
Bachelor's thesis on

Fuzzy lexical matching

Marc Schoolderman

supervisor: Kees Koster

second reader: Marc Seutter

August 2012

Radboud University Nijmegen

Faculty of Science

Abstract

Being able to automatically correct spelling errors is useful in cases where the set of documents is
too vast to involve human interaction. In this bachelor's thesis, we investigate an implementation
that attempts to perform such corrections using a lexicon and edit distance measure.

We compare the familiar Levenshtein and Damerau-Levenshtein distances to modi�cations where
each edit operation is assigned an individual weight. We �nd that the primary bene�t of using this
form of edit distance over the original is not a higher rate of correction, but a lower susceptibility to
false friends. However, deriving the correct weights for each edit operation turns out to be a harder
problem than anticipated.
While a weighted edit distance can theoretically be implemented e�ectively, a deeper analysis of

the costs of edit operations is necessary to make such an approach practical.

Contents

1 Introduction 4
1.1 Problem statement . 4
1.2 Applications of fuzzy matching . 5

2 Background 6
2.1 Preliminaries . 6
2.2 Edit distance . 7
2.3 Dynamic programming . 9
2.4 Levenshtein automata . 10

2.4.1 Bit-parallelism � the agrep approach . 10
2.4.2 Other approaches using bit-parallelism . 11

2.5 Generalizing the edit distance using confusions . 12
2.5.1 Other extensions to the edit distance . 12

2.6 Best-�rst search . 13
2.6.1 Formal analysis . 13
2.6.2 Best-only search . 15
2.6.3 The heuristic function . 15
2.6.4 Example . 16

2.7 Summary . 16

3 Implementation 17
3.1 Constructing a lexicon . 17
3.2 Tries . 17
3.3 Theoretical complexity . 20
3.4 Practical performance . 20

3.4.1 Optimization considerations . 22
3.4.2 Allocation strategies . 22
3.4.3 Comparison of trie implementations . 23

3.5 Fuzzy matching in a lexicon . 24
3.5.1 Using �nite state machines . 24
3.5.2 Adapting automata for best-�rst search . 25
3.5.3 Adding memoization to the naïve solution . 25
3.5.4 Comparison of techniques . 26

3.6 Summary . 27

4 E�ectivity of fuzzy matching 28
4.1 Framework for evaluation . 28
4.2 Obtaining actual confusion data . 29

4.2.1 Chosen data sets . 29
4.3 Experiments performed . 31
4.4 Results . 32

5 Conclusions 34
5.1 Further challenges . 35

1 Introduction

Human beings have little di�culty in interpreting texts with lexical errors in them; in fact it is
usually hard for us to spot these, even if we are looking for them. On the other hand, we also �nd
it di�cult to correctly apply arbitrary rules � like verb conjugation, or the spelling of proper names.
For computers, the reverse is true in both cases.
This distinction is actually helpful � the computer's ability to spot errors where we do not has

long been exploited by spell-checkers. In its most familiar form, this is an interactive process. In
some applications, we want computers to perform corrections unaided. For example, when digitizing
existing archives, it would be prohibitive to manually remove all errors produced by an OCR-process.
In information retrieval we want to �nd information regardless of whether our spelling of a search

phrase matches the one in a target document.
In this bachelor's thesis, we describe a system for automatically and e�ciently correcting a class

of errors by using a lexicon and approximate � or fuzzy � matching, and evaluate its e�ectivity.

1.1 Problem statement

With respect to fuzzy matching, we will try to answer the following:

Is it possible to e�ciently implement and adapt the edit distance measure to improve word
recognition when looking up approximate matches in a lexicon?

This question has two di�erent aspects. Firstly, we need an e�cient way to store a lexicon and
�nd exact matches in this, that is also easily adaptable for fuzzy matching. Since we assume errors
to be infrequent, such an implementation will automatically be e�cient if we can �nd a method of
approximate matching that is not prohibitively expensive. Secondly, given such an implementation,
how can we actually bene�t from it?
This gives rise to a number of smaller questions, such as:

� Which algorithms and data structures can we use?

� Can we e�ciently implement these?

� How should we modify the edit distance measure?

� How do we determine that, so doing, we have improved word correction?

� Can we use our implementation outside an experimental setup?

The layout of this thesis is as follows. The rest of this chapter mentions the motivation for this
research. Chapter 2 presents techniques and a theoretical background, giving a toolbox for our
implementation which is discussed in chapter 3. In chapter 4 our implementation will be applied
against two simulated data sets and measure the e�ectiveness of fuzzy matching in this setting.
Chapter 5 concludes this thesis and presents some further challenges that we do not address.

4

1.2 Applications of fuzzy matching

Fuzzy lexical matching has an obvious application in the construction of spelling correction mech-
anisms in familiar settings such as word processing. This is usually an interactive process, where
the system generates a list of correction candidates and the user has to select the best one. We will
therefore list other applications, most of which demand the non-interactive correction of errors due
to the sheer size of the correction task.

Query-based search As noted in [5], a signi�cant proportion (10-15%) of queries sent to a search
engine contain errors. Users of present-day search engines are of course already familiar with
this kind of correction, for example, a Google search for `obma' assumes we are looking for
`Obama' and in fact shows these results for us.

But this form of correction only addresses one side of the search. The document collections
searched for will also contain errors, and we should correct for these as well. Furthermore,
these errors cannot be handled by an interactive spelling correction mechanism.

Document classi�cation Every computer user will be familiar with the arms race between spam
and spam-�ltering to come up with new and creative ways to deliberately misspell words on
the one hand and catch these on the other. For example, one website reports receiving 79
variations of the word `Viagra' in only 12 days, and calculates that � using the tricks employed
by spammers � there are over 1021 possible variations.1

Natural language processing The AGFL system2 can correctly parse many documents using an
ambiguous grammar� but at present all encountered word forms have to match its lexicon
exactly. Being able to process natural language while tolerating errors would also be bene�cial
to automated document translation, which at present fails (usually badly) in their presence.

OCR correction Reynaert[26] reports about a project where a collection of historical Dutch news-
papers has been digitized.3 Except for errors induced by the OCR process itself, such projects
also have to deal with changes in spelling that happen over time � especially in a language
such as Dutch where spelling changes get introduced quite often. It is clear that in this case an
interactive spelling mechanism is not an option, but also that digitizing such collections of text
is quite valuable � both for preserving this information and making it more readily accessible.

Bio-informatics The BLAST program4 allows one to search a genome for biological sequences. This
tool also has to deal with the problem of judging whether two DNA-sequences are `similar'. A
feature shared with spelling correction or OCR post-correction is that in this application some
di�erences in sequences are likely to be of less importance than others.

In this bachelor's thesis, we will focus on non-interactive spelling correction. Its application area
therefore lies within the �rst three of the above categories, and could form a part of an OCR
correction system as well.

1http://cockeyed.com/lessons/viagra/viagra.html
2http://www.agfl.cs.ru.nl/
3Available online at http://kranten.kb.nl/
4http://blast.ncbi.nlm.nih.gov/

5

http://cockeyed.com/lessons/viagra/viagra.html
http://www.agfl.cs.ru.nl/
http://kranten.kb.nl/
http://blast.ncbi.nlm.nih.gov/

2 Background

Before we can talk about correction, we need to be speci�c about the types of errors we want to
correct. Kukich[16] provides a detailed classi�cation of errors; we will reduce this somewhat.
First, we can distinguish between non-word errors, which are detectable at the lexical level � e.g.

de�nate versus de�nite, and real-word errors which can only be detected by also looking at context
such as syntax, semantics, or overall structure.
For example, out of context we have no reason to reject ships, but the sentence `a ships was adrift'

is syntactically wrong. In another case dropping the d in adrift we might get `a ship was a rift' �
which is syntactically correct, but nonsense.
We can further (loosely) classify non-word errors by the process which generates them into transfer

errors and cognitive errors.
Errors induced by OCR will usually corrupt (multiple) characters that are orthographically similar

� e.g. replacing D with O, or ri for n. Similarly, typos are more likely to consist of substitutions
of letters close to each other on the keyboard or transpositions (the→teh). In all these cases the
correct spelling of the word is available, but lost in transfer.
Cognitive errors occur when a user is not familiar enough with the proper spelling of a word, as in

de�nate versus de�nite, or mistakenly uses a phonetically similar word-form (they're versus their).
Cognitive errors are more di�cult for a computer to correct, since they are likely to result in a

real-word error, and are more complex. For example, Pedler[24] �nds that in a sample of dyslexic
text, 39% of all errors di�er in more than one letter, 8% are misplaced word boundaries, and 17%
of errors are real-word errors.
We propose another class of errors: variant errors. These occur when the language of the source

document is written in a di�erent variant of the language of the lexicon. Such variations naturally
occur; for example American vs. British English. In Dutch, various spelling reforms have resulted
in a number of spellings being in simultaneous use.
In this thesis, we are only interested in non-word errors that are correctable at the typographical

level. Furthermore, the word boundary problem will be considered a separate (albeit interacting)
problem, and we will not attempt to solve it here. There are good reasons for this � in many
cases splitting a word or joining two words will result in real-word errors, which we cannot correct
without context information. Also, there are unavoidable ambiguities even using exact matching.
For example, `car wash' and `carwash' are both common spellings of the same compound noun; but
whether to identify the �rst form as a compound noun again requires contextual information.

2.1 Preliminaries

Conceptually, fuzzy lexical matching is the action of searching a lexicon for entries similar to a
given word. We have already mentioned that we want to use a form of edit distance to determine
word similarity. The �rst priority is therefore to ascertain whether can �nd an e�cient method to
calculate (multiple) edit distances.
The second priority is a good searching algorithm. Without it, the only way to perform fuzzy

matching is to compute � given a corrupted word � an edit distance for every entry in our lexicon,
which is clearly not acceptable if we want to e�ciently use large, realistic lexicons.

6

2.2 Edit distance

The concept of an edit distance goes back to [17] in the context of binary codes. The idea is very
simple: allow one string to match another by also allowing certain edit operations: replacing one
character by another, inserting a new character, or deleting an existing one.
By counting the minimum number of operations necessary to transform one word into another

we obtain a distance measure. For example, transforming apple to able requires two edit operations
(deleting one p, transforming another p into a b). Today, this measure is usually referred to as the
Levenshtein distance (or simply edit distance).
A simple de�nition of this distance measure is shown in �gure 2.1.

1 l e v e n s h t e i n : : S t r i n g −> S t r i n g −> I n t
2 l e v e n s h t e i n s1 s2 = ed s1 s2
3 where
4 ed (a : as) (b : bs) = minimum [ed as (b : bs) + 1
5 , ed (a : as) bs + 1
6 , ed as bs + i f a == b then 0 e l s e 1
7]
8 ed as bs = l e ng th as + l e ng th bs

Figure 2.1: Naïve implementation of Levenshtein distance in Haskell

This distance measure is a proper metric in the mathematical sense. By this we mean that the
edit distance (ed):

1. is always non-negative: ed(x, y) ≥ 0

2. is zero if and only if two strings match exactly: ed(x, y) = 0⇔ x = y

3. is symmetric: ed(x, y) = ed(y, x); this practically follows from the de�nition and the fact that
deletions and insertions are inverses of each other.

4. satis�es the triangle inequality: ed(x, z) ≤ ed(x, y) + ed(y, z)

Another classical paper[6] introduced transpositions of adjacent letters as a valid operation, for
example allowing teh → the as a single operation. This is commonly referred to as the Damerau-
Levenshtein distance. It is important to note that transposition can be achieved in the Levenshtein
distance by an insertion and deletion, or equivalently, two substitutions; so the Damerau-Levenshtein
distance will never be greater than the Levenshtein distance. Also, the usage of `adjacent' is rather
vague. Do we allow owl →low as two transpositions? Or what about, for example, nei → in? In
both cases, we might end up transposing letters that were not adjacent in the source or target word.
The original paper only allowed one edit operation, and so does not address this.
One problem with unrestricted transpositions is that it makes an e�cient implementation compli-

cated. Also, it is hard to see the bene�t of assigning low values to complicated sequences of edits � as
we will see in chapter 4, even low counts of edit operations can unrecognizably alter a word. There-
fore, in this paper we will use the term Damerau-Levenshtein distance to refer to only a restricted
modi�cation (shown in a naïve implementation in �gure 2.2) which only allows transposition of two
characters that are adjacent in the original and the target word.
Note that this distance measure no longer satis�es the triangle inequality; for example, emil→elm

has distance 3, even though emil→eml and eml→elm can each separately be performed by two single
operations. For our purposes, this turns out to be of no consequence.
Obviously these implementations have exponential running times, so these can only be used for

short words.

