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Abstract

Automata learning is increasingly being applied to ease the test-
ing and comparing of complex systems. We formally reconstruct an
efficient algorithm for the inference of Mealy machines, prove its cor-
rectness, and show that equivalence queries are not required for non-
minimal hypotheses. In fact, we are able to evade those by applying
a minor optimization to the algorithm. As a corollary, standard con-
formance testing methods can be used directly for equivalence query
approximations within this algorithm.



1 Introduction

Model checking plays a central role in the verification of the correctness
of software. The main condition required to apply this technique is the
availability of a model of the system. In the form of an automaton, this
model can be intersected with other automata describing illegal behavior in
order to verify correctness properties [13]. However, in practice these models
are often outdated or not created at all.

Automata learning provides a solution to this problem. The seminal
algorithm of Angluin [5] learns a DFA in polynomial time by assuming the
ability to make certain queries regarding the target language. This algorith-
mic pattern has been carried on in order to learn other types of automata,
including infinitary languages [20], Mealy machines [25, 27, 29], more generic
input/output automata [30, 23], and even certain data languages [10, 15].
Besides the possibilities for model checking [24, 14], Angluin’s algorithm can
be used for the derivation of program specifications [4] and the inference of
security protocols [28].

Mealy machines [21] form a particularly interesting type of automata, as
they are conveniently simple and yet able to effectively model many reactive
systems. The inference algorithm may use an abstraction scheme [1] to deal
with data parameters. This has, for example, been applied in order to learn
models of the biometric passport [2] and bank cards [3].

These examples indicate the relevance of efficiency in terms of the num-
ber of queries made by the algorithm—these queries may require interaction
with a physical system, which is often time-consuming. Several authors have
proposed optimizations in this respect [26, 27, 29], but the formal proofs for
(generalizations of) Mealy machines given by Vilar [30] and Niese [23] handle
only adaptations of the original algorithm.

The main contribution of this thesis is a self-contained formal reconstruc-
tion of Angluin’s algorithm for Mealy machines, focused on minimizing its
query complexity. To achieve this, we combine the informal constructions
presented by Steffen et al. [29] with formal proofs partially adapted from
Angluin [5] and Niese [23].

After defining Mealy machines and their semantics (Section 3), we pro-
ceed to finding that the minimal Mealy machine (Section 3.1) provides a
suitable canonical model to aim the inference algorithm at (Section 3.2). The
proof for this directly yields a method to construct that minimal machine.
Centered around this construction we build our adaptation of Angluin’s al-
gorithm for Mealy machines in Section 4. The algorithm constructs a series
of hypothesis automata, whereof we explore the minimality in Section 4.1.
In Section 4.2 we present a correctness proof that can easily be extended to
certain variations on the algorithm. We then exploit this to adapt our algo-
rithm and proofs to the optimized method proposed by Rivest and Schapire
[26] (Section 4.3). This optimization sacrifices the guarantee of minimality
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for intermediate hypotheses. In Section 4.3.1 we discuss efforts made to
overcome this problem and conclude with a solution that preserves the effi-
ciency of the algorithm. Finally, by analyzing the query complexities of the
discussed algorithms we find in Section 4.4 that our adaptations inherit the
efficiency of the original algorithms for regular languages. We conclude in
Section 5 with a discussion on our contributions, related work, and possible
future directions.

2 Preliminaries

First we recall some basic formal language theory and fix the relevant no-
tation. An alphabet Σ is a set of symbols. We denote by Σ∗ the set of all
finite sequences of elements from Σ. Such a sequence is called a string. We
use ε to denote the empty string and write |u| for the length of a string u.

Let u ·v denote the concatenation of two strings u and v. This operation
appends the symbols of v to u, resulting in another string. For concrete
strings in examples we will often leave out the operator, writing just uv
instead. A prefix of a string u is a string v such that u = v · w for some
string w. Similarly, a suffix of u is a string v such that for some string w we
have u = w · v.

A language over Σ is a subset of Σ∗. We define the language of all non-
empty strings over Σ as Σ+ = Σ∗ \{ε}. The concatenation of two languages
L1 and L2 is given by

L1 · L2 = {u · v | u ∈ L1 ∧ v ∈ L2}.

We let ∅ denote the empty set and use the notation Y X to refer to the
set of functions X → Y , where X and Y can be any two sets.

3 Mealy Machines

We fix a finite input alphabet A and an output alphabet B.

Definition 1. A Mealy machine is a tuple (Q, q0, δ, γ), where

• Q is a finite set of states,

• q0 ∈ Q is the initial state,

• δ : Q×A→ Q is the transition function, and

• γ : Q×A→ B is the output function.

The Mealy machine M = (Q, q0, δ, γ) starts in the state q0. At any point
in time, M is in some state q. If it then reads the input symbol a, M outputs
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the output symbol given by γ(q, a) and advances to the state provided by
δ(q, a).

