
Is Javacardsign correct and secure?

Bachelor Thesis

Robert Kleinpenning rkleinpe@science.ru.nl

July 14, 2012

Supervisors:

dr.ir. E. Poll dr. W.I. Mostowski
E.Poll@cs.ru.nl E.Poll@cs.ru.nl





Abstract

“Javacardsign” is a Java Card Project created at the Radboud Uni-
versity Nijmegen by Wojciech Mostowski who is a member of the Digital
Security Group. It consists of an on-card applet and host application.
The applet can be used for ISO 7816 [1] compliant digital signatures, de-
cryption and authentication. This thesis assesses the correctness of the
on-card implementation by means of model based testing. The host ap-
plication is not considered in this thesis.

This thesis explains how the applet was modelled, and how model
based testing was used to validate that the Javacardsign applet is correct
and secure. The methodology used in this thesis could be used to test
other smart cards that are a component of a Public Key Infrastructure.

3



1 Introduction

Many EU Member States are considering introducing a citizen digital signature
card. In particular the Dutch government is working on a similar project called
the Electronic Dutch Identification Card (e-NIK) [2]. This will allow the card
holder to reliably use the electronic services provided by the government, using
public key cryptography. This might replace the current DigiD project. This
thesis will provide a methodology to comprehensively test applications similar
to e-NIK.

Javacardsign[3] consists of an on-card applet and a host application. The
host can be some terminal with a card reader that communicates with the card.
The focus of this thesis is testing of the on-card implementation of the Javacard-
sign applet. This implementation is written in Java Card and it processes the
messages sent to the card, next to managing the file storage for certificates and
performing cryptographic operations. The card can sign data, decrypt data,
and it can authenticate itself to the terminal. These cryptographic operations
are guarded by a PIN.

The Javacardsign applet is used for creating and checking ISO 7816 [1] com-
pliant digital signatures. The ISO 7816 specifications parts 4, 8 and 15 were
used to develop this software. These sections cover card commands and cryp-
tographic operations used in digital signature applications.

1.1 Example Scenario

To explain how the Javacardsign applet works, we provide an example of com-
puting a digital signature. For this several messages are used.

• The terminal starts with a Manage Security Environment instruction,
which selects and prepares keys for computing the signature. Signing,
decrypting and authenticating use different keys. The selection of keys is
required prior to any cryptographic operation. So for signing the card will
prepare the sign key.

• Next the terminal sends a Verify instruction which requires a correct PIN.
This pin is provided by the user to the terminal. This will allow the user
of the card to authenticate. If an incorrect PIN is used, the card replies
with an error.

• Finally, the Perform Security Operation instruction is executed, the card
will sign the data the terminal provides. If the terminal is not verified, or
if there is no key prepared, the card will reply with an error.

It is important to note that each of these instructions are atomic regarding
the communication between the terminal and card. They are all single messages.
Also, this is the required order to successfully compute a digital signature. How-
ever, it is still possible to give different commands. This will cause the card to
reply with an error and remain in its current state.

4



1.2 Commands

The following commands are supported by the card, after personalisation.

1. Change Reference Data - Change the PIN with the PUC.

2. Verify - Verify the user with the PIN.

3. Manage Security Environment - Prepare a key for signing, decrypting or
authenticating.

4. Perform Security Operation - Sign or decrypt data provided by the terminal.

5. Internal Authentication - Authenticate to the terminal.

2 Messaging

The Javacardsign applet and host application use APDUs to communicate.
APDU stands for Application Protocol Data Unit. It is the communication
unit between a card terminal and a card. These messages must comply with the
specifications defined in the ISO 7816 standard. An APDU consists of multiple
bytes, in a particular order.[4] The terminal sends command APDUs and the
card replies with response APDUs. APDUs contain several mandatory bytes.
In the case of command APDUs, these represent the instruction of the APDU.
Next to the obligatory bytes, there is an optional payload. Response APDUs
contain the result of the command in a status word that consists of two bytes.
The value of these status words represents the success of a command or, in case
of an error, the corresponding error value. The response can also contain a
payload.

