell is also described in the previous chapter. However, Tem-
plate Haskell itself is not a generic programming approach, so this will not be
considered in the comparison. However, Hinze et al. use Template Haskell in
their comparison, but this is DrIFT (a generic programming implementation for
Haskell) implemented with Template Haskell.

6.1 Comparison by Hinze et al. [6]

Hinze et al. compare a set of implementations of generic programming in
Haskell, however the implementation of generics in Clean is also considered,
because “Clean is not Haskell, but it is sufficiently close to be listed here”. The
following implementations are considered:

• Generic H∀SKELL

• Clean

• PolyP

• Scrap Your Boilerplate

• DrIFT

• Template Haskell as implementation of DrIFT

• Lightweight Implementation of Generics and Dynamics
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• Derivable Type Classes

• Generics for the Masses

The authors use the following criteria to test the different implementations
[6]:

• “structure”, e.g. are polymorphic functions possible.

• “type completeness principle”: “the Type Completeness Principle says
that no programming-language operation should be arbitrarily restricted
in the types of its operands, or, equivalently, all programming-language
operation should be applicable to all operands for which they make sense.”
This leads to criteria like full reflexivity : “a generic function can be used
on any type that is definable in the language”.

• “well-typed expressions do not go wrong”, i.e. is the generic system type-
safe.

• “information in types”, e.g. do the types of the generic functions corre-
sponds to intuition.

• “integration with the underlying programming language”

• “tools”, are there any tools available for the implementation, e.g. a com-
piler or library? Is there code optimisation?

The following table shows the results of the comparison of Hinze et al. with
respect to the implementations mentioned in previous chapters.

Structure Completeness Safe Info Integration Tools
GH ++ + ++ ++ ++ +

Clean o + ++ ++ ++ +
PolyP o - + + + -

According to this comparison Generic H∀SKELL and Clean have similar
results. Generic H∀SKELL scores better for the structure criteria. This is due
to the following: “Clean supports the definition of generic functions in the style
of Generic Haskell. [However] it does not support type-indexed data types.”

However, PolyP scores a lot lower than Generic H∀SKELL and Clean. Some
of the reasons are:

• “PolyP is not fully reflexive: polytypic [i.e. generic] functions can only be
used on regular data types of kind ∗ → ∗.” (Completeness)

• The integration with ordinary Haskell is not without consequences. “PolyP1
and the optional compiler of PolyP2 do not know about classes, or types
of kind other than ∗ → ∗, and lack several syntactic constructions that
are common in Haskell, such as where clauses and operator sections.”
However “the Haskell library part of PolyP2 integrates seamlessly with
Haskell.” This library part is also known as PolyLib.
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6.2 Comparison by Rodriguez et al. [22]

Rodriguez et al. compare many generic approaches of Haskell, but they only
consider one of the implementations of the previous chapters: PolyLib. There-
fore the details about the testing/comparing criteria are omitted and for more
information is referred to [22].

However the authors give a conclusion about PolyLib which is useful for this
comparison. “The library is limited to regular datatypes (with one parameter)
so the supported universe is relatively small.” Their overall conclusion is that
PolyLib is not very suitable as a generic programming extension of Haskell, but
was included as a “classic reference” and because of its expressiveness.

6.3 Concluding the comparison

Both of the comparisons made by Hinze et al. [6] and by Rodriguez et al. [22]
conclude that PolyP/PolyLib is quite limited because it can handle only a small
set of data types. However, Generic H∀SKELL and Clean score a lot better and
score quite similar.
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Chapter 7

Using generics in F-lite

As shown in many papers (like [2], [7], [1] and many others) non-basic data
types in a functional language can be represented by the basic data types and
some generic types:

• 1 or UNIT, which represents types with no value, like constructors.

• × or PAIR, which represents a pair of two data types.

• + or EITHER, which is used to show two different cases. It gets two other
data types as parameter and in every case exactly one of them holds:
it is either data type a or data type b. To distinguish between the two
types, as instantiation of this type either a LEFT or RIGHT is used with one
parameter. So EITHER INT CHAR can be instantiated by either a LEFT INT

or a RIGHT CHAR.

As a starting point for making a generic approach for F-lite, some F-lite
code is provided in which an equality function for Trees is defined based on the
generic types.

To do this it is useful to take note of the type of the tree that are going to
be used. In this case Tree a (a tree with elements of type a):

Leaf | Bin a (Tree a) (Tree a)

This definition shows that a Tree of type a is either a Leaf or a Bin with
an element of type a and two trees as children. When looking at the definition
you can see some correspondences with the generic types. The | distinguishes
two cases, a leaf of a bin, so this indicates the use of the EITHER type. Which
yields the following semi-generic representation:

EITHER Leaf (Bin a (Tree a) (Tree a))

The Leaf element is just a constructor, so it has the type UNIT:

EITHER UNIT (Bin a (Tree a) (Tree a))

In the case of Bin you can see three types together, so we use two PAIR’s to
glue those together, this can be done in two ways:

EITHER UNIT (PAIR a (PAIR (Tree a) (Tree a)))

EITHER UNIT (PAIR (PAIR a (Tree a)) (Tree a))
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The choice is not important, it is just a matter of notation, so we will use
the first one. Note that in this case it is not necessary to make a UNIT type for
the Bin constructor, because constructors are used to distinguish the different
cases and this is already done by the EITHER. In the case of the Leaf it was
necessary because it needs an argument for each case and there was nothing
else besides the constructor, but in the case of the Bin there were an element
and two recursions, so those can represent this case without the use of the UNIT

type.
All that is left are the elements of type a and the two recursions. If the

element is a basic data type or a generic representation of another data type, it
can stay there unchanged, if it is not it is necessary to make a generic represen-
tation of that as well. In the case of the recursions, it has to be changed to be
a recursion of the generic representation, say GenTree:

EITHER UNIT (PAIR a (PAIR (GenTree a) (GenTree a)))

This is only the case when a tree expression is fully evaluated, but when
using lazy functions the following is the case:

EITHER UNIT (PAIR a (PAIR (Tree a) (Tree a)))

The recursions will be transformed when they are evaluated.
To use this generic representation in the program we need a function which

rewrites a tree to its generic representation and a function which rewrites the
generic representation to a tree. First we focus on the function from a tree to
the generic representation. As we already have seen, a tree has two cases: either
a leaf or a bin, so the function has two cases as well:

fromTree Leaf = LEFT UNIT

fromTree (Bin x l r) = RIGHT (PAIR x (PAIR l r))

Because the output of the function is an instance of the generic representa-
tion, LEFT and RIGHT are used instead of EITHER. As you can see this function
uses the lazy representation.

The function from the generic representation to a tree, is quite alike, it is
the same but the other way round:

toTree (LEFT UNIT) = Leaf;

toTree (RIGHT(PAIR x (PAIR l r))) = Bin x l r;

In the following example a generic instance of an equality function is shown.
In order to be able to use the generic representation of a tree in the equality
function, there have to be at least the instances for the generic types:

• Two UNITs are always equal.

• Two PAIRs are equal if the elements of the one are equal to the elements
of the other (in the same order).

• Two LEFTs (or two RIGHTs) are equal if there element is equal and a LEFT

is always different from a RIGHT.

Therefore:
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eq UNIT UNIT = True

eq (PAIR x y) (PAIR a b) = and (eq x a) (eq y b)

eq (LEFT x) (LEFT y) = eq x y

eq (RIGHT x) (RIGHT y) = eq x y

eq (LEFT x) (RIGHT y) = False

eq (RIGHT x) (LEFT y) = False

Besides that it is necessary to have an instance for every basic type that
is used in the generic representation. In the example shown below a tree of
integers is used, so there has to be an instance for integers as well (using the
already defined (==) for integers):

eq (Int x) (Int y) = (==) x y

Then the only thing left to do is the equality instance for trees using the
equality functions for the generic types.

eq (Tree x) (Tree y) = eq (fromTree x) (fromTree y)

Using the following as example tree:

Tree (Bin (Int 5) (Tree (Bin (Int 4) (Tree Leaf) (Tree Leaf))) (Tree Leaf))

7.1 Corresponding G-lite code

Because the creating of the new instances for a function and the function from
and to the generic representation is very straightforward, so it can be done by
a compiler.

But the compiler will need some information:

• For which data type?

• For which function?

• What is the type of that function?

This might seem a little strange, because there are no explicit types in F-lite,
but they are there implicitly through the use of constructors. However, for the
creation of the generic representation of some type it is necessary to know the
type and not just its constructors.

So for our example we need the following statements:

Tree a :: Leaf | Bin a (Tree a) (Tree a)

Generic eq -> (Tree a) (Tree a) -> Bool
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Chapter 8

G-lite compiler

As said before many operations in generic programming can be done automat-
ically by a computer. As shown in the previous chapter F-lite can be extended
with generic programming: G-lite. A prototype G-lite compiler has been writ-
ten, which does all the automatic operations and translates the G-lite code to
F-lite code, so it can be used on the Reduceron or in an F-lite compiler or
interpreter.

The G-lite compiler is written in Python. The choice for this language is
based on a few reasons:

• Python has easy read and write operations to files, which is more difficult
in functional programming languages, like Clean.

• Python comes with very useful functions to parse and rewrite a string.
For example the split function is very useful, which is explained later in
this chapter, along with the other used functions.

• Python is generally imperative but makes use of functional language ele-
ments like lists, list comprehensions and the slicing of lists. The combina-
tion of both can be very useful, like looping over a list comprehension.

In the next few section the different parts of the compiler are explained.

8.1 General program

In this section the main function of the program is explained. The main program
can be split into a few different parts:

1. File opening/creation: in this part the user is asked to give the file names
of the input and output files. The input file will be the G-lite program
and the output will be the corresponding F-lite program. The given files
are then opened for reading/writing.

2. Parsing the input file: in this part the input file is parsed and correspond-
ing functions are called.

3. Writing the output file: in this part the output file is written, based on
the information gained by the parser.
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8.1.1 File opening/creation

In this part the G-lite file will be opened and the F-lite file will be created. To
be able to do this, the user has to give the program the file names for the input
and output files. This can be done in two ways:

1. giving the file names as an argument to the program.

In Python this can be done, by using the sys environment:

import sys

The sys environment provides a list, which contains the system argu-
ments, in other words the arguments passed on to the program. The
first element of the list contains some information on how the Python
interpreter is used in this program call, but does not provide any useful
information for us. However, the other elements of the list do. They con-
tain the arguments passed on to the program call. Therefore if the first
argument is the file name of the input file and the second argument is the
file name of the output file, the following will store those file names in the
variable input:

input = sys . argv [ 1 ]
output = sys . argv [ 2 ]

2. start the program and give the file names when the program asks for it.

This method uses the console screen to interact with the user and asks the
user for keyboard input. In Python this can be done with the raw_input

function. This is some sort of a 2-in-1 function, whereas is prints the given
string as text on the console and waits for some keyboard input from the
user, so it prints output and gets input. To get both input and output file
names, the following statements will suffice:

input = raw input ( ’ P lease g ive input f i l e : ’ )
output = raw input ( ’ P lease g ive output f i l e : ’ )

Because there are two possible ways of providing the needed information to
the program, the program needs to distinguish two different possible actions.
This is done by first testing if there are system arguments present, if they are
use them as file names, if there is no system argument, then prompt for the file
names. To realise this, the exceptions of Python are used:

try :
input = sys . argv [ 1 ]

except IndexError :
input = raw input ( ’ P lease g ive input f i l e : ’ )

try :
output = sys . argv [ 2 ]

except IndexError :
output = raw input ( ’ P lease g ive output f i l e : ’ )

The idea behind this is, try to access the sys.argv, if there is no element
on that index of the list, the Python interpreter will raise an IndexError. The
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meaning of this error is that the program tried to access something out of the
bounds of the list, so there is no element present. The program then catches
this error, and prompts the user for the right information.

Then both input and output files need to be opened. In Python this can
be done by using the open function. The first argument of this function is the
name/path of the file to be opened, whereas the second argument is the mode,
e.g. read (r) and write (w).

input = open ( input , ’ r ’ )
output = open ( output , ’w ’ )

8.1.2 Parsing the input file

An F-lite program is simply just a set of functions. So when parsing the G-lite
the result has to be a set of functions, so there has to be some data type to
store the functions. This will be done with a list.

f unc t i on = [ ]

This definition is not very detailed, but Python does not need to know in
advance what the elements of a list will be, it only needs to know this variable
is a list. However, the list will be used in the following way: it will be a list of
function definitions. Those function definitions will be a list of:

• one header, i.e. the name of the function

• a list of arguments

• a list of body statements

For example the following function definition:

eq ( Int x ) ( Int y ) = (==) x y ;

will be as follows in the list of functions:

[ [ ’ eq ’ , [ ’ ( Int x ) ’ , ’ ( Int y ) ’ ] , [ ’ (==) x y ’ ] ] ]

Looking at a G-lite program, there are three possible kinds of statements:

• a function, e.g.:

eq ( Int x ) ( Int y ) = (==) x y ;

• a type definition, e.g.:

Tree a : : Leaf | Bin a ( Tree a ) ( Tree a )

• a generic statement, e.g.:

Generic eq ( Tree a ) ( Tree a ) −> Bool

Those three kinds of statements have all one thing that can be used to
discriminate one from another:

• Function: =
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• Type definition: ::

• Generic: Generic

For each type of statement there is a corresponding function, which returns
a (list of) function(s) and will be added to the list of functions which are already
stored. These corresponding functions will be called after one of the keywords
shown above is in one of the lines of the input:

for l i n e in input :
l i n e = l i n e . s t r i p ( )
i f l i n e > ’ ’ :

i f ’= ’ in l i n e :
f u n c t i o n s . append ( func t i on ( l i n e ) )

i f ’ : : ’ in l i n e :
f u n c t i o n s . extend ( typede f ( l i n e ) )

i f ’ Generic ’ in l i n e :
f u n c t i o n s . append ( c r e a t e I n s t a n c e ( l i n e . r e p l a c e (

’ Generic ’ , ’ ’ ) ) )

This code states the following: for each line in the input file:

1. remove the whitespace at the beginning and end of the line, i.e. strip the
line

2. check if =, :: or Generic can be found in the line

3. if so pass the line on to the corresponding function. This function returns
the function(s) to be added to the list of functions. This is either done with
the append or the extend function, which are primitive Python functions.
The difference between both is that append puts its argument at the end
of the given list, and extend puts the elements of the argument, which is
also a list, in the list of functions. Like in the following examples:

[ 1 ] . append (2) = [ 1 , 2 ]
[ 1 ] . append ( [ 2 , 3 ] ) = [ 1 , [ 2 , 3 ] ]
[ 1 ] . extend ( [ 2 , 3 ] ) = [ 1 , 2 , 3 ]

After all the lines of the input files are read, the created list of functions
will be sorted, because all the instances of a function has to follow each other
in F-lite.

f u n c t i o n s . s o r t ( )

8.1.3 Writing the F-lite output

Writing the F-lite file is not that difficult when all the functions are available in
a list. Just start the file with {, then write every entry of the list on a new line
and end the file with }. The list of functions, is actually a list of lists, where
the latter consists of a header, a list of arguments and a list of body statements.
Very useful in Python is that in a for-loop the inner list can be unpacked into
three variables.
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print >> output , ’ { ’
for ( fname , farg , fbody ) in f u n c t i o n s :

l i n e = fname
for a in f a r g :

l i n e += ’ ’ + a
l i n e += ’ =’
for b in fbody :

l i n e += ’ ’ + b
l i n e += ’ ; ’
print >> output , l i n e

print >> output , ’ } ’

8.2 Function parsing

In this section the parsing of functions will be explained. As shown in the section
above, this function will be called if the = symbol is found in the current line.
The only argument of the function is the line to be parsed. The parsing is split
in three parts:

• parsing the function name

• parsing the arguments

• parsing the body

8.2.1 Parsing the function name

The function name is the first word in the function definition and can be found
before the first space (’ ’) in the line. So the line is split into several parts,
which are separated from each other by spaces. To do this, the primitive Python
function split is used. It is an operation on strings and returns a list of elements
in the string which are split from the delimiter. For example:

’ eq ( Int x ) ( Int y ) = (==) x y ; ’ . s p l i t ( ’ ’ ) =
[ ’ eq ’ , ’ ( Int x ) ’ , ’ ( Int y ) ’ , ’= ’ , ’ (==) ’ , ’ x ’ , ’ y ; ’ ]

Therefore to get the function name, the split function is used and the first
element of the list will be the function name:

functionName = l i n e . s p l i t ( ’ ’ ) [ 0 ]

where line is the current line to be parsed.

8.2.2 Parsing the arguments

The arguments of a function are all elements before the = symbol, except for
the very first element, because that is the function name:

l i n e . s p l i t ( ’= ’ ) [ 0 ] . s p l i t ( ’ ’ ) [ 1 : ]

This states that line is split with = as the delimiter. This results in a list of two
items, the left and right parts beside the = symbol. The left one is needed, so the
first element is selected with [0]. This element is then split with spaces as the
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delimiter, to remove the function name. Out of the result all the elements are
selected except the very first, i.e. the second element until the end of the list:
[1:]. The result of this statement is a list with the arguments of the function
as elements.

However it is not totally correct. It works fine in the following case:

eq x y = False ; # l i n e
[ ’ eq x y ’ ] # l i n e . s p l i t ( ’= ’) [ 0 ]
[ ’ x ’ , ’ y ’ ] # l i n e . s p l i t ( ’= ’) [ 0 ] . s p l i t ( ’ ’ ) [ 1 : ]

However when arguments are grouped together by parentheses it will not
work, because the grouped arguments need to stay grouped together:

eq ( Int x ) y = False ; # l i n e
[ ’ eq ( Int x ) y ’ ] # l i n e . s p l i t ( ’= ’) [ 0 ]
[ ’ ( Int ’ , ’ x ) ’ , ’ y ’ ] # l i n e . s p l i t ( ’= ’) [ 0 ] . s p l i t ( ’ ’ )

[ 1 : ]

Therefore it is necessary to process the arguments a bit more, so a function
is written to group these arguments together:

def parseArg ( l i n e ) :
arg = [ ]
parenthese s = 0
cur rent = ’ ’
for char in l i n e :

i f char == ’ ( ’ :
parenthese s += 1
current += char

e l i f char == ’ ) ’ :
parenthese s −= 1
current += char

e l i f char == ’ ’ :
i f parenthese s == 0 :

arg . append ( cur rent )
cur rent = ’ ’

else :
cu r r ent += char

else :
cu r r ent += char

i f cur rent > ’ ’ :
arg . append ( cur rent )

return arg

A string is parsed into arguments by processing each character separately.
The following happens:

• when the character is an opening parenthesis (, the parenthesis counter is
incremented and the character is saved in the current argument

• when the character is a closing parenthesis ), the parenthesis counter is
decremented and the character is saved in the current argument

• when the character is a space, there are two possibilities:
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– the parenthesis counter is 0, then the current argument is added to
the list of arguments

– the parenthesis counter is greater than 0, then the space is added to
the current argument

• any other character will be added to the current character

Because this parseArg needs a string as input and the non-grouped argu-
ments were a list, this list has to be combined to a string:

def combine ( l i s t ) :
s t r i n g = ’ ’
for s in l i s t :

s t r i n g += ’ ’
s t r i n g += s

return s t r i n g . s t r i p ( )

Therefore:

functionArguments = parseArg ( combine ( l i n e . s p l i t ( ’= ’ ) [ 0 ] .
s p l i t ( ’ ’ ) [ 1 : ] ) )

8.2.3 Parsing the function body

The function body is just the part right to the = symbol:

l i n e . s p l i t ( ’= ’ ) [ 1 ] . s t r i p ( ) . s t r i p ( ’ ; ’ )

with whitespace and the semicolon at the end of the body removed.
However, there is an example where this won’t work. If the function (==)

is in the function body, as in one of the examples above, the =’s in the function
will also be split as well. Therefore to get these back the following function will
combine the split parts:

def combineIs ( l i s t ) :
s t r i n g = ’ ’
for s in l i s t :

s t r i n g += ’=’
s t r i n g += s

return s t r i n g . s t r i p ( ’=’ )

8.3 Creating conversion functions

The type definition consists of two parts split by ::: the type name and the
definition.

type = l i n e . s p l i t ( ’ : : ’ ) [ 0 ] . s t r i p ( )
d e f i n i t i o n = l i n e . s p l i t ( ’ : : ’ ) [ 1 ] . s t r i p ( )

As shown in previous chapters the generic representation given a type can
be found by using the following rewriting rules as shown in [1]:

:: Ta1...an = K1t11...t1l1 |...|Kmtm1...tmlm

T ◦a1...an = (t11 × ...× t1l1) + ...+ (tm1 × ...× tmlm)
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The G-lite syntax is a bit different, but it is quite similar:

Ta1...an :: K1t11...t1l1 |...|Kmtm1...tmlm

T ◦a1...an = (t11 × ...× t1l1) + ...+ (tm1 × ...× tmlm)

However, these rewriting rules are to create the generic representation, but
not to create the conversion functions, the functions from and to the generic
types, which is what is needed. F-lite does not use types, so only the conversion
functions are needed and not the generic representation/type. However, these
rewriting rules can be very useful to create the conversion functions:

• the parts split by |’s in the original type and the corresponding parts in the
generic representation split by + are separate instances in the conversion
functions, because an instance of the type can be just one of them at a
time. For example, a list is either a Nil or a Cons, but never both.

• all the other parts belong together and have to be paired together, so every
× will result in a PAIR.

On the left side of the :: is the type name and its type arguments and on
the right side is the type definition, so:

type = l i n e . s p l i t ( ’ : : ’ ) [ 0 ] . s t r i p ( )
d e f i n i t i o n = l i n e . s p l i t ( ’ : : ’ ) [ 1 ] . s t r i p ( )

As said before every part in the definition can be handled apart, because
they will result in separate instances of the conversion functions. For every part
the following happens:

1. parse the definition, with parentheses grouped together with the parseArg
function.

2. the result of the parsing gives two kinds of information:

(a) constructor

(b) number of arguments after the constructor

For example, when using the following type:

L i s t a : : N i l | Cons a ( L i s t a )

the result of the parsing of these definitions will be:

[ ’ N i l ’ ]
[ ’ Cons ’ , ’ a ’ , ’ ( L i s t a ) ’ ]

This shows that the constructor is Cons and the number of arguments is
two.

3. using this information the original part of the conversion is created by
filling random variables in the places of the arguments. The previous
example will result in:

Ni l
Cons a b
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4. using the same information the generic part of the conversion is created.
For this the only information needed is the number of arguments:

• if it is greater than zero, then the result will be random variables, as
much as there were arguments, paired together with PAIR statements.
The Cons definition in the example will be:

PAIR a b

• else the result will be UNIT. So Nil in the example will result in UNIT

Because those definitions are separated by EITHER types, the LEFT and
RIGHT tags need to be added.

LEFT UNIT
RIGHT (PAIR a b)

5. finally the conversions are added to a list, in the same way as functions
are added to the saved list of functions.

This results in the following code:

def typede f ( l i n e ) :
type = l i n e . s p l i t ( ’ : : ’ ) [ 0 ] . s t r i p ( )
d e f i n i t i o n = l i n e . s p l i t ( ’ : : ’ ) [ 1 ] . s t r i p ( )
conve r s i on s = [ ]
cur r ent = 1
max = len ( d e f i n i t i o n . s p l i t ( ’ | ’ ) )
for i in d e f i n i t i o n . s p l i t ( ’ | ’ ) :

vars = [ ’ a ’ , ’ b ’ , ’ c ’ , ’ d ’ , ’ e ’ , ’ f ’ , ’ g ’ , ’ h ’ , ’ i ’
, ’ j ’ , ’ k ’ , ’ l ’ , ’m’ , ’n ’ , ’ o ’ , ’ p ’ , ’ q ’ , ’ r ’
, ’ s ’ , ’ t ’ , ’ u ’ , ’ v ’ , ’w ’ , ’ x ’ , ’ y ’ , ’ z ’ ]

d e f s = parseArg ( i . s t r i p ( ) )
numberArguments = len ( d e f s [ 1 : ] )
i f numberArguments > 0 :

o r i g i n a l = ’ ( ’ + d e f s [ 0 ]
for j in range ( numberArguments ) :

o r i g i n a l += ’ ’ + vars [ j ]
o r i g i n a l += ’ ) ’
g e n e r i c = le f tR ightTags ( current , max) +

pa i r ( vars [ : numberArguments ] )
else :

o r i g i n a l = d e f s [ 0 ]
g e n e r i c = le f tR ightTags ( current , max) + ’

UNIT ’
conve r s i on s . append ( [ ’ to ’+type . s p l i t ( ’ ’ ) [ 0 ] .

s t r i p ( ) ,
[ ’ ( ’+g e n e r i c+’ ) ’ ] , [ o r i g i n a l . s t r i p ( ’ ( ) ’ )

] ] )
c onve r s i on s . append ( [ ’ from ’+type . s p l i t ( ’ ’ )

[ 0 ] . s t r i p ( ) ,
[ o r i g i n a l ] , [ g e n e r i c ] ] )

cur r ent += 1
return conve r s i on s
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Where the function pair is used to pair variables together:

def pa i r ( d e f s ) :
i f l en ( d e f s ) == 1 :

return d e f s [ 0 ]
else :

return ’ (PAIR ’ + d e f s [ 0 ] + ’ ’ + pa i r ( d e f s
[ 1 : ] ) + ’ ) ’

and the function leftRightTags adds the LEFT and RIGHT tags, given the
number of definitions and the current number of the definition:

def l e f tR ightTags ( i , max) :
tags = ’ ’
for j in range ( i −1) :

tags += ’RIGHT ’
i f i < max :

tags += ’LEFT ’
return tags

Giving the definition of a list

L i s t a : : N i l | Cons a ( L i s t a )

the conversion creation function will result in the following conversions:

f romList Ni l = LEFT UNIT
fromList ( Cons a b) = RIGHT (PAIR a b)
t o L i s t (LEFT UNIT) = Ni l
t o L i s t (RIGHT (PAIR a b) ) = Cons a b

8.4 Creating new instances

The Generic statement consists of the name of the function and the function
type. The new instance to be created consists of:

• that function name

• some arguments, as presented by the statement, but with random variable
names

• the function body, which calls the same function, but makes use of generic
conversions. In other words converting to the generic representation and
use the generic function. It is also possible that the function returns
something of the original data type, in that case the result of the generic
function needs to be converted back to the original data type.

The following statement

Generic eq ( L i s t a ) ( L i s t a ) −> Bool

will result in

eq ( L i s t a ) ( L i s t b) = eq ( f romList a ) ( f romList b)
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The function is defined as follows:

def c r e a t e I n s t a n c e ( l i n e ) :
funcName = l i n e . s p l i t ( ’ ’ ) [ 0 ] . s t r i p ( )
args = parseArg ( l i n e . s p l i t ( ’−> ’ ) [ 0 ] ) [ 1 : ]
r e s u l t = parseArg ( l i n e . s p l i t ( ’−> ’ ) [ 1 ] . s t r i p ( ) ) [ 0 ] .

s t r i p ( ’ ( ) ’ ) . s p l i t ( ’ ’ ) [ 0 ] . s t r i p ( )
funcArgs = [ ]
funcBody = [ funcName ]
cur rentvar = 0
for arg in args :

vars = [ ’ a ’ , ’ b ’ , ’ c ’ , ’ d ’ , ’ e ’ , ’ f ’ , ’ g ’ , ’ h ’ , ’ i ’ , ’ j ’ , ’
k ’ , ’ l ’ , ’m’ , ’n ’ , ’ o ’ , ’ p ’ , ’ q ’ , ’ r ’ , ’ s ’ , ’ t ’ , ’ u ’ , ’ v ’
, ’w ’ , ’ x ’ , ’ y ’ , ’ z ’ ]

type = arg . s t r i p ( ’ ( ) ’ ) . s p l i t ( ’ ’ ) [ 0 ] . s t r i p ( )
i f type in gener icTypes :

funcArgs . append ( ’ ( ’ + type + ’ ’ + vars [
cur rentvar ] + ’ ) ’ )

funcBody . append ( ’ ( from ’ + type + ’ ’ + vars [
cur rentvar ] + ’ ) ’ )

else :
funcArgs . append ( vars [ cur rentvar ] )
funcBody . append ( vars [ cur rentvar ] )

cur rentvar += 1
i f r e s u l t in gener icTypes :

funcBody . i n s e r t (0 , ’ to ’ + r e s u l t + ’ ’ + ’ ( ’ )
funcBody . append ( ’ ) ’ )

return [ funcName , funcArgs , funcBody ]
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Chapter 9

Code reduction test

In order to test the gain of F-lite in combination with generics, a comparison
between the code of ordinary F-lite code and G-lite code is done. This test
is done over two main programs. The first program implements the equality
function as described in chapter 3 and the second program implements an in-
crement function and a print function. In the F-lite programs all the functions
are ordinary F-lite functions, whereas in the G-lite programs the functions are
implemented with Generics and makes use of the compiler to generate the con-
versions between ordinary constructors, i.e. data types, automatically.