Mealy machines can be visualized using a state transition graph such as
the following, which defines a Mealy machine over A = {0} and B = {0,1}.

q0 q1

0|0

0|1

The nodes in these graphs represent the states of the Mealy machine, where
the label q0 designates the initial state. The intended meaning of an arrow

q
a|b−−→ r for any q, r ∈ Q, a ∈ A, and b ∈ B is to define δ(q, a) = r and

γ(q, a) = b.
The observable behavior of a Mealy machine is characterized by the out-

put strings it assigns to all non-empty input strings. Note that these output
strings are completely determined by the last output symbols generated for
all the prefixes of the corresponding input strings, so we can reduce the
characterization by only giving the last output symbol produced for each
input string. For example, we can fully describe the Mealy machine above
by stating that it assigns the output symbol 0 to every input string with an
even length and 1 to the input strings with an odd length.

For any Mealy machine M = (Q, q0, δ, γ), let δ∗M : A∗ → Q be the
function that returns the state reached by M after processing a given input
string. Formally, we define δ∗M by{

δ∗M (ε) = q0
δ∗M (u · a) = δ(δ∗M (u), a) for any u ∈ A∗ and a ∈ A.

Definition 2 (Semantics of Mealy machines). The semantics of a Mealy
machine M = (Q, q0, δ, γ) is given by the function γ+M : A+ → B, which for
all u ∈ A∗ and a ∈ A is defined by

γ+M (u · a) = γ(δ∗M (u), a).

We say that M is a realization of γ+M . The functions realized by Mealy
machines are called rational functions.

Additionally, we let ΓM : Q→ BA+
provide semantics for specific states.

For any q ∈ Q and a ∈ A, we define{
ΓM (q)(a) = γ(q, a)
ΓM (q)(a · u) = ΓM (δ(q, a))(u) for all u ∈ A+.

Having these two definitions will be helpful in proofs later in this docu-
ment. We connect them with the following lemma.
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Lemma 1. For any u ∈ A∗ and v ∈ A+, ΓM (δ∗M (u))(v) = γ+M (u · v).

Proof. To prove this lemma, we first show, by induction on the length of u,
that

ΓM (δ∗M (u))(v) = ΓM (q0)(u · v). (1)

If u = ε, we have

ΓM (δ∗M (ε))(v) = ΓM (q0)(v), by the definition of δ∗M ,

= ΓM (q0)(ε · v).

For u = w · a with w ∈ A∗ and a ∈ A we assume for all v ∈ A+ that
ΓM (δ∗M (w))(v) = ΓM (q0)(w · v). Then

ΓM (δ∗M (w · a))(v) = ΓM (δ(δ∗M (w), a))(v), by the definition of δ∗M ,

= ΓM (δ∗M (w))(a · v), by the definition of ΓM ,

= ΓM (q0)(w · a · v), by the induction hypothesis.

This proves (1).
Now note that we can decompose v = w · a with w ∈ A∗ and a ∈ A, so

ΓM (δ∗M (u))(w · a) = ΓM (q0)(u · w · a), by (1),

= ΓM (δ∗M (u · w))(a), by (1),

= γ(δ∗M (u · w), a), by the definition of ΓM ,

= γ+M (u · w · a), by the definition of γ+M .

This concludes the proof of Lemma 1.

3.1 Minimality

Mealy machines are not unique for the functions they realize. For example,
the following two Mealy machines, with A = {0} and B = {0,1}, both
assign the output 0 to every input.

q0 0|0 q0 q1 q2

0|0

0|0

0|1

A first step towards learning a realization of a given rational function
is to decide which Mealy machine this should be. An obvious choice is a
machine having the desirable property of a minimal number of states. We
will verify here that these Mealy machines are unique and later that they
cover all rational functions.

Based on the work of Kalman [17] we identify two sources of redundancy
for an automaton. The first consists of states that cannot be reached from
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the initial state. These states can be removed without changing the seman-
tics of the automaton. The second source of redundancy consists of states
that cannot be distinguished from each other in terms of their observable be-
havior. Such states could thus be merged. We formalize and combine these
notions in the following definition, composed of definitions similar to those
given by Arbib and Manes [6], after which we will verify that it provides the
properties that we require.

Definition 3 (Minimal Mealy machines). A Mealy machine M is called
reachable if all of its states can be reached, i.e., if δ∗M is surjective. M is
called observable if all pairs of different states can be distinguished by some
continuation. That is, ΓM has to be injective. M is said to be minimal if it
is reachable and observable.

Theorem 1. A minimal Mealy machine M has a minimal number of states.
Up to isomorphism, M is the unique minimal realization of γ+M .

Proof. Let M = (Q, q0, δ, γ). Suppose there exists another Mealy machine
M ′ = (Q′, q′0, δ

′, γ′) with γ+M ′ = γ+M and |Q′| < |Q|. Since M is observable,
there must be some state that can be distinguished from all states of M ′,
i.e., there must be some q ∈ Q such that for all q′ ∈ Q′, ΓM (q) 6= ΓM ′(q′).
By the reachability of M and Lemma 1 this contradicts our assumption that
γ+M ′ = γ+M . Thus M has to be state-minimal.