3 Approach

The testing method used in this thesis is similar to the testing methods by
Mostowski et al. [5, 6] on electronic passports. The work done to complete this
project consists of the following:

• Phase 1: Exploring the Javacardsign applet.
By modelling some of the commands in detail, using Uppaal, I was able
to understand what the source code was supposed to do. Uppaal was only
used as a graphical editor to model the source code of the applet, so most
of the features were unused. The models drawn at this stage can be found
in the appendix (see section 9). These were not used for testing purposes.
The purpose of these models was to assist in understanding the Java Card
code.

• Phase 2: Modelling.
Using the information gained in phase 1, two models were created: Model
1 [figure 1] and Model 2 [figure 3]. This time using yEd (see section 4.1).

5



These models were used to test the correctness of the on-card implemen-
tation. Model 1 was used to check if the card shows correct behaviour, in
normal conditions. Model 2 was designed to check for the absence of in-
correct behaviour. These models are more abstract then the ones created
in phase 1, because the application can only be tested on a per-APDU
level. It is only possible to check the result the card provides, not how the
card calculated this result.

• Phase 3: Model based testing.
The testing was done using JTorX (section 5.2). A smart card reader and
a card with the implementation were also used for the tests. Model based
testing was used to examine the implementation. After testing the results
are analysed, to see if the Javacardsign applet is correct and secure.

Based on these findings a test report is given, providing the conclusion whether
or not Javacardsign is correct and secure with respect to the formal models I
made.

4 Modelling

Two main models were designed for use in phase 3 [section 5]. These models are
referred to as Model 1 [figure 1)] and Model 2 [figure 3]. Model 1 only checks
for correct behaviour, whereas Model 2 also checks for absence of incorrect
behaviour.

4.1 yEd

yEd is a diagram editor that can be used to generate models that JTorX can
interpret as input. It was used to create Model 1 and Model 2. The models use
a very simple syntax. Commands sent to the smart card end with a question
mark, responses are shown with exclamation marks.

4.2 Model 1

Model 1 was designed to see if the applet was working as intended. It only
modelled correct behaviour as can be seen in figure 1. In the following models
two main colours are used. The yellow (light) states represent input states, and
the blue (dark) states represent output states. In the yellow states the terminal
is required to do an action, and the blue states require an action of the smart
card. Because we are modelling from the viewpoint of the terminal, all blue
states have an “!” toward a yellow state (response) and all yellow states have a
“?” to the blue states (command).

6



Figure 1: Model 1 - Modelling correct behaviour

In this model three main branches can be identified, and two small ones. The
two small ones have only one state each: reset: pin and start verify. These are
legal actions, and should be allowed at the start state. The three main branches
model the core functionality of the Javacardsign applet, specifically signing, de-
crypting and authenticating. All three start with a similar command: mseSign,
mseDecrypt and mseAuth. “mse” Stands for Manage Security Environment, and
these commands prepare the key for the security sensitive action (start sign, start
decrypt or start authenticate) further in the branch. The card should reply with
a confirmation that the key is prepared. Before the security sensitive operation
can be performed, the card holder must be verified. This is done with the PIN in
the start verify step. After verification the card performs the security operation,
and replies with the result, the model returns to the start state. The content of
the results is checked by the adapter.

After authentication the model returns to the start state. However, this is an

7



abstraction. After authentication without entering the PIN and while no other
key is prepared, it is possible to authenticate again. This was not modeled
because it would have little to no effect on the tests, and it is considered out of
the scope of this paper.

4.3 Model 2

The second model checks for the absence of incorrect behaviour. This uses an
extended version of Model 1. With this model JTorX tests specific behaviour
that should not be accepted by the card.

For example, if we look at state decrypt prepared in Model 1, the card should
not allow an attempt to sign something while the decryption key is prepared
by the Manage Security Environment command. If the card gives a response
that indicates that it accepted the sign command, JTorX will end up in an error
state, halt and return the failed verdict.

