‘:"l:ne?

£
o-iﬂke,-i‘e'

Radboud Universiteit Nijmegen §%

BACHELOR THESIS

Analysis of Android
Authenticators

Author: Supervisor:
Raoul Estourgie Dr. ir. Erik Poll

July 8, 2013

Abstract

This thesis reports an research that has been done on the security
of multi-factor authentication using Android applications. In specific I
will review the Google Authenticator and the Battlenet Authenticator.
There is a review on the security of the applications and also a review
of the security on the server-side. This will be in multiple scenarios
each focussing on a different part of the security. It appears that
multi-factor authentication is very secure however the application of
the Battlenet application contains a few leaks which makes it possible
to obtain the cryptographic key of the application even on a non-rooted
Android application.

Contents

[1__Introductionl

2 Background information|

[2.1 Ome-time password algorithms|

2.2 ndroi perating System essentials|

3 The Google Authenticator|

8.1 Theinstallationl
[3.2 Storing your secret key|. o 00000000
[3-3 Tmplementation of the protocols. v v v v v v vt
3.4 Multiple authenticators for one account|
8.5 Account Recovery|o
[3.6 _Application-specific passwords|.
BT Trusted Devicd . . .« o o o oo
3.8 Generated One Time Pads on the served
4_The Battlenet Authenticator|
MBI Tnstallationl
4.2 Storing your secret key|.o o oL
4.3 Implementation of the protocols|.
4.4 Multiple authenticators for one account|
4.5 Account Recovery| Lo
A6 Trusted Devicel
[6Security Analysis of the Authenticators]
5.1 Android backups|o oo
6.2 Debuggable android applications| ooo o
.3 Key Storage|o
6 Improving Security|
6.1 Pinaccess
6.2 Android Keychain API}.
[Z_Conclusion
[7.1 The Google Authenticator|
[[2The Battlenet Authenticator]
[(.3 Trusted Device]
18 _Future Workl
|9 _Kppenalxl
[T Battlenct backup filg

11
11
11
13
14
14
16
18
18

19
19
20
20
20
21
22

23
23
27
28

29
29
29

31
31
31
31

32

32

1 Introduction

Android is a widely used operating system for all kinds of devices. As
of May 2013 more than 900 million devices have the android Operating
System installed and more than 48 billion Android applications have been
installed [bbc, |. This more than doubles the figures of last year. This growth
also brings a lot of issue’s. If more and more people keep using the Operating
System it becomes more attractive for criminals to try to get access to certain
data of users such as credit card details and user information. This requires
the developers of the Operating System to spend extra attention to the
security of the Operating System. But also the developers of the Android
applications need to design a secure application that properly secures its
confidential data. This thesis covers two Android applications which need
to pay extra attention to the security of their data. These are the Google
Authenticator and the Battlenet authenticator, two applications that are
used to increase the security when logging in to a website.

2 Background information

This chapter is about the background information needed to research the
application. I will delve deeper in the HMAC-based one-time password al-
gorithm (HOTP) and Time-based One-Time Password (TOTP) algorithm.
Both algorithms are quite similar but work with different counters. The
battlenet authenticator only uses the TOTP algorithm, the Google authen-
ticator uses both. I will also give a short summary about the essential parts
of the Android Operating System. How applications work inside the system
and how to communicate with the system.

2.1 One-time password algorithms
2.1.1 HMAC-based one-time password algorithm

RFC 4226 [MRaihi et al., 2005 defines the HMAC-based One-time Password
algorithm (HOTP). This is an algorithm designed for generating One-Time
password values, based on [Bellare et al., 1996] Hashed Message Authentica-
tion Code (HMAC). The HOTP algorithm is based on a ”increasing counter”
value and a fixed symmetric key. RFC 2104 [Krawczyk et al., 1997 describes
how to generate this HMAC value.

RFC 2104 has only one requirement for the symmetric key, this is the
minimum length. The length needs to be atleast 16 bytes if you want to
generate an HMAC with MD5 and has a minimum requirement of 20 bytes
if you want to generate your HMAC with SHA-1. The maximum length for
the symmetric key is 64 bytes. Applications that use keys longer than 64
bytes will first hash the key and then use the resultant as the actual key to
generate the HMAC. The HMAC-SHA-1 algorithm is recommended because
its more secure then the MD5 variant.

The HMAC-SHA-1 algorithm is designed to deliver a 20 byte long code,
this needs to be shortened to a more user friendly size. This is done with a
truncate function reducing the 20 byte string to a 32 bit string so the code
consists of at most 10 decimal characters.

The basic idea is that both the client and the server have the same key
and the same counter. On the client side this can be implemented in a Java
smart card, USB dongle, GSM SIM cards and a lot of other goods.

Authentication requirements

There are a certain security requirements needed to keep the attacker at
bay.

e The server should not be vulnerable to brute force attacks. This means
that the servers need to request an extra security option after a few
failed attempts to log in. This could be done by supplying a Captcha
or give a time-out.

e The protocol should be implemented over a secure channel in order to
protect the users privacy.

