
Bachelor thesis
Computer Science

Radboud University

Equality of infinite objects

Author:
Robin Munsterman
s4070968

First supervisor/assessor:
prof. dr. J.H. Geuvers

herman@cs.ru.nl

Second assessor:
prof. dr. H. Zantema
h.zantema@tue.nl

June 27, 2013

Abstract

How do you prove equality of infinite objects? We consider two basic types:
streams and trees. Streams are infinite lists of data elements. We discuss
two specific methods of comparing streams, bisimulation and circular coin-
duction. Next we describe infinite binary trees and make new definitions for
bisimulation and circular coinduction in order to compare binary trees. We
conclude with a transformation function between streams and trees.

Contents

1 Introduction 2

2 Streams and stream equality 4
2.1 A specification of streams . 4
2.2 Bisimulation . 6
2.3 Circular coinduction . 8
2.4 Similarities and differences . 12

3 Trees and tree equality 14
3.1 A specification of infinite binary trees 14
3.2 Bisimulation . 16
3.3 Circular coinduction . 17
3.4 Transforming trees to streams 19

4 Related Work 23

5 Conclusions 25

1

Chapter 1

Introduction

Infinite objects have interesting properties compared to their finite counter-
parts. Firstly, how do you describe infinite objects? Secondly, how do you
compare infinite objects? To describe an infinite object we use equations
that the object should satisfy. We try to find equations that fully specify
that one object. To be able to talk about these notions we define models
which contain our infinite objects and in which the equations should hold.
The simplest example of infinite objects are streams: infinite sequences of
data elements. These can be described using input and output at any posi-
tion in the stream. But comparing streams is a little harder. We generally
can compare two lists by comparing each element in those lists. If we extend
this to streams then for all streams p, q we have

p = q ↔ ∀n ∈ N (pn = qn) (1)

where the lowercase n denotes the position in the stream. However, a naive
algorithm that would compare two streams this way would never terminate.
A better way is to prove equality of all elements recursively. A well-known
method is induction: {

p0 = q0

pn = qn → pn+1 = qn+1

in which pn = qn is the induction hypothesis. The implication should hold
for all n. However, this method fails to prove the equality of infinite objects
in which there is no direct relation between each subsequent pair of elements.
What we need is a stronger induction hypothesis. If for example two streams
repeat after two positions (sn = sn+2) we only need to check the equality
of those two positions and add those to the induction hypothesis. From
there we can derive the equality of the rest of the streams. In non-repeating
streams there are other ways, for example making a recursive specification
for which we only need to check the equality of all cases in the recursion.

2

In this paper we start with a specification of streams. We discuss three
ways of comparing streams: induction, bisimulation and circular coinduc-
tion. We prove their correctness by showing that induction, bisimulation
and circular coinduction are equivalent proving methods. Next we describe
infinite binary trees and extend the equality rules of the one-dimensional
bisimulation and circular coinduction to be able to compare two-dimensional
trees. We will again prove that the same relations between the proving meth-
ods hold and we define a function that first transforms the trees into streams
before comparing them.

3

Chapter 2

Streams and stream equality

2.1 A specification of streams

This section is largely based on section 2 of [13]. Streams are infinite lists of
elements. We consider two basic types: streams s and data elements d. The
set of all data elements is D. Next we want to have functions to operate on
streams or data elements. We consider three basic functions:

• : of type d× s→ s, concatenating a data element to a stream.

• hd of type s→ d, giving the first element (’head’) of a stream.

• tl of type s→ s, giving the stream minus the first element (’tail’) of
a stream.

Other specified functions have types dm×sn → d | dm×sn → s for m,n ≥ 0,
we call this set of functions F . Finally we have two sets of variables: xi ∈ Xd

of type d and σi ∈ Xs of type s.

Definition 2.1. The set of all terms is D ∪ {:, hd, tl} ∪ F ∪ Xd ∪ Xs. If
u1, . . . , um are terms of type d and t1, . . . , tn are terms of type s and f ∈
F ∪ {:, hd, tl} with signature f : dm × sn → d | f : dm × sn → s then
f(u1, . . . , um, t1, . . . , tn) is a term.

Now that we know how to define terms we want to compare two terms.

Definition 2.2. For comparing two terms we define an stream equation as
a pair of terms (l, r), both of type s. A stream specification E is a set of
equations, each written as l = r.

To be able to prove an equation we need to know the semantics of the
functions. Therefore we define a stream model.

Definition 2.3. A stream model M over D ∪ F consists of the set of all
streams S = Dω and the set of functions and constants [F] of which every
[f] is an interpretation of function f ∈ F .

4

For the function interpretations [f] it is required that [f] : Dm × Sn →
D if f : dm × sn → d and [f] : Dm × Sn → S if f : dm × sn → s. The
interpretations of the function symbols in F are free to choose.

Definition 2.4. We define the fixed interpretations of the basic functions
:, hd, tl as follows:

• ∀u ∈ D,∀s ∈ S, ∀n ∈ N.

{
[:](u, s)(0) = u

[:](u, s)(n+ 1) = sn

• ∀s ∈ S. [hd](s) = s0

• ∀s ∈ S, ∀n ∈ N. [tl](s)(n) = sn+1

With these fixed interpretations [:], [hd], [tl] we can make the following
stream specification Eb:

Eb =

hd(x : σ) = x

tl(x : σ) = σ

hd(σ) : tl(σ) = σ

Because the interpretations of :, hd, tl are fixed, Eb holds in every model,
therefore for all stream models M |= Eb.

We say that E ` l = r if l = r can be derived from the equations in E
using the rules of equational logic.