7

1 damerau_levenshte in : : S t r i n g −> S t r i n g −> I n t
2 damerau_levenshte in s1 s2 = ed s1 s2
3 where
4 ed as@ (a : a ' : as ') bs@ (b : b ' : bs ') | a == b ' && b == a '

5 = minimum (ed as ' bs '+1 : e d i t s as bs)
6 ed as bs
7 = minimum (e d i t s as bs)
8

9 e d i t s (a : as) (b : bs) = [ed as (b : bs)+1
10 , ed (a : as) bs+1
11 , ed as bs + i f a == b then 0 e l s e 1
12]
13 e d i t s as bs = [l e ng th as + l e ng th bs]

Figure 2.2: Naïve implementation of Damerau-Levenshtein distance in Haskell

1 i n t l e v e n s h t e i n (const char * s r c , const char * de s t)
2 {
3 s i ze_t x_max = s t r l e n (s r c) ;
4 s i ze_t y_max = s t r l e n (d e s t) ;
5 i n t mat r i x [x_max+1][y_max+1] ;
6

7 /* i n i t i a l i z e the s i d e s o f the mat r i x */
8 f o r (s i ze_t y=0; y <= y_max ; y++)
9 mat r i x [0] [y] = y ;

10 f o r (s i ze_t x=0; x <= x_max ; x++)
11 mat r i x [x] [0] = x ;
12

13 /* s y s t em a t i c a l l y f i l l the mat r i x */
14 f o r (s i ze_t y=1; y <= y_max ; y++)
15 f o r (s i ze_t x=1; x <= x_max ; x++)
16 mat r i x [x] [y] = minimum_of_3(
17 mat r i x [x] [y−1] + de l e t e_co s t (s r c [y−1]) ,
18 mat r i x [x−1] [y] + i n s e r t_ c o s t (d e s t [y−1]) ,
19 mat r i x [x−1] [y−1] + match_cost (s r c [x−1] , d e s t [y−1])
20) ;
21

22 r e t u r n mat r i x [x_max] [y_max] ;
23 }

Figure 2.3: O(nm) implementation of edit distance using dynamic programming in C99

8

2.3 Dynamic programming

A useful technique to compute recursive algorithms (such as an edit distance) in polynomial time is
dynamic programming. The general idea is that we compute each intermediate result exactly once.
A simple way to achieve this is to use memoization; after each recursive call, store the result in

a table, and on subsequent calls re-use that value. This does however incur extra bookkeeping in
having to maintain the memoization table.
A di�erent, more elegant, approach is to look at the recurrence and identify a useful order in which

all sub-problems are solved before they are needed to compute results that depend on them. This
can be done by allocating a n-dimensional array where each cell corresponds to one invocation of the
original recursive function. By initializing portions of this array with initial values and then using
the recurrence repeatedly we can �ll the entire array until we have computed the cell representing
our answer.
Such an array-based approach for computing edit distances is presented in [29]. A concrete imple-

mentation of this approach is shown in �gure 2.3. The idea is that each cell matrix[i][j] should
be made to contain the edit distance needed to transform the �rst i characters of src into the �rst
j characters of dest. During initialization, we can immediately �ll in the top row and left-hand side
column, since these correspond with a sequence of insertions and deletions (respectively). Following
initialization we can �ll in the rest of the matrix in a left-to-right, top-to-bottom fashion.
The matrix that results from matching the string de�nite to deity is shown in �gure 2.4. Note

that by examining the contents of the matrix it is also possible to deduce a sequence of edits to
transform a word into another. Also note that there is more than one way of doing this, in this case
because we have a choice about which i to delete.

d e f i n i t e

0 1 2 3 4 5 6 7 8

d 1 0 1 2 3 4 5 6 7

e 2 1 0 1 2 3 4 5 6

i 3 2 1 1 1 2 3 4 5

t 4 3 2 2 2 2 3 3 4

y 5 4 3 3 3 3 3 4 4

Figure 2.4: Dynamic programming matrix showing the Levenshtein distance from de�nite to deity.
The grayed path contains the sequences of edit operations obtaining the minimal distance.

It should be clear that given two strings of length n and m, this algorithm requires O(nm)
iterations. It also appears to require O(nm) memory, but by observing that we only really need to
store one row at a time, this can be brought down to O(n).
Right now we can already construct a crude form of fuzzy lexical matching by brute force � simply

computing the edit distance to every word in our lexicon. If our lexicon consists of N words of
maximal length m, this would have a running time of O(nm ·N).
Of course, large portions of the dynamic programming matrix do not contribute to a possible

solutions. Various methods of computing the matrix more intelligently have been devised over the
years. Only looking at the complexity �gure is not the whole picture. Some algorithms have equal
worst-case complexity but are faster in practice; others may have a better complexity but still
perform slower in practice due to a high constant overhead. A general overview and comparison for
some of these methods can be found in [20].

9

2.4 Levenshtein automata

If we are using the previous algorithm to compute the edit distance from both de�nite→deity and
subsequently de�nite→dei�ed, it is easy to see that there is no need to recompute a large portion of
the matrix. A clever way is to compute the matrix resulting from de�nite→dei once and use it to
perform the computation for both su�xes separately.
Observe that the computation of the i'th row of the dynamic programming matrix only requires

the i'th character of the destination string. Therefore, we can refactor the algorithm in �gure 2.3
as a state machine determined by the string src, processing characters from dest one at a time,
where the state is represented by a row of matrix. Having fed the entire string into this machine
we can read the corresponding edit distance from the state. Thus, we can duplicate the state of the
machine after processing the common pre�x dei- and avoid recomputing it.
If we �x a maximal edit distance k, we can also say that such a state machine is in an accepting

state whenever the value in last column of its state is ≤ k. In this way we have a �nite state machine
whose language consists of all strings within k edit operations of src.

2.4.1 Bit-parallelism � the agrep approach

The previous method used the dynamic programming matrix to de�ne a state machine. It is also
possible to directly de�ne a non-deterministic �nite state machine that acts as a Levenshtein automa-
ton as follows. Given a alphabet Σ and a string S ∈ Σ∗, construct a �nite state machine accepting
S containing |S| + 1 states, and stack copies of these on top of each other, with progressive layers
representing higher edit distances, adding transitions representing the various edit operations. By
this we mean that if sd,i is the state in which we have matched the �rst i characters of S at distance
d, there should be

1. a transition to sd+1,i+1 for every c ∈ Σ; representing substitution

2. a transition to sd+1,i for every c ∈ Σ; representing deletion of c

3. an empty transition to sd+1,i+1; representing the insertion of the (i+ 1)'th character of S 1

A diagram of such a state machine is shown 2.5.

d = 0

d = 1

d = 2

t e s t

t e s t

t e s t

ε ε ε ε

ε ε ε ε

Figure 2.5: Non-deterministic �nite state automaton accepting strings matching the word �test� with
Levenshtein distance 2

1We use the convention that we want to edit S into some target string T , which is fed into the machine. These roles

of course can be reversed

10

An e�cient approximate string searching algorithm using this approach is implemented in the
agrep2 tool and presented by Wu and Manber[30]. In this approach, each row of the state machine
is represented by a string wi of |S| + 1 bits; with a set bit indicating that a state is active. The
transitions are then applied in a single operation using only bit operations. For instance, the empty
transitions can be implemented as the operation wi := wi or (wi−1<<1). The horizontal transitions
depend on the strings S, and are stored as bit masks that need to be computed only once.
Formally, the operation required to update the state after reading the character c is as follows;

using the convention that wi = 0 if i < 0, de�ne de�ne

maskc,j
def
= [j < |S| and Sj = c] (2.1)

w′i = ((wi and maskc)<<1) or wi−1 or (wi−1<<1) or (w′i−1<<1) (2.2)

In many cases, |S| is less than the word size on modern computers (typically 64 bits), and these
bit operations take constant time. The end result is that for a string of length m, we can determine
whether it matches S within edit distance k in O(km) operations, using k machine words for state.
Set up of the automaton requires only initialization of the bit mask. This costs O(n) operations and
|Σ| machine words.3

An advantage of this algorithm for string searching is that it is fairly extensible. For example,
adding transpositions is not much work. Also, only minimal changes are needed to support a limited
subset of regular expressions � for example, changing the machine in �gure 2.5 to accept the regular
expression �tes*t� can be done by adding just a few transitions. Some examples of extensions are
already provided in the original presentation[30].
For approximate matching, another advantage is that it is easy to determine the minimal edit

distance at which the automaton may still enter an accepting state � determining the lowest i so
that wi 6= 0 su�ces. We can do this in constant time time while calculating the next state w′i.

2.4.2 Other approaches using bit-parallelism

Since its introduction, optimizations to the above solution have been proposed. One such approach
is presented by Baeza-Yates and Navarro[2]. They observe that, since there is an empty diagonal
transition, if a state is active, then so are all subsequent states on the same diagonal. Instead of
encoding the rows of the machine state directly by a bit representation, they encode the diagonals
by listing (for each diagonal) the minimum row value on which each diagonal is active. Furthermore,
they then encode these values in a bit string using a unary representation, and show that once again
they can employ bit parallelism to compute transitions e�ciently.
For small patterns S, their solution gives a O(n) algorithm to match a string of length n allowing

for k errors (compared to O(kn) above). However, the disadvantage is that even using 64-bit machine
words, this only works for |S| ≤ 14, which is quite limited.
A di�erent technique employing bit-parallelism is due to Myers[19]. This method constructs an

automaton based on the dynamic programming matrix. Starting from the observation that all
horizontal and vertical di�erences in the matrix are at most ±1, a number of clever transformations
are performed resulting in an O(n) algorithm as long as |S| is less than the machine word size. A
single drawback of this method is that there is no obvious way to �nd (in constant time) the minimal
edit distance at which the automaton might still accept the input. This is not a problem for for
approximate searching, but does prevent its use in an informed search(see section 2.6.3).

2 ftp://ftp.cs.arizona.edu/agrep/
3 This implies that the worst case complexity for fuzzy lexical matching using this method has complexity O(n +

km · N), compared to (nm · N) needed to calculate the dynamic programming matrix N times � certainly an

improvement if k is low

11

ftp://ftp.cs.arizona.edu/agrep/

2.5 Generalizing the edit distance using confusions

An observation already made in [6] is that most spelling errors are one of the four operations already
described. This is what makes an edit distance a useful distance measure.
However, a drawback of edit distance is that it treats all edit operations as equally important. So

inserting a q or changing a e into an k are deemed as likely as deleting an e or changing a n into an
m, since all of these have `cost' 1.
Second, the edit distance is too rough a measure. In order to correct for common mistakes we

may need two or three edits. But given a reasonably large lexicon there will already be many words
matching any given word within two edit operations. This especially problematic since we need a
large lexicon to perform lexical matching.
One way to remedy this is to assign di�erent costs to each edit operation. This is a fairly easy

change. If Σ is our alphabet, it requires us to construct a (|Σ|+1)×(|Σ|+1) matrix d; where d[α, β]
contains the cost of replacing α with β, with α and β either characters or the empty character ∅.
For example, the cost of inserting the letter a can then be looked up as d[∅,`a'], and we should
expect that for any arbitrary character α, d[α, α] = 0. We will call this a weighted edit distance.
Another possible way to assign costs to edit operations is shown in [12] and [22]. Instead of one

cost matrix, we can use four:

� sub[α, β] � the cost of substituting β for α

� rev[α, β] � the cost of transforming a substring αβ → βα. In other words, this assigns a cost
to the act of transposing two characters.