Synchronisation of the counter The counter of the server will only
increase every successful authentication, but this is not the case on the client
side. Every time when the user requests a new key from the authenticator
the counter will increase and the authenticator will calculate a new HOTP
value. This creates the situation that the counter of the authenticator and
the counter of the server do not share the same value and are out of sync.

Resynchronisation is possible by letting the server look ahead a few
counter values. However you should not let the server look to far ahead,
it could be a wrong combination accidentally filled in by the user or an at-
tempt by the attacker to get the server and the client out of Synchronisation
or even worse giving access to an attacker.

2.1.2 Time-based one-time password algorithm

Time-based one-time password algorithm (TOTP) [MRaihi et al., 2010] is a
variation on the HOTP algorithm a time-stamp is used instead of a counter
to generate values. The counter is obtained by measuring the difference
between the current time and the time that is chosen as an universal start-
ing point. The counter will then be incremented every t seconds (most of
the time this is 30 seconds). The difference between the HOTP and the
TOTP algorithm is that the person now has a time limit to use the one
time password. It’s also harder for the server and the client to get out of
sync this requires the wrong time setting on one of the devices. The time
requirement can of course be bothersome with a slow connection between
client and server. If the one-time password reaches the server too late it can
be refused because the server is expecting the one-time password matching
the next time frame. In this situation it could be wise to look back a time
frame and accept it anyway. The server could become vulnerable to replay
attacks if it looks back more then one frame.

2.2 Android Operating System essentials

The android operating system is the dominating the tablet and the smart
phone market |Alugbue, |. Android is a Linux-based operating system, de-
signed for touchscreen mobile devices. The linux kernel is used for its device
drivers, memory management, process management and networking. The
next level contains the Android native libraries. This layer enables the de-
vice to handle different types of data. These libraries are written in ¢ or
c++. A small overview of these libraries are:

e Media framework

— Provides different media codecs, this allows the recording and
playback of different media devices.

e SQLite
— The database engine used in android for data storage.
o WebKit

— The browser engine used to display HTML content.

The next level is called the Android runtime, this consists of the Dalvik
Virtual Machine and Core Java libraries. The Dalvik Virtual Machine is
used to run applications, it is optimized for low processing power and low
memory environments. The Dalvik Virtual Machine runs .dex files. The
applications are developed in java so are .class files afterwards they are con-
verted to .dex which provides higher efficiency in low resource environments.
The Dalvik Virtual Machine provides extra security features discussed in
[2.2.1] The Java libraries are the libraries you can use to develop your appli-
cation together with the Application Framework.

The Application Framework is the next level in the Android Operating
System. These are the block an Android application directly interacts with.
These programs manage the basic functions the device has, which you can
use to build the application. A small overview of a few blocks are:

e Activity Manager
— Manages the life cycle of applications
e Content Providers
— Manage the data sharing betweens applications
e Location Manager
— Used for location management, using GPS or cell tower

The last level are the applications itself. The next page shows a visual
overview of the Android Operating System:

APPLICATIONS

Phone

APPLICATION FRAMEWOREK

LiIBRARIES ANDROID RUNMTIME

SLite Core Libr

FreeType Wbk

LinuxXx KERMNEL

Figure 1: The Android Operating System

2.2.1 Android security mechanisms

One of the main targets of the operating system should be security, otherwise
the data of all the users would be right on the street. In [Shabtai et al., 2010]
is an extensive security evaluation of the Android Operating System. The
table below points out the main security aspects of the operating system.

Mechanism

Description

Security issue

Linux mechanisms
POSIX users

File access

Every application has its own
userID

Each application has its own
storage space

Prevents applications to ac-
cess the other application
Prevents applications from ac-
cessing files of other applica-
tions

Environmental features
Type safety

Mobile carrier security features

Type safety enforces vaiable
content to adhere to a specific
format, both in compile time
and runtime.

Smart phones use SIM cards
to authenticate and authorize
user identity.

Prevents buffer overflows and
stack smashing

Prevents phone call theft

Android-specific mechanisms
Application permissions

Application signing

Dalvik Virtual Machine

Each application shows the
permissions it requires before
it is installed.

The developer signs the appli-
cation, which is then verified
by the package manager
FEach application runs in its
own virtual machine

Alerts users on applications
with too many permissions for
its function.

This is an authenticity check

Prevents buffer overflows, re-
mote code execution and
stack smashing.

It is important to be aware of the security limits of the operating system, so
we have a clear overview of the main focus of the application security itself.

2.2.2 What is an Android application exactly

Before an application is installed it is an .apk package. This package contains

the following items.

| T |] I
/META-INF Folder /res Folder AndroidManifest.xml
CERT.RSA Bl /drawable folder
CERTSF M /layout folder
B yanrestve M /xmifolder

Figure 2: Overview of the file structure of an APK file

e The META-INF folder

— Contains the certificate of the application.
— Contains SHAT1 hashes of the various components.

— a Manifest file is included.
e The res folder

— Contains the not compiled application resources. Resources are
the additional files and static content that your code uses, such
as bitmaps, layout definitions, user interface strings, animation
instructions, and more.