Definition 2.5. The rules of equational logic are:

• ` t = t (reflexivity)

• t1 = t2 ` t2 = t1 (symmetry)

• t1 = t2, t2 = t3 ` t1 = t3 (transitivity)

• t1 = t′1, . . . , tn = t′n ` f(t1, . . . , tn) = f(t′1, . . . , t
′
n) (equality of argu-

ments)

• t1 = t2 ` t1[x/u] = t2[x/u] (substitution)

The rules of equational logic are sound for stream models: if E ` l = r,
then this is true in all stream models. Therefore we can say E |= l = r.

Definition 2.6. E |= l = r := M |= E ⇒M |= l = r

Equational logic is also complete for stream models: if E |= l = r, then
E ` l = r. For a new set of equations E′ we can prove E |= E′ if E |= l = r
for every l = r ∈ E′. This concludes the definition of streams and stream
equality.

5

2.2 Bisimulation

The idea of making a bisimulation to prove the equality of two streams is
similar to induction as defined in Equation (1), but with a larger hypothesis
space. This makes it a very good method to prove equality of infinite objects.
The following definition originates from [10, 2].

Definition 2.7. For R, a binary relation on streams, we say that it is a
bisimulation for all streams s, t if we have:

R(s, t)⇒ hd(s) = hd(t) (bisim-head)

R(s, t)⇒ R(tl(s), tl(t)) (bisim-tail)

We define equality of streams s, t by bisimulation as:

∃R(R is a bisimulation ∧R(s, t)) (2)

In the following theorem we use a subscript 1 to describe the induction
equality of Equation (1).

Theorem 2.8.
s =1 t⇔ s =2 t

Proof ⇐ We assume s =2 t, so we have a bisimulation R with R(s, t).
We need to prove that for all streams s, t we have ∀n ∈ N (sn = tn), for
which we use induction on the position in the stream.
For n = 0: s0 = hd(s) =2 hd(t) = t0, where =2 follows from Equation
(bisim-head) in Definition 2.7.
For n > 0: we have the induction hypothesis sn = tn. Left to prove:
sn+1 = tn+1.
We have R(s, t), so from Equation (bisim-tail) we also have R(tl(s), tl(t))
and therefore (tl(s))n =2 (tl(t))n from Equation (2). Now we can prove
sn+1 = (tl(s))n =2 (tl(t))n = tn+1.

Proof ⇒ We assume s =1 t, so according to Equation (1) we have ∀n ∈
N (sn = tn). We need to prove that there exists a bisimulation R with
R(s, t). For this we can choose equality (1) from our assumption, soR(s, t) :=
(s =1 t). Now we need to prove that =1 is a bisimulation for all streams s, t
with R(s, t).
According to Equation (bisim-head) the heads must be equal. hd(s) = s0 =1

t0 = hd(t).
According to Equation (bisim-tail) the tails must be in R. For all streams
s, t we have ∀n ∈ N (sn = tn). This means we also have ∀n ∈ N ((tl(s))n =
(tl(t))n), so tl(s) = tl(t). From Equation (bisim-tail) we conclude
R(tl(s), tl(t)) and thereby we have proven R to be a bisimulation.

6

Example 2.9. In this example we will prove equality of two binary streams
by defining a bisimulation. For this we will extend R until we can prove
both requirements as defined in Definition 2.7. Our stream specification is:

zeros = 0 : zeros

ones = 1 : ones

alt = 0 : 1 : alt

zip(x : s, t) = x : zip(t, s)

To prove: alt = zip(zeros, ones). For this we make a bisimulation R with
the set {(alt, zip(zeros, ones))} ⊆ R.

According to (bisim-head) we must have hd(alt) = hd(zip(zeros, ones)).
This follows from:

hd(alt) = hd(0 : 1 : alt)

= 0

= hd(0 : zip(ones, zeros))

= hd(zip(0 : zeros, ones))

= hd(zip(zeros, ones))

The second requirement is R(tl(alt), tl(zip(zeros, ones))) according
to (bisim-tail). We can rewrite these two terms:

tl(alt) = tl(0 : 1 : alt)

= 1 : alt

and

tl(zip(zeros, ones)) = tl(0 : zip(ones, zeros))

= zip(ones, zeros)

This pair is not defined inR yet, so we extendR to {(alt, zip(zeros, ones)),
(1 : alt, zip(ones, zeros))}.

For this new pair (bisim-head) follows from:

hd(1 : alt) = 1

= hd(1 : zip(zeros, ones))

= hd(zip(ones, zeros))

Now we can prove (bisim-tail) as well, by using a pair from R:

tl(1 : alt) = alt

=R zip(zeros, ones)

= tl(1 : zip(zeros, ones))

= tl(zip(ones, zeros))

7

This proves R is een bisimulation, so we have alt = zip(zeros, ones).

Example 2.10. In this example we will prove equality of two natural
streams by using a successor function s. Our stream specification is:

from(x) = x : from(s(x))

from2(x) = x : from2(s(s(x)))

zip(x : s, t) = x : zip(t, s)

To prove: from(x) = zip(from2(x), from2(s(x))). That is, if we make an
interpretation [s](n) = n+1 for n ∈ N we have to prove that the zip of even
and odd numbers is equal to N. For this we make a bisimulation R with the
set {(from(x), zip(from2(x), from2(s(x)))) | x ∈ {sn0 | n ∈ N}} ⊆ R. For
R to be a bisimulation we need to prove (bisim-head) and (bisim-tail) from
Definition 2.7.