The comparison made between F-lite and G-lite is a code reduction test to
check whether using the G-lite compiler reduces the number of lines of code,
when programming in G-lite instead of F-lite. However, the test will not show
only whether G-lite is more efficient in terms of lines of code, but also the
degree in which G-lite code increases when a new data type of function is added
and the degree in which F-lite code increases in lines of code. This is done as
follows: as said above there are two programs in both F-lite and G-lite. The
first program has one generic function in G-lite and the second program has two
generic functions. This is to show how the increase in lines of code, when adding
a new function, depends on the number of functions. To show the increase in
lines of code when adding a new data type, each program implements first a
Tree, then a List, then a Rose and finally a Triplet, which have the following
definition:

• Tree:

1 Tree a : : Leaf | Bin a ( Tree a ) ( Tree a )

• List:

1 L i s t a : : Ni l | Cons a ( L i s t a )

• Rose:

1 Rose a : : Ros a ( L i s t ( Rose a ) )

• Triplet:

1 T r i p l e t a b c : : F i r s t a | Second b | Third c
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These data types are very different from each other. The Lists and Trees
have both two constructors, e.g. List is either a Nil or a Cons, whereas the
Roses have one and the Triplet has three. The reason for this selection is that
it is quite likely that the increase of code is dependent on the data type and
especially the number of constructors is has.

Every program has some other functions as well, for example the emitStr

function, which is to print a string on the screen. These functions are in the
F-lite and G-lite version exactly the same and will not be considered during the
analysis.

In the following sections the important parts of the programs are listed,
i.e. the parts that are used for analysis. The full programs are listed in the
appendix.

9.1 Program 1: equality function

9.1.1 Tree

F-lite

1 eq ( Int x ) ( Int y ) = (==) x y ;
2 eq ( Tree Leaf ) ( Tree Leaf ) = True;
3 eq ( Tree ( Bin x l r ) ) ( Tree ( Bin y l l r r ) ) = and ( eq x y )

( and ( eq l l l ) ( eq r r r ) ) ;
4 eq ( Tree Leaf ) ( Tree ( Bin x l r ) ) = False ;
5 eq ( Tree ( Bin x l r ) ) ( Tree Leaf ) = False ;

G-lite

1 eq ( Int x ) ( Int y ) = (==) x y ;
2 eq UNIT UNIT = True;
3 eq (PAIR x y ) (PAIR a b) = and ( eq x a ) ( eq y b) ;
4 eq (LEFT x ) (LEFT y ) = eq x y ;
5 eq (RIGHT x ) (RIGHT y ) = eq x y ;
6 eq (LEFT x ) (RIGHT y ) = False ;
7 eq (RIGHT x ) (LEFT y ) = False ;
8 Tree a : : Leaf | Bin a ( Tree a ) ( Tree a )
9 Generic eq ( Tree a ) ( Tree a ) −> Bool

9.1.2 Tree and List

F-lite

1 eq ( Int x ) ( Int y ) = (==) x y ;
2 eq ( Tree Leaf ) ( Tree Leaf ) = True;
3 eq ( Tree ( Bin x l r ) ) ( Tree ( Bin y l l r r ) ) = and ( eq x y )

( and ( eq l l l ) ( eq r r r ) ) ;
4 eq ( Tree Leaf ) ( Tree ( Bin x l r ) ) = False ;
5 eq ( Tree ( Bin x l r ) ) ( Tree Leaf ) = False ;
6 eq ( L i s t Ni l ) ( L i s t Ni l ) = True;
7 eq ( L i s t ( Cons x xs ) ) ( L i s t ( Cons y ys ) ) = and ( eq x y ) (

eq xs ys ) ;
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8 eq ( L i s t Ni l ) ( L i s t ( Cons x xs ) ) = False ;
9 eq ( L i s t ( Cons x xs ) ) ( L i s t Ni l ) = False ;

G-lite

1 eq ( Int x ) ( Int y ) = (==) x y ;
2 eq UNIT UNIT = True;
3 eq (PAIR x y ) (PAIR a b) = and ( eq x a ) ( eq y b) ;
4 eq (LEFT x ) (LEFT y ) = eq x y ;
5 eq (RIGHT x ) (RIGHT y ) = eq x y ;
6 eq (LEFT x ) (RIGHT y ) = False ;
7 eq (RIGHT x ) (LEFT y ) = False ;
8 Tree a : : Leaf | Bin a ( Tree a ) ( Tree a )
9 Generic eq ( Tree a ) ( Tree a ) −> Bool

10 L i s t a : : Ni l | Cons a ( L i s t a )
11 Generic eq ( L i s t a ) ( L i s t a ) −> Bool

9.1.3 Tree, List and Rose

F-lite

1 eq ( Int x ) ( Int y ) = (==) x y ;
2 eq ( Tree Leaf ) ( Tree Leaf ) = True;
3 eq ( Tree ( Bin x l r ) ) ( Tree ( Bin y l l r r ) ) = and ( eq x y )

( and ( eq l l l ) ( eq r r r ) ) ;
4 eq ( Tree Leaf ) ( Tree ( Bin x l r ) ) = False ;
5 eq ( Tree ( Bin x l r ) ) ( Tree Leaf ) = False ;
6 eq ( L i s t Ni l ) ( L i s t Ni l ) = True;
7 eq ( L i s t ( Cons x xs ) ) ( L i s t ( Cons y ys ) ) = and ( eq x y ) (

eq xs ys ) ;
8 eq ( L i s t Ni l ) ( L i s t ( Cons x xs ) ) = False ;
9 eq ( L i s t ( Cons x xs ) ) ( L i s t Ni l ) = False ;

10 eq ( Rose ( Ros x r ) ) ( Rose ( Ros y r r ) ) = and ( eq x y ) ( eq
r r r ) ;

G-lite

1 eq ( Int x ) ( Int y ) = (==) x y ;
2 eq UNIT UNIT = True;
3 eq (PAIR x y ) (PAIR a b) = and ( eq x a ) ( eq y b) ;
4 eq (LEFT x ) (LEFT y ) = eq x y ;
5 eq (RIGHT x ) (RIGHT y ) = eq x y ;
6 eq (LEFT x ) (RIGHT y ) = False ;
7 eq (RIGHT x ) (LEFT y ) = False ;
8 Tree a : : Leaf | Bin a ( Tree a ) ( Tree a )
9 Generic eq ( Tree a ) ( Tree a ) −> Bool

10 L i s t a : : Ni l | Cons a ( L i s t a )
11 Generic eq ( L i s t a ) ( L i s t a ) −> Bool
12 Rose a : : Ros a ( L i s t ( Rose a ) )
13 Generic eq ( Rose a ) ( Rose a ) −> Bool
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9.1.4 Tree, List, Rose and Triplet

F-lite

1 eq ( Int x ) ( Int y ) = (==) x y ;
2 eq ( Tree Leaf ) ( Tree Leaf ) = True;
3 eq ( Tree ( Bin x l r ) ) ( Tree ( Bin y l l r r ) ) = and ( eq x y )

( and ( eq l l l ) ( eq r r r ) ) ;
4 eq ( Tree Leaf ) ( Tree ( Bin x l r ) ) = False ;
5 eq ( Tree ( Bin x l r ) ) ( Tree Leaf ) = False ;
6 eq ( L i s t Ni l ) ( L i s t Ni l ) = True;
7 eq ( L i s t ( Cons x xs ) ) ( L i s t ( Cons y ys ) ) = and ( eq x y ) (

eq xs ys ) ;
8 eq ( L i s t Ni l ) ( L i s t ( Cons x xs ) ) = False ;
9 eq ( L i s t ( Cons x xs ) ) ( L i s t Ni l ) = False ;

10 eq ( Rose ( Ros x r ) ) ( Rose ( Ros y r r ) ) = and ( eq x y ) ( eq
r r r ) ;

11 eq ( T r i p l e t ( F i r s t x ) ) ( T r i p l e t ( F i r s t y ) ) = eq x y ;
12 eq ( T r i p l e t ( F i r s t x ) ) ( T r i p l e t ( Second y ) ) = False ;
13 eq ( T r i p l e t ( F i r s t x ) ) ( T r i p l e t ( Third y ) ) = False ;
14 eq ( T r i p l e t ( Second x ) ) ( T r i p l e t ( F i r s t y ) ) = False ;
15 eq ( T r i p l e t ( Second x ) ) ( T r i p l e t ( Second y ) ) = eq x y ;
16 eq ( T r i p l e t ( Second x ) ) ( T r i p l e t ( Third y ) ) = False ;
17 eq ( T r i p l e t ( Third x ) ) ( T r i p l e t ( F i r s t y ) ) = False ;
18 eq ( T r i p l e t ( Third x ) ) ( T r i p l e t ( Second y ) ) = False ;
19 eq ( T r i p l e t ( Third x ) ) ( T r i p l e t ( Third y ) ) = eq x y ;

G-lite

1 eq ( Int x ) ( Int y ) = (==) x y ;
2 eq UNIT UNIT = True;
3 eq (PAIR x y ) (PAIR a b) = and ( eq x a ) ( eq y b) ;
4 eq (LEFT x ) (LEFT y ) = eq x y ;
5 eq (RIGHT x ) (RIGHT y ) = eq x y ;
6 eq (LEFT x ) (RIGHT y ) = False ;
7 eq (RIGHT x ) (LEFT y ) = False ;
8 Tree a : : Leaf | Bin a ( Tree a ) ( Tree a )
9 Generic eq ( Tree a ) ( Tree a ) −> Bool

10 L i s t a : : Ni l | Cons a ( L i s t a )
11 Generic eq ( L i s t a ) ( L i s t a ) −> Bool
12 Rose a : : Ros a ( L i s t ( Rose a ) )
13 Generic eq ( Rose a ) ( Rose a ) −> Bool
14 T r i p l e t a b c : : F i r s t a | Second b | Third c
15 Generic eq ( T r i p l e t a b c ) ( T r i p l e t a b c ) −> Bool

9.2 Increment and print

9.2.1 Tree

F-lite
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1 i n c ( Int x ) = ( Int ((+) x 1) ) ;
2 i n c ( Tree Leaf ) = Tree Leaf ;
3 i n c ( Tree ( Bin x l r ) ) = Tree ( Bin ( inc x ) ( inc l ) ( inc r

) ) ;
4 pr in t ( Int x ) k = emit Int x k ;
5 pr in t ( Tree Leaf ) k = k ;
6 pr in t ( Tree ( Bin x l r ) ) k = pr in t x ( emitStr ” ” ( p r i n t

l ( emitStr ” ” ( p r i n t r k ) ) ) ) ;

G-lite

1 i n c ( Int x ) = ( Int ((+) x 1) ) ;
2 i n c UNIT = UNIT ;
3 i n c (PAIR x y ) = PAIR ( inc x ) ( inc y ) ;
4 i n c (LEFT x ) = LEFT ( inc x ) ;
5 i n c (RIGHT x ) = RIGHT ( inc x ) ;
6 pr in t ( Int x ) k = emit Int x k ;
7 pr in t UNIT k = k ;
8 pr in t (PAIR x y ) k = pr in t x ( emitStr ” ” ( p r i n t y k ) ) ;
9 pr in t (LEFT x ) k = pr in t x k ;

10 pr in t (RIGHT x ) k = pr in t x k ;
11 Tree a : : Leaf | Bin a ( Tree a ) ( Tree a )
12 Generic inc ( Tree a ) −> ( Tree a )
13 Generic p r i n t ( Tree a ) Int −> Int

9.2.2 Tree and List

F-lite

1 i n c ( Int x ) = ( Int ((+) x 1) ) ;
2 i n c ( L i s t Ni l ) = L i s t Ni l ;
3 i n c ( L i s t ( Cons x xs ) ) = L i s t ( Cons ( inc x ) ( inc xs ) ) ;
4 i n c ( Tree Leaf ) = Tree Leaf ;
5 i n c ( Tree ( Bin x l r ) ) = Tree ( Bin ( inc x ) ( inc l ) ( inc r

) ) ;
6 pr in t ( Int x ) k = emit Int x k ;
7 pr in t ( L i s t Ni l ) k = k ;
8 pr in t ( L i s t ( Cons x xs ) ) k = pr in t x ( emitStr ” ” ( p r i n t

xs ) ) ;
9 pr in t ( Tree Leaf ) k = k ;

10 pr in t ( Tree ( Bin x l r ) ) k = pr in t x ( emitStr ” ” ( p r i n t
l ( emitStr ” ” ( p r i n t r k ) ) ) ) ;

G-lite

1 i n c ( Int x ) = ( Int ((+) x 1) ) ;
2 i n c UNIT = UNIT ;
3 i n c (PAIR x y ) = PAIR ( inc x ) ( inc y ) ;
4 i n c (LEFT x ) = LEFT ( inc x ) ;
5 i n c (RIGHT x ) = RIGHT ( inc x ) ;
6 pr in t ( Int x ) k = emit Int x k ;
7 pr in t UNIT k = k ;
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8 pr in t (PAIR x y ) k = pr in t x ( emitStr ” ” ( p r i n t y k ) ) ;
9 pr in t (LEFT x ) k = pr in t x k ;

10 pr in t (RIGHT x ) k = pr in t x k ;
11 Tree a : : Leaf | Bin a ( Tree a ) ( Tree a )
12 Generic inc ( Tree a ) −> ( Tree a )
13 Generic p r i n t ( Tree a ) Int −> Int
14 L i s t a : : Ni l | Cons a ( L i s t a )
15 Generic inc ( L i s t a ) −> ( L i s t a )
16 Generic p r i n t ( L i s t a ) Int −> Int