® resource.arsc

— a file containing pre-compiled resources, such as binary XML for
example.

e AndroidManifest.xml

An additional Manifest file.

— Contains name of the package

— Describes components of the application
— Required permissions

— Minimum level of API

e classes.dex

— This are the classes of the application compiled in the dex file
format which is needed for the Dalvik virtual machine.

The most important parts of the APK file that are needed for the re-
search are the AndroidManifest.xml and the classes.dex. When using reverse
engineering tools to convert the data to a more readable form [pxb1988, |.

2.2.3 The Android Debug Bridge

The Android Debug Bridge [Google, b|(ADB) is a command line tool used to
communicate with an Android device. This tool can be used to retrieve data
from your Android device and is also used to test applications. I will use this
to perform certain experiments. It is a client-server program that is installed
on a normal desktop computer or laptop. You can then communicate with
your android device when it is connected via USB to the computer.

10

3 The Google Authenticator

The Google Authenticator is an application that implements both the HOTP
algorithm and the TOTP algorithm. It is specially made for the two-factor
authentication for your Google account, but you are also able to add your
own key for One-Time Password generation, so you are able to store all
your authenticator keys in one single application that can generate them
all. Having a lot of keys on one place means that this application should
be well protected because it could be a source of valuable information for
people that want to get access to your accounts.

3.1 The installation

The installation of the application is straightforward. You go to the Play
store and install the application. At this moment in time the application
contains no keys so it is not possible to generate any one time passwords.
You have the possibility to store your secret keys via a few different options.
In order to use this application for two-factor authentication of your Google
account, the option in the option menu of your Google account needs to be
activated. Once that has been activated Google can generate a secret key
for you.

3.2 Storing your secret key

Before you can use your authenticator you need to have a shared secret
between your authenticator and the google server, so you can generate the
one time passwords. This should be done in a safe way, and we will evaluate
each option made available by Google. The options exist between manual
entering or via a QRcode.

11

3.2.1 Scan a QRcode

Google will you show a barcode which contains all the information necessary
for the application to create your account.

Figure 3: QR code generated by Google

When you scan the QR code you will receive this information:

otpauth://totp/r.estourgie%40gmail .com?
secret=eamb6n4ejbagecirx&issuer=Google

There is no connection needed with the internet. We can see that there is
some certain data available. The first part will tell the authenticator that
this should be used for TOTP one time password generation:

otpauth://totp

The second part will show the account name with Augmented BNF encoding
[Crocker and P, 2008|, in this case r.estourgie@gmail.com:

r.estourgie%40gmail . com

The next part contains the secret key in base32 encoding [Josefsson, 2003]
together with the counter this will be used to generate the HMAC:

secret=eamb6bndejbagecirx
And the last part shows its issuer, in this case Google:

issuer=Google

12

3.2.2 Manually adding a key

The authenticator also accepts keys which are manually inserted. This can
be used for other websites which have a 2 way authentication method but
don’t want to create their own Authenticator application. They are able to
provide the user with a key he needs to insert if they don’t have the ability
to generate QR codes. This is ideal for testing our previous assumption that
the secret key of our QR code should be:

eambndejbagecirx

After the key was inserted we can conclude that this was indeed our secret
key, as you can see on the figure below. When you manually add a secret

392593

392593

Figure 4: Results scanning QR code and manually entering the code

key you are also able to choose for a HOTP version instead of TOTP.

3.3 Implementation of the protocols
3.3.1 TOTP Protocol

There are a few things that we are able to research here.

e What kind of algorithm do they use to generate the one time pass-
words?

e How is the time frame implemented?

e Can expired one time passwords be reused?

13

What kind of algorithm do they use to generate the one time pass-
words? Google uses key lengths of 16 bytes, according to [MRaihi et al.,
2005] 16 bytes is minimum, however 20 is recommended. The documenta-
tion states that they always use the SHA1 hashing algorithm for generating
the HMAC code. Google uses the android library (javax.crypto.Mac) to
create a special MAC object with the secret key. The library has a special
HMAC with SHA1 algorithm called HMACSHA1.

How is the time frame implemented, are one time password that
are already expired still accepted? The time of one frame is 30 sec-
onds. When trying to log in the maximum frame range is one frame extra.
After 1 minute has passed the one time password will not be accepted any
more.

3.3.2 Counter based

The HOTP option is available for the authenticator, this is not used for any
of Google’s services. The algorithm is essentially the same as the TOTP
algorithm but instead of a time based increment there is a counter that gets
incremented every time the user presses the button on the application.

3.4 Multiple authenticators for one account

Is it possible to have multiple authenticators for one account? This is only
possible if you save your QR code that you received the first time you activate
your authenticator. This contains your secret key and makes it possible for
another authenticator to produce the same One Time Passwords.

3.5 Account Recovery

Google has implemented certain options to recover your account when you
forgot your password or lost your authenticator. This is implemented with
a security question, recovery e-mail and a personal telephone number. How-
ever when an attacker gains access to your Google account, it can have
devastating consequences.