Definition (bisim-head) states:
hd(from(x)) = hd(zip(from2(x), from2(s(x)))). This follows from:

hd(from(x)) = hd(x : from(s(x)))

= x

= hd(x : zip(from2(s(x)), from2(s(s(x))))

= hd(zip(x : from2(s(s(x))), from2(s(x))))

= hd(zip(from2(x), from2(s(x))))

Definition (bisim-tail) states:
{(hd(from(x)), hd(zip(from2(x), from2(s(x)))))} ⊆ R. This follows from:

tl(from(x)) = tl(x : from(s(x)))

= from(s(x))

=R zip(from2(s(x)), from2(s(s(x))))

= tl(x : zip(from2(s(x)), from2(s(s(x)))))

= tl(zip(x : from2(s(s(x))), from2(s(x))))

= tl(zip(from2(x), from2(s(x))))

This provesR is een bisimulation, so from(x) = zip(from2(x), from2(s(x))).

2.3 Circular coinduction

Circular coinduction is another method to compare two streams and is quite
similar to bisimulation. Let E be a stream specification. We want to prove
E |= l = r, for which by Definition 2.6 it suffices to prove that for every
stream model M , if M |= E then M |= l = r.

8

Theorem 2.11. Let fr be a function of type s → d that is ’fresh’, i.e. fr

does not occur in E, l, r. For every stream model M , if M |= E and the
following two properties hold, we may conclude M |= l = r.

M |= hd(l) = hd(r)

M |= fr(l) = fr(r)⇒M |= fr(tl(l)) = fr(tl(r))

Corollary 2.12. If the following two rules hold, then E ` l = r.

E ` hd(l) = hd(r) (coind-head)

E ∪ (fr(l) = fr(r)) ` fr(tl(l)) = fr(tl(r)) (coind-tail)

These rules can be extended to prove a set of equations E′ as is done in
Theorem 3.1 from [13]. This will give more possibilities in proving equality,
as the assumption in rule (coind-tail) can be used to prove the right side
fr(tl(l)) = fr(tl(r)) for another equation in E′.

In the following theorem we use =1 to describe the induction equality of
Equation (1) and =3 to describe the coinduction equality of Corollary 2.12.

Theorem 2.13.
s =1 t⇔ s =3 t

Proof We can prove E ` l = r by induction on the position n. Our as-
sumptions are (coind-head) and (coind-tail). Let M be an arbitrary stream
model for which we have M |= E.
For n = 0 we have l0 = hd(l) = hd(r) = r0, by (coind-head).
For n ≥ 0 we have the induction hypothesis ln = rn. Now we’re left to
prove ln+1 = rn+1. We can make an interpretation for fr. Let us define
fr(s) = sn, for which the assumption fr(l) = fr(r) in (coind-tail) becomes
the induction hypothesis. Then we obtain: ln+1 = (tl(l))n = fr(tl(l)) =
fr(tl(r)) = (tl(r))n = rn+1, by (coind-tail).

Because the coinduction rules translate to induction, a proof of coinduc-
tion given the induction rules is trivial, as it will use the same equalities in
the proof above.

Comparison with bisimulation Corollary 2.12 is in fact a less general
case of Definition 2.7, because the fr function outputs a single data element.
Therefore Equation (coind-tail) only compares elements, not streams. It is
more like the inductive step. However, the extension to prove a set E′

instead of a single equation makes it stronger than normal induction.
If we combine Theorem 2.13 with Theorem 2.8 we should be able to prove
s =2 t ⇔ s =3 t. We leave this proof open, as we were unable to complete
it in time.

9

Example 2.14. In this example we will prove equality of two streams by
circular coinduction and bisimulation to show the similarities with term
rewriting. Let E be the following stream specification:

odd(x : s) = even(s)

even(x : s) = x : odd(s)

zip(x : s, t) = x : zip(t, s)

To prove: E |= zip(even(s), odd(s)) = s.

Circular coinduction From Corollary 2.12 it follows that we need to
prove both rules. Equation (coind-head) states hd(zip(even(s), odd(s))) =
hd(s) and follows from:

hd(zip(even(s), odd(s))) = hd(zip(hd(s) : odd(tl(s)), odd(s)))

= hd(hd(s) : zip(odd(s), odd(tl(s)))

= hd(s)

Equation (coind-head) states fr(tl(zip(even(s), odd(s)))) = fr(tl(s))
using induction hypothesis fr(zip(even(s), odd(s))) = fr(s). This follows
from:

fr(tl(zip(even(s), odd(s)))) = fr(tl(zip(hd(s) : odd(tl(s)), odd(s))))

= fr(tl(hd(s) : zip(odd(s), odd(tl(s)))))

= fr(zip(odd(s), odd(tl(s))))

= fr(zip(even(tl(s)), odd(tl(s))))

=CH fr(tl(s))

In the last step we use the coinduction hypothesis which holds for all streams
s. Because both circular coinduction requirements hold we prove that E |=
zip(even(s), odd(s)) = s.

Bisimulation Choose R = {(zip(even(s), odd(s)), s)} for all streams s.
We need to prove both requirements from Definition 2.7.
Equation (bisim-head) follows from:

hd(zip(even(s), odd(s))) = hd(zip(hd(s) : odd(tl(s)), odd(s)))

= hd(hd(s) : zip(odd(s), odd(tl(s)))

= hd(s)

10

Equation (bisim-tail) follows from:

tl(zip(even(s), odd(s))) = tl(zip(hd(s) : odd(tl(s)), odd(s)))

= tl(hd(s) : zip(odd(s), odd(tl(s))))

= zip(odd(s), odd(tl(s)))

= zip(even(tl(s)), odd(tl(s)))

=R tl(s)

By proving both requirements we conclude that R is a bisimulation and
therefore we know that zip(even(s), odd(s)) = s.