� add[α, β] � the cost of inserting β after α

� del[α, β] � the cost of deleting β after α

A signi�cant improvement here is that de�ning costs this way allows for a limited form of context to
guide the cost of an edit operation. For example, using these tables it is easy to assign a lower cost
to deleting the super�uous l in de�nitelly than deleting a l in general. We will call this the weighted
edit distance with context.
Both weighted variations are easy to implement using dynamic programming. However, imple-

menting a weighted edit distance using bit-parallelism means we also need transitions than can go
down more than one row. In the agrep approach this would increase the cost of feeding a character
into the automaton from O(k) to O(k2) steps � and since we need k to be larger if we are using a
weighted edit distance, this approach quickly looses its appeal.

2.5.1 Other extensions to the edit distance

In [23], the weighted edit distance as described above is also combined with a set of constraints that
specify bounds on the number and type of operations. For example, disallowing string transforma-
tions which involve more than k insertions. In a generalized Levenshtein distance this may be of use
to set a reasonable limit on low-cost edit operations. However, the algorithm has an higher algo-
rithmic complexity than those for an unconstrained edit distance � O(nm2) compared to O(nm) for
the dynamic programming solution � and it raises the question what a set of reasonable constraints
should look like.
A similar modi�cation is that of a normalized edit distance[18]. In this case the cost of a sequence

of edit operations is divided by the length of that sequence (with an exact match also counted as an
operation). This has the e�ect of penalizing large corrections on smaller words and tolerating more
corrections on larger words. However, as before, the algorithm to compute this is less e�cient.
The idea of generalizing the edit distance can also be taken to its logical conclusion, by lifting the

restriction that all edit operations concern characters. In this case, α and β may be arbitrary strings,
and the cost matrix assigns costs to substitutions of the form α → β. This approach is explored in
[4]. The drawback of this approach is (again) that calculating the edit distance becomes even more
costly � O(n2m2) � and that we need a rich set of edits and associated costs.

12

2.6 Best-�rst search

We already mentioned one way to perform fuzzy matching so far � simply calculating the edit
distance to every word in our lexicon. This is obviously not very e�cient. A better approach is to
use a search strategy so that we only inspect the subset of our lexicon that is `likely' to match. This
prompts us to look in the direction of an informed search strategy. A conceptually simple but very
useful strategy is the best-�rst search[11].
A well-known example of best-�rst search is the A* algorithm[8]. This algorithm �nds an optimal

path between two nodes in a graph, using a heuristic f(x) that estimates the cost to go from any
given node to the desired destination. It does this by maintaining an open set consisting of all
nodes that we can travel to from nodes already visited (the closed set). Initially the open set will
only contain the starting node. At each step the algorithm selects a node from the open set with a
minimal value of f(x) to visit next.
If these nodes are points are in a Euclidean space (for example, a map), a useful heuristic is the

sum of the distances necessary to travel to the node x via the graph, and the distance needed to
travel from x to the end point directly in a straight line.
The general procedure for best �rst search is shown in �gure 2.6. Note that explicitly maintaining

the closed set is also referred to as negative memoization[11], and can be considered a form of
dynamic programming. If it is known that the graph (or search space) we are processing does not
contain cycles (for example, when we are searching through a tree) we can dispense with this step.
This search algorithm can also be used in di�erent contexts. For example, we can also use it

without specifying any explicit goal node to simply �nd a shortest path to any node. Another
possibility is to use it to calculate the dynamic programming matrix of �gure 2.4. We can do this by
starting in the top right corner and at each step calculate the values of the three neighbouring cells
to the left, bottom and diagonally. In this case we can be sure that all cells with values higher than
5 will never be calculated, and if we use a good heuristic function we might only need to calculate a
small portion of this matrix surrounding the grayed path. Choosing the heuristic poorly, however,
would mean we still calculate the majority of the matrix and pay for the added overhead of our
search strategy and might be slower than the algorithm in 2.3.
In a more advanced application, [11] uses a best-�rst search strategy to produce a text formatting

algorithm that (on average) is faster than the one used by TEX.

2.6.1 Formal analysis

Important properties of the A* algorithm are already proved in [8] and [9]. However, this is dealt
with mostly in the context of �nding optimal paths in a graph where external information is available
that can be used to steer the search algorithm.
If we are not interested in �nding shortest paths, and have no extra information, a best-�rst search

strategy can still be useful. Therefore we will take a slightly more abstract look.
Let the search space consists of a �nite set of states H, where we also have a transition relation

(→) between states. Let →∗ denote the transitive closure of this relation. Let Oi and Ci denote the
open set and closed set at the beginning of step i of the algorithm, and σi ∈ Oi the node selected
after this step, so that f(σi) = min f(Oi), with f : H → R our heuristic function. The closed set
contains all nodes selected previously, so Ci = {σk : k < i}. We can then de�ne O0 to be our initial
set of states (usually a singleton set), and Oi+1 = (Oi ∪ {τ : σi → τ}) \Ci+1. Clearly this algorithm
must terminate at step i if Oi = ∅. Let the set I ⊂ N denote the indices of all non-terminating
steps, i.e. the set of indices for which σi is de�ned.
We further de�ne a set of target states T ⊂ H that are reachable from our initial states (that is,

for each γ ∈ T , σ →∗ γ for some σ ∈ O0), and an actual cost (or distance) function D : T → R. The
objective of a best-�rst search is to �nd the states of T in increasing order of their distance value.
As a consequence we immediately have a simple way to �nd a minimal result in T : simply take the
�rst target state encountered.

13

1 boo l b e s t f i r s t_ s e a r c h (Node s t a r t , Node goa l)
2 {
3 p r i o r i t y_queue<Node> open ;
4 se t<Node> c l o s e d ;
5

6 open . push (s t a r t) ;
7 wh i l e (! open . empty ()) {
8 Node cur = open . top () ;
9 open . pop () ;

10

11 i f (cu r == goa l)
12 r e t u r n t r ue ;
13

14 i f (c l o s e d . i n s e r t (cu r) . second) {
15 f o r (Node n : cu r . nex t)
16 open . push (cu r) ;
17 }
18 }
19

20 r e t u r n f a l s e ;
21 }

Figure 2.6: Skeleton for performing best-�rst search (C++). The result value only speci�es whether
the search succeeded or not. Note that by replacing the priority_queue by stack we
get a simple depth-�rst search; replacing it with queue gives a breadth-�rst search.

In order for this to succeed we need two requirements on the heuristic function f :

1. f must be monotonic, that is that if σ → τ , then f(σ) ≤ f(τ)

2. f must be equal to D for nodes in T , i.e. f(γ) = D(γ) for all states γ ∈ T .
As a consequence, f may never over-estimate the eventual cost for nodes not in T . If f = D,
then obviously this requirement holds automatically.

Lemma 1. For i, j ∈ I, if i < j then f(σi) ≤ f(σj).

Proof. It su�ces to show that f(σi) ≤ f(σi+1).
Since f is monotonic, f(σi) ≤ min f({τ : σi → τ}). Combining this with f(σi) = min f(Oi), we get

f(σi) = min f(Oi ∪ {τ : σi → τ}) = min f(Oi+1 ∪ {σi}), and so f(σi) ≤ min f(Oi+1) = f(σi+1).

To �nish our proof of correctness, we also need to prove that the �rst target state found is a
minimal result in T . To do this we only have to show that every reachable state will eventually
selected. This part of the proof does not depend on f . We begin with a simple lemma.

Proposition. The search procedure selects each node only once. That is i 6= j ⇒ σi 6= σj for
i, j ∈ I.

Proof. Suppose i 6= j. Without loss of generality, assume that i < j. Then σi ∈ Cj , whence σi 6∈ Oj .
But since σj ∈ Oj it must be that σi 6= σj .

Lemma 2. If τ ∈ Oi, then there is a k ≥ i so that τ = σk.

Proof. Suppose that no such k exists. Then for all j ≥ i, τ ∈ Oi. This means that our algorithm
never terminates, and I = N. But then, because of the previous proposition, the set {σi : i ∈ I} ⊂ H
is in�nite. But H is �nite � contradiction.

14

Corollary. If for a given τ there is a σ ∈ O0 so that σ →n τ , then there is a i so that τ = σi.

Proof. By induction on n. If n = 0 then σ = τ , so τ ∈ O0, and so there exists i so that τ = σi.
Now suppose that σ →n→ σ′ → τ . Then by the induction hypothesis there is a i so that σ′ = σi.

But that means that τ ∈ Oi+1, and so there is a j ≥ i+ 1 for which τ = σj .

Corollary. The �rst target state found using best-�rst search has minimal distance.
Formally: let k = min{i ∈ I : σi ∈ T}. Then D(σk) = minD(T).

Proof. Because γ is reachable there is an i so that γ = σi. But then we have k ≤ i by de�nition of
k, and so f(σk) ≤ f(γ) by Lemma 1. But then also D(σk) ≤ D(γ).

We have now proven the correctness of this method, since we have shown that every target state
will be selected in the order of their actual cost.

In�nite search spaces

From a theoretical viewpoint, it should be mentioned that the proof above relies on the search space
H being �nite. In fact a best-�rst search does not work in general if H is in�nite. But it can be
made to work on in�nite search spaces if we impose additional restrictions so Lemma 2 can be proven
again. A general way to ensure this is to require that for each y ∈ R, the set {τ ∈ H : f(τ) ≤ y} is
�nite � we will however not digress further into this.

2.6.2 Best-only search

A slight modi�cation of best-�rst is the best-only search. In this case we stop looking at states
when their heuristic value is worse than the best target state found so far. Practically, this can be
implemented by maintaining a cut-o� threshold as in a branch-and-bound algorithm. Semantically,
this extends the closed set as follows:

Ci = {σk : k < i} ∪ {α ∈ H : there is a σk ∈ T, k < i such that f(α) > f(σk)}

This also implies that the search algorithm will terminate as soon as there are no more states
with a promising heuristic value. And, since the �rst target state selected will already have the best
value, this means that the search space greatly reduces after the �rst target state found.
However, note that combining any other search strategy with the above cut-o� would still ensure

i < j ⇒ D(σi) ≥ D(σj) for σi, σj ∈ T . So a best-�rst search strategy is not necessary to construct a
best-only search if we are willing to discard a few sub-optimal results, and can compute f easily for
arbitrary states.
If we are only interested in a best result if it is unique, we will call this an unambiguous best-only

search. In such a search, we also lower the threshold whenever we �nd two target states having the
same D-value. In a pure best-�rst search, lowering the threshold after we already found a target
state will result in immediate termination, in other search strategies it merely prunes the search
space.

2.6.3 The heuristic function

In order for a best-�rst search to work, the function f needs to be easily computable. In the A*
algorithm, this is achieved by de�ning f as the sum of a path-cost function, g, which gives the
minimum cost needed to reach a state (with g(γ) = D(γ) for states in T), and an estimator (say, h)
that should not over-estimate the needed cost to reach the target state (with h(γ) = 0 for γ ∈ T).

15

If we do not know in advance what our target state is, de�ning h(x) is rather non-trivial. But it is
always safe to de�ne h(x) = 0. The path-cost function g can however be constructed incrementally
at each step. That is, the value of g0(σ) is 0 if σ ∈ O0, and ∞ otherwise. We then recursively de�ne

gi+1(τ) = min{gi(τ), gi(σi) + V(σi → τ)}

Here V(σi → τ) ≥ 0 denotes the cost of taking this transition, assumed to be in�nite if no such
transition exists. If we modify the best �rst-search to use gi(σi) = min giOi instead of f , we will
prove a variant of Lemma 1 to show that this modi�cation is still sound.

Proposition. If i < j, then for each k ≥ i, gk(σi) ≤ gk(σj).