14

3.5.1 consequences

When any of the recovery options is changed the user will receive a noti-
fication of this. This notification gives no power to the user to undo the
change. If an attacker hijacks your account he can change all these recovery
options leaving only one option to the user to retrieve his account. This is
done through the Account Recovery Form, it requires you to know a pre-
vious password used for your Google account, the last date that you where
able to sign in and the date of the creation of your Google account. The
first two questions are quite okay for users to answer but the last question
is impossible for most of the users to answer. This is time consuming and
can lead to a lot of frustration.

3.5.2 A better account recovery solution

The scenario that an attacker can take over an account for a long time needs
to be avoided. This can all be solved by a simple authentication solution.
Whenever an element of the account recovery options needs to be altered.
It needs to be done via the other already available authentication options.
This is simple and gives a lot more control to the user.

Changing the old recovery mail When a user changes his recovery mail
we can assume that the e-mail account no longer exists or is compromised.
When there are no other security features only a password is requested.
When there are other security features available one of them is required to
validate the change of the e-mail. This comes to filling in the text message
received by phone or answering the secret question.

Changing the secret question When a user changes his secret question
it’s probably not strong enough or more probably the user forgot it. When
there are no other security features only a password is requested. When
there are other security features available one of them is required to validate
the change of the secret question. You can then choose between receiving
a text message and filling it in or by receiving a confirmation e-mail with a
code.

15

Changing the mobile telephone number When a user changes his
recovery telephone number the worst case scenario is that he doesn’t have
access to the recovery number any more. When there are no other security
features only a password is requested. When there are other security features
available one of them is required to validate the change of the telephone
number. You can then choose between answering the secret question or
filling in the code of the confirmation e-mail.

3.5.3 Conclusion

The current state of the account retrieval security is quite unsafe. It is very
easy for an attacker to get complete control over the account by altering
al the extra account recovery features. This leaves the user only with the
option of the more tedious Account Recovery Form.

3.6 Application-specific passwords

Some specific applications require access to your Google account. This are
e-mail clients, youtube clients, Chrome-Synchronise, etc.. Normally they
would store your username and password and use it to connect to your
Google account. However they do not have any access any more because
of the two-factor authentication. To solve this Google provides application-
specific passwords. These are very long pass phrases with only intended use
for applications. These are generated on the server side of Google. You can
generate and revoke them at the authenticator option interface.

When we use this password to log in via the web interface we receive the
error shown in the figure below3.6]

This password could be exploited to get full access to your Google ac-
count however it doesn’t work via the web-interface. However it is not pos-
sible via the web interface and this exploit would be nice for future work.

16

Application-specific passwords
Step 2 of 2: Enter the generated application-specific password

‘You may now enter your new application-specific password inta your application.
Mote that this password grants complete access to your Google Account. For security reasans, it will not

be displayed again:

isfm nhtb vbmo ahkn

Mo need to memorise this password
You should only need to enter it once. Spaces dont matter.

Done

Your application-specific passwords Creation date Last used date
test account 08-Jun-2013 Unavailable [Revoke]

Figure 5: Application-specific password

Password

Please use your account password instead of an
application-specific password.

Figure 6: Trying to log in your gmail account with an application-specific
password, fails and produces error message

17

3.7 Trusted Device

Google also made it possible to trust certain devices. This means that you
do not need to use your authenticator any more. You go from 2 factor
authentication to 1 factor authentication again. This option is given if you
log in via the web-interface in the form of a little radio button. After this
you don’t need to fill in your One-Time Password any more, your password
will be enough for this device. The information needed is stored in a cookie,

2-step verification

Enter the verification code generated by your mobile
application.

Enter code:

|

Don't ask for codes again on this computer ﬂ

Figure 7: Trusted device radio button

if you delete the cookie you need to re-authenticate yourself.

3.8 Generated One Time Pads on the server

In the account options of Google is an option to generate 10 one time pass-
words. These one time passwords are meant to be printed out and used in
cases of forgetting or loosing the Android device. Each code is accepted only
once and it doesn’t matter in what order. When you decide to generate 10
new codes, the old codes automatically expire.

18

4 The Battlenet Authenticator

The battlenet Authenticator is an authenticator used by millions of gamers
to access their Blizzard games.

4.1 Installation

The installation of the Battlenet authenticator is quite straight forward.
You go to the Google play store and install the application. During the
installation your key is automatically generated and is linked to a serial
number. An example of this is shown in figure 6 [4.1] To connect your
authenticator to your account you need to visit the Battlenet website, log in
to your account and click on add an Authenticator to your account. You will
then receive a confirmation e-mail on your linked e-mail account. [[] After
you received the e-mail you will be requested to fill in the serial number
together with the current one-time password. This is enough for Battlenet
to retrieve your secret key.

SUCCESS!