Example 2.15. In this example we prove a more advanced equality by
bisimulation, which can’t be solved with normal circular coinduction. Let
E be the following stream specification:

zip(x : s, t) = x : zip(t, s)

ones = 1 : zip(ones, ones)

To prove: E |= ones = 1 : ones with a bisimulation. Again, we start with
the equation we need to prove: R = {(ones, 1 : ones)}.

Then the first requirement (bisim-head) in Definition 2.7 follows from:
hd(ones) = hd(1 : zip(ones, ones)) = 1 = hd(1 : ones).

The second requirement (bisim-tail) isn’t fulfilled yet, so we rewrite both
terms first:
tl(ones) = tl(1 : zip(ones, ones)) = zip(ones, ones) and
tl(1 : ones) = ones.
Now we add (zip(ones, ones), ones) to R and check both requirements
again.

(bisim-head) for the new pair follows from:
hd(zip(ones, ones)) = hd(zip(1 : zip(ones, ones), ones)) =
hd(1 : zip(ones, zip(ones, ones))) = 1 = hd(1 : zip(ones, ones)) = hd(ones).

Again, (bisim-tail) for the new pair isn’t fulfilled yet, so we rewrite both
terms first:
tl(zip(ones, ones)) = tl(zip(1 : zip(ones, ones), ones)) =
tl(1 : zip(ones, zip(ones, ones))) = zip(ones, zip(ones, ones)) and
tl(ones) = tl(1 : zip(ones, ones)) = zip(ones, ones).

Next we would need to add (zip(ones, zip(ones, ones)), zip(ones, ones))
to R and check both requirements again, but from the previous two steps
it’s clear that we would need to keep adding terms with an increasing num-
ber of zip terms in them. So we need to make a recursive specification T

11

to define all pairs in R:

T := ones | 1 : T | zip(T, T)

R = {(s, t) | s, t ∈ T}

We can now prove (bisim-head) and (bisim-tail) for a bisimulation by
induction on T . BecauseR relates all terms in T we proveR is a bisimulation
by proxy: ∀s, t ∈ T (hd(s) = hd(t)) and ∀s ∈ T (tl(s) ∈ T).

Base cases: s, t ∈ {ones, 1 : σ} with σ ∈ T
hd(ones) = hd(1 : zip(ones, ones)) = 1 = hd(1 : σ)
tl(ones) = tl(1 : zip(ones, ones)) = zip(ones, ones) ∈ T
tl(1 : σ) = σ ∈ T

Now we prove the third case in which s or t is zip(σ, τ) with σ, τ ∈ T ,
for which we need the induction hypothesis hd(σ) = hd(τ), tl(σ) ∈ T ,
tl(τ) ∈ T .
hd(zip(σ, τ)) = hd(hd(σ) : zip(τ, tl(σ))) = hd(σ) = hd(τ)
tl(zip(σ, τ)) = tl(hd(σ) : zip(τ, tl(σ))) = zip(τ, tl(σ)) ∈ T

2.4 Similarities and differences

Previous examples have shown that there are many similarities between
proving equality with bisimulation and circular coinduction, but also a few
differences. We have shown that the circular coinduction rules are more
specific compared to the bisimulation rules. This means that if there exists
a proof by circular coinduction a similar proof by bisimulation is straightfor-
ward. One could take all coinduction hypotheses in a proof by coinduction,
remove the freeze functions and add the equations as pairs to R, which
would make R a correct bisimulation. But how would bisimulations with a
recursive definition like in Example 2.15 translate back to coinduction?

For this we need an extension to circular coinduction called ”special
contexts”, as described in [8, 13]. Indeed we can prove zip(�, τ) to be a
special context, for which one coinduction hypothesis is sufficient to prove
the equation.

According to Theorem 4.5 in [13] first we need to specify a stream spec-
ification E′ ⊆ E of which we want to prove special contexts. Let us choose
E′ = {zip(x : σ, τ) = x : zip(τ, σ)}. For all contexts in E′ to be special
we must prove E′ is both guarded and exhaustive. E′ is guarded, because
we have for all equations that the basic functions hd and tl do not occur
in both terms, the right side of the equations has : as the outer function
and the left side of the equation only has : and variables in the arguments.
E′ is also exhaustive, because all subterms consisting of precisely one non-
basic function are defined on the left side of an equation. In this case we
only have subterm zip(τ, σ) which is defined on the left side of the same

12

equation. These two requirements prove that all contexts in E′ are special,
which are zip(�, τ), zip(σ,�) and zip(�,�).

If we look at Example 2.14 again we can prove that even(�) and odd(�)
are not special contexts. If E′ = {even(x, σ) = x : odd(σ)} it is not ex-
haustive, because odd(σ) is left undefined. However, if we extend E′ to
{even(x, σ) = x : odd(σ), odd(x : σ) = even(σ)} it is not guarded anymore,
because the second equation does not have : as the outer function on the
right side.

A more intuitive way is by looking at the input and output size for a
limited input. The output size should be at least as much as the input size.
In the case of even and odd only half of the input is outputted.

13

Chapter 3

Trees and tree equality

3.1 A specification of infinite binary trees

Infinite binary trees are trees with two subtrees per node and no leaf nodes.
We will not discuss trees with more than two subtrees per node or trees with
finite paths. We consider two basic types: trees t and data elements d. The
set of all data elements is D. Next we want to have functions to specify a
tree or an element. We consider four basic functions:

• n of type d× t× t→ t, joining two trees with a new root element.