Adjust M ′ such that M ′ is also minimal and |Q| = |Q′|. We will demon-
strate the existence of an isomorphism between M and M ′.

Define φ : Q→ Q′ by φ(δ∗M (u)) = δ∗M ′(u) for any u ∈ A∗, exploiting the
reachability of M . To see that φ is well-defined, note that, for any u ∈ A∗
and v ∈ A+,

ΓM (δ∗M (u))(v) = γ+M (u · v), by Lemma 1,

= γ+M ′(u · v)

= ΓM ′(δ∗M ′(u))(v), by Lemma 1.

It follows directly that ΓM (δ∗M (u)) = ΓM ′(δ∗M ′(u)) for any u ∈ A∗. For all
u, u′ ∈ A∗ we then have

ΓM (δ∗M (u)) = ΓM (δ∗M (u′)) ⇐⇒ ΓM ′(δ∗M ′(u)) = ΓM ′(δ∗M ′(u′)).

Since M ′ is observable, it follows that φ is well-defined. Furthermore, with
the observability of M we conclude that φ is one-to-one. Then it must also
be onto, since |Q| = |Q′|.

It remains to show that φ is a Mealy machine homomorphism, i.e., that it
preserves the initial state, the transition function, and the output function.
For the initial state we have

φ(q0) = φ(δ∗M (ε)), by the definition of δ∗M ,

= δ∗M ′(ε), by the definition of φ,

= q′0, by the definition of δ∗M ′ .
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For the transition function we have, for any u ∈ A∗ and a ∈ A,

φ(δ(δ∗M (u), a)) = φ(δ∗M (u · a)), by the definition of δ∗M ,

= δ∗M ′(u · a), by the definition of φ,

= δ′(δ∗M ′(u), a), by the definition of δ∗M ′ ,

= δ′(φ(δ∗M (u)), a), by the definition of φ.

Finally, for the output function it holds that

γ(δ∗M (u), a) = γ+M (u · a), by the definition of γ+M ,

= γ+M ′(u · a)

= γ′(δ∗M ′(u), a), by the definition of γ+M ′ ,

= γ′(φ(δ∗M (u)), a), by the definition of φ.

Thus M is the unique (up to isomorphism) minimal realization of γ+M .

Intuitively, it should be clear that any rational function has a minimal
realization. The main objective of the next section is to arrive at a con-
structive proof for this.

3.2 Regularity

Angluin’s algorithm [5] works by iteratively refining a representation of the
equivalence classes of the right congruence used by the Myhill-Nerode the-
orem [22]. In order to apply the algorithm to functions that can be repre-
sented by Mealy machines, we will present an adaptation of this congruence
for Mealy machines and then show that it can be used to construct a min-
imal Mealy machine for any rational function. This provides the basis for
a similar construction that needs to be performed by the algorithm. The
following right congruence is based on the one given by Steffen et al. [29].

Definition 4. Two strings u, u′ ∈ A∗ are equal with respect to some func-
tion χ : A+ → B if and only if χ maps them to the same output for all
continuations:

u ≡χ u′ ⇐⇒ ∀v ∈ A+, χ(u · v) = χ(u′ · v).

Let [u]χ denote the equivalence class of u with respect to ≡χ. We write |χ|
for the index of ≡χ.

Note the correspondence with the definition of minimality: the equiva-
lence classes cover all input strings (reachability), and are distinguished by
differences in the outputs for the continuations of those input strings (ob-
servability). It should follow that a Mealy machine having these equivalence
classes as its states will be minimal, if it actually realizes the underlying
function. This machine is also defined by Steffen et al. [29].
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Definition 5. The Mealy machine Mχ = (Q, q0, δ, γ), based on some func-
tion χ : A+ → B, where |χ| is finite, is defined by

• Q = {[u]χ | u ∈ A∗},

• q0 = [ε]χ,

• δ([u]χ, a) = [u · a]χ for all u ∈ A∗ and a ∈ A, and

• γ([u]χ, a) = χ(u · a) for all u ∈ A∗ and a ∈ A.

To see that this is a well-defined Mealy machine, note that obviously
ε ∈ A∗, so q0 is well-defined. For all u ∈ A∗ and a ∈ A, [u · a]χ is a valid
state, since A+ ⊆ A∗. Furthermore, if u′ ∈ A∗, then [u]χ = [u′]χ implies
[u · a]χ = [u′ · a]χ by the definition of ≡χ. Therefore, δ is well-defined. For
the above case we also have χ(u · a) = χ(u′ · a), so γ is well-defined. The
finite index of ≡χ guarantees that Q is a finite set.

Lemma 2. Any input string leads Mχ to the state representing the corre-
sponding equivalence class. That is, δ∗Mχ

(u) = [u]χ for any u ∈ A∗.