Serial

EU-1306-0869-0122

Authenticator Code

20068512

Figure 8: A Battlenet serial number

n the past it would occur that an attacker that retrieved your Battlenet account
details and would then put an authenticator on your account. This was a frustrating
thing to happen because normal account recovery via e-mail wasn’t possible because of
the authenticator. This could take atleast a day before any Blizzard employee would take
a look at your case and remove the authenticator security. Usually your game account
would already have been robbed by then. This is from my own experience.

19

4.2 Storing your secret key

Blizzard has automatically implemented the key storage process. During
the first start up of the application the application will require an internet
connection. The application will try to make a connection with blizzard
and The application will receive a secret key linked to a serial number. The
application is now able to generate One Time Passwords based on the key.
After the account has been linked to the serial via the web-interface blizzard
knows that the secret key linked to the serial is your secret key.

4.3 Implementation of the protocols

The Blizzard Authenticator has no open source code nor has it posted any
details about the implementation of the algorithm in the Battlenet Authen-
ticator. It required some reverse engineering to get more specific data about
the application. The APK file only contains the classes.dex file. With a
special tool (dex2jar) it is converted to a more readable form. The code still
contains no comments or explanations, however it is nicely divided in their
packages and their classes format.

4.3.1 TOTP protocol

The Battlenet Authenticator implements its own SHA1 algorithm. This is
a bit unusual because Android has a supported library to provide SHA1
hashes (java.security.MessageDigest). Even wiser would have been to use
the MAC implementation of Android (javax.crypto.Mac) as they did in the
Google Authenticator.

How is the time frame implemented, are one time password that
are already expired still accepted? The time of the frame is 30 sec-
onds. The battlenet website will accept the One Time Passwords up to 5
frames back. This is 2.50 minute to login.

4.4 Multiple authenticators for one account

It is not possible for the Battlenet authenticator to have multiple Authen-
ticators for one account. Every application receives its own key and with it
its own serial number.

20

4.5 Account Recovery

Account recovery is fast and easy on Battlenet. In case of a lost password
there are several options.

e You can have a password reset link send to your e-mail address.

e If you lost your authenticator you can have it removed by letting Bat-
tlenet send a text message to your telephone. This contains the code
you need to fill in to remove the authenticator.

e When you have none of the above you can give them a e-mail address
and send in a copy of your identification. A Blizzard employee will
then look in to it within 6 to 12 hours. It is impossible to edit your
personal information once you have set-up a Battlenet account. So
they are always able to identify you via your identification.

ACCOUNT RECOVERY

Choose Verification Method

To verify that you are the registered user of the account r.estourgie@email.com, please provide one of the following:
Choose Verification Method:

") Answer my Battle.net security question

The first six characters of the game key registered to this Battle.net account for one of the following titles (or any of their
() expansions): World of Warcraft, StarCraft II, Diablo IIl. You must use the game key from a physical copy. Keys from digital
purchases and upgrades will not work.

Where can | find this?

) | don’t have any of this information

BACK

Figure 9: Battlenet account recovery

21

4.6 Trusted Device

Just like Google, Battlenet also gives you the possibility to trust a device
before you login. This means that you go from 2 factor authentication back
to 1 factor authentication. However they have a time frame of thirty days.
After thirty days the device will not be trusted any more and is required to
re-authenticate the device via the authenticator. The information needed is
stored in a cookie, if you delete the cookie you need to use the authenticator
again.

22

5 Security Analysis of the Authenticators

Applications are secured by the operating system, this prevents a lot of
unwanted people from accessing your data. In the Android operating system
applications get their own user id (UID). This prevents them from accessing
each others data. However applications also have a certain role to play in
securing their own data. This could be simple things by not storing private
keys on public accessible places, or allowing the application to communicate
in an insecure way with other applications.

5.1 Android backups

One of the less known new features introduced in Android 4.0 Ice Cream
Sandwich (ICS) is the ability to backup a device to a file on your computer
via USB [Google, a]. This doesn’t require you rooting the Android device
and lets you backup application data. The only constraint is to have USB
debugging enabled. This enables the adb to communicate to the Android
device. When backing up you can include user installed and system in-
stalled applications as well as shared storage (SD card) content. There are
some limitations to the backup process: Backup can be forbidden when it
is explicitly stated in the Manifest of the application. Android wont backup
DRM protected applications, system settings such as APNs and WiFi ac-
cess points. A well designed application with confidential data should have
prevented this option by setting the android:allowBackup="false” flag in
their Manifest |Google, d]. It is also possible to add the entire APK file
of the application to your backup. The normal command to backup your
application:

adb backup app.package.name

adb is the Android Debug Bridge. You activate it in the command line tool
with the adb commando. It then stores the application (app.package.name)
in the current directory in a file called backup.ab, ab standing for Android
Backup. Before it stores the data in the directory it will request you to
unlock the device and accept the backup. The Android device gives you
the ability to backup the data or to refuse it. It is also possible to encrypt
the data, the backup is then encrypted with AES-256 [Daemen and Rijmen,
199g].

23

The backup.ab file contains the following data:

ANDROID BACKUP

1

1

none

"a lot of binary data”

The first line defines that it is an Android Backup. The second states
the format version, the third is a compression flag, and the last one is the
encryption algorithm (‘none’ or ’AES-256").