• r of type t→ d, giving the data element of the root node.

• lt of type t→ t, giving the left subtree of the root node.

• rt of type t→ t, giving the right subtree of the root node.

Other specified functions have types dm× tn → d | dm× tn → t for m,n ≥ 0,
we call this set of functions F . Finally we have two sets of variables: xi ∈ Xd

of type d and τi ∈ Xt of type t.

Definition 3.1. The set of all terms is D ∪ {n, r, lt, rt} ∪ F ∪ Xd ∪ Xt.
If u1, . . . , um are terms of type d and t1, . . . , tn are terms of type t and
f ∈ F ∪ {n, r, lt, rt} with signature f : dm × tn → d | f : dm × tn → t, then
f(u1, . . . , um, t1, . . . , tn) is a term.

Now that we know how to define terms we want to compare two terms,
which goes the same as with streams.

Definition 3.2. For comparing two terms we define an equation as a pair
of terms (l, r) of type t. A tree specification is a set of equations E, written
as l = r.

To be able to prove an equation we need to know the semantics of the
functions. Therefore we define a tree model.

14

Definition 3.3. A tree model M over D ∪ F consists of the set of all trees
T = D{0,1}

∗
and the set of functions and constants [F] of which every [f] is

an interpretation of function f ∈ F .

In this definition {0, 1}∗ is the set of all finite paths in the infinite binary
tree. A path is a sequence of taking the left or right subtree, here coded
with {0, 1}. A τ ∈ T is a function with signature τ : {0, 1}∗ → D, giving
the data element after a certain path.

A function interpretation [f] in the tree model specifies what trees are
defined by function f . It is required that [f] : Dm×Tn → D if f : dm×tn → d
and [f] : Dm×Tn → T if f : dm× tn → t.The interpretations of the function
symbols in F are free to choose.

Definition 3.4. We define the fixed interpretations of the basic functions
n, r, lt, rt as follows:

• ∀u ∈ D,∀t1, t2 ∈ T, ∀p ∈ {0, 1}∗

[n](u, t1, t2)(ε) = u

[n](u, t1, t2)(0p) = t1(p)

[n](u, t1, t2)(1p) = t2(p)

• ∀t ∈ T ([r](t) = t(ε))

• ∀t ∈ T, ∀p ∈ {0, 1}∗ ([lt](t)(p) = t(0p))

• ∀t ∈ T, ∀p ∈ {0, 1}∗ ([rt](t)(p) = t(1p))

With these fixed interpretations [n], [r], [lt], [rt] we can make the follow-
ing tree specification Eb:

Eb =

r(n(x, τ1, τ2)) = x

lt(n(x, τ1, τ2)) = τ1

rt(n(x, τ1, τ2)) = τ2

n(r(τ), lt(τ), rt(τ)) = τ

Because the interpretations of n, r, lt, rt are fixed, Eb holds in every model,
therefore for all tree models M |= Eb.

We have the same rules of equational logic for trees as for streams (Def-
inition 2.5), which are sound and complete for models. We can denote the
same definition E |= l = r for trees as in Definition 2.6. But how to define
equality on trees? If we have for all paths that the data elements are equal,
then the trees must be equal.

t1 =1 t2 ↔ ∀s ∈ {0, 1}∗ (t1(s) = t2(s)) (tree-1)

15

3.2 Bisimulation

Bisimulation for infinite binary trees should work the same as for infinite
streams, only each node has two pointers instead of one. Again, we define
R, now as a relation on trees.

Definition 3.5. For R, a binary relation on trees, we say that it is a bisim-
ulation for all trees t1, t2 if we have:

R(t1, t2)⇒ r(t1) = r(t2) (bisim-root)

R(t1, t2)⇒ R(lt(t1), lt(t2)) (bisim-left)

R(t1, t2)⇒ R(rt(t1), rt(t2)) (bisim-right)

The notion of equality by bisimulation is the same as in Equation (2),
so for all infinite binary trees t1, t2 we define:

t1 =2 t2 ↔ ∃R(R is a bisimulation ∧R(t1, t2)) (2)

Example 3.6. In this example we prove equality of two trees by defining a
bisimulation. Let E be the following tree specification:

evenl(n(x, τ1, τ2) = n(x, oddl(t1), t2)

oddl(n(x, τ1, τ2)) = evenl(τ1)

zipl(n(x, τ1, τ2), υ) = n(x, zipl(υ, τ1), τ2)

To prove: E |= zipl(evenl(t), oddl(t)) = t. For this we make a bisimula-
tion R with the set {(zipl(evenl(t), oddl(t)), t)} ∈ R.

Definition 3.5 states that we must prove three rules. Firstly, according to
(bisim-root) we must have r(zipl(evenl(t), oddl(t))) = r(t). This follows
from:

r(zipl(evenl(t), oddl(t))) = r(zipl(n(r(t), oddl(lt(t)), rt(t)), oddl(t)))

= r(n(r(t), zipl(oddl(t), oddl(lt(t))), rt(t)))

= r(t)

Secondly, according to (bisim-left) we must have:
R(lt(zipl(evenl(t), oddl(t))), lt(t)). This follows from:

lt(zipl(evenl(t), oddl(t))) = lt(zipl(n(r(t), oddl(lt(t)), rt(t)), oddl(t)))

= lt(n(r(t), zipl(oddl(t), oddl(lt(t))), rt(t)))

= zipl(oddl(t), oddl(lt(t)))

= zipl(evenl(lt(t)), oddl(lt(t)))

=R lt(t)

16

And finally, according to (bisim-right) we must have:
R(rt(zipl(evenl(t), oddl(t))), rt(t)). This follows from:

rt(zipl(evenl(t), oddl(t))) = rt(zipl(n(r(t), oddl(lt(t)), rt(t)), oddl(t)))

= rt(n(r(t), zipl(oddl(t), oddl(lt(t))), rt(t)))

= rt(t)

All requirements for R hold, so R is a bisimulation and therefore we
have proven zipl(evenl(t), oddl(t)) = t for all t ∈ T .