Proof. By induction it follows that for each k ≥ i, gi(σi) = gk(σi). Similarly, gj(σj) = gk(σj) for
k ≥ j. If i ≤ k < j, then it is easy to see that gj(σj) ≤ gk(σj). Combining these two facts we �nd
that gj(σj) ≤ gk(σj) for all k ≥ i.
So it su�ces to show that gi(σi) ≤ gj(σj). We do this by showing that gi(σi) ≤ gi+1(σi+1).
Since σi+1 ∈ Oi+1, at least one of σi+1 ∈ Oi or σi → σi+1 holds. We know that if σi+1 ∈ Oi, then

gi(σi) ≤ gi(σi+1), since the algorithm selected σi over σi+1 at step i. But then it is easy to see that
gi(σi) ≤ min{gi(σi+1), gi(σi) + V(σi → σi+1)}.

2.6.4 Example

We can compute any weighted edit distance between two strings n and m using a best-only search
and an incremental heuristic.
Let the search space be H = N × N, where the tuple (i, j) ∈ H is the state in which we have

matched the �rst i characters of n to the �rst j characters of m. Obviously O0 = {(0, 0)}, and
T = {(|n|, |m|)}.
Now, the transition relation corresponds to the edit operations allowed. For example, (i, j) →

(i + 1, j) would correspond to a delete on the (i + 1)'th character of n. Finally, V(e) is simply the
cost associated with the edit operation corresponding to the transition e.

2.7 Summary

In closing, we see that there are at least two useful ways to add costs to an edit distance, and various
e�cient ways to compute edit distances. Also, we have a a search strategy which can serve in many
ways like a Swiss army knife.

16

3 Implementation

Part of our problem lies in showing how to construct an e�cient way to match input words in a
lexicon, allowing for edit operations to occur. Since we are focusing on natural language applications,
we should assume that in most cases words will not contain errors and that therefore an exact match
su�ces. If we do this e�ciently, we can immediately optimize our approximate matching method by
simply not using it often, and always trying to �nd an exact match �rst.

3.1 Constructing a lexicon

In earlier times, even the problem of �nding exact matches required innovative solutions such as
Bloom �lters [3] due to memory constraints. In recent times even modest computers have enough
memory to keep large lexicons in memory, and we have well-known data structures to do this.
Following [10], we consider three e�cient candidate structures to for this task. Hash tables, binary

trees and trie structures. Of these, hash tables are considered the most e�cient structure, and allow
for a space/time trade-o�. However, hash entries are by design randomly distributed over a hash
table, and performing a single edit operation on a string will produce a very di�erent hash value than
it had originally � in fact there is no relation between similarity and location in the data structure.
This means that the only way to perform a fuzzy match using a hash table would be a brute force
search, which is not acceptable.
Binary search trees do preserve key ordering, but these are still not much help � the relative position

of a keys in a binary search tree is dictated by the need to keep the tree as a whole balanced, not
by key similarity. On top of this, binary trees are slower than other solutions when used for exact
matching since at each node a complete string comparison would have to be performed.
A trie structure seems a promising choice: these are fast, and the position of a key in a trie is

directly related to the contents of the key itself � allowing the retrieval of similar keys more easily.

3.2 Tries

Knuth[13] provides us with an overview of the family of trie structures. In its simplest form, given
an alphabet Σ, a trie is a |Σ|-ary tree storing strings of characters. Whereas in a binary search tree
at each node the decision to go left or right would (in our case) depend on the outcome of a string
comparison, in a trie we have more than two outgoing edges, with each outgoing edge of a node
corresponding to a single character. To �nd a string S in a trie, we start at the root of the trie,
and choose the outgoing edge corresponding to the �rst character of S. We then arrive at a new
node and repeat this process for the second character in S, and so on, until either one of two things
happen:

� We have exhausted all characters in S. In this case, if the node found is represents a stored
key, we have found S. If not, our search has failed.

� We arrive at a node where no outgoing edge matches the next character in S. In this case too
S is not contained in the trie.

We call this a simple trie. A graphical representation can be seen in �gure 3.2.

17

1 data Tr i e = Tr i e [(Char , T r i e)] Bool
2

3 c o n t a i n s : : S t r i n g −> Tr i e −> Bool
4 c o n t a i n s [] (T r i e _ i sKey) = i sKey
5 c o n t a i n s (c : c s) (T r i e s u b t r i e s _)
6 = case lookup c s u b t r i e s o f
7 Just t r i e −> con t a i n s c s t r i e
8 Nothing −> Fa l s e

Figure 3.1: A simple trie lookup implemented in Haskell

Compact tries Various optimizations to this basic structure are possible. For instance, we can see
from �gure 3.2 that a simple trie uses many intermediate nodes that can only lead to a single leaf
node. These essentially encode the su�xes of words. An compact trie removes these by storing the
su�xes directly; in �gure 3.2 we have indicated this by underlining the part of the word that needs
to be stored in the node itself.

Patricia tries This optimization still leaves nodes that only have one outgoing edge. A di�erent
technique called the Patricia trie removes such nodes altogether by collapsing all simple chains of
nodes. Note that a Patricia trie is still a |Σ|-ary tree, even though each outgoing edge is now labelled
by a sequence of characters � since no outgoing two edges from a single may start with the same
character. This means that to store the words freedom and freeze, we are forced to add them as
children of an internal node representing the common pre�x free-, as shown in �gure 3.2.

Digital search trees However, the number of nodes can be reduced further. In a compact trie, only
leaf nodes contain stored su�xes. If we lift this limitation, we can in fact use every node in the trie
to represent a word.
This corresponds to constructing what Knuth[13] calls a |Σ|-ary digital search tree. In this case,

we traverse the tree structure in exactly the same manner as we would in a compact trie � the
di�erence being that each node should be treated as an internal node and `leaf' node at the same
time. For example, to �nd the word freeze in �gure 3.2, we start at the root, noting that it is not
identical to fact, and take the edge corresponding to �rst letter, f. We then �nd that the su�x -reeze
matches the remainder of our search string, and are done.
Note that Knuth[13] only describes binary digital search trees in detail. In such a search tree, each

node only has two outgoing edges, with the next bit of the word searched for controlling whether to
go left or right. However, such a search tree would have drawbacks similar to an ordinary binary
tree when used for fuzzy lexical matching.
In the number of nodes required, a digital search tree is the most parsimonious of the trie variants,

since we only need a single node per word. Another advantage is that we can re-use the data structure
required to implement a compact trie. In fact the only di�erence lies in the insertion algorithm.
Finally, we have a degree of freedom on where to place a word in the search tree. This could be
used, for example, to place words that are likely to be more common nearer to the root of the tree,
and perhaps even to dynamically optimize the shape of the trie during lookup.

18

fact

t
c

a

freedom

m
o

d

freeze

e
z

e
e

r

f

grow

w
o

r
g

Simple trie

fact

a

freedom

d

freeze

z
e

e
r

f

grow

g

Compact trie

fact

ac
t

freedom

do
m

freeze

ze

ree

f

grow

grow

Patricia trie

fact

freeze

freedom

r

f

grow

g

Digital search tree

Figure 3.2: Examples of tries containing the words: fact, freedom, freeze, grow

19

3.3 Theoretical complexity

Assuming our alphabet Σ is �nite, we can determine the theoretical complexity of looking up a string
of length n in a trie.

Proposition. Finding an exact match in a trie has complexity O(n).

Proof. Given that every node in a trie has at most |Σ| outgoing edges, and each character corresponds
to taking at most one edge, we see that an upper bound is O(n·|Σ|) character comparisons. However,
since we can assume Σ to be �xed, |Σ| is a constant, and so the true complexity is O(n).

Note that this proof does not depend on what type of trie we are using.
However, in the application we are interested in, we can be more precise about the true cost of

this �gure, by making a simple observation:

Assumption (Property of languages). The probability of two words sharing a common pre�x P of
length n decreases rapidly as n gets larger.

For a trie structure, this means that beyond the �rst few levels, the arity of our nodes should
rapidly become low, essentially a constant. We can verify this quickly. If we load the RIDYHEW
word list[28] containing over 450000 English word forms as a simple trie, we can calculate the average
arity of internal nodes at the various levels. As can be seen in �gure 3.3 � after the �rst 4 levels,
there is a sharp drop-o� in the arity of internal nodes. In fact we can see that nearly all nodes in
the trie are of low arity. Notable exceptions to this are illustrative as well. For example, the nodes
corresponding to the pre�x `centimilli' and `centimicro' have a high arity � but these are very rare
words. From this we conclude that in the average case, looking up a word in a trie will in actual
fact take much less than n · |Σ| character comparisons.
In terms of memory complexity, a counting exercise shows that a simple trie containing N words

of maximal length m has O(m ·N) nodes. On the other hand, a digital search tree will have exactly
N + 1 nodes, each containing a string of O(m) characters.
In comparison, hash tables have amortized O(m) lookup; and in a balanced binary search tree

we can expect a worst case of O(m logN) comparisons. However, if we take the natural language
property discussed above into account, this can be reduced to an average complexity of O(m+logN)
� since any string comparison between two arbitrary strings will on average fail after a constant
number of steps. This � perhaps surprisingly � means that the complexity of a binary search tree is
not bad, especially if we are often looking up long words in modestly-sized dictionaries.

3.4 Practical performance

Theoretically, we have seen that all tries have equal complexity. Practically, there are large di�er-
ences. We can have a signi�cant impact on the e�ciency and memory footprint by choosing one
variant over the other. Also, there is considerable degree of freedom in representing the outgoing
edges in each node of the trie.
The easiest way to represent a simple trie in C++ is the following structure:

1 s t r u c t t r i e {
2 t r i e * next [2 5 6] ;
3 boo l i s_key ;
4 } ;

While ostensibly quick � �nding the next node in a trie takes only a single lookup, consider again
that even small dictionaries require many nodes. On a 64-bit machine the above structure requires
over 2 kilobytes per node. Looking at the number of nodes of �gure 3.3, it becomes clear that storing
a dictionary this way would require over 2 gigabytes.
But there are better alternatives instead of using an direct array. We list two:

20

level nodes average arity

0 1 26.0

1 26 14.3

2 373 10.4

3 3888 5.6

4 21667 2.8

5 59966 1.7

6 104004 1.3

7 140092 1.1

8 156525 1.0

9 152787 0.9

10 134789 0.8

11 108934 0.7

12 81352 0.7

13 56709 0.7

14 38035 0.6

15 24526 0.6

16 15353 0.6

Arity of nodes (y-axis) plotted against level
inside the trie (x-axis), Brighter colors
indicate more frequent occurrences.

Figure 3.3: Arity of nodes in a simple trie structure storing the RIDYHEW word list.

Pointered structures By storing the outgoing edges in a binary tree, we end up with a data structure
also known as a ternary search tree:

1 s t r u c t t r i e {
2 t r i e * l e f t , * r i g h t ;
3 t r i e * next ;
4 char c ;
5 boo l i s_key ;
6 }

In this structure the left and right pointers point to siblings of the current node, whereas
next is the node we may take if we can match the current character c.

Instead of a binary tree, we can also simply obtain a simple linked list by omitting the left

pointer from this structure � this may gain us more by saving on memory.

Dynamic arrays The downside of the previous structures is that they involve pointer chasing. A
way around this is to represent the association list as a single contiguous object, by using a
(resizable) array. For instance, an implementation using the standard C++ vector container
looks very similar to the de�nition in Haskell:

1 s t r u c t t r i e {
2 vector<pa i r<char , t r i e *>> next ;
3 boo l i s_key ;
4 }

The downside is that, compared to pointered structures, we pay an overhead for maintaining a
dynamic array. Common implementations of vector store a pointer to a dynamically allocated
array and two additional integers indicating the actual and reserved size of that array. The
pair objects also require internal padding since a character and pointer have di�erent sizes.

Both of these issues can be remedied by implementing a custom container for association lists
instead of relying on the C++ library. Regardless, the need to allocate the array itself still
means that this approach uses more memory compared to a linked list.