The data is visible, as we did not encrypt it. The data is compressed
using the Deflate algorithm [Deutsch, 1996]. So the data can be extracted
from this file. [Elenkov, | gives an exact description of the extraction. The
first four rows contain 24 bytes of data that is not compressed. after skipping

the first 24 bytes, openssl zlib converts the Deflated compression to a tar
file.

dd if=mybackup.ab bs=1 skip=24|openssl zlib —d > mybackup. tar

Afterwards you can easily untar it to view its contents. Application data is
stored under the app/ directory, starting with a Manifest file, application
files in f/, databases in db/ and shared preferences in sp/. The manifest
contains the version code of the application, the platform’s version code,
a flag indicating whether the archive contains the APK of the application.
The end of the _manifest file contains the application signing certificate.

We will now use this technique to test both the Google Authenticator
and the Battlenet Authenticator.

24

5.1.1 The Google Authenticator

The source code of the Google authenticator is openly available to the public,
so it is easy to take a look in the Manifest to view that the allowBackup
flag is set to false. However this does not stop us from trying to issue the
command.

l:\Ugers\Ranul)adh hackup —f hackups-/googlebackup.ab com.google.android.apps.aut

ow unlock your device and confirm the backup operation.

D:sUsers Raoul>

Figure 10: Google Authenticator backup

We received a file, apparently we backed something up. Converting the
ab file to a tar file also works. However when we try to unpack the file
we receive a corrupted file error. After trying to backup a second time the
error still persisted. Backing up the same application from another Android
device with different data, resulted in the same error. All files are identical
and gives enough information to assume that the files contain no special
data.

5.1.2 The Battlenet Authenticator

The Battlenet Authenticator application is completely closed source so we
need to check if it is backup enabled or not. As we issue the command we
atleast receive a package. However this does not mean anything yet as we
saw in the previous example of the Google Authenticator.

D:=“lUzers~Raoul>*adh bhackup —f bhackups-hlizzardbackup.ah com.hlizzard.hma
Mow unlock your device and confirm the hackup operation.

D:“lUserssRaoul>_

Figure 11: Battlenet Authenticator backup

25

Extracting of the data of the tar file out of the ab file is successful.
Extracting of the tar file also works. The Battlenet Authenticator backed
up the manifest files and two files in the shared preference folder. The
definition of the sharedpreference [Google, €| on the Android developer site
is:

The SharedPreferences class provides a general framework that
allows you to save and retrieve persistent key-value pairs of prim-
itive data types. You can use SharedPreferences to save any
primitive data: booleans, floats, ints, longs, and strings. This

data will persist across user sessions (even if your application is
killed).

This might be a place to find any stored keys. By backing up a second
blizzard application with a different key we can view the differences with
WinMerge. The file SplashActivity of the second backup is identical to the
SplashActivity file of the other backup. The com.blizzard.bma. AUTH_STORE
file is totally different. The backup file can be found in the appendix

5.1.3 Restoring a backup file

It is really easy to restore a backup file. It does not require any of the
unpacking steps. You just need an Android device and the Android backup
file. When accessing the adb you fill in:

adb restore mybackup.ab

The Android device will then give a notification. The application will now
be in exactly the same state as the backed up Android application. This
means that you now have an identical authenticator generating the same
codes for the Battlenet Authenticator.

26

5.2 Debuggable android applications

This is another option that might work on an Android device with USB
debugging enabled. This option is the run-as command, this command only
works when the application is debuggable. The run-as command tries to
run itself as the application itself, this also means that it has access to all
the data. We then can copy the data to a place where we are able to access
it. This command is enabled by setting the android:debuggable flag to true,
it is only intended to be used when you are still in the development phase of
the application. The default option is false so it should be stated explicitly
in the Android Manifest. When the application is released on the market
the android:debuggable="true” should be removed.

5.2.1 The Google Authenticator

The Google Authenticator prevented this option. So we are unable to run
as the program itself.

shellBandroid:/ % run-as com.google.android.apps.authenticator?
run—as comn.google.android.apps.authenticator?

run-as: Package 'com.google.android.apps.authenticator2’ is not dehuggahle
1 ishellPandroid:/ § _

5.2.2 The Battlenet Authenticator

The run-as command seems to work for the battlenet authenticator. This
means that we can run as the application itself and are able to access the
key. Now we can use the cat command to copy the key to a public accessible
location like the SDcard. This then gives us the option to retrieve the data
from the SDcard.

D:\lUsers\Raoulradh shell

hellPandroid:/ § run-as com.hlizzard.bhma

run-as com.hlizzard.bma

hellPandroid: /data/datascon.hblizzard . bma/shared_prefs 5 cat com.hlizzard.hma.Al
H_STORE.xml > /sdcard/bliz.xml

zard.bma.AUTH_STORE.xml > /sdcard/bliz.xml {
hellPandroid: /data/datascom.blizzard.bma/shared_prefs § exit

D:\lzers\Raoulradh pull /sdeardsbliz.xml
B KB/s (459 hytes in 1.BBBs>

27

5.3 Key Storage

Even-though an application might seem secure, we cannot guarantee that
the operating system is secure. It is in the best interest of the application
and the user to make it an intruder as hard as possible to retrieve confidential
data. In this section we assume that the attacker has full root privilege on
the Android device. We can then see how hard it is to retrieve the actual
key that is stored by the application.