3.3 Circular coinduction

Just like with bisimulation we make an extra rule to cover both the left and
right subtree of a given node. Let E be a tree specification. This gives us
the following rules to prove E |= l = r.

Theorem 3.7. Let fr be a function of type t→ d that is ’fresh’, i.e. fr does
not occur in E, l, r. For every tree model M , if M |= E and the following
three properties hold, we may conclude M |= l = r.

M |= r(l) = r(r)

M |= fr(l) = fr(r)⇒M |= fr(lt(l)) = fr(lt(r))

M |= fr(t1) = fr(r)⇒M |= fr(rt(l)) = fr(rt(r))

Corollary 3.8. If the following three rules hold, then E ` l = r.

E ` r(l) = r(r) (coind-root)

E ∪ (fr(l) = fr(r)) ` fr(lt(l)) = fr(lt(r)) (coind-left)

E ∪ (fr(l) = fr(r)) ` fr(rt(l)) = fr(rt(r)) (coind-right)

Proof We can prove equality of trees t1, t2 as defined in Equation (tree-1)
by using Corollary 3.8. Let M be an arbitrary tree model for which we have
M |= E. We can prove this by induction on the path p in the tree.
For p = ε we have t1(ε) = r(t1) = r(t2) = t2(ε) by (coind-root).
For p ∈ {0, 1}∗ we have the induction hypothesis t1(p) = t2(p). Now we’re
left to prove t1(0 : p) = t2(0 : p) and t1(1 : p) = t2(1 : p). Let us define
fr(t) = t(p) for which the assumption fr(t1) = fr(t2) in (coind-left) and
(coind-right) becomes the induction hypothesis. Then we obtain:
t1(0 : p) = lt(t1)(p) = fr(lt(t1)) = fr(lt(t2)) = lt(t2)(p) = t2(0 : s) and
t1(1 : p) = rt(t1)(p) = fr(rt(t1)) = fr(rt(t2)) = rt(t2)(p) = t2(1 : p) by
using (coind-left) and (coind-right) respectively.

17

Example 3.9. In this example we prove equality of two trees by circular
coinduction and bisimulation to show the similarities with term rewriting.
Let E be the following tree specification:

alt = n(0, n(1, alt, alt), n(1, alt, alt))

inv(n(0, τ1, τ2)) = n(1, inv(τ1), inv(τ2))

inv(n(1, τ1, τ2)) = n(0, inv(τ1), inv(τ2))

To prove: E |= lt(alt) = inv(alt).

Circular coinduction We need to prove all rules in Corollary 3.8. By
Equation (coind-root) we must prove r(lt(alt)) = r(inv(alt)). This fol-
lows from :

r(lt(alt)) = r(n(1, alt, alt))

= 1

= r(n(1, inv(n(1, alt, alt)), inv(n(1, alt, alt))))

= r(inv(alt))

By Equation (coind-left) we have the coinduction hypothesis
CH1 : fr(lt(alt)) = fr(inv(alt)). Now we must prove fr(lt(lt(alt))) =
fr(inv(n(1, alt, alt))). We derive:

fr(lt(lt(alt))) = fr(lt(n(1, alt, alt)))

= fr(alt)

and

fr(lt(inv(alt))) = fr(lt(n(1, inv(n(1, alt, alt)), inv(n(1, alt, alt)))))

= fr(inv(n(1, alt, alt)))

Unfortunately we can’t use CH1 to prove equality here. From Equation
(coind-right) we will get the same terms, because the alt tree is symmetri-
cal. This means that now we need to prove:
E ∪ CH1 |= alt = inv(n(1, alt, alt)).

Again, we start with (coind-root) by which we must prove r(alt) =
r(inv(n(1, alt, alt))). This follows from:

r(alt) = 0

= r(n(0, inv(alt), inv(alt)))

= r(inv(n(1, alt, alt)))

18

Next, by (coind-left) we have the coinduction hypothesis
CH2 : fr(alt) = fr(inv(n(1, alt, alt))). Now we must prove fr(lt(alt)) =
fr(lt(inv(n(1, alt, alt)))). We derive:

fr(lt(alt)) =CH1 fr(inv(alt))

= fr(lt(n(0, inv(alt), inv(alt))))

= fr(lt(inv(n(1, alt, alt))))

This proves the second requirement. The third requirement (coind-right)
will give a similar proof, because the alt tree is symmetrical.

Bisimulation Now we make a proof by defining a bisimulation R with
{(lt(alt), inv(alt))} ⊆ R.

The first requirement of bisimulation in Definition 3.5 is equal to the first
requirement of circular coinduction, so the proof is the same. The second
requirement (bisim-left) can be rewritten:

lt(lt(alt)) = lt(n(1, alt, alt))

= alt

and

lt(inv(alt)) = lt(n(1, inv(n(1, alt, alt)), inv(n(1, alt, alt))))

= inv(n(1, alt, alt))

We can’t prove equality of these terms yet, so we add this relation to R.
The third requirement (bisim-right) will return the same pair, because the
alt tree is symmetrical. This means that now we need to prove:
{(lt(alt), inv(alt)), (alt, inv(n(1, alt, alt)))} ⊆ R.