Proof. Let Mχ = (Q, q0, δ, γ). We prove this lemma by induction on the
length of u. For u = ε we have

δ∗Mχ
(ε) = q0, by the definition of δ∗Mχ

,

= [ε]χ, by the definition of q0.

Assume that δ∗Mχ
(v) = [v]χ for some v ∈ A∗. For u = v · a with a ∈ A

we then find

δ∗Mχ
(v · a) = δ(δ∗Mχ

(v), a), by the definition of δ∗Mχ
,

= δ([v]χ, a), by the induction hypothesis,

= [v · a]χ, by the definition of δ.

Hence δ∗Mχ
(u) = [u]χ for all u ∈ A∗.

Lemma 3. Mχ is a realization of χ; that is, γ+Mχ
= χ.

Proof. We will have to show that γ+Mχ
(u) = χ(u) for any u ∈ A+. Note that

u can be decomposed such that u = v · a with v ∈ A∗ and a ∈ A. Using
Mχ = (Q, q0, δ, γ), we have

γ+Mχ
(v · a) = γ(δ∗Mχ

(v), a), by the definition of γ+Mχ
,

= γ([v]χ, a), by Lemma 2,

= χ(v · a), by the definition of γ.

Thus Mχ is a realization of χ.
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Theorem 2. Given a rational function χ : A+ → B, the Mealy machine
Mχ is the unique minimal realization of χ.

Proof. First we must show that Mχ is well-defined by proving that |χ| is
finite. Since χ is a rational function, there must be some Mealy machine
M = (Q, q0, δ, γ) with γ+M = χ. We will show that |γ+M | is bounded by
|Q|. Suppose |γ+M | > |Q|. Then there are u, u′ ∈ A∗ with δ∗M (u) = δ∗M (u′)
and γ+M (u · v) 6= γ+M (u′ · v) for some v ∈ A+. Using Lemma 1 we find that
ΓM (δ∗M (u))(v) 6= ΓM (δ∗M (u′))(v), which implies δ∗M (u) 6= δ∗M (u′), revealing
a contradiction. Thus |γ+M | ≤ |Q| must hold. Since Q is a finite set it follows
that |γ+M | = |χ| must be finite. Hence Mχ is well-defined.

Lemma 2 directly implies the reachability of Mχ. It remains to show
that Mχ is observable. For any u ∈ A∗ and v ∈ A+, we have

ΓMχ([u]χ)(v) = ΓMχ(δ∗Mχ
(u))(v), by Lemma 2,

= γ+Mχ
(u · v), by Lemma 1,

= χ(u · v), by Lemma 3.

Together with the definition of ≡χ this proves the observability of Mχ. It
follows from Theorem 1 and Lemma 3 that Mχ is the unique minimal real-
ization of χ.

4 Angluin’s Algorithm for Mealy Machines

Angluin’s algorithm [5] learns an automaton realizing the observable behav-
ior of a target system by assuming the ability to ask two types of queries.
The first query determines the output of the target machine on a specific
input string. For regular languages this is called a membership query, but
for rational functions we will rename it to an output query, which we de-
note by OUT(u) for any u ∈ A+. Since its description corresponds to that
of a rational function, we will treat OUT : A+ → B as such. The other
query is an equivalence query, denoted by EQ(M). It determines whether a
given Mealy machine M is a realization of OUT. If so, it will return yes.
Otherwise it yields a counterexample z ∈ A+ such that γ+M (z) 6= OUT(z).

The algorithm keeps track of the following data structure, which was
introduced for regular languages by Angluin [5]. Our version is equivalent
to the one given by Steffen et al. [29].

Definition 6. An observation table is a tuple (S,E, T ), where

• S ⊆ A∗ is a set of access strings,

• E ⊆ A+ is a set of distinguishing suffixes, and

• T : (S ∪ S · A) → BE records known outputs of the target machine.
That is, T (s)(e) = OUT(s · e) for any s ∈ (S ∪ S ·A) and e ∈ E.
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The observation table can be visualized as a table that has the strings
from (S ∪ S · A) as its row labels, the distinguishing suffixes as its column
labels, and the values of T in the corresponding cells. By the upper part
of the observation table we refer to the rows labelled by the access strings,
while the other rows are called the lower part.

For example, if A = {0, 1} and B = {0,1}, the observation table with
S = {ε, 0, 01}, E = {1, 11}, and, for any u ∈ A+, OUT(u) = 0 if |u| ≤ 2
and OUT(u) = 1 otherwise would be given as follows.

1 11

S


ε 0 0
0 0 1
01 1 1

S ·A \ S


1 0 1
00 1 1
010 1 1
011 1 1

Intuitively, the upper part of T is an approximation of the equivalence
classes of ≡OUT, where S contains prefixes that represent those classes and
E provides suffixes to distinguish them. This approximation is refined, by
augmenting S and E, until it completely spans the actual equivalence classes.