5.3.1 The Google Authenticator

The Google Authenticator is secure if the operating system is secure. How-
ever the data in the database of the Google Authenticator is in plaintext.
It takes no effort to link the key to the right username.

5.3.2 The Battlenet Authenticator

The Battlenet Authenticator is not that secure, however the key data in
the xml file is obfuscated a bit. An attacker would not be able to see it
in an instance. However if the application would be reverse engineered and
the attacker would put some time in it beforehand the key would also be
extracted fast.

28

6 Improving Security

The hardest part in the security is not performing the cryptographic oper-
ations, but key management. If a key is stored along with the encrypted
data, it is fairly easy to extract it, especially on a rooted device. The same
is true for keys embedded in the application source code, even if they are
somewhat obfuscated. The applications could make better use of the secure
alternatives offered by Android. These implementations would make both
the Google Authenticator and the Battlenet Authenticator more secure.

6.1 Pin access

To improve security the application could require a pass-phrase or PIN code
to access the application. This would be a good security even in rooted
devices. Because it would require a code not available in the device itself.

6.2 Android Keychain API

Since Android 4.0, Android offers a KeyChain [Google, c|. Currently the
Android Keychain API can only be used to store RSA private keys and
certificates. It is not yet generic enough to allow secure storage of user
data like symmetric keys. However chances are there that this option will
be available in the future so a small overview of the Keychain API will be
given.

When the KeyChain API is started for the first time, it will ask for an
user password. The KeyChain has as main advantage that the user only
needs to remember one password, all other credentials can then be stored in
the KeyChain.

When an application stores its key via the KeyChain API it will be
encrypted with a 128-bit AES master key in CBC mode |[Morris, 2010]. The
data then contains an info header, the Initial Vector(used for encryption),
an MD5 hash value of the data and the encrypted data itself. The master
key is itself encrypted with an AES key that is derived from the password
filled in by the user. To derive a key from the password PBKDF2 [Kaliskir,
2000] with 8192 iterations is used together with a random salt. PBKDF2 is
used to stretch the password to the correct size and the random salt is used
to prevent any lookup table attack.

So in fact this is not so different from the PIN access mode, this is
however a system-wide solution.

29

6.2.1 The Secure Element

The Secure element is a tamper resistant smart card chip. It is a small
computing environment on a single chip. Recent cards also come equipped
with cryptographic co-processors implementing algorithms like DES, AES
and RSA. They take advantage of the hardware’s memory protection fea-
tures to ensure that each application’s data is only available to itself. This
would be an ideal solution for the authenticators. If you generate the One
Time Password on the Secure Element it would make the application a lot
more secure. Leaving the application itself unable to request the key from
the Secure Element it would be impossible for an attacker to get a hold on
to the key. The only possibility would be to request a temporary One Time
Password, granting access only for a short period of time.

30

7 Conclusion

7.1 The Google Authenticator

The Google Authenticator is a well designed application, because it is open-
source anyone can view the code and report bugs if there are any. However
the key storage is a big security risk. Using one of the alternatives in the
security improvement sector would be strongly recommended.

7.2 The Battlenet Authenticator

The Battlenet Authenticator should have some major improvements. They
have forgotten about some serious issues in the security of the application.
The only good thing they have done is to obfuscate the secret key a bit.
That is however only a temporary solution and wont hold back a good
hacker that long. They can better fix the security holes and implement an
improved security solution in the Improved Security section.

7.3 Trusted Device

The trusted device option is insecure, a man in the middle attack can be
used to get access to the account. This could be in an internet caf where
the owner redirects the user to a modified version of the website, the user
would not notice it and would just continue logging in. This kind of attacks
cannot be prevented with a One Time Password. However because of the
trusted device option the attacker can have access 30 days for (Battlenet)
or an undefined time (Google).

The application should be convenient to use, so it is understandable that
they have implemented it. There is a safe solution to prevent this attack.
This can be done by requesting another One Time Password to confirm that
this device is really trusted.

31

8 Future Work

There is still a lot of research that can be done on the security analysis
of both applications. A further evaluation of the Battlenet application is
required to see how they acquire the secret key, and the exact way of storing
the key is also important.

It is also interesting to do research on encrypted backup’s, how are they
exactly encrypted and are they easily decrypted?

Trusted devices are identified by cookies, is there an exploit that you
can use the cookie of a trusted device, for a not trusted device?

The application specific password from Google, grants access to a Google
account. Using this password via the web interface does not work. How is
this implemented?

