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Abstract

Whereas regular path finding is about finding an optimal path between two
locations, given one criterion – such as travel time – multicriteria path finding takes
multiple of such criteria into account. This thesis analyses this type of path finding
using realistic example scenario’s. We prove that the theoretical complexity of any
multicriteria path finding problem is NP-complete, and propose two methods to
solve such a problem. The first method is able to solve an adapted version of the
multicriteria path finding problem, by restricting the criteria aggregation function
in such a way that we are able to treat the original problem as a regular path
finding problem. To solve such a problem without any restrictions, we propose an
algorithm that is a combination of existing algorithms, and improves upon them.
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1 Introduction

Path finding is a technique that has many applications in all sorts of fields and is still
researched extensively. One of its applications lies in navigation systems: logically,
since these systems are developed to guide a user from one point to an other, path
finding is used to find an optimal path between these points. Calculating such a path
is an algorithmic task for which many algorithms have been created. Examples of
algorithms are Dijkstra’s Algorithm, A*, SHARC, CH, etc.[4] These algorithms all as-
sume that the user simply wants to reach the given destination without having multiple
requirements. This is fine for most users, however, path finding scenarios that require
multiple criteria to be taken into account can be thought of. For example, a user might
not want to spend more than a certain amount on gas. In these cases the current path
finding algorithms used by navigation systems cannot meet the user’s wishes. At this
time, such problems can be solved by algorithms such as the Label Setting Algorithm,
NSGA-II, and SSMOSP, but these algorithms are either unsuitable for use on mobile
devices due to their high complexity, or do not output optimal paths, whilst that is
what we are looking for.[3][11][17].

In this thesis, we will propose a new algorithm, based upon existing efficient algorithms,
that is able to solve problems such as ours more efficiently. We will first show an
example scenario to illustrate the problem. Then we will extract criteria from this
scenario and enumerate some other similar, realistic criteria. We will then move on
to the actual problem, the section in which we will give an accurate definition of the
exact problem, using the earlier and new scenarios. Following up on our definitions, we
will analyze the problem and determine its theoretical complexity using the well-known
Knapsack-problem, and suggest a method to solve an adapted version of our problem
with a efficiently. After that, we will move on and have a look at some algorithms and
propose a combination of these algorithms that should be able to solve our (unadapted)
problem efficiently. Finally, in our conclusion, we will retrospect on these algorithms,
discuss some more related work, and make suggestions for future work on this subject.

1.1 Scenarios

Some scenarios are not supported by current navigation systems. We can place each
of the algorithms that can support these scenarios in one the following categories:

1. Dynamic path finding

2. Intelligent path finding

3. Multicriteria path finding

These three categories cover most advanced path finding problems. Algorithms be-
longing to category one are those that take e.g. traffic jams and holidays into account;
those in category two are algorithms that, among other things, register and track the
user’s driving style or speed and use that data to calculate an optimized route for that
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specific user; and category three algorithms allow the user the specify multiple criteria
which the calculated path should meet.

The first two categories exceed the scope of this thesis. We will focus on algorithms
from the third category instead, multicriteria path finding.

Multicriteria path finding is path finding with the possibility to provide more than one
criteria the given path should meet. This is already possible, but only to a certain
extent. For example, TomTom has navigation systems that ask the user if he wants
to use highways or not, or if the system should avoid roads that require toll to be
paid. However, these criteria are all so called ‘hard criteria’, meaning that the system
wields an all-or-nothing approach: it is not possible to use as little highway as possible,
combined with some other similar restriction. Next this, if no route without highways
exists, the system ignores the option. For some users this will be sufficient, but some
will require more possibilities. To illustrate this, we have written an example scenario.

1.1.1 Road trip

Two friends are planning a road trip through Europe. They determined a global route
from their home back to their home, Nijmegen, via the biggest cities in Europe. Both
of them enjoy nature and therefore they want a route that uses as many ‘green roads’
(i.e. roads through nature, roads with a nice view) as possible. This is a criterion they
value more important than any other. Also, since they are on a road trip, they would
prefer a route close to touristic attractions above routes that are further away from
them, providing that the detour is within certain limits. Furthermore, they prefer a
route as short as possible. However, this is the least important requirement, so they
are willing to make a detour for a nicer view or touristic attraction. Finally, they want
to avoid all toll roads.

Current navigation systems fail to meet these requirements because they can not
handle multiple criteria. The two friends would manually have to search for touristic
attractions, nature-rich roads and calculate for themselves what routes are preferred
above others. It would take them hours or even days to do so and determining a suffi-
cient route – assuming they at all know how to do this – but due to the high complexity
of this problem, it is unlikely that this route would be optimal. Current systems know
a road’s length, but probably don’t know about nature or touristic attractions on or
close to it. It is true that TomTom offers Points of Interest lists[16], which helps our
friends determining a route to their wishes, but TomTom’s navigation systems do not
automatically calculate a route close to such points. This results in the friends finding
and following a sub-optimal path, given their criteria, and thus they are not optimally
satisfied.
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1.2 Criteria

Some criteria can be extracted from this scenario, but obviously more can be thought
of and placed in similar scenarios. These extracted criteria and some other examples
are listed below, classified by criterion type: hard or soft. Hard criteria are those that
should be met under all circumstances, whilst soft criteria are criteria which should be
met as far as possible. This means that if only one path between two locations can
be found and this path violates a hard criterion, the algorithm should return no path
at all – a hard criterion is violated. However, if a this path violates a soft criterion
instead, the path should be returned as an optimal solution.

Hard criteria:

1. Bridge heights

2. Slope gradients

3. Maneuverability

4. Road restrictions (i.e.: max x kg heavy, max y meters wide)

Soft criteria:

1. Travel time

2. Route length

3. Fuel expenses

4. Travel expenses (i.e.: toll, vignets)

5. Surroundings (i.e.: forest, countryside)

6. Nearby tourist attractions

Above lists only show static criteria. Other criteria, such as traffic jams and actual
redirects are dynamic criteria. Since our problem is already complex enough with static
criteria only, for a bachelor thesis, these criteria are outside of this thesis’ scope and
will therefore not be treated any further here.
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2 Problem

In the previous section we have seen a scenario in which the shortest path is not per
definition the best path, and we identified a number of criteria that can be part of a
scenario. In this section we will define the exact problem that we are facing.

2.1 Scenarios

In addition to the Road Trip-scenario, other, similar scenarios are realistic.

Vacation A family in The Netherlands has planned a vacation in the southern regions of
France. They are going by car and would like to get to their camping site as
soon as possible. Unfortunately, the family has limited budget for their trip and
France is known for its many toll roads. To prevent spending half of this budget
to cross such roads, they would like to avoid them as much as possible. However,
in case using a toll road reduces travel time significantly, compared to not using
it, they do want to use this road. Avoiding toll roads is important to them, but
the increased duration and fuel cost of the detour are factors weighing against it.
To calculate an optimal route, they want to use their navigation system.

This scenario can mostly be handled by modern navigation systems, except for
the fact that such a system will either come up with a route with no toll roads
at all, or with one that wants the user to use all toll roads that decrease travel
time by any time - including just one minute. The system’s algorithm is not able
to take multiple criteria into account; all but one of the criteria are discarded.
Moreover, the chosen criterion is treated as being hard, rather than soft. This
results in two paths, of which neither meet the user’s requirements and therefore
are not optimal solutions to their problems.

Touring bus A touring bus wants to travel from Amsterdam to Berlin using the fastest pos-
sible route, with respect to the following requirements: the maneuverability of
the roads; busses are too big to be able to make every turn in every road, or roads
can be to small for some buses, and the nature richness of the roads; all travelers
in the bus are going on a holiday and want to be able enjoy their surroundings
during the journey as much as possible.

This is a major problem with current path finding algorithms. The transport-
sector may have solved this, but similar limitations apply to cars with trailers.

These scenarios obviously are all possible without the use of a new type of navigation
system, but it requires a lot of manual research to determine the route to drive. This
is something you don’t want as a navigation system manufacturer. Next to these three
scenarios a lot of other, similar scenarios exist and all such scenarios can be deduced
to one general problem.
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Vehicle X has to go from location A to location B. Crucial requirements are H1

and H2 and if possible, the calculated route should meet soft criteria S1, S2 and S3.
For this, it is relevant to know that S2 is more important than the other soft criteria.

Current navigation systems are unable to handle these scenarios and no algorithms
that are able to determine an optimal route given such criteria without the user having
to wait too long time exist at this time.

2.2 Definitions

Before looking for a solution, the problem requires some introduction and a definition.
Finding an optimal route in a road network, given a set of criteria, is a multi-

objective discrete and combinatorial problem, meaning that the optimal solution exists
in a finite set of possible solutions[5]. This problem can be defined mathematically
and we will do so using definitions given by Ehrgott[5]. First, some introduction and
necessary definitions are given. In section 2.2.1 we will give a definition of the shortest
path, assuming no criteria are provided, other than that the path should be the shortest.
In the subsections that follow, we will expand this definition to include multiple criteria
and weights. The section will be concluded with a definition of a global function that
calculates the best path. To illustrate the definitions, we will use a simplified version
of the Road Trip-scenario as a guideline. Figure 2.1 shows a graph representing this
scenario and Table 2.1 the costs to travel the roads. Length is measured in kilometers,
Nature and Touristic on a 0-100 scale. Note that, in our definitions, we assume that
there exists at least one path, whilst this may not be the case in real life scenarios.