The algorithm will repeatedly turn the observation table into a Mealy
machine. Naturally, given the interpretation of T , this machine resembles
the Mealy machine MOUT. The initial state of MOUT is defined as [ε]OUT,
so here we will use T (ε) and therefore initialize S = {ε}. With just one
access string there is nothing to distinguish yet, so we set E = ∅.

Although our initialization of E naturally follows from the interpretation
of T as an approximation of the right congruence, existing descriptions of
the algorithm initialize E = {ε} for regular languages and E = A for ratio-
nal functions. The idea behind this is that, as will soon become apparent,
it allows the automaton to be completely specified from just the observa-
tion table. However, Steffen et al. [29] note that this extended initialization,
for Mealy machines, adds significantly more data to the observation table
than required. This would impair the output query complexity of the algo-
rithm, and therefore they suggest to initialize E = ∅, although they do not
incorporate this into their own algorithm.

Now recall that the well-definedness of the transition function of MOUT

depends on the fact that for any u ∈ A∗ and a ∈ A, [u · a]OUT is a valid
equivalence class, given that [u]OUT is one. For the observation table this
translates into the following definition, which was introduced by Angluin [5]
for regular languages and by Pena and Oliveira [25] for rational functions.

Definition 7 (Closed table). The observation table is called closed if for
each s ∈ S ·A there exists an access string s′ ∈ S with T (s) = T (s′).
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Furthermore, for any u, u′ ∈ A∗, if [u]OUT = [u′]OUT then we must
have [u · a]OUT = [u′ · a]OUT and for the well-definedness of the output
function also OUT(u · a) = OUT(u′ · a). In analogy to this, we obtain the
following properties for the observation table, which were first expressed,
more abstractly, by Berg et al. [9].

Definition 8 (Consistent table). The observation table is called transition-
consistent if whenever s, s′ ∈ S are such that T (s) = T (s′), we also have
T (s · a) = T (s′ · a) for all a ∈ A. The observation table is output-consistent
if for any s, s′ ∈ S with T (s) = T (s′) we also have OUT(s · a) = OUT(s′ · a)
for all a ∈ A. A consistent observation table is both transition-consistent
and output-consistent.

Note that algorithms that use the extended initialization of E do not
need this additional notion of output-consistency, since the definition of T
implies that it is then automatically satisfied by transition-consistency.

Our version of the algorithm initially always has a closed and consis-
tent observation table. This means that we can start our main loop by
constructing a hypothesis automaton. Except for the output function, the
following definition corresponds to the definition given by Angluin [5]. Our
output function is assigned through output queries to accomodate the ini-
tially empty E.

Definition 9 (Mealy machine associated with a closed and consistent table).
The hypothesis Mealy machine H = (Q, q0, δ, γ) is constructed from the
observation table using

• Q = {T (s) | s ∈ S},

• q0 = T (ε),

• δ(T (s), a) = T (s · a) for all s ∈ S and a ∈ A, and

• γ(T (s), a) = OUT(s · a) for all s ∈ S and a ∈ A.

To see that this is a well-defined Mealy machine, note that S initially
and thus always contains ε, so q0 is well-defined. Since the observation
table is closed and transition-consistent, δ is also well-defined. Finally, γ is
well-defined considering that the observation table is output-consistent.

After constructing this hypothesis, the algorithm queries its equivalence
with the target system. If EQ(H) says yes, the algorithm will terminate
returning the hypothesis. Otherwise we will have EQ(H) = z such that
γ+H(z) 6= OUT(z). Angluin processes this counterexample by adding z and
all of its prefixes to S.

Processing the counterexample may cause defects in the closedness or
consistency of the observation table. We must fix these in order to be able to
construct a new hypothesis. If the observation table is not closed, Angluin’s
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Algorithm 1: Angluin’s algorithm [5] for Mealy machines.

S ← {ε}, E ← ∅
repeat

construct H
z ← EQ(H)
if z 6= yes then

S ← S ∪ {u ∈ A∗ | u · v = z, v ∈ A∗}
while (S,E, T ) is not closed or not consistent do

if (S,E, T ) is not closed then
find s ∈ S ·A with T (s) 6= T (s′) for all s′ ∈ S
S ← S ∪ {s}

if (S,E, T ) is not transition-consistent then
find s, s′ ∈ S, a ∈ A and e ∈ E with

T (s) = T (s′) and T (s · a)(e) 6= T (s′ · a)(e)
E ← E ∪ {a · e}

if (S,E, T ) is not output-consistent then
find s, s′ ∈ S and a ∈ A with

T (s) = T (s′) and OUT(s · a) 6= OUT(s′ · a)
E ← E ∪ {a}

until z = yes
return H

algorithm will find s ∈ S · A such that for all s′ ∈ S, T (s) 6= T (s′). It
will then add this s to S. When the observation table is not transition-
consistent, the algorithm will find s, s′ ∈ S, a ∈ A and e ∈ E such that
T (s) = T (s′), but T (s · a)(e) 6= T (s′ · a)(e). In this case it will add a · e
to E, such that T (s) will be distinguished from T (s′). If the observation
table is not output-consistent, we can find s, s′ ∈ S and a ∈ A such that
T (s) = T (s′), but OUT(s · a) 6= OUT(s′ · a). Then we add a to E, also
distinguishing T (s) from T (s′). After preparing the observation table, the
algorithm restarts its main loop by constructing a new hypothesis. This
continues until counterexamples cease to arise.