21

The structures shown so far describe simple tries. However, representing compact tries or a digital
search tree can be done similarly by replacing the bool is_key �eld by a const char *search_key

pointing to the relevant su�x of the key corresponding to the current node, or NULL if there is no
such key 1

Implementing a Patricia trie can be done by replacing the single character stored in each structure
by a string. The obvious way to do this is to replacing the occurrences of char c by const char*

prefix, and allocating the string dynamically.
A more e�cient approach, suggested by [14], is to put an upper limit on the length of pre�xes used

in the Patricia trie. The advantage of this is that we can store the elements of the string directly in
each node. This ensures a more optimal usage of memory. In C++, a structure implementing this
could look as follows:

1 s t r u c t p a t r i c i a _ t r i e {
2 p a t r i c i a _ t r i e * r i g h t ;
3 p a t r i c i a _ t r i e * next ;
4 char p r e f i x [N] ;
5 boo l i s_key ;
6 }

This restricted form of Patricia trie obviates the need for allocating dynamically and saves storing
a pointer, at the cost of requiring more nodes. However, since most pre�xes in a Patricia trie will
be quite small, this should be a good trade-o�.

3.4.1 Optimization considerations

When using a binary tree to store the edges, an obvious optimization is to ensure that such a tree is
balanced. However, in the light of �gure 3.3, this may not gain us much beyond the �rst two levels
of the trie.
On the other hand, an association list � whether implemented as linked list or a dynamic array

� can be combined with a move-to-front optimization in which an element, if chosen, is moved to
the front of the list having the e�ect of placing nodes that are more likely to be visited towards the
front of the list. Alternatively, the list can be sorted beforehand on the weight of the subtries (or a
similar heuristic) to achieve the same e�ect.
Finally, when using a dynamic array, it is also possible to perform a binary search instead of a

linear search, if we ensure the array is sorted on character value.

3.4.2 Allocation strategies

All structures shown are recursive, and so depend on dynamic allocation to make them work. How-
ever, dynamic allocation itself incurs overhead; experiments using gcc 4.4 on a 64-bit Linux machine
shows that the amount of bytes actually needed to allocate an object of n bytes appears to be:

allocated(n) = 16 ·max(2, d(n+ 8)/16e)

This means that by allocating each structure separately, they will end up at least 32 bytes away
from each other. This hurts spatial locality, and thereby the e�ectiveness of caching.
Also, the physical location that each structure takes in memory is (usually) determined by the

order in which they are entered into the lexicon, not their relative position. This may mean that
similar strings can end up in vastly di�erent sections of memory, which is even more detrimental to
spatial locality. This sensitivity to insertion order is demonstrated below.
We can tackle these obstacles by taking a two-step approach to handling our lexicon. Building a

lexicon can be done via the obvious process of repeatedly inserting entries into it.

1 Instead of just the su�x, we can also store the full key at each node � this wastes some memory, but can be useful.

Note that small su�xes may be shared across multiple nodes and so only need to be allocated once.

22

Before using a lexicon, however, we should �rst apply serialization to store it in an easily machine
readable form that ensures that

1. we know beforehand how may struct's we should allocate, so we can do this in a single
allocation, minimizing overhead and maximizing the denseness of our data structure.

2. the physical location in memory of each struct is determined by its logical position in the trie.

By using this approach we can achieve a dramatic improvement. The next table shows the times
for loading the RIDYHEW word list in both lexicographical and randomized order, either by directly
inserting each word in a simple trie, or by reading it in serialized form.

read type load time memory footprint
lexicographical order random order

direct read 233ms 687ms 35103kb
using serialization <100ms <100ms 26327kb

3.4.3 Comparison of trie implementations

Empirical data is necessary to decide what data structure is optimal, and what representation to
use. Since testing all combinations is prohibitive, we restrict ourselves to the following

� Compare linked lists, binary trees and dynamic arrays when applied to a simple trie

� Compare the various tries using the same representation of outgoing edges

In each case the test consisted of compiling the RIDYHEW list (in a randomized order), and
measuring the time needed to look up 10 million samples randomly drawn from it. Each test was run
a number of times, the table lists the median values. We will also note the memory requirements. All
programs were written in C++, compiled using gcc 4.4 using -O3. The benchmarks were performed
on an Intel Xeon E5310 running Linux in 64bit mode.
Table 3.1 shows the results. The primary implementations considered were those using a plain

linked list, a linked list sorted on the size of their subtries � so entries likely to be taken are nearer
to the front � and a plain binary tree. For comparison, we also test an implementation in which the
trees were AVL-balanced. This had no noticeable improvement.
Also compared were implementations using dynamic arrays, implemented using both a simple

linear search in a vector sorted on the size of the subtries and a binary search in a vector sorted
lexicographically. It is noteworthy that this last approach performed signi�cantly worse than the
others. In order to measure the overhead a standard vector, we also implemented a more compact
representation � this had identical performance but a much reduced memory footprint.
We conclude that the simplest technique (that of a linked list with an optimized search order)

already performs well, and has the smallest memory footprint. Binary trees are also a safe (and
perhaps more robust) choice. Using a di�erent representation does not seem to be bene�cial.

lookup time (ms) in-memory size of lexicon (kb)
Linked list 2110ms 26327kb
Linked list (sorted) 1206ms 26327kb
Binary tree 1136ms 35103kb
Binary tree (AVL-balanced) 1129ms 35103kb
Vector (linear search) 1320ms 52655kb
Vector (binary search) 1995ms 52655kb
Compact array (linear) 1320ms 38394kb

Table 3.1: Comparison of simple trie implementations

23

We now compare di�erent trie variations, using a linked list to store the edges between nodes as
above. The results are shown in table 3.2. For each trie variant, we list the number of nodes, the
time taken to look up 10 million samples (as before), and the in-memory size. For comparison, we
also list some results on hash tables with k buckets (using the Fowler/Noll/Vo hash function[21])
and a basic AVL tree. While it is clear that hash tables are the fastest data structure, tries perform
more than adequately and allow for a highly compact representation.
It is, however, surprising that a `compact' trie is actually less compact than a simple trie. A

likely causes of this is that the RIDYHEW lexicon does not provide enough opportunity for the
tail optimization to be useful. On arti�cially large word lists, a compact trie shows a signi�cant
improvement in memory footprint over the simple trie.

#nodes lookup time (ms) in-memory size of lexicon (kb)
Simple trie 1123327 1206ms 26327kb
Compact trie 869016 1350ms 27527kb
Digital search tree 459027 1225ms 15880kb
Unrestricted Patricia trie 572957 1512ms 19561kb
Restricted Patricia trie, N = 4 642035 1084ms 15047kb
Hash table k = (214) 1598ms 25687kb
Hash table k = (216) 933ms 27415kb
Hash table k = (218) 677ms 33648kb
AVL tree 1290ms 35870kb

Table 3.2: Evaluation of trie variants

In conclusion, a digital search tree or restricted Patricia trie seems to be the best choice for an
overall data structure, combined with linked lists or binary trees for the internal representation of
edges. But a simple trie might in fact also su�ce, depending on the lexicon. In any case, performance
is more than adequate.
It is important to note these results apply only to the RIDYHEW list. For larger lexicons we

expect � on the basis of the theoretical advantages � that a simple trie is not su�cient. For similar
reasons, using linked lists seems less preferable when we have better options. But clearly, even for a
large English lexicon such as RIDYHEW the results do not conform to this expectation.

3.5 Fuzzy matching in a lexicon

Having discussed only exact matching so far, we now turn to a core research question. A naïve
solution to perform fuzzy matching in a simple trie is exempli�ed by the fragment in �gure 3.4. This
function takes the directly recursive approach � similar to the code in �gure 2.1 � to test whether
the trie contains a key matching the string within Levenshtein distance d.
As before, this solution is not very e�cient, and potentially visits each node in the trie many

times. An attempt at modifying this function to return more information than a simple boolean
answer will at best result in a function only usable in very small toy examples.

3.5.1 Using �nite state machines

A more promising, and in fact much easier technique is to use the �nite state machine of section 2.4.1;
if we assume that we have access to these via the functions nfaSetup, nfaFeed and nfaAccepts, a
Haskell implementation could be as simple as:

24

1 fuzzy_match ' d s t r i n g t r i e = match (n faSetup d s t r i n g) t r i e
2 where
3 match s t a t e root@ (T r i e s u b t r i e s i sKey)
4 = nfaAccep t s s t a t e && i sKey
5 | |
6 or [match (nfaFeed c s t a t e) t r i e | (c , t r i e) <− s u b t r i e s]

In a �nite state machine described in section 2.4.1, each application of nfaFeed is an O(k) oper-
ation. It is easily seen that the function visits each node in the trie only once. Since the number of
nodes in a simple trie containing N words of maximal length m is O(m ·N), this function has the
same worst-case complexity as a brute-force search in a simple list of words.

3.5.2 Adapting automata for best-�rst search

As discussed in section 2.4.1, it is easy to reason about the state of a �nite state machine in the agrep
approach. In particular, we can easily see what the optimal edit distance is at which an automaton
may still produce a match by determining which rows of the automaton still contain active states.
And since all transitions in the automaton at best keep the edit distance the same, this means that

we can use this measure to construct a heuristic function f̂ operating on the state s = {wi)0≤i≤k of
the automaton:

f̂(s) = min
i
{wi 6= 0 : wi ∈ s}

This function is monotonic, so can be used to construct a best-�rst search by setting f(s) = f̂(s)
if the automaton is not in any accepting state and de�ning f(s) to be the edit distance matched
if it is. Since these values can be computed easily, we can use it to compute a best-only result as
described in section 2.6.2.
A downside is that we have no e�cient automaton that computes a generalized edit distance.

3.5.3 Adding memoization to the naïve solution

Another approach is to improve the naive solution shown in �gure 3.4 using a best-�rst search with
an incremental heuristic as described in section 2.6.3. In this case the search space H = N × {i ∈
N : i ≤ |S|} is the product of the set of nodes in the trie and the set of valid indices into the string
S that we want to match. The state (ν, i) captures that we have reached ν in the trie and have
discarded the �rst i characters of S.

1 fuzzy_match : : I n t −> S t r i n g −> Tr i e −> Bool
2 fuzzy_match d _ _ | d < 0
3 = Fa l s e
4

5 fuzzy_match d [] root@ (T r i e s u b t r i e s i sKey)
6 = isKey | | or [fuzzy_match (d−1) [] t r i e | (_, t r i e) <− s u b t r i e s]
7

8 fuzzy_match d (c : c s) root@ (T r i e s u b t r i e s i sKey)
9 = case lookup c s u b t r i e s o f

10 Just t r i e −> fuzzy_match d cs t r i e
11 Nothing −> Fa l s e
12 | | ed cs r oo t
13 | | or [ed cs t r i e | (_, t r i e) <− s u b t r i e s]
14 | | or [ed (c : c s) t r i e | (_, t r i e) <− s u b t r i e s]
15 where ed = fuzzy_match (d−1)

Figure 3.4: Naïve solution of fuzzy matching in Haskell

25

Our set of goal states is T = {(ν, |S|) : ν ∈ N , ν represents a stored key}. The state transitions
correspond to the edit operations, as before. That is, given a state (ν, i), the set of next states is
{(ν, i+ 1)} ∪ {(µ, i) : µ is a child of ν} ∪ {(µ, i+ 1) : µ is a child of ν}. which correspond to deleting
the i'the character in S, inserting a character from the trie before the i'the character in S, and
matching/replacing the i'the character of S with a character in the trie.
The cost function V((ν, x) → (µ, y)) then simply corresponds to the cost assigned to these edit

operations, which is an easy function to compute. So we have all the required tools to construct a
best-�rst search in the trie.
The complexity of this search can easily be seen to be the limited by the size of the search space.

That is, if we have a trie containing N words of maximal length m, matching a string S of length n
has worst-case complexity O(n ·mN), which is the same as that of a brute-force search implemented
using the dynamic programming algorithm of �gure 2.3. However, we should expect to visit each
node much less than m times, and we expect the average case complexity to be closer to O(n+mN).
Compare this with O(n+ kmN) for the approach of the previous section. We also need to maintain
a negative memo-table, which in the worst case may consist of O(mN) entries, but usually much
less.
Note that the idea of using best-�rst search in a trie to solve edit distances is not new; an early

mention of it is found in [7].