9.2.3 Tree, List and Rose

F-lite

1 i n c ( Int x ) = ( Int ((+) x 1) ) ;
2 i n c ( L i s t Ni l ) = L i s t Ni l ;
3 i n c ( L i s t ( Cons x xs ) ) = L i s t ( Cons ( inc x ) ( inc xs ) ) ;
4 i n c ( Tree Leaf ) = Tree Leaf ;
5 i n c ( Tree ( Bin x l r ) ) = Tree ( Bin ( inc x ) ( inc l ) ( inc r

) ) ;
6 i n c ( Rose ( Ros x r ) ) = Rose ( Ros ( inc x ) ( inc r ) ) ;
7 pr in t ( Int x ) k = emit Int x k ;
8 pr in t ( L i s t Ni l ) k = k ;
9 pr in t ( L i s t ( Cons x xs ) ) k = pr in t x ( emitStr ” ” ( p r i n t

xs k ) ) ;
10 pr in t ( Tree Leaf ) k = k ;
11 pr in t ( Tree ( Bin x l r ) ) k = pr in t x ( emitStr ” ” ( p r i n t

l ( emitStr ” ” ( p r i n t r k ) ) ) ) ;
12 pr in t ( Rose ( Ros x r ) ) k = pr in t x ( emitStr ” ” ( p r i n t r

k ) ) ;

G-lite

1 i n c ( Int x ) = ( Int ((+) x 1) ) ;
2 i n c UNIT = UNIT ;
3 i n c (PAIR x y ) = PAIR ( inc x ) ( inc y ) ;
4 i n c (LEFT x ) = LEFT ( inc x ) ;
5 i n c (RIGHT x ) = RIGHT ( inc x ) ;
6 pr in t ( Int x ) k = emit Int x k ;
7 pr in t UNIT k = k ;
8 pr in t (PAIR x y ) k = pr in t x ( emitStr ” ” ( p r i n t y k ) ) ;
9 pr in t (LEFT x ) k = pr in t x k ;

10 pr in t (RIGHT x ) k = pr in t x k ;
11 Tree a : : Leaf | Bin a ( Tree a ) ( Tree a )
12 Generic inc ( Tree a ) −> ( Tree a )
13 Generic p r i n t ( Tree a ) Int −> Int
14 L i s t a : : Ni l | Cons a ( L i s t a )
15 Generic inc ( L i s t a ) −> ( L i s t a )
16 Generic p r i n t ( L i s t a ) Int −> Int
17 Rose a : : Ros a ( L i s t ( Rose a ) )
18 Generic inc ( Rose a ) −> ( Rose a )
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19 Generic p r i n t ( Rose a ) Int −> Int

9.2.4 Tree, List, Rose and Triplet

F-lite

1 i n c ( Int x ) = ( Int ((+) x 1) ) ;
2 i n c ( L i s t Ni l ) = L i s t Ni l ;
3 i n c ( L i s t ( Cons x xs ) ) = L i s t ( Cons ( inc x ) ( inc xs ) ) ;
4 i n c ( Tree Leaf ) = Tree Leaf ;
5 i n c ( Tree ( Bin x l r ) ) = Tree ( Bin ( inc x ) ( inc l ) ( inc r

) ) ;
6 i n c ( Rose ( Ros x r ) ) = Rose ( Ros ( inc x ) ( inc r ) ) ;
7 i n c ( T r i p l e t ( F i r s t x ) ) = F i r s t ( inc x ) ;
8 i n c ( T r i p l e t ( Second x ) ) = Second ( inc x ) ;
9 i n c ( T r i p l e t ( Third x ) ) = Third ( inc x ) ;

10 pr in t ( Int x ) k = emit Int x k ;
11 pr in t ( L i s t Ni l ) k = k ;
12 pr in t ( L i s t ( Cons x xs ) ) k = pr in t x ( emitStr ” ” ( p r i n t

xs k ) ) ;
13 pr in t ( Tree Leaf ) k = k ;
14 pr in t ( Tree ( Bin x l r ) ) k = pr in t x ( emitStr ” ” ( p r i n t

l ( emitStr ” ” ( p r i n t r k ) ) ) ) ;
15 pr in t ( Rose ( Ros x r ) ) k = pr in t x ( emitStr ” ” ( p r i n t r

k ) ) ;
16 pr in t ( F i r s t x ) k = pr in t x k ;
17 pr in t ( Second x ) k = pr in t x k ;
18 pr in t ( Third x ) k = pr in t x k ;

G-lite

1 i n c ( Int x ) = ( Int ((+) x 1) ) ;
2 i n c UNIT = UNIT ;
3 i n c (PAIR x y ) = PAIR ( inc x ) ( inc y ) ;
4 i n c (LEFT x ) = LEFT ( inc x ) ;
5 i n c (RIGHT x ) = RIGHT ( inc x ) ;
6 pr in t ( Int x ) k = emit Int x k ;
7 pr in t UNIT k = k ;
8 pr in t (PAIR x y ) k = pr in t x ( emitStr ” ” ( p r i n t y k ) ) ;
9 pr in t (LEFT x ) k = pr in t x k ;

10 pr in t (RIGHT x ) k = pr in t x k ;
11 Tree a : : Leaf | Bin a ( Tree a ) ( Tree a )
12 Generic inc ( Tree a ) −> ( Tree a )
13 Generic p r i n t ( Tree a ) Int −> Int
14 L i s t a : : Ni l | Cons a ( L i s t a )
15 Generic inc ( L i s t a ) −> ( L i s t a )
16 Generic p r i n t ( L i s t a ) Int −> Int
17 Rose a : : Ros a ( L i s t ( Rose a ) )
18 Generic inc ( Rose a ) −> ( Rose a )
19 Generic p r i n t ( Rose a ) Int −> Int
20 T r i p l e t a b c : : F i r s t a | Second b | Third c
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21 Generic inc ( T r i p l e t a b c ) −> ( T r i p l e t a b c )
22 Generic p r i n t ( T r i p l e t a b c ) Int −> Int

9.3 Code reduction in Clean

To compare the results of G-lite with respect to the lines of code it reduces
by introducing generic programming, a similar comparison is made with Clean
code. In this case an increment function is written, like in G-lite and F-lite.
First in ordinary Clean code and second in generic Clean code.

For the Clean implementations of the increment function, the same data
types are used and are added in the same order. Note that in the ordinary Clean
code the functions are instances of a class of functions, instead of functions by
themselves. The reason is that for generics also some sort of class is created.
However the use of classes does not change the number of lines for the functions:

1 i n s t anc e inc ‘ Int where
2 inc ‘ x = x + 1
3

4 i n c I n t : : Int −> Int
5 i n c I n t x = x + 1

It is just one line of code extra for the class definition, but the same happens
when using the generic clause. Therefore both statements cancel each other
when using them in the comparison between ordinary and generic Clean code.

9.3.1 Tree

Using ordinary Clean

1 c l a s s inc ‘ a : : a −> a
2 i n s t anc e inc ‘ Int where
3 inc ‘ x = x + 1
4 i n s t anc e inc ‘ ( Tree a ) | inc ‘ a where
5 inc ‘ Leaf = Leaf
6 inc ‘ ( Bin x l r ) = Bin ( inc ‘ x ) ( inc ‘ l ) ( inc ‘ r )
7 : : Tree a = Leaf | Bin a ( Tree a ) ( Tree a )

Using generics in Clean

1 g e n e r i c gInc a : : a −> a
2 gInc{ |UNIT | } UNIT = UNIT
3 gInc{ |PAIR | } inca incb (PAIR x y ) = PAIR ( inca x ) ( incb y

)
4 gInc{ |EITHER| } inca incb (LEFT x ) = LEFT ( inca x )
5 gInc{ |EITHER| } inca incb (RIGHT x ) = RIGHT ( incb x )
6 gInc{ |CONS| } inca (CONS x ) = CONS ( inca x )
7 gInc{ |OBJECT| } inca (OBJECT x ) = OBJECT ( inca x )
8 gInc{ | Int | } x = x + 1
9 de r i v e gInc Tree

10 : : Tree a = Leaf | Bin a ( Tree a ) ( Tree a )
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9.3.2 Tree and List

Using ordinary Clean

1 c l a s s inc ‘ a : : a −> a
2 i n s t anc e inc ‘ Int where
3 inc ‘ x = x + 1
4 i n s t anc e inc ‘ ( Tree a ) | inc ‘ a where
5 inc ‘ Leaf = Leaf
6 inc ‘ ( Bin x l r ) = Bin ( inc ‘ x ) ( inc ‘ l ) ( inc ‘ r )
7 i n s t anc e inc ‘ ( L i s t a ) | inc ‘ a where
8 inc ‘ Ni l = Ni l
9 inc ‘ ( Cons x xs ) = Cons ( inc ‘ x ) ( inc ‘ xs )

10 : : Tree a = Leaf | Bin a ( Tree a ) ( Tree a )
11 : : L i s t a = Ni l | Cons a ( L i s t a )

Using generics in Clean

1 g e n e r i c gInc a : : a −> a
2 gInc{ |UNIT | } UNIT = UNIT
3 gInc{ |PAIR | } inca incb (PAIR x y ) = PAIR ( inca x ) ( incb y

)
4 gInc{ |EITHER| } inca incb (LEFT x ) = LEFT ( inca x )
5 gInc{ |EITHER| } inca incb (RIGHT x ) = RIGHT ( incb x )
6 gInc{ |CONS| } inca (CONS x ) = CONS ( inca x )
7 gInc{ |OBJECT| } inca (OBJECT x ) = OBJECT ( inca x )
8 gInc{ | Int | } x = x + 1
9 de r i v e gInc Tree , L i s t

10 : : Tree a = Leaf | Bin a ( Tree a ) ( Tree a )
11 : : L i s t a = Ni l | Cons a ( L i s t a )

9.3.3 Tree, List and Rose

Using ordinary Clean

1 c l a s s inc ‘ a : : a −> a
2 i n s t anc e inc ‘ Int where
3 inc ‘ x = x + 1
4 i n s t anc e inc ‘ ( Tree a ) | inc ‘ a where
5 inc ‘ Leaf = Leaf
6 inc ‘ ( Bin x l r ) = Bin ( inc ‘ x ) ( inc ‘ l ) ( inc ‘ r )
7 i n s t anc e inc ‘ ( L i s t a ) | inc ‘ a where
8 inc ‘ Ni l = Ni l
9 inc ‘ ( Cons x xs ) = Cons ( inc ‘ x ) ( inc ‘ xs )

10 i n s t anc e inc ‘ ( Rose a ) | inc ‘ a where
11 inc ‘ ( Rose x xs ) = Rose ( inc ‘ x ) ( inc ‘ xs )
12 : : Tree a = Leaf | Bin a ( Tree a ) ( Tree a )
13 : : L i s t a = Ni l | Cons a ( L i s t a )
14 : : Rose a = Rose a ( L i s t ( Rose a ) )

Using generics in Clean
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1 g e n e r i c gInc a : : a −> a
2 gInc{ |UNIT | } UNIT = UNIT
3 gInc{ |PAIR | } inca incb (PAIR x y ) = PAIR ( inca x ) ( incb y

)
4 gInc{ |EITHER| } inca incb (LEFT x ) = LEFT ( inca x )
5 gInc{ |EITHER| } inca incb (RIGHT x ) = RIGHT ( incb x )
6 gInc{ |CONS| } inca (CONS x ) = CONS ( inca x )
7 gInc{ |OBJECT| } inca (OBJECT x ) = OBJECT ( inca x )
8 gInc{ | Int | } x = x + 1
9 de r i v e gInc Tree , L i s t , Rose

10 : : Tree a = Leaf | Bin a ( Tree a ) ( Tree a )
11 : : L i s t a = Ni l | Cons a ( L i s t a )
12 : : Rose a = Rose a ( L i s t ( Rose a ) )

9.3.4 Tree, List, Rose and Triplet

Using ordinary Clean

1 c l a s s inc ‘ a : : a −> a
2 i n s t anc e inc ‘ Int where
3 inc ‘ x = x + 1
4 i n s t anc e inc ‘ ( Tree a ) | inc ‘ a where
5 inc ‘ Leaf = Leaf
6 inc ‘ ( Bin x l r ) = Bin ( inc ‘ x ) ( inc ‘ l ) ( inc ‘ r )
7 i n s t anc e inc ‘ ( L i s t a ) | inc ‘ a where
8 inc ‘ Ni l = Ni l
9 inc ‘ ( Cons x xs ) = Cons ( inc ‘ x ) ( inc ‘ xs )

10 i n s t anc e inc ‘ ( Rose a ) | inc ‘ a where
11 inc ‘ ( Rose x xs ) = Rose ( inc ‘ x ) ( inc ‘ xs )
12 i n s t anc e inc ‘ ( T r i p l e t a b c ) | inc ‘ a & inc ‘ b & inc ‘ c

where
13 inc ‘ ( F i r s t x ) = F i r s t ( inc ‘ x )
14 inc ‘ ( Second x ) = Second ( inc ‘ x )
15 inc ‘ ( Third x ) = Third ( inc ‘ x )
16 : : Tree a = Leaf | Bin a ( Tree a ) ( Tree a )
17 : : L i s t a = Ni l | Cons a ( L i s t a )
18 : : Rose a = Rose a ( L i s t ( Rose a ) )
19 : : T r i p l e t a b c = F i r s t a | Second b | Third c

Using generics in Clean

1 g e n e r i c gInc a : : a −> a
2 gInc{ |UNIT | } UNIT = UNIT
3 gInc{ |PAIR | } inca incb (PAIR x y ) = PAIR ( inca x ) ( incb y

)
4 gInc{ |EITHER| } inca incb (LEFT x ) = LEFT ( inca x )
5 gInc{ |EITHER| } inca incb (RIGHT x ) = RIGHT ( incb x )
6 gInc{ |CONS| } inca (CONS x ) = CONS ( inca x )
7 gInc{ |OBJECT| } inca (OBJECT x ) = OBJECT ( inca x )
8 gInc{ | Int | } x = x + 1
9 de r i v e gInc Tree , L i s t , Rose , T r i p l e t
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10 : : Tree a = Leaf | Bin a ( Tree a ) ( Tree a )
11 : : L i s t a = Ni l | Cons a ( L i s t a )
12 : : Rose a = Rose a ( L i s t ( Rose a ) )
13 : : T r i p l e t a b c = F i r s t a | Second b | Third c

57



Chapter 10

Results

In the previous chapter the code used for the analysis is shown. In this chapter
the results are discussed.