Again we skip the trivial (bisim-root) which has already been proven.
For (bisim-left) we derive:

lt(alt) =R inv(alt)

= lt(n(0, inv(alt), inv(alt)))

= lt(inv(n(1, alt, alt)))

This proves the second requirement. The third requirement (bisim-right)
will give a similar proof, because the alt tree is symmetrical.

3.4 Transforming trees to streams

We could compare two infinite binary trees by transforming them into
streams first and then comparing those using our methods discussed be-
fore in Chapter 2. For this we make a special ZIP function that takes all

19

data elements from a tree and places those elements in a stream. We define
the ZIP function by using the zip function we know from combining two
streams.

ZIP(n(x, t1, t2)) = x : zip(ZIP(t1), ZIP(t2))

zip(x : s1, s2) = x : zip(s2, s1)

Lemma 3.10. t1 = t2 ⇔ ZIP(t1) = ZIP(t2)

Proof (⇒) Now we prove by circular coinduction on streams that if two
trees are equal, their ZIP streams must be equal as well.

The first requirement (coind-head) follows from:
hd(ZIP(t)) = hd(r(t) : zip(ZIP(lt(t)), ZIP(rt(t)))) = r(t) = t(ε). Since we
know that t1 = t2, according to (tree-1) we know that t1(ε) = t2(ε) and
therefore hd(ZIP(t1)) = hd(ZIP(t2)).

For the second requirement (coind-tail) we need to use the extended
rule with special contexts, Theorem 4.2 of [13]. We have the coinduction
hypothesis
fr(C[ZIP(t1)]) = fr(C[ZIP(t2)]) in which C is a special context. From
Section 2.4 we know that zip(�, s2) and zip(s1,�) are special contexts.
Now we derive:

fr(tl(ZIP(t1))) = fr(tl(r(t1) : zip(ZIP(lt(t1)), ZIP(rt(t1)))))

= fr(zip(ZIP(lt(t1)), ZIP(rt(t1))))

=CH fr(zip(ZIP(lt(t2)), ZIP(rt(t1))))

=CH fr(zip(ZIP(lt(t2)), ZIP(rt(t2))))

= fr(tl(r(t2) : zip(ZIP(lt(t2)), ZIP(rt(t2)))))

= fr(tl(ZIP(t2)))

Both circular coinduction requirements for streams hold, so we have ZIP(t1) =
ZIP(t2).

Proof (⇐) Unfortunately I do not have a proof for this side of the equa-
tion.

There are many ways to define the ZIP function. The most intuitive is
to perform a breadth-first search on the tree and put all data elements in
order in the stream. However, the definition is less straight-forward. The

20

following stream specification is based on [1], an implementation in Haskell.

ZIP2(t) = bfs([t])

bfs(s) = map(r, s) : bfs(map(children, s))

children(t) = [lt(t)] : [rt(t)]

map(f, x : s) = f(x) : map(f, s)

map(f, x) = f(x)

We use the notation [t] to make a list of one element t. bfs is of type s→ s
and concatenates two streams into one using a special : of type s × s → s.
Here we first take the root element of every tree in s and then continue
recursively with the children of every tree in s. children is of type t → s
and concatenates the left and right subtree together. Finally, map is of type
f× s→ s and makes a list of f(x) for all elements x in s.

A good ZIP function must evaluate all elements in the tree. With ZIP2
this is straight-forward, but does the first ZIP also take all elements from
the tree and what is the order in which they are placed? At first sight it
seems random, but we observe for each path p, q:{

p = 1n0q → p′ = 0n1q

p = 1n → p′ = 0n+1

If we have (ZIP(t))n = t(p), then (ZIP(t))n+1 = t(p′). Unfortunately we
do not have a proof for this observation. What we do know is that the
first equation is simple binary addition in reverse. Each new path raises the
old path by one, in which the most-left number is the least significant bit.
Therefore every path will be chosen once and all data elements in the tree
will get a position in the ZIP stream.

If we assume ZIP1 and ZIP2 are both correct ZIP functions, then what
makes a ’good’ ZIP function? Although the order of the elements in the
stream can be different, most ’good’ ZIP functions will have one thing in
common: they still traverse the tree by depth. They will not evaluate an
element at a certain depth when they haven’t evaluated every element in
lower depths yet. For example a faulty ZIP function that would always first
evaluate the left subtree would only evaluate one path in the three, because
with infinite trees it will never evaluate the rest. However, the order of the
elements doesn’t matter. ZIP1 and ZIP2 both apply to Lemma 3.10, but
ZIP1(t) 6= ZIP2(t)

Lemma 3.11. A good ZIP function is defined by
∀t ∈ T, ∀p ∈ {0, 1}∗ (t(p) = (ZIP(t))f(p))

with f(p) ≥ 2len(p) − 1 and f(p) < 2len(p)+1 − 1

21

Here we use a function f that outputs an integer given a path and a
function len that returns the length of the path. One could think of a good
ZIP function for which the restrictions on f(p) do not hold, but it would be
hard to define such a function.

Example 3.12. Let us take the ZIP2 function and prove correctness by
Lemma 3.11. The first requirement is trivial: every element in the tree will
get a certain position in the stream, because of the breadth-first search. For
the second requirement let us consider path 00. We know this has index 3
in the ZIP2 stream, because it is preceded by ε, 0 and 1. We notice that the
requirement is fulfilled: 3 ≥ 2len(00) − 1 = 22 − 1 = 3 and 3 < 23 − 1 = 7.
This was a left-most path with the lowest index at a certain depth, so all
paths at that depth will pass the lower bound. For the right-most path with
the highest index at a certain depth we can consider path 11 as an example,
for which we know it has index 6 in the ZIP2 stream. Again we find the
requirements fulfilled: 6 ≥ 3 and 6 < 7.