Pseudocode is shown in Algorithm 1. We demonstrate the algorithm
with the following example.

Example 1. For A = {0, 1} and B = {0,1,2}, consider the target function
given, for any u ∈ A+, by

OUT(u) =


2 if u = 11
1 if 01 is a suffix of u
0 otherwise.

To construct the initial hypothesis, note that there is only one state, T (ε),
and that γ(T (ε), a) = OUT(a) = 0 for any a ∈ A. Thus we arrive at
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the Mealy machine depicted below. We label each node of the hypothesis
diagram by one of the shortest access strings such that the corresponding
state is the row of that access string.

ε

0|0
1|0

An equivalence query tells us that γ+H(01) 6= OUT(01), so we add 0 and 01
to S. Note that there are no distinguishing suffixes yet, and that therefore
the table is still trivially closed and transition-consistent. However, it is
not output-consistent. More specifically, we find that T (ε) = T (0), whereas
OUT(ε · 1) = 0 6= 1 = OUT(0 · 1), so we set E ← E ∪ {1}. The resulting
table is shown below on the left.

1

ε 0
0 1
01 0

1 2
00 1
010 1
011 0

1

ε 0
0 1
01 0
1 2

00 1
010 1
011 0
10 1
11 0

Now the observation table is not closed: there is no s ∈ S with T (s) = T (1).
Thus we assign S ← S ∪ {1}. The next table, shown above on the right,
is closed, but not transition-consistent. We find that T (ε) = T (01), but
T (ε · 1)(1) 6= T (01 · 1)(1). Then we set E ← E ∪ {1 · 1}. The resulting table
is given below.

1 11

ε 0 2
0 1 0
01 0 0
1 2 0

00 1 0
010 1 0
011 0 0
10 1 0
11 0 0

ε 0

1 01

0|0

1|0

0|0

1|1
0|0

1|2

0|0

1|0

The observation table is now closed and consistent, so we conjecture the
corresponding hypothesis (illustrated above) and find EQ(H) = yes.
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4.1 Minimality of the Hypotheses

Before discussing the correctness of the algorithm, we will first explore the
minimality of its hypotheses. In terms of the observation table, reachabil-
ity can be achieved by requiring that the prefixes of all access strings are
also access strings. This guarantees that a row that does not represent the
initial state is transitioned to from a row labelled by an access string that
is one symbol smaller, eventually leading back to the row representing the
initial state. For observability we can require all non-empty suffixes of the
distinguishing suffixes to be distinguishing suffixes as well. This will make
sure that transition pairs preserve the inequality of two states, unless the
transition pair caused that inequality. Following Angluin [5], we arrive at
the following formal definition.

Definition 10. We call S prefix-closed if u · a ∈ S implies u ∈ S for all
u ∈ A∗ and a ∈ A. Similarly, E is said to be suffix-closed if a · v ∈ E implies
v ∈ E for any a ∈ A and v ∈ A+.

Note that the loop that fixes the closedness and consistency of the obser-
vation table respects these properties. This also holds for the counterexam-
ple processing method of Angluin. However, we will later discuss a variation
on the algorithm that does not keep E suffix-closed, so hereafter we will only
implicitly assume the prefix-closedness of S. According to our informal rea-
soning above, reachability should now always be satisfied. The following
proof is a simple adaptation of the proofs given by Angluin [5, Lemma 2]
and Niese [23, Lemma 8.14].

Lemma 4. Every hypothesis is reachable. More specifically, T (s) = δ∗H(s)
for every s ∈ S.

Proof. We prove this lemma by induction on the length of s, which is possible
because of the prefix-closedness of S. If s = ε, we have

T (ε) = q0, by the definition of q0,

= δ∗H(ε), by the definition of δ∗H .

For s = t · a with t ∈ S and a ∈ A we assume δ∗H(t) = T (t). Then

T (t · a) = δ(T (t), a), by the definition of δ,

= δ(δ∗H(t), a), by the induction hypothesis,

= δ∗H(t · a), by the definition of δ∗H .

Thus all states of H can be reached.

Since the states of the hypothesis are determined by the distinct rows of
the observation table, which represent the equivalence classes of our right
congruence, the hypothesis should be observable if it is consistent with its
observation table. We define and prove this formally.

14



Definition 11. The hypothesis is said to be consistent with its observation
table if for any s ∈ S and e ∈ E, we have γ+H(s · e) = T (s)(e).