3.5.4 Comparison of techniques

We implement both techniques in C++ using a simple trie. We chose this data structure for three
reasons:

� We have seen that is is reasonably e�cient, and very compact.

� The choice of structure should not have as large an impact as the size of the lexicon itself.

� Implementing a best-�rst search is easiest on a simple trie.

We then perform a best-only and an unambiguous best-only search. To control this search we use
a priority queue consisting of k+ 1 buckets (each implemented using C++ vector) as our open list,
one for each possible edit distance. In this way we can select the next best possible continuation
and add continuations to the open list in (amortized) constant time. The closed list can either be
represented by a set or unordered_set; this choice did not seem important.
When performing a best-only search using automata, we largely follow the best-�rst search strat-

egy, but greedily open a node µ if the cost of the transition from node ν to µ in the trie did not
increase the heuristic value of f̂ . This should prevent opening too many states that are irrelevant.
Also, using automata we do not need to explicitly maintain the closed set, as we are guaranteed to
visit every node just once.

search strategy max. distance Levenshtein automaton Best-�rst
best-only d = 1 1.8s 5s
unambiguous best-only d = 1 1.3s 4s
best-only d = 2 11.5s 53s
unambiguous best-only d = 2 6.4s 35s
best-only d = 4 66s 8m
unambiguous best-only d = 4 26s 264s

Table 3.3: Time taken to correct Norvig's data set using an unweighted Levenshtein distance

To measure performance, we use the RIDYHEW word list and the list of misspellings obtained
from [22], used in section 4.2.1. During this test, we look up around 47000 words (most of which

26

with small or medium errors) using best-only and unambiguous best-only search using a unmodi�ed
Levenshtein distance, for a maximum edit distance d ∈ {1, 2, 4}.
The results are shown in table 3.3. In a direct comparison, it is clear that the best method to

perform fuzzy matching using a standard Levenshtein distance is a best-�rst search combined with
Levenshtein automata.
However, as we will see in the next section, the usefulness of Levenshtein distance with d > 1 is

questionable. Also, by modifying the weights of each edit operation the search space will change as
well � many obscure parts of the lexicon will be pruned even before the search has begun.

3.6 Summary

In this chapter we have investigated building an actual implementation of fuzzy lexical matching in
C++. For use as a data structure, either a digital search tree or restricted Patricia trie using an
association list or binary tree to store pointers to child nodes seems the best option.
Fuzzy matching using a unweighted edit distance can be implemented using Levenshtein automata

and an informed search strategy. However, these become unwieldy for a weighted edit distance.
Applying a best-�rst search directly also results in solution that � although slower in the case of a
unweighted edit distance � is still viable.

27

4 E�ectivity of fuzzy matching

In this chapter we will try to determine whether an implementation of a weighted edit distance
based on a confusion matrix is an improvement over an unweighted Levenshtein distance. A �rst
impression is that this should be the case. Many spelling errors consist of a single edit operation.
Secondly, a majority of errors are of the same type.
In the sets of corrupted spellings examined in this chapter, we have found that common errors

involve the vowels e, i, a, which often get inserted, deleted or replaced with each other. Errors
involving consonants are usually simple insertions and deletions, and seem focused around the letters
r,l,n,s and t. If we construct a set of weights for an edit distance that takes advantage of these facts,
it is reasonable to expect some improvement in our ability to detect and correct spelling errors.

4.1 Framework for evaluation

An often-used measure of e�ectivity for spelling correction is the accuracy: how many incorrect
words were detected and corrected successfully? However, a richer picture can be obtained if we
treat a spelling corrector as a binary classi�er. A framework for this is presented in [25].
This framework operates by partitioning a test set into two groups: words that we want to see

corrected (the target group) and words that should be left as-is. Secondly, the subset of words that
are being acted upon by an automatic correction mechanism are considered to be selected.
The division between target and non-target is not necessarily very sharp. For example, if an out-

of-lexicon word becomes corrupted, we have no hope of correcting it using a lexicon-based correction
system information. In fact, there is a signi�cant risk of `correcting' uncorrupted out-of-lexicon
words.
Given the scope of our implementation, we will consider such cases to be non-target. That is, we

want out-of-lexicon words to be left as-is.
Looking at the intersections of the (non-)target and (non-)selected groups, we get four familiar

classes:

true positives (TP) target and selected ; i.e. words that contained errors that have been corrected
successfully

true negatives (TN) non-target and not selected : words correctly kept as-is. These are primarily
uncorrupted words we can �nd by an exact match, but also � as outlined above - out-of-lexicon
words that successfully evaded correction

false positives (FP) non-target and selected. These are the cases in which a system erroneously
`corrects' a word. By design the only case in this class are out-of-lexicon words that our
system corrects to an in-lexicon word (`false friends')

false negatives (FN) target and not selected ; this is the remaining class of in-lexicon words that
were corrupted and either not corrected, or corrected to the wrong word

Using these de�nitions, the recall R = TP/(TP + FN) is the ratio of errors caught; the precision
P = TP/(TP +FP) is the ratio of selected words where we have successfully performed a correction.
These two can be combined into the F measure by taking the harmonic mean: F = 2RP/(R+ P).
However, we will also have to be more precise about what it means for a word to be in the selected

set. This too is not a sharp de�nition. For example: if we attempt to correct the word `entorpy';

28

Figure 4.1: Schematic representation of spelling correction task (due to [25]

should it count as a True Positive if we are presented with a list of 100 possible corrections at the
same edit distance, of which `entropy' is but one? If we are simply interested in the capacity to
retrieve the correct form, it should; if on the other hand we are interested in the capacity of our
system to unambiguously select a correction, this is a False Negative. The framework of [25] deals
with this by classifying correction tasks into levels; each building upon the other, in the sense that
higher levels can at best perform as well as lower levels. We will follow this general idea; and so the
de�nition of the selected set will vary between tests.

4.2 Obtaining actual confusion data

Until now, we have not bothered with actually deriving a confusion matrix needed for a weighted
edit distance. This turns out to be rather problematic; we failed to �nd any ready-to-use matrices
in the public domain. One suggested approach is to use an iterative process[12]: start with a regular
edit distance, run a spell checker, update the confusion table and repeat. Another involves building
a stochastic model[27]; but deriving edit costs again is a iterative process. Both approaches are
rather involved, and tend to focus more on assigning a probability to word-correction pairs, instead
of constructing a simple edit distance. For example, in the approach taking by [27], no two strings
have an edit distance of 0.
A more straight-forward approach is taken by [1]: letting C(i, j) denote the relative frequency

with which the letter i should get substituted by j, they derive the associated substitution cost as

S(i, j) = log C(i,i)
C(i,j) (for i 6= j).

We will take an even simpler view. We observe that the most frequently needed correction step
should have the smallest edit distance (1), and all other edit operations should get scores relative to
that operation. Given a list of simple edit operations O, let Nop denote the number of times that
the operation op ∈ O was needed to correct an error. Then we can derive the penalty for op as

P (op)
def
= 1 + log

maxop′∈ONop′

Nop
(4.1)

As an exception, substituting a character for itself is not considered an edit operation, and so the
`penalty' for substituting a character by itself is �xed at P (c→ c) = 0.
The rationale for this formula is mainly that it is simple. But, we can also see that maxop′ Nop′/Nop

is proportional to the expected number of edit operations we need to perform to see a single oc-
currence of op. Adding the logarithms of these is, of course, related to multiplying these expected
values. In other words, de�ning the penalties in this way is not entirely arbitrary.
Using de�nition 4.1, we have reduced the problem to simply �nding a frequency count of needed

corrections, given a set of correct words and misspellings.

4.2.1 Chosen data sets

As test material, we have used two di�erent sources. The �rst � which we will call Norvig's data
set � is taken from [22]. This provides us with a large list of words with associated misspellings,
collected from various sources (amongst others, misspellings found on Wikipedia). The same source
also provides us with counts of spelling correction edits, including one character of pre-context in

29

the case of insertions and deletions. From this list of correct words, we have �ltered out the ones in
which the correct word contained a contraction (hasn't, that's) or was a possessive form � since we
feel most of these should not be handled at the vocabulary level.
A drawback of this list of misspellings is that it contains many of far-fetched misspellings � for

example, suxsefel for successful, or mutril for mutual, and it treats every misspelling as equally
common.
Therefore, we also have used the EPO1A corpus[15] � consisting of abstracts of patent applications

� to generate a list of word corrections ourselves. We have done this by (using a large English
vocabulary) selecting all out-of-vocabulary lower-case words which occur only once (hapax legomena)
or twice (dis legomena), as candidate-misspellings. This produced 1873 hapax, out of which we
identi�ed 544 as misspellings, and 417 dis legomena, out of which 40 could be identi�ed as corrupted.
These word lists were small enough to correct by hand, giving us some measure on the occurrence
of edit corrections needed in a real-world texts. Like [6], we found that the vast majority of errors
found consisted of a wrong, missing or inserted letter, or transposition of two adjacent letters. In
some cases, a bigram had to removed; the most common example of this is a super�uous -ly su�x
in words such as stepwisely or edgewisely.
As in Norvig's data set, we �nd that most corruptions fall into a small group of single letter

operations; �gure 4.2 lists the frequency of each simple edit operation necessary to correct a misspelt
word. We also see that the 16 most common corrections are all insertions and deletions, and that
these account for about half of all errors � clearly, adding a contextual information in these cases
will help to make a weighted edit distance more discerning.
A similar table listing the frequency of single letter corrections, also taking into account one single

character of pre-context, and allowing for swaps of adjacent characters is listed in the appendix.

36 ∅→i
32 ∅→e
30 ∅→r
30 ∅→l
22 i→∅
20 n→∅
20 l→∅
19 e→∅
19 ∅→s
18 ∅→t
14 ∅→a
13 s→∅
12 r→∅
12 a→∅
12 ∅→n
11 ∅→c
10 e→a
10 a→e
9 t→∅
9 i→e
9 i→a

9 e→i
9 ∅→m
8 m→n
8 ∅→d
6 t→i
6 o→e
6 i→t
6 e→o
6 a→i
5 u→∅
5 c→∅
5 ∅→p
5 ∅→g
4 u→i
4 r→e
4 n→m
4 n→g
4 m→∅
4 g→n
4 ∅→u
4 ∅→o

4 ∅→h
3 p→∅
3 n→a
3 l→a
3 i→u
3 i→c
3 e→u
3 e→r
3 d→∅
3 c→i
3 a→n
3 a→l
2 y→r
2 x→s
2 u→t
2 u→s
2 u→o
2 u→e
2 t→u
2 s→u
2 s→o

2 s→c
2 r→y
2 r→o
2 r→n
2 p→e
2 o→u
2 o→s
2 o→r
2 o→m
2 o→l
2 o→a
2 o→∅
2 m→o
2 l→r
2 l→o
2 l→f
2 g→q
2 f→∅
2 e→p
2 b→∅
2 ∅→y

2 ∅→x
2 ∅→f
1 y→i
1 y→e
1 y→a
1 v→i
1 v→f
1 u→r
1 u→l
1 u→a
1 t→s
1 t→r
1 t→p
1 t→o
1 t→h
1 t→b
1 s→z
1 s→l
1 s→e
1 s→d
1 r→u

1 r→t
1 r→p
1 r→m
1 r→l
1 r→i
1 r→c
1 r→a
1 p→t
1 p→r
1 p→o
1 p→a
1 o→t
1 o→p
1 n→i
1 n→e
1 n→d
1 m→r
1 m→e
1 m→a
1 l→u
1 l→s

1 l→i
1 l→b
1 j→h
1 j→d
1 j→a
1 i→v
1 i→r
1 i→n
1 i→f
1 h→t
1 h→e
1 h→∅
1 g→t
1 g→d
1 f→v
1 f→l
1 f→i
1 e→s
1 e→n
1 e→m
1 e→h

1 e→b
1 d→n
1 d→j
1 c→t
1 c→s
1 c→r
1 c→n
1 c→d
1 b→p
1 b→l
1 b→e
1 a→y
1 a→u
1 a→r
1 a→p
1 a→m
1 a→j
1 ∅→z

Figure 4.2: Frequencies of single letter corruptions � without pre-context � in the hapax and dis
legomena of the EPO1A corpus.