To force JTorX to try these options, they are added manually. The extra
behaviour that is tested in Model 2 is limited to signing, decrypting and au-
thenticating. Only these commands are considered security sensitive. By using
the extension shown in figure 2 JTorX can attempt to find ways to sign, decrypt
or authenticate in states where this should not be possible. The verify, change
reference data, and different manage security environment commands are omit-
ted in this extension. The reason for this is because these operations do not
require PIN verification, and are therefore less relevant for the correctness and
security of the Javacardsign applet. Attempts to sign, decrypt and authenticate
are done at every input state.

The model has three security sensitive states meaning the states where the
card can perform the security operations. These states are sign verified, decrypt
verified and authentication verified. In these states one of the security sensitive
commands is already present. Using the same extension on these state would
result in a false negatives. So in these particular cases the correct command is
omitted from the extension.

If we look at figure 2 we see a random input state at the bottom and an
otherwise state. JTorX will randomly enter the otherwise state by trying one
of the security operations. Once in this otherwise state, JTorX waits for the
response from the card. The response should be false in all cases, because the
card should not execute these commands. If the response is anything else, the
model will halt and the test will fail.

For this, several states, labeled otherwise, have been added to Model 1.
Model 2 is Model 1 combined with the extension. However, for readability,
the extension has been reduced to one edge, namely otherwise? as edge and a
red (dark) state called error state.

8



Figure 2: An otherwise state

9



Figure 3: Model 2 - Modelling absence of incorrect behaviour

10



5 Model based testing

5.1 Setup

For testing a basic setup was used. The smart card communicates with an
adapter script running on the laptop. JTorX also communicates with the
adapter. The adapter was created to translate commands JTorX bases on the
model it reads, to APDUs the smart card can understand, and vice versa.

Once communication was setup up correctly, simple models were tested to
explore the tool. Once these worked as intended, Model 1 and Model 2 were
tested.

5.2 JTorX

JTorX is a tool developed by Axel Belinfante.[7] It is a tool for model based
testing. JTorX makes random steps in the model, it sends commands to the
smart card and verifies the responses. This is done by comparing the response
with the response that was expected by the model.

JTorX is a model based testing tool. It supports two formats, Aldebaran
(.aut) or GraphML (.graphml) format. yEd creates models in the latter format.
JTorX was used to read Model 1 and Model 2. JTorX randomly tries the
different options these models provides on the system being tested. JTorX is
able to interact with programs on their standard input and output, like the
adapter (section 5.3). These programs are actually what is being tested.

JTorX generates three models during testing. One model is an interpretation
of the model created in yEd, because yEd works well with JTorX, this is an exact
copy. The second one is a message sequence chart. This is a visualised log of
the test run. The third model is a finite state model, which is constructed based
on the actions JTorX performed.

5.3 Adapter

The adapter handles communication between JTorX and the smart card. JTorX
sends commands it reads in the model to the adapter. The adapter then sends
the corresponding APDU to the smart card, and reports back the result. JTorX
only sends simple commands to the adapter.

The adapter is a command line application that accepts the input that is
shown in the models above. For example, JTorX will send mseSign? to the
adapter. The adapter then translates this to the corresponding APDU, and
sends it to the smart card. The smart card responds with a response APDU. In
the case of mseSign, the response APDU only consists of a status word. If the
command is successful, this status word will be 9000. In other cases it will have
a value that corresponds with a certain error. For this paper it is not relevant
what exactly went wrong in case of an error. So the adapter only checks if the
status word is 9000, and returns mse:: true! or mse:: false! accordingly to
JTorX.

11



For the more complex commands: sign, decrypt and authenticate, the adapter
also checks if the payload the card returns is equal to the expected data. In
the case of decrypt the adapter sends two chained APDUs that contains the en-
crypted text “hallo”. The smart card decrypts this text, and returns the result
in a response APDU. The adapter then checks both the status word, and the
result. If both are correct, then it will return decrypt:: true! to JTorX, otherwise
it will return decrypt:: false!. Sign and authenticate are handled in similar ways,
the adapter handles all communication, and simply returns true or false.

6 Results of the tests

Figure 4 shows a short extract of the message sequence diagram. This diagram
shows the choices JTorX made during the test using Model 2. It is a visualised
log of the test run. Something that JTorX adds is a delta transition. This
transition occurs when JTorX receives no response from the adapter, because
the adapter is still waiting for the cards response. When this happens, JTorX
uses a provided timeout to wait, and to try again.