Nijmegen

Köln

Hannover

Groningen

e1

e2

e3
e4

e5

e6

e7
e8

e9

Figure 2.1: A graph of the simplified Road Trip-scenario.
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Edge From To Length Nature Touristic Toll

e1 Nijmegen Köln 160km 30 50 No
e2 Nijmegen Köln 190km 60 60 Yes
e3 Köln Hannover 330km 30 50 No
e4 Köln Hannover 290km 10 20 No
e5 Hannover Groningen 340km 50 20 No
e6 Hannover Groningen 300km 30 70 No
e7 Groningen Nijmegen 210km 40 20 No
e8 Groningen Nijmegen 190km 30 30 No
e9 Groningen Nijmegen 230km 80 60 No

Table 2.1: The cost of the edges of the graph in Figure 2.1.

Every road map can be represented by a graph. In this graph, all intersections are
represented as nodes and all traversable roads as edges. A path in this graph is an
ordered sequence of nodes.

Definition 2.1. A directed graph is a pair G = (N , E), where N is a finite set of
nodes and E ⊆ N ×N is a set of edges. A directed graph is a weighted directed graph
if at least one cost is assigned to each edge. A path in G is defined to be a sequence of
nodes P = (n0, n1, ..., nl), for l ≥ 0, such that ∀n∈P [n ∈ N ] and ∀i<l [(ni, ni+1) ∈ E ].
We refer to l as the length of the path, and write P as the set of all paths in graph G.

To conveniently determine a path between two arbitrary chosen nodes, we’ll have
to define a relation between two paths to indicate if one path is preferred above an
other. In case we are only interested in the path that is the shortest path, we should
be able to do so by their length and all we would need is a function to calculate the
length of a path: ϕ. However, our scenario requires us to take multiple criteria into
account. Even though we still are able to calculate the travel cost of this path in this
case – each path would have as many costs as criteria – it is harder to compare paths.
To solve this problem, we will need a second function, to combine several costs to one
single cost: θ. This allows us to use to compare paths in a natural way.

Definition 2.2. Let θ : Rk
+ → R+ be a monotonic aggegration function from a given

tuple of any size to a single value in domain R+, where k ≥ 1 is the number of criteria
and R+ is defined as R≥0. Let ϕ : E → Rk

+ be the cost function that specifies the
cost to traverse an edge e ∈ E. We lift this function to paths inductively as follows:
ϕ(n, n) = 0k; ϕ(n1, ..., nl−1, nl) = ϕ(n1, ..., nl−1) + ϕ(nl−1, nl). Then we can define a
binary relation ≺ on P as ∀P1,P2∈P [P1 ≺ P2 ↔ θ(ϕ(P1)) < θ(ϕ(P2))].

In previous definitions we assumed that the path we are looking for is the shortest
path between two points in the graph. However, it is very well possible that our ideal
route is not the shortest path, but the one that scores best on criteria x and y instead.
Therefore, we need to generalize our problem and will refer to the shortest path (if
applicable) as the optimal path. The shortest and optimal path are guaranteed to be
identical in case the only criterion is path length.
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2.2.1 Defining the optimal path

Let us consider the two friends planning a road trip. As displayed in the graph, they
start their road trip in Nijmegen and Köln, Hannover and Groningen are the major
cities they intend traveling to, before arriving back home again. The shortest path is
probably not identical to the optimal solution, e.g. depending on the importance of
the criteria e2 may be preferred above e1, but we will assume it is for now. In that
case, the goal is to determine the shortest path and we can define this as follows.

Definition 2.3. For graph G, let P ′ be the set of all paths P from node nstart ∈ N
to ntarget ∈ N , where Pi = (ni1, ..., nil) and every nij ∈ N . Let θ : Rk

+ → R+ be a
function that returns its first argument, i.e. θ(c1, ...ck) = c1, for c ∈ Rk

+. Now we can
calculate an optimal solution. A solution P ∗ ∈ P ′ is called optimal if ¬∃P∈P ′ [P ≺ P ∗].

A resulting optimal path is noted as P∗. Since the only criterion that, at this time,
matters in our example is the path length, we have a graph in which every edge has
one relevant cost only, being the length of the edge. Because of this, this optimal path
P ∗ then is guaranteed to be the shortest path. The optimal path in Figure 2.1’s graph
would be (e1, e4, e6, e8), which has a total cost (length) of 940km.

Definition 2.4. Let G be a graph, ϕ a cost function, and θ an aggregation function.
Let nstart and ntarget be two nodes of G. An optimal path in G is a path for which the
total travel cost between nstart and ntarget is minimized. The problem of finding such a
path is referred to as a path finding problem.

2.2.2 Adding criteria

Now we have given a definition of the shortest path for the road trip. However, this
path does not take any of the other listed criteria into account, so those should be added.

Criteria can be divided in two types: soft criteria and hard criteria. Hard criteria
are those that should be met no matter the cost, and soft criteria should be taken into
account as much as possible. Therefore, all edges not meeting any hard criterion should
be removed from the graph. In the road trip example, this is e2, as it is a toll road1.

Definition 2.5. Let K be the set of all relevant hard criteria. Let EK be the set of all
edges that do not meet these criteria. Then, we define E ′ = E/EK as the set of all edges
that meet the hard criteria. Now, let graph G′ = (N , E ′) be the graph G with all the
edges that do not meet all of our hard criteria excluded.

This leaves us with the same road map graph as we had before, excluding all edges
that represented toll roads. Although the following is not the case in the road trip ex-
ample, it is possible that a path between two nodes existed in G, but no longer does in
G′, since an edge that did not meet all hard criteria previously connected these nodes.
For example, it may no longer be possible to reach an island if you exclude ferries.

1Actually, there are no toll roads on the entire route, but for this example, we assume e2 is one.
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Now that we have a graph G′ that does not contain any edges e ∈ EK, soft criteria
can be added and existing definitions can be expanded to include these criteria. Three
soft criteria apply in our example: nature richness of the route, the amount of touristic
attractions near the route, and total length of the route. These criteria do not all have
the same importance level in practice, so we will add weights later on.

Definition 2.6. Let C be the set of all relevant soft criteria and let k = |C| be the size
of C. Then Rk

+ 3 (ci1, ..., cik) is a vector defining the cost of all criteria c ∈ C for an
edge ei ∈ E. All edges e ∈ E have such a cost vector.

In theory, we could say that these definitions would already allow for determining
the optimal path given a set of (unweighted) criteria. However, in practice not all
criteria are of interchangeable format. For example, nature richness of the route cannot
be simply compared to the route’s length. Prior to be able to compare values in different
units, we should convert them to one generic unit. A score or rating for example.

Definition 2.7. Let αx : R+ → R+ be a valuation function that converts values in any
arbitrary unit x to a generic unit and let A be the set of all such valuation functions.
Let θ : Rk

+ → R+ be defined as θ(c1, ..., ck) =
∑k

i=1 αi(ci), where αi ∈ A is the valuation
function for a value in unit ci.

The α functions may be hard to determine. One possibility is to convert all costs
to a cost on a scale of 1 to 100, where 1 is the best cost to have and 100 the worst.
In the case of nature richness of the route, we can assume that if this is known for all
roads, it is rated on some scale. Thus we just need to multiply and inverse the result,
since a higher ‘cost’ is better in this case. But if a criterion would be e.g. the fuel cost
however, one way to rate this is estimating the minimum, maximum and average fuel
consumption of the used type of vehicle, for common circumstances (e.g. on a slope,
or at a certain speed, or in the city). Then, it is possible to interpolate between these
values for each road segment and scale the cost. A similar strategy can be applied
in rating the number of touristic attractions. We can convert the road lengths by
normalizing them and multiplying the result by 100. At this point it is possible to
correctly and consistently find the optimal path P ∗ ∈ P ′, with respect to unweighted
criteria. Table 2.2 shows the costs table, after applying alpha to all edge costs. Edge
e2 is left out because it is a toll road, and since now all toll roads have been removed,
the Toll -column has been left out.

2.2.3 Adding weights

After the costs per criteria for the full path have been calculated, the criteria should be
weighted according to the user’s wishes. This means that one criterion can be regarded
as more important than an other, by assigning a higher weight to it, or vice versa. To
do so, we would need k weights; one for each criterion. Also, ϕ needs a redefinition, so
that it will take weights into account.
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Edge From To Length Nature Touristic

e1 Nijmegen Köln 47 70 50
e3 Köln Hannover 97 70 50
e4 Köln Hannover 85 90 80
e5 Hannover Groningen 100 50 80
e6 Hannover Groningen 88 70 30
e7 Groningen Nijmegen 62 60 80
e8 Groningen Nijmegen 56 70 70
e9 Groningen Nijmegen 68 20 40

Table 2.2: The converted cost of the edges of the graph in Figure 2.1.