Out of the collected data the following table is created:

Program 1 Program 2
F-lite G-lite F-lite G-lite

Tree 5 9 6 13
Tree & List 9 11 10 16
Tree, List & Rose 10 13 12 19
Tree, List, Rose & Triplet 19 15 18 22

In the following section the consequences of adding an extra data type to
the program with respect to the number of lines of code will be discussed.

10.1 Consequences of adding a new data type

In the table above it is shown what happens when an extra data type is added
to the program. The programs with only trees are used as a basic form. Then
a list, a rose and a triplet are added to the program, which have the following
data types:

Tree a : : Leaf | Bin a ( Tree a ) ( Tree a )

L i s t a : : Ni l | Cons a ( L i s t a )

Rose a : : Ros a ( L i s t ( Rose a ) )

T r i p l e t a b c : : F i r s t a | Second b | Third c

This shows that a tree has two constructors (Leaf and Bin), a lists has two
constructors as well (Nil and Cons), a Rose has one constructor (Ros) and a
Triplet has three constructors (First, Second and Third). When looking at
the two F-lite programs, the following increases in lines of code can be found:

The functions in the two programs had the following types:

eq : : a a −> Bool
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Added data type Program 1 Program 2
List 4 4
Rose 1 2
Triplet 9 6

Figure 10.1: Table 2: increases in number of lines of code

inc : : a −> a
p r in t : : a −> Int

The first program had one function with two arguments. When adding a
new data type, every argument has to get every possible constructor of that
data type, like for lists:

eq ( L i s t Ni l ) ( L i s t Ni l ) = . . .
eq ( L i s t Ni l ) ( L i s t Cons . . . ) = . . .
eq ( L i s t Cons . . . ) ( L i s t Ni l ) = . . .
eq ( L i s t Cons . . . ) ( L i s t Cons . . . ) = . . .

Therefore in this case the number of new lines in the code can be calculated
as follows: two constructors and two arguments = 22 = 4. This also holds for
the rose and triplet:

Rose: one constructor and two arguments = 12 = 1

Triplet: three constructors and two arguments = 32 = 9

For the second program, it holds as well:

• List:

inc: two constructors and one argument = 21 = 2

print: two constructors and one argument = 21 = 2

inc + print: 2 + 2 = 4

• Rose:

inc: one constructor and one argument = 11 = 1

print: one constructors and one argument = 11 = 1

inc + print: 1 + 1 = 2

• Triplet:

inc: three constructors and one argument = 31 = 2

print: three constructors and one argument = 31 = 2

inc + print: 3 + 3 = 6

Therefore when using F-lite the following function can be used, to calculate
the increase of line of code, when adding a new data type:

Functions∑
f

consarg(f) (10.1)
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For G-lite the same can be done. However, it is not that difficult, because
for each new data type there has to be the following:

• type definition

• for each generic function a Generic statement

Therefore the increases in terms of lines of code in G-lite can be defined as
follows:

number of functions + 1 (10.2)

Of course this function holds for both programs. The first program has one
generic function, so it increases every time with 2, and the second program has
two generic functions, so it increases with 3 each time.

10.2 Clean

A similar test has been done with an increment function in Clean to compare
the efficiency of Clean and G-lite with respect to the reduction of lines of code.
This leaded to the following results:

Ordinary functions Generic functions
Tree 7 10
Tree & List 11 11
Tree, List & Rose 14 12
Tree, List, Rose & Triplet 19 13

The increases when adding the new data types are as follows:

Generic Non-generic
List 1 4
Rose 1 3
Triplet 1 5

The increase of the number of lines of code in Clean can also be expressed
in a function. With ordinary Clean functions the growth is as follows:

number of constructors+ 2 (10.3)

There has to one case for each constructor and assuming every case makes
use of just one line, it grows with the number of constructors the type has
plus two extra lines, namely for the instance declaration and one line for the
definition of the type.

The same can be done for the generic case. In this case the growth is just
1. This is the line used for the definition of the type. For the derivation of this
new type, no new line is needed, because derivations can be stated on one line,
which makes the notation much more compact.

It is clear that Clean reduces more code and in more cases than G-lite. This
is due for some nice one liners in Clean, which are not available in G-lite.
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Chapter 11

Discussion

The method used to implement G-lite as explained before has some disadvan-
tages.

First of all the compiler itself is based on the syntactic structure of functions
and new statements designed for G-lite. It is implemented using some basic
string operations, like splitting. For a more general system Abstract Syntax
Trees could have been used. However, the creation and usage of those where
not known to the author at that time and therefore were not used as an im-
plementation. Even though this would have been more general and easier to
extend, that would have had some disadvantages as well. For example in the
current implementation when processing functions, those are just copied into a
data structure and not processed any more. The G-lite compiler simply does
not need more information about normal functions, because that is F-lite code
and that has to be processed by the F-lite compiler, so it has no use to parse
them into detailed syntax trees.

However, some problems could occur using this prototype compiler. An
example is generic functions with an function as an argument, e.g. Int -> Char,
which would lead to multiple -> in the type of the function specified in the
generic statement. Which would lead to problems when compiling, because
the compiler uses the -> to split the arguments from the result. However, this
problem could be solved by not mentioning the type of the argument, but just
state a variable, e.g. f. This can be done, because the type of the function
is not used strictly. The type is only used by the compiler to know which
arguments need to be converted to a generic representation and if the result
has to be converted back to an original type. Therefore all types which are not
used generic can be declared by just one character. However, for completeness
all types given as examples show their full type. Therefore

Generic eq ( L i s t a ) ( L i s t a ) −> Bool

could be rewritten to:

Generic eq ( L i s t a ) ( L i s t a ) −> b

or even:

Generic eq ( L i s t a ) ( L i s t a ) −> a

This type is not “correct”, but G-lite does not check the types, it only uses
the information it needs.
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A second point that needs to be mentioned is the fact that it is not explicitly
clear from the G-lite syntax, that generic functions are depending of the function
definitions of the primitive types. In Clean the following function header is
possible:

func a : : a −> Int | otherFunc a

This states that func can transform something of type a to something of
type b, given there is an instance of otherFunc of a. In Haskell there
is a similar notation. This states explicitly that one function is dependent on
another function. This is also the case with generic programming. If there are
no instances for the primitives used, the generic function will not work at all.
Therefore although this relation is not mentioned explicitly, it is there implicitly.
However in Clean this is only used for normal function, e.g. defined as a Class

of function, and not for generics as well.
Finally generics are easy to use as mentioned before. However this is not

for free. Generic programming is less efficient as ordinary programming. This
is because of the conversions to and from the generic representation. In other
words, before something can be used it has to be transformed into something
else and if the work is done it has to be transformed back. It is clear why this
had disadvantages in performance in comparison with functions that handle the
data types by themselves. Van Noort et al. [16] and Magalhães [13] show perfor-
mance problems with generics in larger programs and give some optimisations
to improve performance.

However G-lite is designed to run on the Reduceron, which is special designed
for fast execution of functional programming languages, which could result in a
less drastic decrease in performance, but this is not tested in the current research
project, as G-lite only is tested in combination with the F-lite interpreter given
by the Naylor and Runciman [15].
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Chapter 12

Conclusion

In this Bachelor thesis F-lite, the core functional language of the Reduceron is
extended with G-lite, which happens to be untyped. In this thesis a description
of generics and G-lite is presented and a compiler has been created for G-lite,
which could be used alongside the F-lite interpreter. It is shown that in some
cases G-lite can be more efficient in terms of number of lines of code in some
cases. As is shown, some cases were less efficient, however, the testing programs
were small examples and generics are more useful when dealing with much larger
programs. However, Clean was shown to be more efficient in decreasing the
number of lines of code when using generics instead of ordinary Clean functions,
but this is due to the short syntax used in Clean.

12.1 Future work

This research has shown that it is possible to have generics in an untyped lan-
guage and that generics could be run on the Reduceron, since F-lite is designed
to run on the Reduceron and G-lite compiles into F-lite. However, there is still
a lot of work to be done in the subject of this research

G-lite has some limitations, for example kinds are not implemented yet,
however this is needed in order to make generic version of for example mapping
and zipping functions.

The performance of G-lite versus F-lite is not researched as well. Is G-
lite less efficient than F-lite? What are the consequences of generics on the
Reduceron? G-lite can be optimised as well. G-lite uses basic generics and no
optimisation at all. Extending the compiler with some optimisations will boost
the performance.
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Chapter 13

Appendix

13.1 Prototype G-lite Compiler

import sys

def combine ( l i s t ) :
s t r i n g = ’ ’
for s in l i s t :

s t r i n g += ’ ’
s t r i n g += s

return s t r i n g . s t r i p ( )

def combineIs ( l i s t ) :
s t r i n g = ’ ’
for s in l i s t :

s t r i n g += ’=’
s t r i n g += s

return s t r i n g . s t r i p ( ’=’ )

def pa i r ( d e f s ) :
i f l en ( de f s ) == 1 :

return de f s [ 0 ]
e lse :

return ’ (PAIR ’ + de f s [ 0 ] + ’ ’ + pa i r ( d e f s [ 1 : ] ) + ’ ) ’

def parseArg ( l i n e ) :
arg = [ ]
parenthese s = 0
cur rent = ’ ’
for char in l i n e :

i f char == ’ ( ’ :
parenthese s += 1
cur rent += char

e l i f char == ’ ) ’ :
parenthese s −= 1
cur rent += char

e l i f char == ’ ’ :
i f parenthese s == 0 :

arg . append ( cur rent )
cur rent = ’ ’

else :
cur rent += char

else :
cur rent += char

i f cur rent > ’ ’ :
arg . append ( cur rent )

return arg

def l e f tR ightTags ( l i n e , l , r ) :
i f l > 0 :

return l e f tR ightTags ( ’LEFT ’ + l i n e , l −1, r )
e l i f r > 0 :
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i f l i n e [ 0 ] == ’ ( ’ or not ’ ’ in l i n e :
return l e f tR ightTags ( ’RIGHT ’ + l i n e , l , r−1)

else :
return l e f tR ightTags ( ’RIGHT ( ’ + l i n e + ’ ) ’ , l , r−1)

else :
return l i n e

def typede f ( l i n e ) :
type = l i n e . s p l i t ( ’ : : ’ ) [ 0 ] . s t r i p ( )
typename = type . s p l i t ( ’ ’ ) [ 0 ] . s t r i p ( )
gener icTypes . append ( typename )
d e f i n i t i o n = l i n e . s p l i t ( ’ : : ’ ) [ 1 ] . s t r i p ( )
conve r s i on s = [ ]
cur rent = 1
max = l en ( d e f i n i t i o n . s p l i t ( ’ | ’ ) )
for i in d e f i n i t i o n . s p l i t ( ’ | ’ ) :

vars = [ ’ a ’ , ’ b ’ , ’ c ’ , ’ d ’ , ’ e ’ , ’ f ’ , ’ g ’ , ’ h ’ , ’ i ’ , ’ j ’ , ’ k ’ , ’ l ’ , ’m’ , ’n ’ ,
’ o ’ , ’ p ’ , ’ q ’ , ’ r ’ , ’ s ’ , ’ t ’ , ’ u ’ , ’ v ’ , ’w ’ , ’ x ’ , ’ y ’ , ’ z ’ ]

de f s = parseArg ( i . s t r i p ( ) )
numberArguments = l en ( de f s [ 1 : ] )
i f numberArguments > 0 :

o r i g i n a l = ’ ( ’ + de f s [ 0 ]
for j in range ( numberArguments ) :

o r i g i n a l += ’ ’ + vars [ j ]
o r i g i n a l += ’ ) ’
i f cur rent < max :

gene r i c = l e f tR ightTags ( pa i r ( vars [ : numberArguments ] ) ,1 ,
cur rent −1)

else :
gene r i c = l e f tR ightTags ( pa i r ( vars [ : numberArguments ] ) ,0 ,

cur rent −1)
else :

o r i g i n a l = de f s [ 0 ]
i f cur rent < max :

gene r i c = l e f tR ightTags ( ’UNIT ’ , 1 , cur rent −1)
else :

gene r i c = l e f tR ightTags ( ’UNIT ’ , 0 , cur rent −1)
i f max > 1 :

conve r s i on s . append ( [ ’ to ’+typename , [ ’ ( ’+gene r i c+’ ) ’ ] , [
typename + ’ ’ + o r i g i n a l ] ] )

else :
conve r s i on s . append ( [ ’ to ’+typename , [ gene r i c ] , [ typename + ’ ’

+ o r i g i n a l ] ] )
conve r s i on s . append ( [ ’ from ’+typename , [ o r i g i n a l ] , [ gene r i c ] ] )
cur rent += 1

return conve r s i on s

def f unc t i on ( l i n e ) :
functionName = l i n e . s p l i t ( ’ ’ ) [ 0 ]
functionArguments = parseArg ( combine ( l i n e . s p l i t ( ’=’ ) [ 0 ] . s p l i t ( ’ ’ ) [ 1

: ] ) )
functionBody = [ combineIs ( l i n e . s p l i t ( ’=’ ) [ 1 : ] ) . s t r i p ( ) . s t r i p ( ’ ; ’ ) ]
return [ functionName , functionArguments , functionBody ]

def c r e a t e In s t anc e ( l i n e ) :
funcName = l i n e . s p l i t ( ’ ’ ) [ 0 ] . s t r i p ( )
args = parseArg ( l i n e . s p l i t ( ’−> ’ ) [ 0 ] ) [ 1 : ]
r e s u l t = parseArg ( l i n e . s p l i t ( ’−> ’ ) [ 1 ] . s t r i p ( ) ) [ 0 ] . s t r i p ( ’ ( ) ’ ) . s p l i t (

’ ’ ) [ 0 ] . s t r i p ( )
funcArgs = [ ]
funcBody = [ funcName ]
cur rentvar = 0
for arg in args :

vars = [ ’ a ’ , ’ b ’ , ’ c ’ , ’ d ’ , ’ e ’ , ’ f ’ , ’ g ’ , ’ h ’ , ’ i ’ , ’ j ’ , ’ k ’ , ’ l ’ , ’m’ , ’n ’ ,
’ o ’ , ’ p ’ , ’ q ’ , ’ r ’ , ’ s ’ , ’ t ’ , ’ u ’ , ’ v ’ , ’w ’ , ’ x ’ , ’ y ’ , ’ z ’ ]

type = arg . s t r i p ( ’ ( ) ’ ) . s p l i t ( ’ ’ ) [ 0 ] . s t r i p ( )
i f type in gener icTypes :

funcArgs . append ( ’ ( ’ + type + ’ ’ + vars [ cur rentvar ] + ’ ) ’ )
funcBody . append ( ’ ( from ’ + type + ’ ’ + vars [ cur rentvar ] + ’ )