Figure 4: An extract of the message sequence diagram.

The finite state model that is generated shows all the paths JTorX took. As
can be seen in figure 5, it allows us to see the choices in a more intuitive way

12



than the sequence chart. Again, timeouts cause delta steps to appear in this
model, these are also represented by circular arrows pointing to the state where
the timeout occurred.

The finite state model has three main branches, and two small ones, just like
Model 1 and Model 2. We can clearly see the otherwise nodes. Unfortunately
not all the labels are readable, but this is due to way JTorX generates these
models and this cannot be altered. We can see that every otherwise node has
the edges described in the extension [figure 2]. Model 2 and this finite state
model have an equal amount of nodes, an equal amount of edges and all the
edges are connected to the same nodes. So they are equal.

13



Figure 5: The generated finite state model of the test run.

14



7 Encountered problems

• The lack of proper documentation for Torxakis or JTorX made everything
much harder. Good documentation of the tools functions combined with
a tutorial would make it much easier to find out how things work. When
getting started, there is so much that could cause an error (the model
could be wrong, the adapter could be wrong or a setting in the tool could
be wrong, etc) that it is hard to find what exactly is causing the error.

• Most Tutorials or examples have no description or documentation. How-
ever, there were a few tutorials for JTorX that had an adequate readme.

• JTorX has many options, that can be left at their default values. But all
these option complicate things for someone that is new to model based
testing.

• Model 2 required a lot of detailed work, even in a relatively small model
like this it is easy to make mistakes, resulting in failed tests. Because the
tests require a lot of time, this can be very time consuming. Attempting
to edit the XML yEd creates was even more tedious. JTorX supports
different input methods, and building the XML from scratch is perhaps
the best solution for more complex models. It will make the modelling
process less intuitive, but JTorX provides an interpretation of the model
that is viewable as an image that should be sufficient.

• JTorX has a timeout but, unfortunately, it does not use this timeout,
before attempting the next step. Only when the current step receives
no response. Changing this could remove all delta steps. It would also
significantly increase the time for testing, as all steps will at least require
the same time as the slowest step, but perhaps this choice should be up
to the user.

• JTorX does not record paths it has taken. It will always choose randomly.
This causes JTorX to test paths it has already tested, or skip paths. To
claim, with high certainty, that all paths have been tested at least once,
thousands of iterations have to be taken. Many of these iterations are
pointless.

• Uppaal was not meant as a drawing program. It has useful features to
draw graphs, but other features, like automatic syntax checking, make
it poor choice for this task. The reason for going with Uppaal initially
was the export functionality, which could save time later. But this was
ultimately never used, as instead the high level model was build from
scratch.

• Creating the models shown in figure [8],[9] and [10] have cost a lot of time
to make, and were never directly used in the testing process.

15



• For this thesis I considered two model based testing tools, JTorX and
TorXakis. Both are based on TorX, which is developed by Tretmans et al.
[8]. I decided to use JTorX because it was easier to setup than TorXakis.
JTorX works out of the box, and the graphical user interface makes it easy
to change settings. There is also a tutorial to guide new users through
their first steps. TorXakis requires setting up, and only has a command
line interface. Both tools lack proper documentation, and this makes it
much harder to use a command line interface. TorXakis also seemed to
have issues running on 64-bit Mac OS X. A key feature JTorX lacks when
compared to TorXakis is random input during testing. However, as shown
in section 5.3, this is not necessary as the adapter handles all input and
output on an APDU level.

• Model 2 [figure 3] was particularly troubling. There was an error in the
finite state model but I was unable to find the cause. The finite state model
did not correspond with Model 2. The otherwise extension was causing
odd behaviour. As can be seen in figure 6, a lot of extra nodes were
created. Also, there are verify edges leaving otherwise nodes, and these
edges are not present in Model 2. The sequence chart at an otherwise
node did not show any odd behaviour.