Definition 2.8. Given a tuple of weights W = (w1, ..., wk), where each wi corresponds
to one ci and k is the size of the soft criteria (and weights) set. We will extend our
function ϕ : E → Rk

+ to include these weights as follows: ϕ(e) = (w1 · ec1 , ..., wi · eci),
where eci is the cost of the ith criterion of edge e.

Using this definitions, we can find the path that scores optimal given some criteria
and weights. For example, if our weights would range from zero to one, nature richness
of the route would get weight 0.9, whilst nearby touristic attractions and route length
would get a weight factor of respectively 0.5 and 0.2 for example. These weights favor
nature rich roads the most, then touristic attractions, and finally route length. This
will give us an optimal route that meets the friends’ requirements as far as possible.
This gives us the table below.

Edge From To Length Nature Touristic θ

e1 Nijmegen Köln 9 63 25 97
e3 Köln Hannover 19 63 25 107
e4 Köln Hannover 17 81 40 138
e5 Hannover Groningen 20 45 40 105
e6 Hannover Groningen 18 63 15 96
e7 Groningen Nijmegen 12 54 40 106
e8 Groningen Nijmegen 11 63 35 109
e9 Groningen Nijmegen 14 18 20 52

Table 2.3: The converted and weighted cost of the edges of the graph in Figure 2.1.

Table 2.3 shows us the weighted costs and the aggregated costs (the sum) per edge.
If we compare this table with Table 2.1, we see that for the route from Köln to Han-
nover, e3 is preferred above e4, whilst it is 40km longer. However, both the Nature
and Touristic’ of e3 score significantly better than those of e4. From Hannover to
Groningen however, the shorter route is taken, because next to being shorter, there
are a lot more touristic attractions near e6. It is true that e5 has a higher nature
richness, but it is not high enough to compensate. On the final part of the road trip,
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e9 scores over two times better than then e7 and e8; which is exactly as we expec-
ted. Since this route has a high score on the two most important weighted criteria,
its total costs drops rapidly, compared to the others. Now that we have all required
information, we can determine the optimal path for our friends to follow: (e1, e3, e6, e9).

For the sake of this example, our aggregation function simply combines all costs by
summing them up, and we have done this per edge instead of per path. However, θ
may be defined as a function that returns∞ if the total length is above a certain limit,
e.g. 1000km, and the sum of the costs otherwise. In that case, the path we just found
would not be the optimal path, since it has a total length of 1020km and its cost would
increase to infinity.

2.2.4 Optimal path

Now that we have all definitions to find an optimal path in a graph, we can compose
a partial function optimal path : (G,K, C,W,A, θ, nstart, ntarget) → P that calculates
the optimal path given a graph G, a set of hard criteria K and soft criteria C with linked
weights W, a set of valuation functions A, an aggregation function θ, and a start and
target node nstart, ntarget ∈ N . The path P determined by this function meets our
requirements, meaning that no path P ′ ∈ P exists, such that P � P ′ and P does not
contain any of the edges that fail to meet the hard criteria. Sub-optimal paths or paths
that do not meet all hard criteria are not given.

Definition 2.9. Function optimal path : (G,K, C,W,A, θ, nstart, ntarget)→ P finds a
path P such that (with k = |C|) holds: θ(ϕ(P )) = minP ′∈P(θ(ϕ(P ′))), and ∀e∈EP [e 6∈ EK],
where ϕ is the cost function, EP the set of all edges in P and EK the set of all edges
that do not meet the hard criteria.

Note that multiple optimal paths can be found in the same graph, for the same
start and target node. This was not the case in the Road Trip-example, but, especially
in larger graphs, this is very well possible. Therefore, optimal path gives us an optimal
path, rather than the optimal path.
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3 Complexity

Determining the optimal path given multiple criteria is NP-complete. We can prove
this by polynomially reducing the Knapsack decision problem to a simple optimal
path problem and will do so after theorem 3.1. First, however, we will introduce the
Knapsack problem. Finally, we will see that it is possible to reduce the path finding
problem’s complexity drastically by putting some restrictions on θ, allowing for reducing
the multicriteria problem to a single-criterion problem.

The Knapsack problem is a well known problem. It involves maximizing the value
whilst not exceeding a (predefined) maximum cost. It is called the Knapsack problem
because of its analogy with a real-life Knapsack problem: when filling your knapsack,
you cannot take all desired items with you since the knapsack has a limited size. So,
you want to put as many valuable items in your knapsack. Each item has a different
size and value, so there are many (im)possible combinations of items.

Definition 3.1. Let O be a finite set of objects (items). We define the size function
s : O → R+ and the value function v : O → R+. The Knapsack problem describes
the question whether or not subset O′ ⊆ O exists, such that

∑
o∈O′ s(o) ≤ C and∑

o∈O′ v(o) ≥ V .

In short, the problem is finding a combination of items, such that the sum of the
size of all items is below the knapsack’s maximum capacity C, but above the desired
minimum value V . Finding an answer to this question is is NP-hard[6].

Theorem 3.1. Determining the optimal path in a graph G ∈ G, given k > 1 criteria
is NP-complete.

Proof. We can prove that our path finding problem is NP-complete by polynomially
reducing the Knapsack problem to a rather trivial optimal path problem. To do so, we
will need to construct a graph that represents a Knapsack problem.
Let O, V , C, s, v be an instance of the Knapsack problem as defined in Definition 3.1.
Let

N := {n0, ..., nm}

E :=
m⋃
i=1

(
(ni−1, ni) ∪ (ni−1, ni)

′)
s(e) :=

{
n1i if e = (ni−1, ni)
0 if e = (ni−1, ni)

′

v(e) :=

{
0 if e = (ni−1, ni)
n2i if e = (ni−1, ni)

′

θ(s, v) :=

{
1 if s > C ∨ v < V
0 if s ≤ C ∧ v ≥ V

nstart := n0
ntarget := nm

m ≥ 2

13
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n0 n1 n2 nm

(n11, 0)

(0, n21)

(n12, 0)

(0, n22)

(n1m, 0)

(0, n2m)

Figure 3.1: A visual representation of the graph of the proof of Theorem 3.1.

This graph is shown in figure 3.1. We have m nodes, that are all connected to the next
node (if any) by two edges. Each node n ∈ N represents an ‘item’ in the knapsack
problem and each edge e ∈ E represents the decision to either include or exclude the
item. We have two criteria, being the size s and the value v. Our model map θ is
designed in such a way that it returns a cost of 1 if the total size exceeds a maximum
capacity C or the total value is below V , and a cost of 0 if none of these conditions are
violated. Both C and V are chosen to represent the cost respectively value of an other
path in our graph.

Let P ∈ P be a path from nstart to ntarget. Let P s = ϕ(P )1 the total size of all
‘items’ in the path and P v = ϕ(P )2 the total value, where we take ϕ as defined in
Definition 2.2. Then

f(P ) = θ(P s, P v) ≤ θ(C, V ) (1)

if and only there exists x ∈ {0, 1}m such that θ
(
ϕ
(
n1 · xT , n2 · (e− x)T

))
≤ θ(C, V ),

where e = {1}m. Note that xi = 1 if (ni−1,, ni) ∈ P and xi = 0 if this is not the
case, i.e. (ni−1, ni)

′ ∈ P . Since the number of paths that satisfy (1) is equal to the
number of solutions to corresponding Knapsack problem, finding the optimal solution
for a multicriteria path finding problem is NP-complete.

Above proof is an adaptation of Ehrgott[5], who has his proof based upon a proof
from Serafini[14]. Ehrgott also proves NP-completeness for acyclic directed graphs,
but his definition of an optimal path is different from ours. Whilst an optimal path for
him is a path that scores better at one criterion and at least as good on all criteria as
an other path does, our definition states that an optimal path has a lower cost than
any other path, using some function θ that combines all costs to one cost.

3.1 Criteria reduction

The prove given in previous section allows function θ to be non-additive, like averaging
or something similar. For example, it could be defined as a function that sums the
path costs of all k criteria and returns that as total cost, unless the cost of criteria
x passes a certain threshold. In that case, the total cost that is returned could be
e.g. positive infinite (if a maximum cost is exceeded) or negative infinite (if other
paths don’t matter anymore). Such functions would give users the option to provide
maximum or minimum values for criteria, but requires k total costs for a path. This is
exactly what we have proven in previous section to be NP-hard.
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Ideally, we would be able to pre-process any graph G and ‘merge’ the costs of each
edge into one cost, instead of doing so on path level, as Tarapata does with a so
called metacriterion function[15]. This allows usage of existing, very fast path finding
algorithms designed to process one criterion. Henig claims that not all attributes can
be aggregated. Multiple attributes have different representations and not al these
representations can be combined. This is especially the case for cardinal (e.g. travel
duration) versus ordinal (e.g. nature richness) attributes[9]. However, in definition
2.7 we have introduced the function set A that contains all functions that convert an
arbitrary unit to a generic unit. This includes ordinal ‘units’. We then can combine
multiple criteria by using θ and the α’s as our metacriterion function.