’ )
else :

funcArgs . append ( vars [ cur rentvar ] )
funcBody . append ( vars [ cur rentvar ] )
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cur rentvar += 1
i f r e s u l t in gener icTypes :

funcBody . i n s e r t (0 , ’ to ’ + r e s u l t + ’ ’ + ’ ( ’ )
funcBody . append ( ’ ) ’ )

return [ funcName , funcArgs , funcBody ]

try :
input = sys . argv [ 1 ]

except IndexError :
input = raw input ( ’ P lease g ive input f i l e : ’ )

try :
output = sys . argv [ 2 ]

except IndexError :
output = raw input ( ’ P lease g ive output f i l e : ’ )

input = open ( input , ’ r ’ )
output = open ( output , ’w ’ )
f unc t i on s = [ ]
gener icTypes = [ ]
for l i n e in input :

l i n e = l i n e . s t r i p ( )
i f l i n e > ’ ’ :

i f ’=’ in l i n e :
f unc t i on s . append ( func t i on ( l i n e ) )

i f ’ : : ’ in l i n e :
f unc t i on s . extend ( typede f ( l i n e ) )

i f ’ Generic ’ in l i n e :
f unc t i on s . append ( c r e a t e In s t anc e ( l i n e . r ep l a c e ( ’ Generic ’ , ’ ’ ) )

)
f unc t i on s . s o r t ( )
print >> output , ’{ ’
for ( fname , farg , fbody ) in f unc t i on s :

l i n e = fname
for a in f a r g :

l i n e += ’ ’ + a
l i n e += ’ =’
for b in fbody :

l i n e += ’ ’ + b
l i n e += ’ ; ’
print >> output , l i n e

print >> output , ’} ’

13.2 Comparison programs

13.2.1 Program 1: equality

F-lite

• Tree:

{

and False x = False ;
and True x = x ;

eq ( Int x ) ( Int y ) = (==) x y ;
eq ( Tree Leaf ) ( Tree Leaf ) = True ;
eq ( Tree ( Bin x l r ) ) ( Tree ( Bin y l l r r ) ) = and ( eq x y ) (and ( eq

l l l ) ( eq r r r ) ) ;
eq ( Tree Leaf ) ( Tree ( Bin x l r ) ) = False ;
eq ( Tree ( Bin x l r ) ) ( Tree Leaf ) = False ;

emitStr Ni l k = k ;
emitStr (Cons x xs ) k = emit x ( emitStr xs k ) ;

print True = emitStr ”True” 0 ;
print False = emitStr ” Fal se ” 0 ;

t r e e1 = Tree (Bin ( Int 5) ( Tree (Bin ( Int 4) ( Tree Leaf ) ( Tree
Leaf ) ) ) ( Tree ( Bin ( Int 6) ( Tree Leaf ) ( Tree ( Bin ( Int 7) (
Tree Leaf ) ( Tree Leaf ) ) ) ) ) ) ;

t r e e2 = Tree (Bin ( Int 5) ( Tree (Bin ( Int 4) ( Tree Leaf ) ( Tree
Leaf ) ) ) ( Tree Leaf ) ) ;
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main = print ( eq t r e e1 t r e e2 ) ;

}

• Tree and List:

{

and False x = False ;
and True x = x ;

eq ( Int x ) ( Int y ) = (==) x y ;
eq ( Tree Leaf ) ( Tree Leaf ) = True ;
eq ( Tree ( Bin x l r ) ) ( Tree ( Bin y l l r r ) ) = and ( eq x y ) (and ( eq

l l l ) ( eq r r r ) ) ;
eq ( Tree Leaf ) ( Tree ( Bin x l r ) ) = False ;
eq ( Tree ( Bin x l r ) ) ( Tree Leaf ) = False ;
eq ( List Ni l ) ( List Ni l ) = True ;
eq ( List (Cons x xs ) ) ( List (Cons y ys ) ) = and ( eq x y ) ( eq xs ys )

;
eq ( List Ni l ) ( List (Cons x xs ) ) = False ;
eq ( List (Cons x xs ) ) ( List Ni l ) = False ;

emitStr Ni l k = k ;
emitStr (Cons x xs ) k = emit x ( emitStr xs k ) ;

print True = emitStr ”True” 0 ;
print False = emitStr ” Fal se ” 0 ;

t r e e1 = Tree (Bin ( Int 5) ( Tree (Bin ( Int 4) ( Tree Leaf ) ( Tree
Leaf ) ) ) ( Tree ( Bin ( Int 6) ( Tree Leaf ) ( Tree ( Bin ( Int 7) (
Tree Leaf ) ( Tree Leaf ) ) ) ) ) ) ;

t r e e2 = Tree (Bin ( Int 5) ( Tree (Bin ( Int 4) ( Tree Leaf ) ( Tree
Leaf ) ) ) ( Tree Leaf ) ) ;

l i s t 1 = List (Cons t r e e1 ( List Ni l ) ) ;
l i s t 2 = List (Cons t r e e2 ( List Ni l ) ) ;

main = print ( eq l i s t 1 l i s t 1 ) ;

}

• Tree, List and Rose:

{

and False x = False ;
and True x = x ;

eq ( Int x ) ( Int y ) = (==) x y ;
eq ( Tree Leaf ) ( Tree Leaf ) = True ;
eq ( Tree ( Bin x l r ) ) ( Tree ( Bin y l l r r ) ) = and ( eq x y ) (and ( eq

l l l ) ( eq r r r ) ) ;
eq ( Tree Leaf ) ( Tree ( Bin x l r ) ) = False ;
eq ( Tree ( Bin x l r ) ) ( Tree Leaf ) = False ;
eq ( List Ni l ) ( List Ni l ) = True ;
eq ( List (Cons x xs ) ) ( List (Cons y ys ) ) = and ( eq x y ) ( eq xs ys )

;
eq ( List Ni l ) ( List (Cons x xs ) ) = False ;
eq ( List (Cons x xs ) ) ( List Ni l ) = False ;
eq (Rose (Ros x r ) ) ( Rose (Ros y r r ) ) = and ( eq x y ) ( eq r r r ) ;

emitStr Ni l k = k ;
emitStr (Cons x xs ) k = emit x ( emitStr xs k ) ;

print True = emitStr ”True” 0 ;
print False = emitStr ” Fal se ” 0 ;

t r e e1 = Tree (Bin ( Int 5) ( Tree (Bin ( Int 4) ( Tree Leaf ) ( Tree
Leaf ) ) ) ( Tree ( Bin ( Int 6) ( Tree Leaf ) ( Tree ( Bin ( Int 7) (
Tree Leaf ) ( Tree Leaf ) ) ) ) ) ) ;

t r e e2 = Tree (Bin ( Int 5) ( Tree (Bin ( Int 4) ( Tree Leaf ) ( Tree
Leaf ) ) ) ( Tree Leaf ) ) ;
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l i s t 1 = List (Cons t r e e1 ( List Ni l ) ) ;
l i s t 2 = List (Cons t r e e2 ( List Ni l ) ) ;

ro se1 = Rose (Ros l i s t 1 ( List (Cons (Rose (Ros l i s t 2 ( List Ni l ) ) )
( List Ni l ) ) ) ) ;

main = print ( eq rose1 rose1 ) ;

}

• Tree, List, Rose and Triplet:

{

and False x = False ;
and True x = x ;

eq ( Int x ) ( Int y ) = (==) x y ;
eq ( Tree Leaf ) ( Tree Leaf ) = True ;
eq ( Tree ( Bin x l r ) ) ( Tree ( Bin y l l r r ) ) = and ( eq x y ) (and ( eq

l l l ) ( eq r r r ) ) ;
eq ( Tree Leaf ) ( Tree ( Bin x l r ) ) = False ;
eq ( Tree ( Bin x l r ) ) ( Tree Leaf ) = False ;
eq ( List Ni l ) ( List Ni l ) = True ;
eq ( List (Cons x xs ) ) ( List (Cons y ys ) ) = and ( eq x y ) ( eq xs ys )

;
eq ( List Ni l ) ( List (Cons x xs ) ) = False ;
eq ( List (Cons x xs ) ) ( List Ni l ) = False ;
eq (Rose (Ros x r ) ) ( Rose (Ros y r r ) ) = and ( eq x y ) ( eq r r r ) ;
eq ( Tr i p l e t ( F i r s t x ) ) ( Tr i p l e t ( F i r s t y ) ) = eq x y ;
eq ( Tr i p l e t ( F i r s t x ) ) ( Tr i p l e t ( Second y ) ) = False ;
eq ( Tr i p l e t ( F i r s t x ) ) ( Tr i p l e t ( Third y ) ) = False ;
eq ( Tr i p l e t ( Second x ) ) ( Tr i p l e t ( F i r s t y ) ) = False ;
eq ( Tr i p l e t ( Second x ) ) ( Tr i p l e t ( Second y ) ) = eq x y ;
eq ( Tr i p l e t ( Second x ) ) ( Tr i p l e t ( Third y ) ) = False ;
eq ( Tr i p l e t ( Third x ) ) ( Tr i p l e t ( F i r s t y ) ) = False ;
eq ( Tr i p l e t ( Third x ) ) ( Tr i p l e t ( Second y ) ) = False ;
eq ( Tr i p l e t ( Third x ) ) ( Tr i p l e t ( Third y ) ) = eq x y ;

emitStr Ni l k = k ;
emitStr (Cons x xs ) k = emit x ( emitStr xs k ) ;

print True = emitStr ”True” 0 ;
print False = emitStr ” Fal se ” 0 ;

t r e e1 = Tree (Bin ( Int 5) ( Tree (Bin ( Int 4) ( Tree Leaf ) ( Tree
Leaf ) ) ) ( Tree ( Bin ( Int 6) ( Tree Leaf ) ( Tree ( Bin ( Int 7) (
Tree Leaf ) ( Tree Leaf ) ) ) ) ) ) ;

t r e e2 = Tree (Bin ( Int 5) ( Tree (Bin ( Int 4) ( Tree Leaf ) ( Tree
Leaf ) ) ) ( Tree Leaf ) ) ;

l i s t 1 = List (Cons t r e e1 ( List Ni l ) ) ;
l i s t 2 = List (Cons t r e e2 ( List Ni l ) ) ;

ro se1 = Rose (Ros l i s t 1 ( List (Cons (Rose (Ros l i s t 2 ( List Ni l ) ) )
( List Ni l ) ) ) ) ;

t r i p l e t 1 = Tr ip l e t ( F i r s t ro se1 ) ;
t r i p l e t 2 = Tr ip l e t ( Second l i s t 1 ) ;
t r i p l e t 3 = Tr ip l e t ( Third t r e e1 ) ;

main = print ( eq t r i p l e t 1 t r i p l e t 1 ) ;

}

G-lite

• Tree:

{

and False x = False ;
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and True x = x ;

eq ( Int x ) ( Int y ) = (==) x y ;
eq UNIT UNIT = True ;
eq (PAIR x y) (PAIR a b) = and ( eq x a ) ( eq y b) ;
eq (LEFT x) (LEFT y) = eq x y ;
eq (RIGHT x) (RIGHT y) = eq x y ;
eq (LEFT x) (RIGHT y) = False ;
eq (RIGHT x) (LEFT y) = False ;

emitStr Ni l k = k ;
emitStr (Cons x xs ) k = emit x ( emitStr xs k ) ;

print True = emitStr ”True” 0 ;
print False = emitStr ” Fal se ” 0 ;

Tree a : : Leaf | Bin a ( Tree a ) ( Tree a )
Generic eq ( Tree a ) ( Tree a ) −> Bool

t r e e1 = Tree (Bin ( Int 5) ( Tree (Bin ( Int 4) ( Tree Leaf ) ( Tree
Leaf ) ) ) ( Tree ( Bin ( Int 6) ( Tree Leaf ) ( Tree ( Bin ( Int 7) (
Tree Leaf ) ( Tree Leaf ) ) ) ) ) ) ;

t r e e2 = Tree (Bin ( Int 5) ( Tree (Bin ( Int 4) ( Tree Leaf ) ( Tree
Leaf ) ) ) ( Tree Leaf ) ) ;

main = print ( eq t r e e1 t r e e1 ) ;

}

• Tree and List:

{

and False x = False ;
and True x = x ;

eq ( Int x ) ( Int y ) = (==) x y ;
eq UNIT UNIT = True ;
eq (PAIR x y) (PAIR a b) = and ( eq x a ) ( eq y b) ;
eq (LEFT x) (LEFT y) = eq x y ;
eq (RIGHT x) (RIGHT y) = eq x y ;
eq (LEFT x) (RIGHT y) = False ;
eq (RIGHT x) (LEFT y) = False ;

emitStr Ni l k = k ;
emitStr (Cons x xs ) k = emit x ( emitStr xs k ) ;

print True = emitStr ”True” 0 ;
print False = emitStr ” Fal se ” 0 ;

Tree a : : Leaf | Bin a ( Tree a ) ( Tree a )
Generic eq ( Tree a ) ( Tree a ) −> Bool

List a : : Ni l | Cons a ( List a )
Generic eq ( List a ) ( List a ) −> Bool

t r e e1 = Tree (Bin ( Int 5) ( Tree (Bin ( Int 4) ( Tree Leaf ) ( Tree
Leaf ) ) ) ( Tree ( Bin ( Int 6) ( Tree Leaf ) ( Tree ( Bin ( Int 7) (
Tree Leaf ) ( Tree Leaf ) ) ) ) ) ) ;

t r e e2 = Tree (Bin ( Int 5) ( Tree (Bin ( Int 4) ( Tree Leaf ) ( Tree
Leaf ) ) ) ( Tree Leaf ) ) ;

l i s t 1 = List (Cons t r e e1 ( List Ni l ) ) ;
l i s t 2 = List (Cons t r e e2 ( List Ni l ) ) ;

main = print ( eq l i s t 1 l i s t 1 ) ;

}

• Tree, List and Rose:

{
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and False x = False ;
and True x = x ;

eq ( Int x ) ( Int y ) = (==) x y ;
eq UNIT UNIT = True ;
eq (PAIR x y) (PAIR a b) = and ( eq x a ) ( eq y b) ;
eq (LEFT x) (LEFT y) = eq x y ;
eq (RIGHT x) (RIGHT y) = eq x y ;
eq (LEFT x) (RIGHT y) = False ;
eq (RIGHT x) (LEFT y) = False ;

emitStr Ni l k = k ;
emitStr (Cons x xs ) k = emit x ( emitStr xs k ) ;

print True = emitStr ”True” 0 ;
print False = emitStr ” Fal se ” 0 ;

Tree a : : Leaf | Bin a ( Tree a ) ( Tree a )
Generic eq ( Tree a ) ( Tree a ) −> Bool

List a : : Ni l | Cons a ( List a )
Generic eq ( List a ) ( List a ) −> Bool

Rose a : : Ros a ( List ( Rose a ) )
Generic eq (Rose a ) (Rose a ) −> Bool

t r e e = Tree (Bin ( Int 5) ( Tree (Bin ( Int 4) ( Tree Leaf ) ( Tree Leaf
) ) ) ( Tree ( Bin ( Int 6) ( Tree Leaf ) ( Tree ( Bin ( Int 7) ( Tree
Leaf ) ( Tree Leaf ) ) ) ) ) ) ;

t r e e2 = Tree (Bin ( Int 5) ( Tree (Bin ( Int 4) ( Tree Leaf ) ( Tree
Leaf ) ) ) ( Tree Leaf ) ) ;

l i s t 1 = List (Cons t r e e ( List Ni l ) ) ;
l i s t 2 = List (Cons t r e e2 ( List Ni l ) ) ;

ro se1 = Rose (Ros l i s t 1 ( List (Cons (Rose (Ros l i s t 2 ( List Ni l ) ) )
( List Ni l ) ) ) ) ;

main = print ( eq rose1 rose1 ) ;

}

• Tree, List, Rose and Triplet:

{

and False x = False ;
and True x = x ;

eq ( Int x ) ( Int y ) = (==) x y ;
eq UNIT UNIT = True ;
eq (PAIR x y) (PAIR a b) = and ( eq x a ) ( eq y b) ;
eq (LEFT x) (LEFT y) = eq x y ;
eq (RIGHT x) (RIGHT y) = eq x y ;
eq (LEFT x) (RIGHT y) = False ;
eq (RIGHT x) (LEFT y) = False ;

emitStr Ni l k = k ;
emitStr (Cons x xs ) k = emit x ( emitStr xs k ) ;

print True = emitStr ”True” 0 ;
print False = emitStr ” Fal se ” 0 ;

Tree a : : Leaf | Bin a ( Tree a ) ( Tree a )
Generic eq ( Tree a ) ( Tree a ) −> Bool

List a : : Ni l | Cons a ( List a )
Generic eq ( List a ) ( List a ) −> Bool

Rose a : : Ros a ( List ( Rose a ) )
Generic eq (Rose a ) (Rose a ) −> Bool

Tr ip l e t a b c : : F i r s t a | Second b | Third c
Generic eq ( Tr i p l e t a b c ) ( Tr i p l e t a b c ) −> Bool
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t r e e = Tree (Bin ( Int 5) ( Tree (Bin ( Int 4) ( Tree Leaf ) ( Tree Leaf
) ) ) ( Tree ( Bin ( Int 6) ( Tree Leaf ) ( Tree ( Bin ( Int 7) ( Tree
Leaf ) ( Tree Leaf ) ) ) ) ) ) ;

t r e e2 = Tree (Bin ( Int 5) ( Tree (Bin ( Int 4) ( Tree Leaf ) ( Tree
Leaf ) ) ) ( Tree Leaf ) ) ;

l i s t 1 = List (Cons t r e e ( List Ni l ) ) ;
l i s t 2 = List (Cons t r e e2 ( List Ni l ) ) ;

ro se1 = Rose (Ros l i s t 1 ( List (Cons (Rose (Ros l i s t 2 ( List Ni l ) ) )
( List Ni l ) ) ) ) ;

t r i p l e t 1 = Tr ip l e t ( F i r s t ro se1 )
t r i p l e t 2 = Tr ip l e t ( Second l i s t 1 )
t r i p l e t 3 = Tr ip l e t ( Third t r e e1 )

main = print ( eq t r i p l e t 1 t r i p l e t 1 ) ;

}

13.2.2 Program 2: increment

F-lite

• Tree:

{

i nc ( Int x ) = ( Int ((+) x 1) ) ;
inc ( Tree Leaf ) = Tree Leaf ;
inc ( Tree (Bin x l r ) ) = Tree (Bin ( inc x ) ( inc l ) ( inc r ) ) ;

emitStr Ni l k = k ;
emitStr (Cons x xs ) k = emit x ( emitStr xs k ) ;

print ( Int x ) k = emitInt x k ;
print ( Tree Leaf ) k = k ;
print ( Tree ( Bin x l r ) ) k = print x ( emitStr ” ” (print l (

emitStr ” ” (print r k ) ) ) ) ;

t r e e1 = Tree (Bin ( Int 5) ( Tree (Bin ( Int 4) ( Tree Leaf ) ( Tree
Leaf ) ) ) ( Tree ( Bin ( Int 6) ( Tree Leaf ) ( Tree ( Bin ( Int 7) (
Tree Leaf ) ( Tree Leaf ) ) ) ) ) ) ;

t r e e2 = Tree (Bin ( Int 5) ( Tree (Bin ( Int 4) ( Tree Leaf ) ( Tree
Leaf ) ) ) ( Tree Leaf ) ) ;

main = print ( inc t r e e1 ) 0 ;

}

• Tree and List:

{

i nc ( Int x ) = ( Int ((+) x 1) ) ;
inc ( List Ni l ) = List Ni l ;
inc ( List (Cons x xs ) ) = List (Cons ( inc x ) ( inc xs ) ) ;
inc ( Tree Leaf ) = Tree Leaf ;
inc ( Tree (Bin x l r ) ) = Tree (Bin ( inc x ) ( inc l ) ( inc r ) ) ;

emitStr Ni l k = k ;
emitStr (Cons x xs ) k = emit x ( emitStr xs k ) ;

print ( Int x ) k = emitInt x k ;
print ( List Ni l ) k = k ;
print ( List (Cons x xs ) ) k = print x ( emitStr ” ” (print xs ) ) ;
print ( Tree Leaf ) k = k ;
print ( Tree ( Bin x l r ) ) k = print x ( emitStr ” ” (print l (

emitStr ” ” (print r k ) ) ) ) ;

t r e e1 = Tree (Bin ( Int 5) ( Tree (Bin ( Int 4) ( Tree Leaf ) ( Tree
Leaf ) ) ) ( Tree ( Bin ( Int 6) ( Tree Leaf ) ( Tree ( Bin ( Int 7) (
Tree Leaf ) ( Tree Leaf ) ) ) ) ) ) ;
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t r e e2 = Tree (Bin ( Int 5) ( Tree (Bin ( Int 4) ( Tree Leaf ) ( Tree
Leaf ) ) ) ( Tree Leaf ) ) ;

l i s t 1 = List (Cons t r e e1 ( List Ni l ) ) ;
l i s t 2 = List (Cons t r e e2 ( List Ni l ) ) ;

main = print ( inc l i s t 1 ) 0 ;

}

• Tree, List and Rose:

{

i nc ( Int x ) = ( Int ((+) x 1) ) ;
inc ( List Ni l ) = List Ni l ;
inc ( List (Cons x xs ) ) = List (Cons ( inc x ) ( inc xs ) ) ;
inc ( Tree Leaf ) = Tree Leaf ;
inc ( Tree (Bin x l r ) ) = Tree (Bin ( inc x ) ( inc l ) ( inc r ) ) ;
inc (Rose (Ros x r ) ) = Rose (Ros ( inc x ) ( inc r ) ) ;

emitStr Ni l k = k ;
emitStr (Cons x xs ) k = emit x ( emitStr xs k ) ;

print ( Int x ) k = emitInt x k ;
print ( List Ni l ) k = k ;
print ( List (Cons x xs ) ) k = print x ( emitStr ” ” (print xs k ) ) ;
print ( Tree Leaf ) k = k ;
print ( Tree ( Bin x l r ) ) k = print x ( emitStr ” ” (print l (

emitStr ” ” (print r k ) ) ) ) ;
print ( Rose (Ros x r ) ) k = print x ( emitStr ” ” (print r k ) ) ;

t r e e1 = Tree (Bin ( Int 5) ( Tree (Bin ( Int 4) ( Tree Leaf ) ( Tree
Leaf ) ) ) ( Tree ( Bin ( Int 6) ( Tree Leaf ) ( Tree ( Bin ( Int 7) (
Tree Leaf ) ( Tree Leaf ) ) ) ) ) ) ;

t r e e2 = Tree (Bin ( Int 5) ( Tree (Bin ( Int 4) ( Tree Leaf ) ( Tree
Leaf ) ) ) ( Tree Leaf ) ) ;

l i s t 1 = List (Cons t r e e1 ( List Ni l ) ) ;
l i s t 2 = List (Cons t r e e2 ( List Ni l ) ) ;

ro se1 = Rose (Ros l i s t 1 ( List (Cons (Rose (Ros l i s t 2 ( List Ni l ) ) )
( List Ni l ) ) ) ) ;

main = print ( inc rose1 ) 0 ;

}

• Tree, List, Rose and Triplet:

{

i nc ( Int x ) = ( Int ((+) x 1) ) ;
inc ( List Ni l ) = List Ni l ;
inc ( List (Cons x xs ) ) = List (Cons ( inc x ) ( inc xs ) ) ;
inc ( Tree Leaf ) = Tree Leaf ;
inc ( Tree (Bin x l r ) ) = Tree (Bin ( inc x ) ( inc l ) ( inc r ) ) ;
inc (Rose (Ros x r ) ) = Rose (Ros ( inc x ) ( inc r ) ) ;
inc ( Tr i p l e t ( F i r s t x ) ) = F i r s t ( inc x ) ;
inc ( Tr i p l e t ( Second x ) ) = Second ( inc x ) ;
inc ( Tr i p l e t ( Third x ) ) = Third ( inc x ) ;

emitStr Ni l k = k ;
emitStr (Cons x xs ) k = emit x ( emitStr xs k ) ;

print ( Int x ) k = emitInt x k ;
print ( List Ni l ) k = k ;
print ( List (Cons x xs ) ) k = print x ( emitStr ” ” (print xs k ) ) ;
print ( Tree Leaf ) k = k ;
print ( Tree ( Bin x l r ) ) k = print x ( emitStr ” ” (print l (

emitStr ” ” (print r k ) ) ) ) ;
print ( Rose (Ros x r ) ) k = print x ( emitStr ” ” (print r k ) ) ;
print ( F i r s t x ) k = print x k ;
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print ( Second x ) k = print x k ;
print ( Third x ) k = print x k ;

t r e e1 = Tree (Bin ( Int 5) ( Tree (Bin ( Int 4) ( Tree Leaf ) ( Tree
Leaf ) ) ) ( Tree ( Bin ( Int 6) ( Tree Leaf ) ( Tree ( Bin ( Int 7) (
Tree Leaf ) ( Tree Leaf ) ) ) ) ) ) ;

t r e e2 = Tree (Bin ( Int 5) ( Tree (Bin ( Int 4) ( Tree Leaf ) ( Tree
Leaf ) ) ) ( Tree Leaf ) ) ;

l i s t 1 = List (Cons t r e e1 ( List Ni l ) ) ;
l i s t 2 = List (Cons t r e e2 ( List Ni l ) ) ;

ro se1 = Rose (Ros l i s t 1 ( List (Cons (Rose (Ros l i s t 2 ( List Ni l ) ) )
( List Ni l ) ) ) ) ;

t r i p l e t 1 = Tr ip l e t ( F i r s t ro se1 ) ;
t r i p l e t 2 = Tr ip l e t ( Second l i s t 1 ) ;
t r i p l e t 3 = Tr ip l e t ( Third t r e e1 ) ;

main = print ( inc t r i p l e t 1 ) 0 ;

}

G-lite

• Tree:

{

i nc ( Int x ) = ( Int ((+) x 1) ) ;
inc UNIT = UNIT;
inc (PAIR x y) = PAIR ( inc x ) ( inc y ) ;
inc (LEFT x) = LEFT ( inc x ) ;
inc (RIGHT x) = RIGHT ( inc x ) ;

emitStr Ni l k = k ;
emitStr (Cons x xs ) k = emit x ( emitStr xs k ) ;

print ( Int x ) k = emitInt x k ;
print UNIT k = k ;
print (PAIR x y) k = print x ( emitStr ” ” (print y k ) ) ;
print (LEFT x) k = print x k ;
print (RIGHT x) k = print x k ;

Tree a : : Leaf | Bin a ( Tree a ) ( Tree a )
Generic inc ( Tree a ) −> ( Tree a )
Generic print ( Tree a ) Int −> Int

t r e e1 = Tree (Bin ( Int 5) ( Tree (Bin ( Int 4) ( Tree Leaf ) ( Tree
Leaf ) ) ) ( Tree ( Bin ( Int 6) ( Tree Leaf ) ( Tree ( Bin ( Int 7) (
Tree Leaf ) ( Tree Leaf ) ) ) ) ) ) ;

t r e e2 = Tree (Bin ( Int 5) ( Tree (Bin ( Int 4) ( Tree Leaf ) ( Tree
Leaf ) ) ) ( Tree Leaf ) ) ;

main = print ( inc t r e e1 ) 0 ;

}

• Tree and List:

{

i nc ( Int x ) = ( Int ((+) x 1) ) ;
inc UNIT = UNIT;
inc (PAIR x y) = PAIR ( inc x ) ( inc y ) ;
inc (LEFT x) = LEFT ( inc x ) ;
inc (RIGHT x) = RIGHT ( inc x ) ;

emitStr Ni l k = k ;
emitStr (Cons x xs ) k = emit x ( emitStr xs k ) ;

print ( Int x ) k = emitInt x k ;
print UNIT k = k ;
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print (PAIR x y) k = print x ( emitStr ” ” (print y k ) ) ;
print (LEFT x) k = print x k ;
print (RIGHT x) k = print x k ;

Tree a : : Leaf | Bin a ( Tree a ) ( Tree a )
Generic inc ( Tree a ) −> ( Tree a )
Generic print ( Tree a ) Int −> Int