Lemma 5. Every hypothesis consistent with its observation table is minimal.

Proof. Assume H is consistent with its observation table. Then for any
s ∈ S and e ∈ E,

ΓH(T (s))(e) = ΓH(δ∗H(s))(e), by Lemma 4,

= γ+H(s · e), by Lemma 1,

= T (s)(e), by Definition 11.

Since e ranges over the domain of the function T (s) : E → B, it follows
directly that ΓH is injective. This proves the observability of H, which is
also reachable as a result of Lemma 4. Hence the hypothesis is minimal if
it is consistent with its observation table.

Next we will show that the suffix-closedness maintained by Angluin
translates to consistency with the observation table, such that all her hy-
potheses are minimal. This is also proven by Angluin [5, Lemma 3] and
Niese [23, Lemma 8.15].

Lemma 6. All hypotheses are minimal if E is kept suffix-closed.

Proof. As shown above, we are done if we can prove ΓH(T (s))(e) = T (s)(e)
for any s ∈ S and e ∈ E. This can be achieved by induction on the length
of e because of the suffix-closedness of E. If e = a ∈ A, we have

ΓH(T (s))(a) = γ(T (s), a), by the definition of ΓH ,

= OUT(s · a), by the definition of γ,

= T (s)(a), by the definition of T .

For e = a · e′ with a ∈ A and e′ ∈ E, we assume ΓH(T (s))(e′) = T (s)(e′)
for any s ∈ S. Let s′ ∈ S be such that T (s′) = T (s · a), which is possible
because the observation table is closed. Then

ΓH(T (s))(a · e′) = ΓH(δ(T (s), a))(e′), by the definition of ΓH ,

= ΓH(T (s · a))(e′), by the definition of δ,

= ΓH(T (s′))(e′)

= T (s′)(e′), by the induction hypothesis,

= T (s · a)(e′)

= OUT(s · a · e′), by the definition of T ,

= T (s)(a · e′), by the definition of T .

Thus H is consistent with its observation table if E is suffix-closed.
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4.2 Correctness and Termination

The correctness of the algorithm follows directly from its termination. Sim-
ilar to the reasoning given by Angluin [5] and Niese [23], we will limit the
progress the algorithm can make after which we show that it terminates
whenever this limit is reached. This progress amounts to an increase in the
number of distinct rows of (the upper part of) the observation table. Note
that in this sense negative progress is not possible, as access strings and
distinguishing suffixes are never removed.

Lemma 7. The number of distinct rows of the observation table can never
exceed |OUT|.
Proof. For any s, s′ ∈ S with T (s) 6= T (s′) there is some e ∈ E such that
T (s)(e) 6= T (s′)(e), which implies OUT(s · e) 6= OUT(s′ · e) by the definition
of T . Thus [s]OUT 6= [s′]OUT. Then the number of distinct rows of the
observation table can never exceed |OUT|.

Next we prove that every iteration of the loop that enforces the closedness
and consistency of the observation table makes progress, which shows that
this loop will terminate.

Lemma 8. Processing a defect in either the closedness or consistency of
the observation table directly results in an increase in the number of distinct
rows of the observation table.

Proof. If the observation table is not closed then there will be a row in the
lower part of the table which differs from all rows in the upper part. This
row is added to the upper part of the table, so the number of distinct rows
increases.

If the observation table is not consistent, then a suffix will be added that
distinguishes two equal rows in the observation table, thus also increasing
the number of distinct rows.

Regarding the termination of the main loop of the algorithm we will
now prove that the specific method of processing counterexamples used by
Angluin also makes progress.

Lemma 9. Processing a counterexample will result in an increase in the
number of distinct rows of the observation table.

Proof. We can decompose the counterexample z = s · a with s ∈ A∗ and
a ∈ A. Adding all the prefixes of z to S will also add s to S. Let (S′, E′, T ′)
be the observation table of the next hypothesis H ′ = (Q′, q′0, δ

′, γ′). Then

γ+H′(s · a) = ΓH′(δ∗H′(s))(a), by Lemma 1,

= γ′(δ∗H′(s), a), by the definition of ΓH′ ,

= γ′(T ′(s), a), by Lemma 4,

= OUT(s · a), by the definition of γ′.
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In other words, the counterexample will now be classified correctly, revealing
that γ+H′ 6= γ+H .

From Lemma 6 we know that H and H ′ are minimal, and we also know
that H ′ must have at least as many states as H. Suppose H and H ′ have
equally many states. Then Q′ = {T ′(s) | s ∈ S} because S ⊆ S′ and
E ⊆ E′. We will show that this would entail γ+H = γ+H′ by proving H and
H ′ isomorphic. Define φ : Q → Q′ by φ(T (s)) = T ′(s) for any s ∈ S.
This must be well-defined, as E ⊆ E′ implies that if two rows would have
become unequal, nothing could have compensated this in order to maintain
|Q| = |Q′|. That φ is injective also follows directly from the fact that E ⊆ E′.
Then φ is also surjective, since |Q| = |Q′|.