Now that we are able to aggregate multiple criteria, we need to restrict θ. Since
this function should now be applied on an edge instead of on a path, threshold-based
mapping functions are no longer meaningful. A single edge will generally not exceed
such a threshold and even if it would, it would make no real sense. An edge cost
exceeding some threshold would also be removed if this threshold would have been
translated to a hard criterion.

Definition 3.2. We restrict θ : Rk
+ → R+ to any function for which holds that it is a

homomorphism, so: ∀rk1 ,rk2∈Rk
+

[
θ
(
rk1
)

+ θ
(
rk2
)

= θ
(
rk1 + rk2

)]
. We will refer to a mul-

ticriteria path finding problem that is restricted by such a θ as a restricted multicriteria
path finding problem.

This rests us only to process graph G and apply θ on all edges, prior to determining
the optimal path. The complexity of doing this can be calculated easily: if we have a
total of m nodes in our graph and all nodes can be connected twice – we have a directed
graph – to each other node, there are m2 edges. However, nodes cannot be connected by
an edge to itself, so the maximum number of connections is m2−m. We have to apply
the mapping function on all edges, giving us a complexity of O(m2 −m) = O(m2). In
addition to this, we only have the complexity of the algorithm used to find the ‘shortest’
path in a standard directed graph. This means the overhead for restricted multicriteria
path finding problems is O(m2), which is significantly better than non-restricted path
finding problems. We can even improve this by combining the criteria ‘on the flow’
(i.e. only when the algorithm reaches that edge), instead of processing the entire graph
prior to executing a path finding problem. As the complexity of our θ function is O(1),
this approach has the same complexity as that of the path finding algorithm used.
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4 Algorithms

For variants of the problems such as described in this thesis, many efficient algorithms
have been developed. Furthermore, we have suggested a way to reduce a multicriteria
path finding problem to a single criteria path finding problem, by restricting θ, as
explained in Definition 3.2. However, we want to be able to solve non-restricted mul-
ticriteria path finding problems. In this section we will have a look at two well known
path finding algorithms: the Label Setting algorithm and Contraction Hierachies[11][7].
After having introduced these algorithms, we the will propose a combination of these
two algorithms that should be able to solve such path finding problems more efficiently.

4.1 Label Setting Algorithm

The basic Label Setting Algorithm is an algorithm that does not calculate an optimal
path from a start node nstart to a target node ntarget, but rather calculates an optimal
path from the start node to every other node in the graph. After it has done this, it
returns an optimal path from nstart to ntarget – providing there is any – and discards
the others. So, let us illustrate this, using the graph of our Road Trip-scenario, in
Figure 2.1. If we would ask the optimal path between Nijmegen and Hannover, it
would calculate the optimal path from Nijmegen to Köln, from Nijmegen to Hannover,
and from Nijmegen to Groningen, even though we don’t need two of those paths. This
is the case, since we do not know for sure if a path is optimal, before we have found all
paths, because of the possibility that a path of length 1000 is optimal whilst a path of
length 10 is not.

The algorithm is named the Label Setting algorithm because it determines all op-
timal paths using so called labels. These labels are created by the algorithm and
assigned to exactly one node per label. A node may have multiple labels. Every label
L of a node n references a label p, that is the predecessor label of n, on a path contain-
ing n. This means that if we have a path (v, u, w), the label of w references u’s label
as its predecessor label, and the label of u references v’s label as its predecessor node.
So if we have determined the labels of all nodes, a simple backtracking algorithm can
determine an optimal path.

A label L = (c1, ..., ck, n, p) is a tuple with k+2 attributes, with k being the number
of criteria. Every label contains the total cost (per criterion) ci of the path (nstart, ..., n),
the node n itself, and the label’s predecessor p. To access the node a label L belongs to,
we write Ln, and we refer to the other attributes in a similar way. For the predecessor
label we write Lp, for the cost tuple of a label Lc, and for the cost of the ith criterion
we write Lci . As we can see in Definition 4.1, we can compare labels the same way as
we compare paths.

Definition 4.1. We write L as the set of all labels. We define a binary relation ≺ on
L as ∀L,L′∈L[L ≺ L′ ↔ θ(ϕ(Lc)) < θ(ϕ(L′c))]. If L ≺ L′, we say L dominates L′.

The Label Setting algorithm starts at node nstart and spreads out through the entire
graph. Two lists are created initially: a list of temporary labels (TL) and a list of
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permanent labels (PL). A label in PL will never be removed, whilst a label in TL will
be. An initial label, belonging to nstart, is created and added to the temporary label
list. We then take and remove the only non-dominated label L from the temporary label
list and add it to the permanent label list. For each node n′ that is directly connected
to the current node Ln, the total cost to reach n′ is calculated and a new label L′ is
created. This label contains its predecessor (which is L), the total cost to reach n′, and
of course n′ itself. If L′ is not dominated by any label in TL that represents the same
node as L′ does, L′ is added to TL and, if it dominated a label, that label is removed.
This means that if a node is reached multiple times, the labels with the lowest costs are
kept and the others are discarded. Above is repeated as long as the temporary label
list is not empty, causing the algorithm to stop as soon as there are no more nodes to
check. At this time, all nodes n then have a label assigned to it, containing the cost
to reach n – starting at nstart – and its predecessor. All optimal paths can then be
retrieved by backtracking the path from n to nstart using the predecessor labels of the
labels in PL. Algorithm 4.1 shows the pseudo code for the Label Setting algorithm[5].

Algorithm 4.1 Multicriteria Label Setting algorithm

Input: A directed graph G = (N , E) with k criteria per edge; nodes nstart, ntarget
L := (0, ..., 0k, nstart, nil) # Initialize L on nstart
TL := {L} # Initialize TL with L
PL := ∅ # Initialize PL empty
while TL 6= ∅ do # While TL is not empty:
L := L ∈ TL, with @L′∈TL[L′ ≺ L] # Let L be the lowest cost label
n := Ln # Let n be the label’s node
TL := TL/{L} # Remove L from TL
PL := PL ∪ {L} # Add L to PL
for all n′ ∈ N | (n, n′) ∈ E do # For all connected nodes:
c := ϕ(n, n′) # Let c be the cost of (n, n′)
L′ := (Lc1 + c1, ..., Lck + ck, n

′, L) # Let L′ be a new label for n′

if @L′′∈TL∪PL[L′′n = n′ ∧ L′′ ≺ L′] then # If this label is not dominated:
if L′ ≺ L′′ then # If this label dominates:
TL := TL/{L′′} # Remove L′′ from TL

end if # End if
TL := TL ∪ {L′} # Add L′ to TL

end if # End if
end for # End for

end while # End while
Backtrack from ntarget to nstart using the predecessor labels of the labels in PL

Output: All optimal paths from nstart to ntarget

To illustrate this, let us have a look at the graph displayed in Figure 4.1. This
graph contains 6 nodes and 9 edges, and each edge has k = 4 (comparable) costs. The
graph is created by Martins E. Q. V., but its weights are slightly adjusted to better suit
the examples in this thesis[11]. Let the aggregation function θ be the sum function, i.e.
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Figure 4.1: An example graph to explain the Label Setting algorithm.

θ(c1, c2, c3, c4) = c1 + c2 + c3 + c4. We will use the Label Setting algorithm to find the
optimal path from node nstart = A to ntarget = F , for readability reasons we will only
once fully write down a label and refer to it afterwards as Lindex. All labels are listed
in Table 4.1.

After initialization of the algorithm, L0 = (0, 0, 0, 0, A, nil), TL = {L0}, PL is
empty, and we enter the while. We pick L0, set n to A, empty TL and add L0 to
PL. Two nodes are directly connected to A, being B and C. The order in which these
nodes are handled does not matter, so let us start with B. After looking up the costs
of edge (A,B), we create a new label (L′ in the algorithm) L1 = (10, 4, 2, 10, B, L0)
and, can add it to TL. Since TL is empty at this time, there was no dominating label,
so we did not have to discard L1 or any other label. We reached the end of the for loop
and can now do the same for node C: we create a new label L2 = (6, 1, 18, 10, C, L0)
and add it to TL. Note that we do not see L1 as a label dominating L2, since they
belong to different nodes. TL does now contain labels L1 and L2, and PL = {L0}.