To fix this, the old extension [figure 7] was changed to the current one
[figure 2]. Which is actually an equal and more elegant solution. The
edges leaving the old otherwise node to the error state were made to direct
the model to a state it could not leave, and cause a failed test. However,
the test would already fail if the card would respond with anything other
than a sign ::false!, decrypt:: false! or authenticate:: false!. This includes
the sign:: true!, decrypt:: true! or authenticate:: true!, and thus the
extra edges were superfluous. By removing these edges JTorX was able to
generate a correct finite state model. I was not able to find out what was
the exact cause of this problem.

16



Figure 6: A small part of the finite state model generated by JTorX with an
incorrect extension.

Figure 7: The incorrect extension.

8 Future Work

A possible option for future work is to test the host implementation for correct-
ness and security. As this thesis only focussed on the on-card implementation.
Another aspect is that not all commands were tested. All commands that are

17



only used before personalizing were not tested. For example, it would be inter-
esting to see if it is possible to personalise the card again, without losing the
current keys.

9 Conclusion

Assuming Model 1 and Model 2 are correct, that JTorX and the adapter function
correctly and that 10,000 steps is enough to try all possible options, then the
javacardsign applet is correct and secure with respect to my models. As shown
in section 6, the generated finite state model [figure 5] is equal to Model 2
[figure 3]. As can be seen in section 7 there was an issue with the extension I
created, and how JTorX interpreted it. But this was the only case where JTorX
interpreted the model differently than I expected.

The assumption that 10,000 steps is enough to try all possible options is
difficult to condone. It would be much better if JTorX could simply test all
options, instead of only supporting random testing.

Manually adding incorrect behaviour to Model 1, resulting in Model 2, was
problematic. It has many details, and it requires analysing where the problems
can occur, resulting in possible human errors. It would have been easier to
let JTorX try some or all commands in every state, that were not specifically
modelled. My otherwise extension was a crude way to achieve this, and ultimately
caused a lot of time to get right. Although not all behaviour is tested, the
important behaviour is.

18



A Appendix

For a better understanding of the code of the Javacardsign applet, I modelled
some of its functions in greater detail than was necessary for the model based
testing. I placed the analysis of three of these functions in this appendix.

A.1 Modelling the Protocol

When a card is produced and the software is installed, it is in the Initial state.
It contains no personal information, and everything can be read. In this state,
files can be written to the card, and the PUC and PIN can be set. Once this is
done the card is personalised. When a card is personalised, the PUC and key
files cannot be changed. Also, it is not possible to access certain files without a
correct PIN.

The following models [8,9,10] only consider the parts of the code that is
used if a card is personalised. The initial state of the card lacks any security
measurements. The model in figure 8 is relatively simple, the following two
become increasingly complex.

A.2 Verify the PIN

One of the more basic commands is the PIN verification shown in figure 8. Al-
though important, the algorithm is rather straight forward. There are some pos-
sible exceptions being thrown, but no real branches exist. Likewise, the model
represents the same property. This command’s purpose is to compare stored
reference data with verification data passed as a parameter in the APDU. In
this case the stored PIN with the given PIN. The card keeps a record of unsuc-
cessful attempts. When a certain limit is reached, the card will be blocked and
requires the PUC code to be unblocked. All (default) values are in accordance
with the ISO 7816 standard.[1]

19



Figure 8: Verify instruction

20



The first check is to see if the card is personalised, because only in this state
PIN checks are performed.

Then the buffer is read. The two bytes that are read should be 0x00. The
byte P1 is unused at this time, but should still be 0x00. P2 shows which reference
data on the card should be used. As the only available reference data is the
PIN, this should always be 0x00.

After that the LC data is read, and this contains the verification PIN. The
first check on the verification PIN is a length-check. If the length is too short
or too long, the card will end the VERIFY instruction, with no consequences
for the amount of attempts that remain. If the length is correct, the data
is prepared. The card then compares the verification data with the reference
data. On a correct PIN, the result is a successful end of the algorithm. On
an incorrect PIN, the algorithm ends unsuccessfully and one less verification
attempt is available.