30

4.3 Experiments performed

Since the starting point for our implementation was an unweighted edit distance, it is only appropri-
ate to also use this as a baseline against which we want to see an improvement. We will use both the
standard Levenshtein distance[17] as well as the Damerau-Levenshtein distance[6] which also allows
for transpositions of two adjacent characters.
As our attempted improvement, we will consider a weighted edit distance which lists a cost for

substituting, inserting and deleting a single character (i.e. which can be represented using a single
|Σ| × |Σ| matrix), as well as a weighted edit distance which also uses one character of context, as
described in section 2.5.
These four systems will be tested in a number of settings. In each setting we will supply a lexicon, a

list of correct words and corresponding misspellings, and for each word type (correct and corrupted)
perform a best-only search in our lexicon. Thus, only words found at the minimum distance count
as a correction candidate.

Basic correction capability Given a lexicon consisting only of the correct word forms, measure Re-
call. At this level, a word is selected if it is in the list of candidates. This is the most favorable
condition � ideally, we should have a Recall of 1. Precision will be 1 by design.

Basic error detection Use RIDYHEW as a lexicon, which has a comprehensive but incomplete
coverage, measure Recall and Precision. Selected words are as in the previous test. The e�ect
of a wider lexicon should provide more background `noise'.

Frequency-based correction As in the previous case, but from the list of correction candidates pick
the most frequently occurring word (according to an externally provided frequency count).

Unambiguous correction As in the second case, but only consider a word selected if it is an unam-
biguous match � i.e. no alternative matches at the same edit distance exist. We can use the
unambiguous best-only search of section 2.6.2 to do this more e�ciently than the frequency-
based selection.

There is an increasing level of di�culty in these tests; for example, if a word fails to be corrected
during frequency-based correction, it will obviously also fail to be an unambiguous match. Note that
only the last two tests actually perform a one-to-one correction of words.
We also need to measure how robust our correction mechanism is when encountering correct

out-of-lexicon words. To do this we use a probabilistic test:

Robustness Split a word list randomly into a lexicon (97%) and a test-set (3%); attempt to look up
the test-set in the lexicon and measure the False Positive Rate, FP/(FP + TN).

Since none of the words of the test-set will be in the lexicon, Recall will obviously be 0. Note that
we can measure the False Positive Rate in two ways: either as we would in the Frequency-based
correction task (in which case any correction candidate immediately results in a False Positive), or
as in the Unambiguous correction-task (in which case we are still okay if we �nd more than one
correction candidate).
By repeating this test a number of times and averaging the result, we will get an indication about

how robust a system is against so-called false friends.

31

4.4 Results

Norvig's data set First, we present the results of the aforementioned tests applied to the �rst
list of misspellings, using the associated confusion data. The maximum edit distance for correction
candidates in all cases was set to the arbitrary large value of 64 to give an upper bound on recall.

task measure TP TN FP FN Recall Precision

Base correction Levenshtein 24563 7754 0 14754 0.625 1
Error detection Levenshtein 16515 7270 1346 21940 0.429 0.925
Frequency-based correction Levenshtein 13501 7234 1507 24829 0.352 0.9
Unambiguous correction Levenshtein 6744 8083 533 31711 0.175 0.927
Base correction Damerau-Levenshtein 24982 7754 0 14335 0.635 1
Error detection Damerau-Levenshtein 17188 7270 1346 21267 0.447 0.927
Frequency-based correction Damerau-Levenshtein 14117 7234 1507 24213 0.368 0.904
Unambiguous correction Damerau-Levenshtein 7073 8080 536 31382 0.184 0.93
Base correction Weighted 22693 7754 0 16624 0.577 1
Error detection Weighted 14052 7270 1346 24403 0.365 0.913
Frequency-based correction Weighted 13489 7234 1507 24841 0.352 0.9
Unambiguous correction Weighted 10343 7615 1001 28112 0.269 0.912
Base correction Weighted w. context 23284 7754 0 16033 0.592 1
Error detection Weighted w. context 13730 7270 1346 24725 0.357 0.911
Frequency-based correction Weighted w. context 13405 7234 1507 24925 0.35 0.899
Unambiguous correction Weighted w. context 11037 7557 1059 27418 0.287 0.912

EPO1A data Next, we perform the same tests on the misspellings obtained from the EPO1A
corpus, and the associated confusion data.

task measure TP TN FP FN Recall Precision

Base correction Levenshtein 592 533 0 0 1 1
Error detection Levenshtein 530 519 29 47 0.919 0.948
Frequency-based correction Levenshtein 449 501 65 110 0.803 0.874
Unambiguous correction Levenshtein 285 536 12 292 0.494 0.96
Base correction Damerau-Levenshtein 592 533 0 0 1 1
Error detection Damerau-Levenshtein 565 519 29 12 0.979 0.951
Frequency-based correction Damerau-Levenshtein 485 501 65 74 0.868 0.882
Unambiguous correction Damerau-Levenshtein 317 536 12 260 0.549 0.964
Base correction Weighted 592 533 0 0 1 1
Error detection Weighted 506 519 29 71 0.877 0.946
Frequency-based correction Weighted 480 501 65 79 0.859 0.881
Unambiguous correction Weighted 416 527 21 161 0.721 0.952
Base correction Weighted w. context 590 533 0 2 0.997 1
Error detection Weighted w. context 503 519 29 74 0.872 0.945
Frequency-based correction Weighted w. context 479 501 65 80 0.857 0.881
Unambiguous correction Weighted w. context 450 526 22 127 0.78 0.953

It is immediately clear that the EPO1A set is better suited to edit-distance based word correction:
this much is clear from the fact that the correct word is practically always amongst the correction
candidates found using a best-only search in three out of four cases.
The Recall value decreases with each task, as should be expected � if a word is a true positive in

the Unambiguous correction task, then it will also be selected by the Frequency-based task (since it
is the only result at that edit distance), and the Error detection task. Finally, the lexicon used in the

32

Error detection task has less coverage than the one used in the Base correction task, and therefore
more opportunities for false negatives.
It should also be noted that the Base correction recall of the Levenshtein distance provides an

upper bound for the weighted edit distance, and similarly the Damerau-Levenshtein distance is an
upper bound for the weighted edit distance with context. This may be surprising, but is also to
be expected: the average cost of edit operations goes up, yet the maximum edit distance stays the
same. From this it immediately follows that the maximally obtainable recall is quite low (0.635) in
the case of Norvig's data set.
Note that the precision values stay consistently high � this is primarily because we are using

lexicons with high coverage. The primary thing to note in this column is that the score for Frequency-
based correction is a �rst indication that it is more susceptible to false friends.

The false friends problem Given enough edit operations, we can transform every word into every
other word. To prevent this we need to �nd an acceptable maximum allowed edit distance. We do
this by repeating the above test using a maximum edit distance d, determining both the reduction
in Recall, and the `False friends ratio', de�ned as the False Positive Rate in the Robustness test. We
also compare unambiguous best-only correction with frequency-based correction. These tests have
only be run on the EPO1A data set.

Unambiguous Frequency-based
task Recall False friends Recall False friends
Levenshtein d = 1 0.45 0.10 0.70 0.16

Levenshtein d = 2 0.49 0.20 0.80 0.48
Levenshtein d = 4 0.49 0.33 0.80 0.89
Damerau-Levenshtein d = 1 0.53 0.10 0.83 0.17

Damerau-Levenshtein d = 2 0.54 0.21 0.86 0.49
Damerau-Levenshtein d = 4 0.54 0.33 0.87 0.88
Weighted d = 2 0.59 0.07 0.69 0.08
Weighted d = 4 0.71 0.22 0.84 0.31
Weighted d = 8 0.72 0.49 0.86 0.72
Weighted w. context d = 2 0.18 0.01 0.18 0.01
Weighted w. context d = 4 0.64 0.06 0.69 0.06
Weighted w. context d = 8 0.69 0.18 0.75 0.20

Using an unweighted edit distance, increasing the maximum edit distance beyond 1 gives a negli-
gible improvement on recall, but increases the number of false friends dramatically. In these cases,
using d = 1 and a frequency-based selection seems the best choice.
A good value of d for weighted edit distances seems to be d = 4; as there is little improvement in

Recall but a rise in false friends after that. More importantly, the unambiguous best-only correction
method performs nearly as well as the frequency-based selection on this test. This is helpful, since
we can then use the faster unambiguous best-only search.
We will now repeat the benchmarks measuring performance on Norvig's data set (seen earlier in

table 3.3) to these three methods. To compute a Damerau-Levenshtein distance we use the �nite
state automaton approach described before; to compute weighted edit distances we use a best-�rst
search and memoization, as described in chapter 3.

correction task time needed
(Frequency based) Damerau-Levenshtein d = 1 2.5s
(Unambiguous) Weighted d = 4 25s
(Unambiguous) Weighted w. context d = 4 4.4s

In conclusion, we �nd that a weighted edit distance with context can be very e�ective at correction
tasks. It produces fewer false friends � and can have good performance. On the other hand, there
seems to be little point in using a weighted edit distance without context.

33

5 Conclusions

We have outlined a method for performing fuzzy matching against a lexicon using a standard edit
distance and a form of weighted edit distance. By implementing these in the course of this research,
we have determined answers to the questions posed in our original problem statement:

Which algorithms and data structures can we use? Variations on tries, especially digital search
trees and restricted Patricia tries are useful data structures. Levenshtein automata imple-
mented using bit-parallelism are an e�cient way to compute an unweighted edit distance.
Dynamic programming and best-�rst search are possible techniques to implement a weighted
edit distance.

Can we e�ciently implement these? Trie structures allow for a very compact representation. A
Levenshtein automaton can be applied to such a trie structure using an informed search strat-
egy; we have found a combination of best-�rst and greedy search to be the most e�cient. Using
best-�rst search to compute a weighted edit distance in a trie directly is also feasible.

How should we modify the edit distance measure? The approach taken in this thesis is to assign
weights to edit operations. Because insertions and deletions are the most common operations,
the weight of these operations must also depend on contextual information.

How do we determine that, so doing, we have improved word correction? Using the evaluation
framework provided by [25], we can meaningfully use the notions of Recall, Precision and
False Positive Rate to evaluate any spelling correction system thoroughly.

Can we use our implementation outside an experimental setup? Yes, if we restrict ourselves to a
unweighted edit distance. We are, however, not yet satis�ed that the bene�ts of a weighted
edit distance outweigh the costs of implementing it in a practical setting.

While we have shown that a weighted edit distance can perform better than a standard edit
distance, this does come at a price � �nding a useful list of spelling errors is hard. Constructing
these data sets by hand is time consuming � processing a data set to obtain the hapax legomena
can be automated, but each spelling error has to be detected and corrected by hand. In some cases
the intended word is unclear, or requires contextual information. It is also very tedious work � it
took 8 hours to construct a list of misspellings and corrections for the EPO1A corpus.
Yet, having a good data set is essential for construction a reliable confusion matrix. During

construction, we have observed that a good confusion matrix serves two purposes � �rst, it improves
the recall and precision of spelling correction. But it also helps shape the search space so that a
best-�rst search can be run at an adequate speed. A bad confusion matrix therefore means we will
have to spend more time waiting for worse results.
Because of this, we consider this implementation of weighted edit distances promising, but still

only useful in an experimental setup.

34

5.1 Further challenges

During this research, many problems were encountered that we did not address, but which are
important to fuzzy lexical matching.

� Our construction of confusion matrices was largely based on intuition, and only intended to
demonstrate the feasibility of a weighted edit distance. Also, we did not split our data sets
into a training and test set, which implicitly means our experiments su�er from over�tting. To
construct better matrices, a more rigorous analysis than performed in this thesis is called for.