At the next iteration, we select the label that is not dominated. Label L1 has a
total cost of 10 + 4 + 2 + 10 = 26 and L2 has a total cost of 6 + 1 + 18 + 10 = 35, so we
continue with the former. We remove L1 from the temporary labels list and add it to
the permanent labels list. The only directly connected node of L1n = B is D and its
cost is (0, 10, 12, 1), so the label for D will be L3 = (10 + 0 = 10, 4 + 10 = 14, 2 + 12 =

Label Costs Node Pre Label Costs Node Pre

L0 (0,0,0,0) A nil L1 (10,4,2,10) B L0

L2 (6,1,18,10) C L0 L3 (10,14,14,11) D L1

L4 (7,5,26,11) E L2 L5 (7,3,19,10) B L2

L6 (14,14,14,14) C L3 L7 (20,15,15,11) F L3

L8 (12,6,29,18) D L4 L9 (13,5,26,17) F L4

Table 4.1: The labels Algorithm 4.1 will produce for the graph of Figure 4.1.
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14, 10 + 1 = 11, D, L1). This label is not dominated, so we add it to TL, now {L2, L3}.
The total cost of L3 is 10+14+14+11 = 49 > 35, so we continue with label L2 and

add it to PL. The directly connected nodes are B and E; let us first handle E. Similarly
as we did for nodes B and D, we create a new label L4 = (7, 5, 26, 11, E, L2) and add it
to TL. Now for B, after having created a new label L5 = (7, 3, 19, 10, B, L2), we see that
it is dominated by L1: both labels belong to node B and 7+3+19+10 > 10+4+2+10.
Therefore, we discard L5 and move on with the next label in TL = {L3, L4}.

We look for the label that is not dominated, and find that 10 + 14 + 14 + 11 =
7 + 5 + 26 + 11, so the label we pick does not matter. Let us choose L3; the first
things we then do are removing L3 from the temporary label list and adding it to the
permanent label list. This leaves us with TL = {L4} and PL = {L0, L1, L2, L3}. Node
D is directly connected to C and F . For C, we create label L6 = (14, 14, 14, 14, C, L3)
and after seeing that this label is dominated by L2, so we discard it. We did not yet
encounter node F , so we create label L7 = (20, 15, 15, 11, F, L3) and add it to TL.

This iteration, we pick the non-dominated label L4, removing it from the temporary
labels list and add it to the permanent labels list. This label’s node (E) is directly
connected to D and F . The label we create for D is L8 = (12, 6, 29, 18, D, L4) and
this label is clearly dominated by L3, so we discard it. However, F ’s label, L9 =
(13, 5, 26, 17, F, L4) does not dominate and is not dominated by L7, so we leave L7 in
TL, but add L9.

Finally, we execute the last two iterations: we take the last remaining labels (L7

and L9) from TL and add them to the permanent labels list. None of these label nodes
have outgoing connections to any other node in the graph, so we reach the end of the
while without entering the for, and with TL = ∅, the algorithm exit the while with
PL = {L0, L1, L2, L3, L4, L7, L9}.

Now we can construct a path from A to F by backtracking, using the nodes of the
labels in the permanent label list. We search for the label L with Ln = F , then we
recursively select a predecessor label of L, until all predecessor labels are nil, in which
case we reached the start node. In our example, we find that F has two labels, L9 and
L7. This means that there are two optimal paths to this node. After backtracking, the
label paths we get are (L7, L3, L1, L0) and (L9, L4, L2, L0) (the rest of the labels have
one predecessor). All that rests us to do now, is reverse these lists and take the node
of each label, this gives us all optimal paths: P1 = (A,B,D, F ) and P2 = (A,C,E, F ).

4.2 Contraction Hierarchies

The basic idea of a Contraction Hierachy (CH) is to create hierarchic levels of the
graph, in which each level contains shortcut edges between two nodes, nodes that were
not directly connected on the previous level. Figure 4.2 shows an example of this:
we have a graph G with nodes v, u, w and edges (v, u) with cost a and (u,w) with
cost b. The left graph in the figure shows this situation. If we would then apply the
Contraction Hierarchy construction algorithm, we would get the shortcut edge (v, w),
with cost a + b, providing that it is an optimal path between v and w. In case there
already exists an edge between the shortcut nodes, the algorithm assigns the lowest of
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Figure 4.2: An illustration of a contraction. Left before, right after contraction.

the two costs to the existing edge[7]. The algorithm removes per level all redundant
edges after creating the shorcut edges. In this case, this would be edge a and edge b,
since they no longer need to connect u to v and w, because of the shortcut edge. The
right side of the figure shows the graph after contraction: the shortcut edge created is
dashed and the original edges are displayed as removed, i.e. grayed out.
Contraction Hierarchies are constructed by executing two main algorithms. The first
algorithm is responsible for sorting all nodes in graph G by importance, which is re-
quired to be able to let the second algorithm optimally contract the graph. We will not
discuss the first algorithm in detail, as it is a complex procedure and independent of
the search algorithm. For details on the sorting algorithm and more explanation on the
importance of nodes, see Geisberger’s Diploma Thesis on Contraction Hierarchies[7].

Definition 4.2. To be able to conveniently compare two nodes by importance, we define
a binary relation < on N as ∀n1, n2 ∈ N [n1 < n2 ↔ n2 is ‘more important’ then n1].
Similarly, we define a binary relation > on N as ∀n1, n2 ∈ N [n1 > n2 ↔ n1 is ‘more
important’ then n2]. We say an edge (n1, n2) ∈ E is ‘important’ if n1 < n1.

With the importance relations from Definition 4.2, we can move on to the second
algorithm. This algorithm involves removing redundant edges and creating shortcut
edges, i.e. creating the contraction hierarchy. In Algorithm 4.2 the pseudo code of
the basic algorithm to contract the graph is shown. As deleting nodes from the graph
involves a more complex algorithm and is not required to find an optimal solution, the
pseudo code abstracts from this action.

As we can see, it is a rather simple algorithm with no confusing or complex steps.
However, the if in the algorithm involves some complex calculations and will consume
most of the total execution time. To check if a path P = (v, u, w) is an optimal path
from v to w, we need to perform a so called local search. Technically, this means that,
for each execution of the if, we need to execute a path finding algorithm with nstart = v
and ntarget = w. This algorithm has to discard all paths P ′ for which holds that its
cost exceeds the cost of P , i.e. θ(ϕ(P ′)) > θ(ϕ(P )). This seems trivial, but path P
can have a very high cost, e.g. if one of the edges involves a highway without exits
for over a hundred kilometers. If P ’s cost is high enough, we may end up searching
large parts of the graph; this is very time consuming. That is why we need to limit
the local searches, to prevent them from becoming excessively expensive. To do so, we
can either limit the number of nodes of a potential better path, and discard it if this
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Algorithm 4.2 Basic Contraction algorithm

Input: A directed graph G = (N , E)
for all u ∈ N , sorted by <, ascending do # For all nodes in the graph, sorted:

for all (v, u) ∈ E , v > u do # For all u’s not important edges:
for all (u,w) ∈ E , w > u do # For all u’s important edges:

if @P (v,...,w)∈P [P ≺ (v, u, w)] then # If (v, u, w) is an optimal
e := (v, w) # path from v to w:
E := E ∪ {e} # Add a shortcut edge to E ,
ϕ := ϕ ∪ {(e, ϕ(v, u, w))} # with weight ϕ(v, u) + ϕ(u,w)

end if # End if
end for # End for

end for # End for
end for # End for

number is exceeded, or limit the number of edges on such a path: a hop limit. The
former method leads to more dense contracted graphs and does not speed up actual
contraction (if used in algorithm 1), so we will use a hop limit[7].

There are two different hop limit searches: Fast Local 1-Hop Search, and 1-Hop
Backward Search. The 1-Hop Search assumes most edges in the graph are an optimal
path between the two nodes they connect, which is usually the case in road networks.
The backward search is an a-Hop Search, with a ≥ 2. In this search, a path finding
algorithm explores all nodes that are within reach of a − 1 edges. In this process, it
assigns – like in the Label Setting algorithm – a label to each visited node n, containing
the nodes predecessor, and the cost to travel from v to n. Afterwards, a backward 1-
Hop Search is performed, starting at the target node, w. This search looks for all
surrounding nodes that have a label and selects the node with the lowest total cost.
The resulting path P ′ = (v, ..., w) is an optimal path between v and w, of length l ≤ a.

If P = P ′, i.e. if we did not found a path better than P , we assume that P is op-
timal. Note that it might occur that, although we assumed P is optimal, it is not. This
is unfortunate, but does not prevent us from finding an optimal path[7]. We then create
a shortcut edge (v, w), and store the middle node u of P at w, so that we can reproduce
the lowest level (original) graph from the contracted graph. We refer to this node as wu.

After the graph has been contracted (which can be done multiple times), we can perform
optimal path searches. We do so by using an interleaved, bidirectional search. Two
path finding algorithms start from respectively the start node nstart and the target node
ntarget. So the former performs a forward search, whilst the latter performs a backward
search, following all edges in opposite direction. If multiple edges have the same total
cost, the searches respectively prioritize the edges towards the more important, and
from the less important nodes. The algorithms only relaxes edges that are directed
toward a respectively higher or lower node in the hierarchy. They terminate if their
paths meet and cannot find a better path. Exactly how it is determined if there is a
better path depends on the path finding algorithm used.
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Now that we have found a path in the contracted graph, we need to unpack the
shortcut edges to extract the actual path. This can be done by a simple recursive
routine Geisberger presented[7]. Earlier this section, we said we store the middle node
of a path (v, u, w) in the last node. This means we can always construct the original
path from a shortcut edge (v, w), namely (v, wu, w). If we do this recursively, we
will eventually end with the original graph. After unpacking all edges of the path
is complete, we have found an optimal path from nstart to ntarget, using contraction
hierarchies.
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Figure 4.3: An example graph to explain Contraction Hierarchies.