A.3 Change Reference Data

The Change Reference Data instruction can do two things. It replaces the
reference data stored on the card. If the card is in the production state, this
command is used to set the PUC. If the card is in the personalised state it can
be used to change the PIN if the PUC is provided. In this project we only
look at the personalised state, so only the second option path is represented in
figure 9.

21



Figure 9: Change Reference Data instruction

22



It starts with reading the buffer. Assuming we are in the personalised state,
the bytes P1 and P2 are unused, but should be 0x00 nonetheless. Other values
are reserved for future use, and could cause problems with future devices. Be-
cause this is in the personalised state, the only thing that can be changed is the
PIN. To be able to change the PIN the PUC is required. The first check on the
PUC is the length. There is a minimal and maximum length for the PUC. An
entry with the wrong length aborts the instruction.

The second check is to make sure the PUC only contains numbers. Although
the bytes are checked one by one, this is represented by one step in the model.
A byte anything other than a number will abort the instruction. Once the it is
verified that the length is correct, and the PUC only contains numbers, the PUC
will be verified. A correct PUC will continue the instruction, while a incorrect
one will abort it. Once the PUC has been verified, the reference PIN is updated
with the new PIN. The card is then unblocked if it was blocked and the amount
of attempts to enter the wrong PIN is reset. If the card was not already in the
personalised state, it is set in that state. If it was already in that state, nothing
changes. This will end the instruction.

A.4 Select File

The select instruction prepares a file on the card to be read. In this model, and
in the code, EF stands for Elementary File, DF stands for Directory File and
MF stands for Master File. Using these parameters, it can prepare different
types of data files with different methods. The file location should be in the
LC data, and corresponding with the Master File IDs. The particular method
(direct, under current DF, parent of current DF) of selecting a file is based on
the value of P1. P2 can be arbitrary.[1]

23



Figure 10: Select File instruction

24



The select instruction appears a lot bigger than the others, with this much
detail. However some recurring elements can be seen in the model. The in-
struction starts by accepting one of the four different possible commands, as
can be seen from the four different paths from the starting position. If none of
these four commands is recognised, the algorithm aborts. This is represented
by the loop at the starting position. Once a command is selected, all branches
generally continue in the same way.

If the LC data has a correct length, it is interpreted as a file location. If the
length is incorrect, the algorithm aborts. The file location in the LC data is
read, and if it is a valid location the file is prepared. If the file cannot be found
an exception is thrown and the algorithm is aborted.

An exception for this is the branch for the “select MF, DF or EF”-command.
This will select the Master File by default if no parameter is given. There are
no checks on the input data of P2. This selection can be seen by the split at
the end of the branch.

References

[1] ISO/IEC 7816 - Smart Card Standard, 2000.

[2] Nederlandse Vereniging voor Burgerzaken (Dutch Association for Civil
Affairs). e-NIK Functionality http://www.nvvb.nl/websites/nvvb/

website/default.asp, March 2011.

[3] W Mostowski. Java Card PKI http://javacardsign.sourceforge.net/,
March 2011.

[4] E. Poll, J. van den Berg, and B. Jacobs. Formal specification of the JavaCard
API in JML: the APDU class. Computer Networks, 36(4):407–421, 2001.

[5] W. Mostowski, E. Poll, J. Schmaltz, J. Tretmans, and R. Wichers Schreur.
Model-based testing of electronic passports. Formal Methods for Industrial
Critical Systems, pages 207–209, 2009.

[6] W. Mostowski and E. Poll. Electronic passports in a nutshell. Tech-
nical report, Technical Report ICIS–R10004, Radboud University Ni-
jmegen, June 2010. Available at https://pms.cs.ru.nl/iris-diglib/

src/getContent.php, 2010.

[7] A. Belinfante. Jtorx: A tool for on-line model-driven test derivation and ex-
ecution. Tools and Algorithms for the Construction and Analysis of Systems,
pages 266–270, 2010.

[8] Alex Belinfante, Ed Brinksma, Jan Feenstra, Jan Tretmans, and René Vries.
Côte de resyste : Automatic model-based testing of communication proto-
cols. In 7th Annual CTIT Workshop on Mobile Communications in Per-
spective, pages 49–51, 2001.

25