� The start of the art seems to be moving towards a more general n→ n substitution model of
edit distance[4], which can also model common mistakes such as ph→f, OCR errors where two
letters are merged into one, or perhaps use even more context to help correct speci�c cases
such as recognizing the su�x -ize whenever the lexicon considers -ise correct.

� OCR correction usually produces word boundary errors as well, where spaces get introduced
in between words or are dropped. This adds an extra challenge of �nding a correct splitting
into words of an entire sentence. Combining this with fuzzy matching might be possible, but
a statistical approach may also be necessary[22].

� In some cases, a word is obviously misspelt (such as the word froward whenever forward is
intended), but cannot be corrected by a purely lexical system since the corrupted word is also
a valid word � but does not make sense in the context where it occurs.

� Instead of a �xed list of words, we might want to use an open lexicon. For example, one
which can recognize any arbitrary chemical formula, or valid postal codes. This at the very
least requires extensions to the trie used to implement the lexicon � and will probably involve
modelling it as a very large deterministic �nite state automaton.

35

Frequency of corrections in EPO1A

This appendix lists the frequency with which single edit operations were necessary to correct misspelt
words found in the EPO1A corpus as described in 4.2.1. This list is similar to the one in �gure 4.2, but
counts transpositions separately and includes one character of pre-context in the case of insertions
and deletions. No insertions or deletions were ever required at the start of a word.

10 ll→l
10 l→ll
10 e→a
10 a→e
8 u→ur
8 m→n
8 m→mm
8 i→a
6 r→re
6 o→e
6 n→ne
6 in→i
6 e→o
5 t→tr
5 ss→s
5 s→ss
5 s→si
5 r→rr
5 nn→n
5 i→ic
5 ee→e
5 b→bi
5 a→i
4 ti→it
4 t→ti
4 t→te
4 ra→r
4 p→pp
4 o→or
4 o→ol
4 n→nt
4 n→ng
4 n→m
4 mm→m
4 i→is
4 ei→ie
4 e→es
4 e→er

3 ur→u
3 si→s
3 s→st
3 s→se
3 rr→r
3 ri→r
3 r→ra
3 p→pl
3 ng→gn
3 na→n
3 n→ni
3 li→l
3 l→li
3 iu→ui
3 it→i
3 ii→i
3 i→in
3 i→e
3 g→ge
3 en→e
3 e→i
3 c→ci
3 al→la
2 yr→ry
2 y→yn
2 y→yc
2 x→s
2 v→vi
2 ut→tu
2 u→ut
2 u→ul
2 tr→t
2 ti→t
2 t→tt
2 t→th
2 su→us
2 se→s
2 s→sf

2 rn→r
2 rl→r
2 re→r
2 re→er
2 r→n
2 pr→p
2 pl→p
2 p→pt
2 p→pi
2 ou→o
2 on→o
2 ol→o
2 ol→lo
2 o→os
2 o→oi
2 o→a
2 na→an
2 n→ns
2 n→nl
2 n→nd
2 mo→om
2 me→m
2 la→l
2 l→r
2 l→le
2 it→ti
2 is→i
2 il→i
2 ie→ei
2 ic→ci
2 i→ia
2 he→h
2 g→q
2 �→f
2 f→�
2 er→e
2 ep→pe
2 e→en

2 e→ec
2 de→d
2 dd→d
2 d→de
2 d→dd
2 ci→c
2 bb→b
2 b→bl
2 a→au
2 a→ar
1 zi→z
1 z→zi
1 yp→y
1 ya→ay
1 y→yl
1 y→yi
1 y→yd
1 y→i
1 y→e
1 xt→x
1 xc→x
1 x→xc
1 wi→w
1 vl→v
1 vc→v
1 v→ve
1 v→f
1 uu→u
1 us→u
1 ur→ru
1 uo→ou
1 ul→u
1 ul→lu
1 ue→eu
1 ua→au
1 u→us
1 u→un
1 u→ua

1 u→i
1 ts→t
1 tp→pt
1 te→t
1 ta→t
1 t→to
1 t→tl
1 t→ta
1 t→s
1 t→b
1 st→s
1 so→os
1 s→z
1 s→so
1 s→sl
1 s→d
1 s→c
1 rt→tr
1 ro→or
1 ri→ir
1 ra→ar
1 r→ry
1 r→rs
1 r→rh
1 r→rd
1 r→l
1 r→e
1 q→qu
1 pr→rp
1 pp→p
1 po→p
1 pa→ap
1 p→pr
1 p→ph
1 p→pe
1 p→pa
1 ou→uo
1 ot→to

1 os→so
1 or→ro
1 op→po
1 oo→o
1 oi→o
1 oc→o
1 o→ou
1 o→ot
1 o→on
1 o→oe
1 nt→n
1 ne→en
1 nc→n
1 n→nn
1 n→na
1 mr→rm
1 mp→m
1 mi→m
1 ma→am
1 m→mp
1 m→mo
1 m→me
1 m→ma
1 lt→l
1 ls→sl
1 lf→�
1 le→l
1 lb→bl
1 l→i
1 l→f
1 jd→dj
1 j→h
1 iv→vi
1 iu→i
1 in→ni
1 if→�
1 ie→i
1 i→iz

1 i→io
1 i→id
1 ht→th
1 hs→h
1 hh→h
1 he→eh
1 ha→h
1 h→ht
1 h→hi
1 h→ha
1 gu→g
1 gn→ng
1 gn→g
1 ge→g
1 g→t
1 g→gr
1 g→gn
1 g→gi
1 g→ga
1 g→d
1 f→v
1 f→fy
1 f→�
1 eu→ue
1 es→se
1 es→e
1 er→re
1 em→me
1 ei→e
1 ed→e
1 ec→e
1 eb→be
1 ea→e
1 e→u
1 e→ex
1 e→et
1 e→em
1 e→el

1 e→eg
1 e→ee
1 e→ea
1 ds→d
1 dn→nd
1 d→dl
1 ct→c
1 cs→sc
1 cr→rc
1 ci→ic
1 c→t
1 c→n
1 c→d
1 c→ct
1 c→ce
1 c→cc
1 c→ca
1 b→p
1 at→a
1 as→a
1 an→na
1 an→a
1 aj→ja
1 ai→ia
1 ai→a
1 a→ax
1 a→at
1 a→an
1 a→al
1 a→ai
1 a→ad

36

Bibliography

[1] K. Audhkhasi and A. Verma. Keyword search using modi�ed minimum edit distance measure.
In IEEE International Conference on Acoustics, Speech and Signal Processing, volume 4, pages
929�932, april 2007.

[2] R. A. Baeza-Yates and G. Navarro. A faster algorithm for approximate string matching. In
Proceedings of the 7th Annual Symposium on Combinatorial Pattern Matching, CPM '96, pages
1�23, 1996.

[3] B. H. Bloom. Space/time trade-o�s in hash coding with allowable errors. Communications of
the ACM, 13(7):422�426, July 1970.

[4] E. Brill and R. C. Moore. An improved error model for noisy channel spelling correction. In
Proceedings of the 38th Annual Meeting on Association for Computational Linguistics, ACL '00,
pages 286�293, 2000.

[5] S. Cucerzan and E. Brill. Spelling correction as an iterative process that exploits the collective
knowledge of web users. In EMNLP'04, pages 293�300, 2004.

[6] F. J. Damerau. A technique for computer detection and correction of spelling errors. Commu-
nications of the ACM, 7(3):171�176, Mar. 1964.

[7] M. R. Dunlavey. Technical correspondence: on spelling correction and beyond. Communications
of the ACM, 24(9):608, Sept. 1981.

[8] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of
minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2):100�107,
Jul 1968.

[9] P. E. Hart, N. J. Nilsson, and B. Raphael. Correction to �A Formal Basis for the Heuristic
Determination of Minimum Cost Paths�. SIGART bull., (37):28�29, Dec 1972.

[10] S. Heinz, J. Zobel, and H. E. Williams. Burst tries: A fast, e�cient data structure for string
keys. ACM Transactions on Informations Systems, 20(2):192�223, April 2002.

[11] P. Jones. Best First Search & Document Processing Applications. PhD thesis, Katholieke
Universiteit Nijmegen, 2000.

[12] M. D. Kernighan, K. W. Church, and W. A. Gale. A spelling correction program based on
a noisy channel model. In Proceedings of the 13th conference on Computational linguistics -
Volume 2, COLING '90, pages 205�210, 1990.

[13] D. E. Knuth. The Art of Computer Programming, volume 3: Sorting and Searching. Addison
Wesley, second edition, 1998.

[14] C. Koster. Indexation and fuzzy lexical matching. Unpublished.

[15] C. Koster, M. Seutter, and J. Beney. Classifying patent applications with winnow. In Proceedings
Benelearn 2001, pages 19�26, 2001.

37

[16] K. Kukich. Techniques for automatically correcting words in text. ACM Computing Surveys,
24(4):377�439, Dec. 1992.

[17] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions and reversals. Soviet
Physics Doklady, 10(8):707�710, Feb. 1966. Doklady Akademii Nauk SSSR, V163 No4 845-848
1965.

[18] A. Marzal and E. Vidal. Computation of normalized edit distance and applications. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 15(9):926�932, Sep 1993.

[19] G. Myers. A fast bit-vector algorithm for approximate string matching based on dynamic
programming. Journal of the ACM, 46:1�13, 1999.

[20] G. Navarro. A guided tour to approximate string matching. ACM Computing Surveys, 33(1):31�
88, Mar. 2001.

[21] L. C. Noll. Fowler/Noll/Vo non-cryptographic hash algorithm. http://www.isthe.com/

chongo/tech/comp/fnv.

[22] P. Norvig. Natural Language Corpus Data: Beautiful Data. http://norvig.com/ngrams/,
2008.

[23] B. J. Oommen. Constrained string editing. Information Sciences, 40(3):267�284, Dec 1986.

[24] J. Pedler. Computer Correction of Real-word Spelling Errors in Dyslexic Text. PhD thesis,
Birkbeck, University of London, 2007.

[25] M. Reynaert. All, and only, the errors: more complete and consistent spelling and ocr-error cor-
rection evaluation. In Proceedings of the Sixth International Conference on Language Resources
and Evaluation (LREC'08), May 2008.

[26] M. Reynaert. Non-interactive ocr post-correction for giga-scale digitization projects. In Pro-
ceedings of the 9th international conference on Computational linguistics and intelligent text
processing, CICLing'08, pages 617�630, 2008.

[27] E. S. Ristad and P. N. Yianilos. Learning string-edit distance. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 20(5):522�532, May 1998.

[28] C. Street. Ridiculously Huge English Wordlist (RIDYHEW). http://www.codehappy.net/

wordlist.htm, 2003.

[29] R. A. Wagner and M. J. Fischer. The string-to-string correction problem. Journal of the ACM,
21(1):168�173, Jan. 1974.

[30] S. Wu and U. Manber. Fast text searching: Allowing errors. Communications of the ACM,
35(10):83�91, Oct. 1992.

38

http://www.isthe.com/chongo/tech/comp/fnv
http://www.isthe.com/chongo/tech/comp/fnv
http://norvig.com/ngrams/
http://www.codehappy.net/wordlist.htm
http://www.codehappy.net/wordlist.htm

	Introduction
	Problem statement
	Applications of fuzzy matching

	Background
	Preliminaries
	Edit distance
	Dynamic programming
	Levenshtein automata
	Bit-parallelism – the agrep approach
	Other approaches using bit-parallelism

	Generalizing the edit distance using confusions
	Other extensions to the edit distance

	Best-first search
	Formal analysis
	Best-only search
	The heuristic function
	Example

	Summary

	Implementation
	Constructing a lexicon
	Tries
	Theoretical complexity
	Practical performance
	Optimization considerations
	Allocation strategies
	Comparison of trie implementations

	Fuzzy matching in a lexicon
	Using finite state machines
	Adapting automata for best-first search
	Adding memoization to the naïve solution
	Comparison of techniques

	Summary

	Effectivity of fuzzy matching
	Framework for evaluation
	Obtaining actual confusion data
	Chosen data sets

	Experiments performed
	Results

	Conclusions
	Further challenges