We will give an example of the construction of a Contraction Hierarchy using the
graph in Figure 4.3. In this example, we will abstract from the algorithm that is used
to determine optimal paths, and just provide an optimal path instead. Furthermore,
we assume that the importance ordering of the nodes is A,B,C,D,E, F . The path we
are looking for has nstart = A and ntarget = F . For the local searches, we use a 1-Hop
Backward Search with a = 3.

With the first iteration of the first for, we select the most important node, being
A. Then we pick the first node that is less important then A, and is directly connected
to this node. In practice, ‘less important’ means that the node has not yet been used
by the algorithm. For A, these nodes are B and C, and since B > C, we start with B.
Now we do the same for this node and select D, since that is the only node directly
connected to B. Now we can construct a path (A,B,D) and we need to check if this
path is optimal, or a better path exists. As we can see, there is one other path from A
to D that has a lower cost then 7 + 9 = 16. Path P = (A,C,B,D) has a cost of 15.
Our hop limit is 3 and that is also the length of P , so this path is found and we do not
add a shortcut edge (A,D). After this, we jump back to the beginning of the second
loop, to handle node the next node, C. This node is directly connected to both B and
E, but B is more important then C, so we move on to E. We now need to check if
there is a better path from A to E, then (A,C,E), which is not the case, so we add a
shortcut edge (A,E) with cost 12.
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Back in the main loop, node B is next. This node has only one directly connected
node, D, and this also accounts for node D, which has F . So we search for a path
from B to F that has a cost lower then 17, and see there is one: P = (B,D,C,E, F ).
However, the local search algorithm will not find this algorithm, since we are using a
1-Hop Backward Search, that has a hop limit of 2. Since P is not found, we add a
second shortcut edge: (B,F ). The cost of this edge is 17.

The next node is C, and the only node that is less important and directly connected
is E. For E, this holds for F , so we are looking for a path that is better then (C,E, F )
and we see there is none, so a shortcut edge (C,F ) is added, with cost 12.

In the fourth iteration, we are at node D, which has F as a node that meets the
importance and connection requirements, but there are no nodes that are less important
then F , so the third for will not be entered and no shortcut edges will be added. The
same accounts for node E at the next iteration. The final iteration handles F and
encounters the same situation. Figure 4.4 shows the resulting graph. All shortcut edges
are dashed, and edges (A,C), (B,D), (C,E), (D,F ) and (E,F ) have been grayed out,
since they are removed.
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Figure 4.4: The example graph of Figure 4.3 after contraction.

We can repeat this procedure multiple times, this gives us an even more dense graph
every time. Note that the node importance order of this graph is chosen arbitrarily, so
the order is not optimal. Therefore, the graph in Figure 4.4 may seem a little awkward.

To determine an optimal path from A to F in this graph, we can apply any (bidirec-
tional) path finding algorithm, as long as we modify the algorithm in such a way that it
only relaxes edges that are directed towards a higher level when performing a forward
search, and only relazes edges that are directed towards a lower level when performing
a backward search. Geisberger uses Dijkstra’s search, so we will use that as well here[7].
We start two searches: a forward search that starts at A (in the highest level graph A
appears – which is the contracted graph in this case) and a backward search starting
at F (in the lowest level graph). At first, the forward search follows the edge (A,B),
as it has a lower cost then the shortcut edge (A,E), and the edge (A,C) does not exist

23



Analysing Multicriteria Route Planning Matthijs Hendriks

at this point. At the same time, the backward search follows the edge (E,F ). It then
traverses edge (D,F ), whilst the forward search travels (A,E). At the next iteration,
the forward search relaxes (A,E), as there can not be a better path from A to E and
E appears in a lower level graph, and the backward search relaxes (E,F ), as there can
not be a better path from E to F and E appears in a higher level graph. Now we have
found two paths: (A,E) and (E,F ). We concatenate these paths to (A,E, F ), unpack
the shortcut edge (A,E), and extract the optimal path (A,C,E, F ).

4.3 Multicriteria Contraction Hierarchies

The Label Setting and Contraction Hierarchy algorithms can be combined to one al-
gorithm. In this section, we will combine these algorithms and give a proof sketch that
our new algorithm is correct. Providing an extensive mathematical proof will be too
time-consuming and is therefore outside the scope of this thesis.

The main idea of the combined algorithm is that we have a hierarchical Label Setting
algorithm. To do this, we will use Contraction Hierarchies, which we create and use to
find an optimal path, using the Label Setting algorithm. However, this requires a few
adaptations to the algorithm:

1. The original Contraction Hierarchies use a modified Dijkstra version to contract
the graph and find optimal paths. This is fine for a regular path finding problem,
one that only takes path length into account. However, we have multiple criteria
and Dijkstra’s algorithm cannot handle this (efficiently). To handle this, we will
use an adapted version of the Label Setting algorithm.

2. For construction of the hierarchies, the contracting algorithm uses an a-Hop
Search. In most cases, a = 1 will suite the purpose, but because of our multiple
criteria it is more likely it will not, since most edges (v, w) are not an optimal
path from v to w. This makes 1-Hop Search unsuitable for our purpose. We could
try to overcome this problem by choosing a bigger a, but it is very well possible
that, even with a = 10, we will not find a path better then (v, u, w), although
there is one. Experiments should tell us what a is best in a real life road network.

Now that we know this, we can change the Label Setting algorithm such that it
takes a Hop Search into account. For this, the algorithm needs to return ‘no path’ if it
cannot find a path within a hops. Algorithm 4.3 shows the updated pseudo code.

A total of three changes are introduced with this new algorithm. First of all, we
have appended the label with an extra value, which we refer to as La. This value is the
k + 3th attribute of a label L, and stores the path length from nstart to Ln. Note that
the path length is the edge count of the path, and is unrelated to the cost of the path.
The second change involves the if statement. This statement now includes an extra
check θ(ϕ(L′c)) < K, so that the total cost of a found path does not exceed a given
maximum cost K. Next to this, it also includes an extra check L′a < a, that ensures
the newly created label does not belong to a node that is the ath node of a path, i.e.
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Algorithm 4.3 Multicriteria Label Setting algorithm with a-Hop Search

Input: A directed graph G = (N , E) with k criteria per edge;
start node nstart; hop limit a ≥ 1; max (aggregated) cost K

L := (0, ..., 0k, nstart, nil, 0) # Initialize L on nstart
TL := {L} # Initialize TL with L
PL := ∅ # Initialize PL empty
while TL 6= ∅ do # While TL is not empty:
L := L ∈ TL, with @L′∈TL[L′ ≺ L] # Let L be the lowest cost label
n := Ln # Let n be the label’s node
TL := TL/{L} # Remove L from TL
PL := PL ∪ {L} # Add L to PL
for all n′ ∈ N | (n, n′) ∈ E do # For all connected nodes:
c′ := ϕ(n, n′) # Let c′ be the cost of (n, n′)
L′ := (Lc1 + c′1, ..., Lck + c′k, n

′, L, a+ 1) # Let L′ be a new label for n′

if @L′′∈TL[L′′n = n′ ∧ L′′ ≺ L′] # If this label is not dominated
and θ(ϕ(L′c)) < K # and the cost is lower then K
and L′a < a then # and (n, n′) is not the ath edge:

if L′ ≺ L′′ then # If this label dominates:
TL := TL/{L′′} # Remove L′′ from TL

end if # End if
TL := TL ∪ {L′} # Add L′ to TL

end if # End if
end for # End for

end while # End while
Output: PL: The labels of all nodes reachable with x < a steps from nstart

that the path does not exceed length a. Finally, at the end of the outer while, we no
longer backtrack the path from any of the nodes in PL. Instead, we output a list of all
labels that plausibly represent an optimal path from nstart to any target node ntarget.

In addition to above version of the Label Setting algorithm, we need to construct
an other adaptation. Since we are using a-Hop Search with a > 1, and as the adapted
algorithm shows, we only search a−1 steps forward. The ath step needs to be performed
backwards, for this we require an algorithm that does a backward search and matches
the found nodes with all resulting nodes from the forward searching algorithm. The
result of this change is shown in Algorithm 4.4.