List a : : Ni l | Cons a ( List a )
Generic inc ( List a ) −> ( List a )
Generic print ( List a ) Int −> Int

t r e e1 = Tree (Bin ( Int 5) ( Tree (Bin ( Int 4) ( Tree Leaf ) ( Tree
Leaf ) ) ) ( Tree ( Bin ( Int 6) ( Tree Leaf ) ( Tree ( Bin ( Int 7) (
Tree Leaf ) ( Tree Leaf ) ) ) ) ) ) ;

t r e e2 = Tree (Bin ( Int 5) ( Tree (Bin ( Int 4) ( Tree Leaf ) ( Tree
Leaf ) ) ) ( Tree Leaf ) ) ;

l i s t 1 = List (Cons t r e e1 ( List Ni l ) ) ;
l i s t 2 = List (Cons t r e e2 ( List Ni l ) ) ;

main = print ( inc l i s t 1 ) 0 ;

}

• Tree, List and Rose:

{

i nc ( Int x ) = ( Int ((+) x 1) ) ;
inc UNIT = UNIT;
inc (PAIR x y) = PAIR ( inc x ) ( inc y ) ;
inc (LEFT x) = LEFT ( inc x ) ;
inc (RIGHT x) = RIGHT ( inc x ) ;

emitStr Ni l k = k ;
emitStr (Cons x xs ) k = emit x ( emitStr xs k ) ;

print ( Int x ) k = emitInt x k ;
print UNIT k = k ;
print (PAIR x y) k = print x ( emitStr ” ” (print y k ) ) ;
print (LEFT x) k = print x k ;
print (RIGHT x) k = print x k ;

Tree a : : Leaf | Bin a ( Tree a ) ( Tree a )
Generic inc ( Tree a ) −> ( Tree a )
Generic print ( Tree a ) Int −> Int

List a : : Ni l | Cons a ( List a )
Generic inc ( List a ) −> ( List a )
Generic print ( List a ) Int −> Int

Rose a : : Ros a ( List ( Rose a ) )
Generic inc (Rose a ) −> ( Rose a )
Generic print ( Rose a ) Int −> Int

t r e e1 = Tree (Bin ( Int 5) ( Tree (Bin ( Int 4) ( Tree Leaf ) ( Tree
Leaf ) ) ) ( Tree ( Bin ( Int 6) ( Tree Leaf ) ( Tree ( Bin ( Int 7) (
Tree Leaf ) ( Tree Leaf ) ) ) ) ) ) ;

t r e e2 = Tree (Bin ( Int 5) ( Tree (Bin ( Int 4) ( Tree Leaf ) ( Tree
Leaf ) ) ) ( Tree Leaf ) ) ;

l i s t 1 = List (Cons t r e e1 ( List Ni l ) ) ;
l i s t 2 = List (Cons t r e e2 ( List Ni l ) ) ;

ro se1 = Rose (Ros l i s t 1 ( List (Cons (Rose (Ros l i s t 2 ( List Ni l ) ) )
( List Ni l ) ) ) ) ;

main = print ( inc rose1 ) 0 ;

}

• Tree, List, Rose and Triplet:
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{

i nc ( Int x ) = ( Int ((+) x 1) ) ;
inc UNIT = UNIT;
inc (PAIR x y) = PAIR ( inc x ) ( inc y ) ;
inc (LEFT x) = LEFT ( inc x ) ;
inc (RIGHT x) = RIGHT ( inc x ) ;

emitStr Ni l k = k ;
emitStr (Cons x xs ) k = emit x ( emitStr xs k ) ;

print ( Int x ) k = emitInt x k ;
print UNIT k = k ;
print (PAIR x y) k = print x ( emitStr ” ” (print y k ) ) ;
print (LEFT x) k = print x k ;
print (RIGHT x) k = print x k ;

Tree a : : Leaf | Bin a ( Tree a ) ( Tree a )
Generic inc ( Tree a ) −> ( Tree a )
Generic print ( Tree a ) Int −> Int

List a : : Ni l | Cons a ( List a )
Generic inc ( List a ) −> ( List a )
Generic print ( List a ) Int −> Int

Rose a : : Ros a ( List ( Rose a ) )
Generic inc (Rose a ) −> ( Rose a )
Generic print ( Rose a ) Int −> Int

Tr ip l e t a b c : : F i r s t a | Second b | Third c
Generic inc ( Tr i p l e t a b c ) −> ( Tr i p l e t a b c )
Generic print ( Tr i p l e t a b c ) Int −> Int

t r e e1 = Tree (Bin ( Int 5) ( Tree (Bin ( Int 4) ( Tree Leaf ) ( Tree Leaf ) ) ) (
Tree ( Bin ( Int 6) ( Tree Leaf ) ( Tree ( Bin ( Int 7) ( Tree Leaf ) ( Tree
Leaf ) ) ) ) ) ) ;

t r e e2 = Tree (Bin ( Int 5) ( Tree (Bin ( Int 4) ( Tree Leaf ) ( Tree Leaf ) ) ) (
Tree Leaf ) ) ;

l i s t 1 = List (Cons t r e e1 ( List Ni l ) ) ;
l i s t 2 = List (Cons t r e e2 ( List Ni l ) ) ;

ro se1 = Rose (Ros l i s t 1 ( List (Cons (Rose (Ros l i s t 2 ( List Ni l ) ) ) ( List
Ni l ) ) ) ) ;

t r i p l e t 1 = Tr ip l e t ( F i r s t ro se1 ) ;
t r i p l e t 2 = Tr ip l e t ( Second l i s t 1 ) ;
t r i p l e t 3 = Tr ip l e t ( Third t r e e1 ) ;

main = print ( inc t r i p l e t 1 ) 0 ;

}

Clean

• Tree:

module IncTreeL i s tRoseTr ip l e t

import StdEnv

c l a s s inc ‘ a : : a −> a
in s tance inc ‘ Int
where

inc ‘ x = x + 1
in s tance inc ‘ ( Tree a ) | inc ‘ a
where

inc ‘ Leaf = Leaf
inc ‘ ( Bin x l r ) = Bin ( inc ‘ x ) ( inc ‘ l ) ( inc ‘ r )

: : Tree a = Leaf | Bin a ( Tree a ) ( Tree a )

Start : : Tree Int
Start = inc ‘ ( Bin 1 (Bin 2 Leaf Leaf ) Leaf )
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• Tree and List:

module IncTreeL i s tRoseTr ip l e t

import StdEnv

c l a s s inc ‘ a : : a −> a
in s tance inc ‘ Int
where

inc ‘ x = x + 1
in s tance inc ‘ ( Tree a ) | inc ‘ a
where

inc ‘ Leaf = Leaf
inc ‘ ( Bin x l r ) = Bin ( inc ‘ x ) ( inc ‘ l ) ( inc ‘ r )

i n s t ance inc ‘ ( L i s t a ) | inc ‘ a
where

inc ‘ Ni l = Ni l
inc ‘ (Cons x xs ) = Cons ( inc ‘ x ) ( inc ‘ xs )

: : Tree a = Leaf | Bin a ( Tree a ) ( Tree a )
: : L i s t a = Ni l | Cons a ( L i s t a )

Start : : L i s t Int
Start = inc ‘ (Cons 1 (Cons 2 (Cons 3 Ni l ) ) )

• Tree, List and Rose:

module IncTreeL i s tRoseTr ip l e t

import StdEnv

c l a s s inc ‘ a : : a −> a
in s tance inc ‘ Int
where

inc ‘ x = x + 1
in s tance inc ‘ ( Tree a ) | inc ‘ a
where

inc ‘ Leaf = Leaf
inc ‘ ( Bin x l r ) = Bin ( inc ‘ x ) ( inc ‘ l ) ( inc ‘ r )

i n s t ance inc ‘ ( L i s t a ) | inc ‘ a
where

inc ‘ Ni l = Ni l
inc ‘ (Cons x xs ) = Cons ( inc ‘ x ) ( inc ‘ xs )

i n s tance inc ‘ ( Rose a ) | inc ‘ a
where

inc ‘ ( Rose x xs ) = Rose ( inc ‘ x ) ( inc ‘ xs )

: : Tree a = Leaf | Bin a ( Tree a ) ( Tree a )
: : L i s t a = Ni l | Cons a ( L i s t a )
: : Rose a = Rose a ( L i s t ( Rose a ) )

Start : : L i s t Int
Start = inc ‘ (Cons 1 (Cons 2 (Cons 3 Ni l ) ) )

• Tree, List, Rose and Triplet:

module IncTreeL i s tRoseTr ip l e t

import StdEnv

c l a s s inc ‘ a : : a −> a
in s tance inc ‘ Int
where

inc ‘ x = x + 1
in s tance inc ‘ ( Tree a ) | inc ‘ a
where

inc ‘ Leaf = Leaf
inc ‘ ( Bin x l r ) = Bin ( inc ‘ x ) ( inc ‘ l ) ( inc ‘ r )

i n s t ance inc ‘ ( L i s t a ) | inc ‘ a
where

inc ‘ Ni l = Ni l
inc ‘ (Cons x xs ) = Cons ( inc ‘ x ) ( inc ‘ xs )

i n s tance inc ‘ ( Rose a ) | inc ‘ a
where
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inc ‘ ( Rose x xs ) = Rose ( inc ‘ x ) ( inc ‘ xs )
i n s tance inc ‘ ( T r i p l e t a b c ) | inc ‘ a & inc ‘ b & inc ‘ c
where

inc ‘ ( F i r s t x ) = F i r s t ( inc ‘ x )
inc ‘ ( Second x ) = Second ( inc ‘ x )
inc ‘ ( Third x ) = Third ( inc ‘ x )

: : Tree a = Leaf | Bin a ( Tree a ) ( Tree a )
: : L i s t a = Ni l | Cons a ( L i s t a )
: : Rose a = Rose a ( L i s t ( Rose a ) )
: : Tr ip l e t a b c = F i r s t a | Second b | Third c

Start : : L i s t Int
Start = inc ‘ (Cons 1 (Cons 2 (Cons 3 Ni l ) ) )

Clean with generics

• Tree:

module IncTreeL i s tRoseTr ip l e tGener i c

import StdEnv
import StdGeneric

g en e r i c gInc a : : a −> a

gInc{ |UNIT | } UNIT = UNIT
gInc{ |PAIR | } inca incb (PAIR x y) = PAIR ( inca x ) ( incb y )
gInc{ |EITHER| } inca incb (LEFT x) = LEFT ( inca x )
gInc{ |EITHER| } inca incb (RIGHT x) = RIGHT ( incb x )
gInc{ |CONS| } inca (CONS x) = CONS ( inca x )
gInc{ |OBJECT| } inca (OBJECT x) = OBJECT ( inca x )
gInc{ | Int | } x = x + 1

de r i v e gInc Tree

: : Tree a = Leaf | Bin a ( Tree a ) ( Tree a )
Start : : L i s t Int
Start = gInc{ | ∗ | } (Cons 1 (Cons 2 (Cons 3 Ni l ) ) )

• Tree and List:

module IncTreeL i s tRoseTr ip l e tGener i c

import StdEnv
import StdGeneric

g en e r i c gInc a : : a −> a

gInc{ |UNIT | } UNIT = UNIT
gInc{ |PAIR | } inca incb (PAIR x y) = PAIR ( inca x ) ( incb y )
gInc{ |EITHER| } inca incb (LEFT x) = LEFT ( inca x )
gInc{ |EITHER| } inca incb (RIGHT x) = RIGHT ( incb x )
gInc{ |CONS| } inca (CONS x) = CONS ( inca x )
gInc{ |OBJECT| } inca (OBJECT x) = OBJECT ( inca x )
gInc{ | Int | } x = x + 1

de r i v e gInc Tree , L i s t

: : Tree a = Leaf | Bin a ( Tree a ) ( Tree a )
: : L i s t a = Ni l | Cons a ( L i s t a )

Start : : L i s t Int
Start = gInc{ | ∗ | } (Cons 1 (Cons 2 (Cons 3 Ni l ) ) )

• Tree, List and Rose:

module IncTreeL i s tRoseTr ip l e tGener i c

import StdEnv
import StdGeneric

g ene r i c gInc a : : a −> a
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gInc{ |UNIT | } UNIT = UNIT
gInc{ |PAIR | } inca incb (PAIR x y) = PAIR ( inca x ) ( incb y )
gInc{ |EITHER| } inca incb (LEFT x) = LEFT ( inca x )
gInc{ |EITHER| } inca incb (RIGHT x) = RIGHT ( incb x )
gInc{ |CONS| } inca (CONS x) = CONS ( inca x )
gInc{ |OBJECT| } inca (OBJECT x) = OBJECT ( inca x )
gInc{ | Int | } x = x + 1

de r i v e gInc Tree , L ist , Rose

: : Tree a = Leaf | Bin a ( Tree a ) ( Tree a )
: : L i s t a = Ni l | Cons a ( L i s t a )
: : Rose a = Rose a ( L i s t ( Rose a ) )

Start : : L i s t Int
Start = gInc{ | ∗ | } (Cons 1 (Cons 2 (Cons 3 Ni l ) ) )

• Tree, List, Rose and Triplet:

module IncTreeL i s tRoseTr ip l e tGener i c

import StdEnv
import StdGeneric

g ene r i c gInc a : : a −> a

gInc{ |UNIT | } UNIT = UNIT
gInc{ |PAIR | } inca incb (PAIR x y) = PAIR ( inca x ) ( incb y )
gInc{ |EITHER| } inca incb (LEFT x) = LEFT ( inca x )
gInc{ |EITHER| } inca incb (RIGHT x) = RIGHT ( incb x )
gInc{ |CONS| } inca (CONS x) = CONS ( inca x )
gInc{ |OBJECT| } inca (OBJECT x) = OBJECT ( inca x )
gInc{ | Int | } x = x + 1

de r i v e gInc Tree , L ist , Rose , T r i p l e t

: : Tree a = Leaf | Bin a ( Tree a ) ( Tree a )
: : L i s t a = Ni l | Cons a ( L i s t a )
: : Rose a = Rose a ( L i s t ( Rose a ) )
: : Tr ip l e t a b c = F i r s t a | Second b | Third c

Start : : L i s t Int
Start = gInc{ | ∗ | } (Cons 1 (Cons 2 (Cons 3 Ni l ) ) )
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