9 Appendix

9.1 Battlenet backup file

<?xml version=’1.0" encoding="utf—8" standalone=’yes’ 7>

<map>

<long name="com. blizzard .bma.AUTH STORE.CLOCK OFFSET” value="3536" />
<int name="com. blizzard .bma.AUTH.STORE HASH VERSION” value="10" />
<string name="com. blizzard .bma.AUTHSTORE.HASH” >08ed449963465cbH
35703d3d513c0f00966f42842105cead28896ae98e00a38e7fd384a8bbb0alb
OeeOce894d24fab5a4949396a2476bbbebbaa</string >

<long name="com. blizzard .bma.AUTH.STORE.LAST MODIFIED” value="1
370728049275” />

< /map>

References

[Alugbue, | Alugbue, R. Apple is the top smartphone vendor for 2011,
but android os continues to lead market share. http://tinyurl.com/
a375fdq.

[bbc, | bbe. 900 million activations and 48 billion installed applications.
http://wuw.bbc.co.uk/news/technology-22542725.

[Bellare et al., 1996] Bellare, M., Canetti, R., and Krawczyk, H. (1996).
Keying hash functions for message authentication. In Advances in Cryp-
tologyCRYPTOY6, pages 1-15. Springer.

32

http://tinyurl.com/a375fdq
http://tinyurl.com/a375fdq
http://www.bbc.co.uk/news/technology-22542725

[Crocker and P, 2008] Crocker, D. and P, O. (2008). RFC4234 augmented
bnf for syntax specifications: ABNF. In Internet Request for Comments.

[Daemen and Rijmen, 1998] Daemen, J. and Rijmen, V. (1998). Aes pro-
posal: Rijndael. In First Advanced Encryption Standard (AES) Confer-
ence.

[Deutsch, 1996] Deutsch, L. P. (1996). DEFLATE compressed data format
specification version 1.3.

[Elenkov, | Elenkov, N. Unpacking android backups. http://tinyurl.com/
mdd8ahd.

[Google, a] Google. Android data backup. http://tinyurl.com/28dqrpf.

[Google, b] Google. The android debug bridge. http://tinyurl.com/
bnxdazm.

[Google, ¢] Google. Android keychain. http://tinyurl.com/61kwl9v.
[Google, d] Google. Android manifest. http://tinyurl.com/loxzpnh.
[Google, €] Google. sharedpreferences. http://tinyurl.com/37qe4s4.

[Josefsson, 2003] Josefsson, S. (2003). RFC3548 the basel6, base32, and
base64 data encodings. In Internet Request for Comments.

[Kaliskir, 2000] Kaliskir, B. (2000). RFC2898 PKCS 5: Password-Based
Cryptography Specification Version 2.0. In Internet Request for Com-
ments.

[Krawczyk et al., 1997] Krawczyk, H., Bellare, M., and Canetti, R. (1997).
RFC2104 hmac: Keyed-hashing for message authentication. In Internet
Request for Comments.

[Morris, 2010] Morris, D. (2010). Recommendation for Block Cipher Modes
of Operation: The XTS-AES mode for Confidentiality on Storage Devices.

aihi et al., aihi, D., Machani, S., Pei, M., an ell, J.

[MRaihi 1., 2005] MRaihi, D., Machani, S., Pei, M d Rydell, J
(2005). RFC4226an Hmac-based One-Time Password algorithm(HOTP).
In Internet Request for Comments.

[MRaihi et al., 2010] MRaihi, D., Machani, S., Pei, M., and Rydell, J.
(2010). RFC6238Time-based One-Time Password algorithm(TOTP). In
Internet Request for Comments.

33

http://tinyurl.com/mdd8ahd
http://tinyurl.com/mdd8ahd
http://tinyurl.com/28dqrpf
http://tinyurl.com/bnxdazm
http://tinyurl.com/bnxdazm
http://tinyurl.com/6lkwl9v
http://tinyurl.com/loxzpnh
http://tinyurl.com/37qe4s4

[pxb1988, | pxb1988. Dex2jar. http://code.google.com/p/dex2jar/.

[Shabtai et al., 2010] Shabtai, A., Fledel, Y., Kanonov, U., Elovici, Y.,
Dolev, S., and Glezer, C. (2010). Google Android: A comprehensive
security assessment. Security €& Privacy, IEEE, 8(2):35-44.

34

http://code.google.com/p/dex2jar/

	Introduction
	Background information
	One-time password algorithms
	Android Operating System essentials

	The Google Authenticator
	The installation
	Storing your secret key
	Implementation of the protocols
	Multiple authenticators for one account
	Account Recovery
	Application-specific passwords
	Trusted Device
	Generated One Time Pads on the server

	The Battlenet Authenticator
	Installation
	Storing your secret key
	Implementation of the protocols
	Multiple authenticators for one account
	Account Recovery
	Trusted Device

	Security Analysis of the Authenticators
	Android backups
	Debuggable android applications
	Key Storage

	Improving Security
	Pin access
	Android Keychain API

	Conclusion
	The Google Authenticator
	The Battlenet Authenticator
	Trusted Device

	Future Work
	Appendix
	Battlenet backup file