Parts of the code have been removed from Algorithm 4.3 algorithm to get to this
new one, and different input is required. Instead of a start node, it now requires a
target node. Next to this, a list of labels is expected; this list should contain all values
obtained by executing Algorithm 4.3. As for the code changes, we are only looking one
step ahead in the graph, rendering the list of labels that plausibly represent an optimal
path obsolete. Therefore we removed the while and all other TL- and PL-related
code. The for loop has been replaced by a loop that accepts all labels that represent a
node that is directly connected to the target node. If such a label L′ represents a path
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Algorithm 4.4 Multicriteria Label Setting algorithm with 1-Hop Backward Search

Input: A directed graph G = (N , E) with k criteria per edge;
labels PL; target node ntarget; max (aggregated) cost K

L := (0, ..., 0k, ntarget, nil, 0) # Initialize L on ntarget
for all L′ ∈ PL | (L′n, ntarget) ∈ E do # For all connected nodes in PL:
c′ := L′c + ϕ(L′n, ntarget) # Let c′ be the total cost to ntarget
if θ(c′) < L′c and Lp 6= nil # If this is the best cost
and θ(c′) < K then # and the cost is lower then K:
L := (c′, ntarget, L

′, L′a + 1) # Let L be a new label for L′n
end if # End if

end for # End for
Backtrack from ntarget to the start node using the label L

Output: All optimal paths from a start node to ntarget

that does not exceed the maximum cost and has a lower cost then a previously found
path (if any), we replace L by L′. After all labels have been processed we can use the
resulting label to find an optimal path to the start node, providing such a path exists.

Now that we have our Multicriteria Contraction Hierarchies algorithms complete, we
will provide a proof sketch that they indeed work as intended and will find an optimal
path if such a path exists. The proof assumes correctness of the Label Setting and
Contraction Hierarchies algorithms, which has been proved for both[11][7].

Theorem 4.1. The modified algorithms are correct.

Proof (sketch). Let us consider Contraction Hierarchies. The original algorithms use
a modified Dijkstra search to construct and use these hierarchies[7]. For Multicriteria
Contraction Hierarchies, we replaced Dijkstra’s algorithm by a modified Label Setting
algorithm, but did not change anything else. This means that if we assume our modified
Label Setting algorithms are correct, the Contraction Hierarchies algorithms also are.

To prove the modified Label Setting algorithms correct is less trivial, since the
algorithm is split up into two parts. The first part, Algorithm 4.3, is an exact copy of
the original algorithm, except that it needs to comply to two criteria: the total cost
of a path may not exceed a certain cost K and the total path length may not exceed
a certain hop limit a − 1. In practice, the maximum cost K is the cost to traverse
P = (v, u, w). At the time this algorithm is executed, we are looking for a path that is
shorter then P . Thus, we can discard any label of which the total cost exceeds θ(ϕ(P )).
This is enforced by the second line of the if statement. As for the hop limit, each time
a node appears in the for, we increase the hop count La by one. We use the same
principle as for the cost to do this: take the total cost (length, hops) so far, and add
to it the additional cost (1) to reach this node. The third line of the if ensures that
paths that reached length a are discarded, by not adding the new label to TL. If a
label is not added to TL, it can not be added to PL, thus can not be returned. The
algorithm ends after returning all labels PL that meet the requirements and represent
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a path that starts with a node nstart. Note that the check reads L′a < a, rather then
L′a ≤ a. Although the second of these checks actually limits the length to a and the
first limits it to a− 1, we search for the last edge of the path using a backward search.

Algorithm 4.4 is more extensively adapted. The goal of this algorithm is that
it scans, starting at the target node ntarget, all nodes around it, that are directly
connected to ntarget and have been labeled by the first algorithm. For each node, the
total cost from nstart to ntarget is calculated just as it is done in the original Label
Setting algorithm. Since do not want to return paths with a higher cost then (v, u, w),
we check if this total cost, aggregated, exceeds the maximum cost K, which is the same
as in previous algorithm. We do not need to check if the label’s hop count exceeds a hop
limit a, since this algorithm is only inputted the output PL from the first algorithm,
and this output is guaranteed to only output labels with a maximum hop count of a−1.
Since the second algorithm does not append multiple labels to these labels, the hop
count can not exceed a. Keep in mind that we only want to store labels that represent
a path that is better then one already known – if any. If this is the case, then we
re-assign label L in such a way that the cost is the total cost from nstart to ntarget, the
node the label belongs to is the target node, the predecessor node is the current node,
and the hop count is increase by one. If this is not the case, we skip this label and
continue with the next label in PL. In short, labels that do not help us construct a
path that is better then any other path we know, are discarded and will never overwrite
an other label. After the for has ended, we have a label L that is either the same label
as it was at time of initialization, or represents an optimal path from nstart to ntarget.
In the first case, we can conclude there is no optimal path within a hops. In the second
case, we know that we have found an optimal path of length La, and we can backtrack
to nstart to construct this optimal path. Thus, our modified algorithms are correct.

We will verify our algorithms by executing it on the example graph in Figure 4.1. We
assume the node importance ordering A,B,C,D,E, F and contract the graph once.
As in our example of the Label Setting algorithm, we want an optimal path from A
to F and we use the same aggregation function θ, so we expect to get the same two
paths again: (A,B,D, F ) and (A,C,E, F ). We will use a 1-Hop Backward Search
with a = 3. Since the nodes are ordered the same as in our example of Contraction
Hierarchies, and we have not changed the Contraction Hierarchy creation algorithm, we
will not give a detailed explanation again and skip to the shortcut edge creation of all
node combinations (v, u, w). These combinations are (A,B,D), (A,C,E), (B,D,F ),
and (C,E, F ). Table 4.2 shows all labels that are created during executing of our
algorithm, where Li

j is the jth label of the ith execution of our modified algorithms.
First, we will see if we can find a shortcut path for (A,B,D). We calculate the cost

from A to D via B and find that is is θ(10 + 0, 4 + 10, 2 + 12, 10 + 1) = 49. Now we
execute the adapted Label Setting algorithms with a = 3 and K = 49. Initially, label
L0
0 = (0, 0, 0, 0, A, nil, 0) is created and added to TL. In the first iteration, we remove

it from TL and add it to PL. The nodes that are directly connected to A are B and
C, so we create the labels L0

1 = (10, 4, 2, 10, B, L0
0, 1) and L0

2 = (6, 1, 18, 10, C, L0
0, 1)

respectively. Note that L0
0 has 0 hops and both L0

1 and L0
2 have 1 hop. Both labels are
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not dominated, the cost of both labels is below 49 and the hop count of both label’s
path is below a = 3. So we move on with label L0

1 (since it dominates L0
2).

We remove it from TL, add it to PL, and handle its only directly connected node:
D. For this node, we create new label L0

3 = (10, 14, 14, 11, D, L0
1, 2) and see that its

total cost is 49. This cost is not lower then the max cost, so we discard the label. The
node that has label L0

2, C has two directly connected nodes: B and E. For E, we create
label L0

4 = (7, 5, 26, 11, E, L0
2, 2), and for B label L0

5 = (7, 3, 19, 10, B, L0
2, 2). As we have

seen in our Label Setting example, the latter is dominated by L0
1 and is discarded. E’s

label is not dominated by an other label, but its total cost is 7 + 5 + 26 + 11 = 49 is not
below K, so it is discarded anyway. We remain with an TL = ∅ and PL = {L0

0, L
0
1},

of which the later is outputted by the algorithm.
This output we use as input for Algorithm 4.4, together with K and ntarget = D.

Let us execute the algorithm. This algorithm initializes a label L0
6 = (0, 0, 0, 0, D, nil, 0)

and loops through all labels in PL, that have a node to which is D directly connected,
i.e. there is a connection from a node n, to node D, instead of the other way around.
The only label for which is this is L0

3, so we calculate the new cost c = (10, 14, 14, 11).
This cost is (aggregated) not lower then K, so label L0

6 is not updated. There is no
other node that D is directly connected to, so we exit the for with the initial label.
This label has no predecessor, so we cannot backtrack any path and the algorithm
outputs ∅. This means there is no path from A to D that is better then (A,B,D), and
we create our first shortcut edge (A,D), with cost (10, 14, 14, 11).

Now we have checked one out of the four we need to check, so we need to apply the
same procedure for the other three paths. Describing the procedure for these paths as
extensively as we have done for the first would be very time consuming and adds little
to this example, so we will only tell which labels and shortcut paths are created.

As B is more important then C, we will start with this node and see if we can
create a shortcut path for (B,D,F ), which has cost K = 10+11+13+1 = 35. During
execution of the first algorithm, the following labels are created: L1

0 for B, L1
1 for D,

L1
2 for C, L1

3 for B, L1
4 for E, and L1

5 for F . After execution, PL = {L1
0, L

1
1, L

1
2}. Label

L1
3 is discarded because its hop count of 3 is not smaller then the hop limit a = 3.The

Label Costs Node Pre Hops Label Costs Node Pre Hops

L0
0 (0,0,0,0) A nil 0 L0

1 (10,4,2,10) B L0
0 1

L0
2 (6,1,18,10) C L0

0 1 L0
3 (10,14,14,11) D L0

1 2
L0
4 (7,5,26,11) E L0

2 2 L0
5 (7,3,19,10) B L0

2 2
L0
6 (0,0,0,0) D nil 0

L1
0 (0,0,0,0) B nil 0 L1

1 (0,10,12,1) D L1
0 1

L1
2 (4,10,12,4) C L1

1 2 L1
3 (5,12,13,4) B L1

2 3
L1
4 (5,18,20,5) E L1

2 3 L1
5 (10,11,13,1) F L1

1 2
L1
6 (0,0,0,0) F nil 0

Table 4.2: The labels Algorithms 4.3 and 4.4 will produce for the graph of Figure 4.1.