22

Chapter 4

Related Work

Streams have been defined by H. Zantema in [12, 13]. Their definition is
unrestrictive and allows a great variety of streams.
Endrullis et al. give an interesting overview of stream properties in [3], high-
lighting productivity, complexity, equality and ’turtle graphics’. They give a
partial order of degrees of streams, where a degree is an equivalence class of
streams, ranging from eventually periodic streams to uncountable streams.

The notion of proving equality of streams by bisimulation was introduced
by V. Capretta in [2]. If their algorithm terminates successfully or diverges,
the defined relation is indeed a bisimulation and the stream equation has at
most one solution. Their work relies on abstracting corresponding subterms.
Bisimulation can be used in many contexts, one of the first examples is in
coalgebra by B. Jacobs and J. Rutten [6]. A few other areas of interest are
elaborated in [10] by D. Sangiorgi.

Circular coinduction has been studied extensively by J. Goguen, K. Lin
and G. Roşu. It was introduced in [4] and elaborated in [5] to be able to
prove conditional equations and making it more versatile by adding case
analysis. D. Lucanu and G. Roşu released CIRC [7], a circular coinductive
prover implemented as an extension of Maude. In [8] they extended CIRC
to be able to find special contexts, a means to obtain a distinguished class
of special hypotheses.

In the field of automated equation provers F. Staals has made an im-
plementation in Coq [11], although not as powerful as CIRC. H. Zantema
and J. Endrullis introduced Streambox, which is an improvement on CIRC.
It does not restrict to a specific format of behavioral equations and it does
not require termination. It has a simple criterion for checking for a class
of special contexts and finally it adds a technique to prove stream equal-
ity by exploiting unicity. However, G. Roşu has shown in [9] that proving

23

equality of streams is a Π0
2-complete problem, which includes both the re-

cursively enumerable and the co-recursively enumerable classes. This means
that there is no complete proof system for equality of streams.

24

Chapter 5

Conclusions

We have given a specification of streams and what it means for two streams
to be equal. From there we introduced two new methods of proving equality:
bisimulation and circular coinduction. We have compared their definition
with induction and shown their workings with a few examples. We discussed
similarities and differences in proving and took a quick look at special con-
texts, an extension to circular coinduction.

The second part of this paper introduced infinite binary trees and showed
what made them different from streams. We introduced new definitions for
bisimulation and circular coinduction to be able to compare infinite binary
trees and clarified with examples. We ended with a new way of comparing
trees by transforming them into streams first. There are many possible
ZIP functions and we tried to give a definition on what makes a good ZIP

function.

Acknowledgments Our thanks go out to H. Geuvers for his guidance
and ideas for writing this paper. We also want to thank H. Zantema for his
ideas on how to define infinite binary trees.

25

Bibliography

[1] S. Behrens. Haskell: Breadth-first tree traversal. http://jjinux.

blogspot.nl/2005/12/haskell-breadth-first-tree-traversal.

html, 2005.

[2] V. Capretta. Bisimulations generated from corecursive equations. In
Proceedings of the 26th Conference on the Mathematical Foundations
of Programming Semantics, volume 265 of Electric Notes in Theoretical
Computer Science, pages 245 – 258. Elsevier, 2010.

[3] J. Endrullis, C. Grabmayer, D. Hendriks, and J.W. Klop. Infinite
streams. Written for the NWO BRICKS-project Infinity, 2009.

[4] J. Goguen, K. Lin, and G. Roşu. Circular coinductive rewriting. In
Proceedings, 15th International Conference on Automated Software En-
gineering (ASE’00). Institute of Electrical and Electronics Engineers
Computer Society, 2000.

[5] J. Goguen, K. Lin, and G. Roşu. Conditional circular coinductive
rewriting with case analysis. In Recent trends in Algebraic Development
Techniques (WADT02), volume 2755 of Lecture Notes in Computer Sci-
ence, pages 216 – 232. Springer, 2003.

[6] B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction.
EATCS Bulletin, 62:222 – 259, 1997.

[7] D. Lucanu and G. Roşu. CIRC: A circular coinductive prover. In
CALCO’07, volume 4624 of Lecture Notes in Computer Science, pages
372 – 378. Springer, 2007.

[8] D. Lucanu and G. Roşu. Circular coinduction with special contexts. In
Proceedings of the 11th International Conference on Formal Engineer-
ing Methods (ICFEM’09), volume 5885 of Lecture Notes in Computer
Science, pages 639 – 659. Springer, 2009.

[9] G. Roşu. Equality of streams is a Π0
2-complete problem. In Proceedings

of the 11th ACM SIGPLAN International Conference on Functional
Programming (ICFP’06). ACM, 2006.

26

[10] D. Sangiorgi. On the origins of bisimulation and coinduction. ACM
Transactions on Programming Languages and Systems, 31 (4):111 –
151, 2009.

[11] F. Staals. Proving equality between streams. University of Technology
Eindhoven, 2006.

[12] H. Zantema. Well-definedness of streams by transformation and termi-
nation. Logical Methods in Computer Science, 6(3), 2010.

[13] H. Zantema and J. Endrullis. Proving equality of streams automati-
cally. In Schmidt-Schauß, M. (ed.) 22nd International Conference on
Rewriting Techniques and Applications (RTA’11), volume 10 of Leib-
niz International Proceedings in Informatics (LIPIcs), pages 393 – 408.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2011.

27