28



Analysing Multicriteria Route Planning Matthijs Hendriks

A

B

C

D

E

F(1,2,1,0) (4,0,0,3) (5,1,3,7)

(10,4,2,10)

(6,1,18,10)

(0,10,12,1)

(1,4,8,1)

(10,1,1,0)

(6,0,0,6)

(10,14,14,11)

(7,5,26,11)

(10,11,13,1)

(7,4,8,9)

Figure 4.5: The example graph of Figure 4.1 after contraction.

algorithm discards the remaining two labels because their costs exceed the maximum
cost of 35. After this, the second algorithm creates the initial label L1

7 finds that L1
0 and

L1
2 are not directly connected to the target node F , and that L1

1 has a total cost equal
to K. This means no shorter path is found and the Algorithm 4.2 creates a shortcut
edge (B,F ) with costs (10, 11, 13, 1).

For the remaining paths we do the same, and find two new shortcut edges (A,E)
and (C,F ), with costs respectively (7, 5, 26, 11) and (7, 4, 8, 9). Figure 4.5 shows the
contracted graph. All shortcuts are dotted, and all removed edges are grayed out.

Now that we have contracted our graph, we can use two Label Setting algorithms
to determine all labels of all nodes and determine an optimal path. Let us execute the
algorithm: at first, the forward algorithm creates an initial label for A and the back-
ward search one for F . For the forward search, there are only two directly connected
nodes, being D and E. Node B and C have no edge connected to A in the contracted
graph. For both nodes, the algorithm creates a label. The backward search is directly
connected to E and D in its graph level, so it creates labels for these nodes. At the
second iteration, the forward search selects the label of node D ((A,D) and (A,E)
have the same cost, but D is more important then E) and adds it to the permanent
labels list. The backward search does the same for E’s label ((D,F ) has the same cost
as (E,F ), but E is less important then D). The forward and backward search repeat
this for nodes E and D in the last iteration. The two searches have met and we now
have found two labels of D and two labels of E, of which each is the last label of an
optimal path. This is very similar to the situation Dijkstra’s search would have given
us: two paths to a central point represent one optimal path. If we combine these paths
we get paths (A,D,F ) and (A,E, F ). We now unpack these paths and see that we
have indeed found both optimal paths: (A,B,D, F ) and (A,C,E, F ).
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5 Conclusion

In this thesis, we have explained the idea of multicriteria path finding using some
example scenarios, and have proven that finding an optimal solution to this problem is
NP-complete. To overcome this problem, we have suggested to restrict the aggregation
function in such a way that we can reduce the multicriteria path finding problem to
a single criteria path finding problem. Whilst this approach may suffice for some
multicriteria path finding problems, there are still problems that can not be solved
this way. Therefore, we proposed an efficient algorithm that combines two existing
methods: Label Setting and Contraction Hierarchies. We refer to this new method as
Multicriteria Contraction Hierarchies. To show that this new method is correct, we
have given both a proof sketch and an example.

5.1 Applications

The algorithm we proposed has many applications, of which one of the most important
is route planning on mobile (navigation) devices. Major companies such as TomTom,
Garmin and Google now use their own path finding algorithm. For example, TomTom
uses methods they refer to as IQ routes and HD routing [13]. Unfortunately, these
algorithms itself are intellectual property of TomTom International B.V. and not pub-
licly accessible, but both algorithms solve dynamic path finding problems, rather then
multicriteria path finding problems, so Multicriteria Contraction Hierarchies may be an
interesting improvement to these algorithms[16]. Google however, has given a so called
“Tech Talk” titled Fast Route Planning, in which they reveal using an adapted version
of Contraction Hierarchies with Dijkstra’s search[8]. As our algorithm is an ‘extension’
to Contraction Hierarchies, supporting multiple criteria using the method we proposed
may be an interesting option for Google. This is especially the case since Google’s ser-
vice Google Maps calculates the desired paths using Google’s servers, rather then that
the user’s computer. So even if our Multicriteria Contraction Hierarchies algorithm has
a complexity too high for mobile devices, it may still perform fast enough on a server.

5.2 Discussion

Multicriteria Contraction Hierarchies are promising, but we have to take note of the
fact that this method is a combination of two basic different path finding methods.
Both of these methods have been improved several times, for several purposes, e.g.
Contraction Hierarchies have (i.a.) been improved to minimize computation time to
specialize it for mobile devices[12]. Furthermore, Geisberger himself has introduced
numerous improvements to Contraction Hierarchies. For the Label Setting algorithm,
this is also the case: Label Correcting improves Label Setting in such a way that it is
able to detect negative cycles, and can therefore handle negative costs c.q. weights,
whereas the Label Setting algorithm cannot and won’t terminate if it enters a negative
cycle[5]. All such improvements are not included in the algorithm we proposed, so it
probably does not perform as well as it would if we would add all these improvements.
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In addition to this, we have not implemented our method, as it would probably cost
a considerable amount of time; too much for a Bachelor thesis. So it is very well possible
that our algorithm does not improve on the execution time of existing multicriteria path
finding algorithms, though it does theoretically. An other risk is that its space or time
complexity is too high for practical use on a mobile device. These devices, such as
navigation systems, often do not have a lot of memory or computation power available.
If this is required for regular path finding problems, using our algorithm, then basic
(unimproved) Multicriteria Contraction Hierarchies are not suitable for such devices.

5.3 Related Work

Many researchers have found path finding to be an interesting field of research. Many
papers have been written on fast static algorithms, algorithms such as Dijkstra’s al-
gorithm. Since this algorithm, methods have been development that are up to three
millions times faster[4]. One of the leading researches in the area of path finding is
Peter Sanders. He has, together with others, developed a number of efficient path
finding algorithms. One of these algorithms is Contraction Hierarchies, the method we
used to base our proposed algorithm upon[7]. This algorithm has been adapted mul-
tiple times to i.a. minimize computation time to specialize it for mobile devices[12] and
minimize computation space consumption[1]. Other, popular and adapted algorithms
are Highway Hierarchies and SHARC [2], which both use a hierarchy system. Since
this thesis is about multicriteria path finding, all here mentioned papers are about an
other area of path finding. However, these algorithms can all be applied after having
reduced a multicriteria path finding problem to a single criteria one.

Next to general path finding, multicriteria and multiobjective path finding is re-
searched extensively. One of the most cited researches in this area is Ehrgott, who has
written a book on multicriteria optimization and in detail discusses several multicriteria
path finding algorithms. Two types of these algorithms are the Label Setting and La-
bel Correcting algorithms. These algorithms essentially solve the original path finding
problem of this thesis, but still are too time and space consuming to be well applicable
in navigation systems. The same accounts for other multicriteria path finding problem
solving algorithms, such as evolutionary algorithms. These algorithms ‘evolve’ to a
solution and are rather popular. Zitzler et al. have created a list of the most promising
evolutionary algorithms at that time and ranks SPEA and NSGA highest[18]. Both of
these algorithms have been improved to respectively SPEA-II and NSGA-II since and
these perform equally fast. However, both algorithms are not guaranteed to find the
optimal solution and have a complexity of O(k ·m2), with m the number of nodes and
k the number of criteria[3][19]. Unfortunately, this makes these algorithms unsuitable
for navigation systems.

Finally, Tsaggouris & Zaroliagis have developed an FPTAS (fully polynomial-time
approximation scheme) that runs in polynomial time and is a generalization of the
aforementioned label algorithms: SSMOSP [17]. Although this does look very prom-
ising, it has as a downside that it determines an approximation to the optimal solution
rather than an optimal solution, whilst in this thesis we were looking for the latter.
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5.4 Future Work

Considering the algorithm we proposed, there is still room for improvement. As we
mentioned in Section sec:discussion, our algorithm does not include any of the im-
provements that were developed for either Label Setting or Contraction Hierarchies.
Furthermore, we could think of some improvements ourself. For example, using the
current algorithms we proposed, the same labels are calculated multiple times; an in-
telligent ‘caching’ mechanism – that determines if a label needs to be recalculated – in
the algorithms should be able to significantly improve the performance.

Next to this, we have not proven Multicriteria Contraction Hierarchies correct,
nor have we implemented the algorithm and tested it. Before an algorithm such as
this will be (commercially) interesting, it has to be thoroughly tested and compared
to other algorithms. Although it seems that our algorithm will perform better then
existing multicriteria algorithms, investigation and more research is needed before we
can conclude this is indeed the case.

We suggest that future work proves Multicriteria Contraction Hierarchies and fur-
ther analyses the method. Also, an implementation should be written and tested on a
large, real world road graph. In addition to this, several improvements should be con-
sidered and eventually implemented. Finally, these versions of the algorithm will need
to be compared to existing algorithms, so that we are able to see if the new algorithm
performs better then existing algorithms.
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