It remains to show that φ is a Mealy machine homomorphism. The
preservation of the initial state is immediate:

φ(q0) = φ(T (ε)), by the definition of q0,

= T ′(ε), by the definition of φ,

= q′0, by the definition of q′0.

Regarding the transition function, for any s ∈ S and a ∈ A, the closed-
ness of the observation table lets us find s′ ∈ S such that T (s · a) = T (s′).
Similarly, we can find s′′ ∈ S such that T ′(s · a) = T ′(s′′). For all e ∈ E we
then have

T (s′)(e) = T (s · a)(e)

= OUT(s · a · e), by the definition of T ,

= T ′(s · a)(e), by the definition of T ′,

= T ′(s′′)(e)

= OUT(s′′ · e), by the definition of T ′,

= T (s′′)(e), by the definition of T .

Hence T (s′) = T (s′′), so using φ we find that T ′(s′) = T ′(s′′) = T ′(s · a).
Then

φ(δ(T (s), a)) = φ(T (s · a)), by the definition of δ,

= φ(T (s′))

= T ′(s′), by the definition of φ,

= T ′(s · a), as shown above,

= δ′(T ′(s), a), by the definition of δ′,

= δ′(φ(T (s)), a), by the definition of φ.

Finally, for the output function we simply have

γ(T (s), a) = OUT(s · a), by the definition of γ,

= γ′(T ′(s), a), by the definition of γ′,

= γ′(φ(T (s)), a), by the definition of φ.
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This concludes the proof showing that H and H ′ are isomorphic, which
contradicts our other result stating that γ+H′ 6= γ+H . Thus |Q| = |Q′| is not
possible, and therefore the number of distinct rows of the observation table
must have increased.

Lemma 10. The hypothesis is correct and minimal if the number of distinct
rows of the observation table equals |OUT|.

Proof. Assume the number of distinct rows equals |OUT| and suppose the
hypothesis is not correct. Then there must be a counterexample such that
by Lemma 9 the number of distinct rows of the observation table can be
increased. However, Lemma 7 states that this is impossible. Therefore, the
hypothesis must be correct.

Now suppose the hypothesis H is not consistent with its observation
table. Then there would exist s ∈ S and e ∈ E such that

OUT(s · e) = γ+H(s · e) 6= T (s)(e) = OUT(s · e).

Thus H is consistent with its observation table and by Lemma 5 therefore
minimal.

Theorem 3. The algorithm will terminate and output a correct and minimal
Mealy machine.

Proof. Since OUT is a rational function, it follows from Theorem 2 that
MOUT is well-defined and thus that |OUT|, which by the definition of MOUT

equals the number of states of this machine, is finite. Because of Lemma 7
and Lemma 8, the loop that makes the observation table ready to be con-
verted into a Mealy machine will terminate. Together with Lemma 9 this
means that the main loop will terminate as well. More specifically, it will
terminate when the number of distinct rows of the observation table equals
|OUT|. Lemma 10 now shows that the algorithm will output a correct and
minimal Mealy machine.

Note that the only dependency on the specific method of Angluin [5] is
made by Lemma 9, so if we prove this lemma for another method we will
directly have proven Theorem 3 for it.

4.3 Reduced Observation Tables

Rivest and Schapire [26] introduced an optimization to Angluin’s algorithm
that improves its output query complexity by reducing the size of the obser-
vation table. They maintain the property that T (s) 6= T (s′) for all s, s′ ∈ S
with s 6= s′. Note that this is initially satisfied and can never be impaired
by the enforcement of closedness of the observation table. Furthermore, it
automatically satisfies consistency so that these checks can be skipped.
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Rivest and Schapire define the states of their hypotheses to be the access
strings of the observation table. For our setting we will assume a function
σ : A∗ → S such that σ(u) for any u ∈ A∗ is the unique s ∈ S with
δ∗H(s) = δ∗H(u).

The main difference with the original algorithm lies in the processing
of counterexamples. We will explain the method by proving that Lemma 9
holds for it. We do so by elaborating on the reasoning given by Rivest and
Schapire [26] and Steffen et al. [29, Theorem 2].

Proof of Lemma 9. The key observation is that for a counterexample z there
will be u ∈ A∗, a ∈ A and v ∈ A+ such that z = u · a · v and

OUT(σ(u) · a · v) 6= OUT(σ(u · a) · v). (2)

To see that this decomposition exists, choose u to be the largest prefix of z
such that for some v′ ∈ A∗ with u ·v′ = z we have OUT(σ(u) ·v′) = OUT(z).
This must be possible, since it holds if we choose u = ε and v′ = z. It
remains to show that |v′| ≥ 2. If we choose u = z and v′ = ε, we find
OUT(σ(u) · v′) = OUT(σ(z)) 6= OUT(z), as z is a counterexample. This
contradicts the property OUT(σ(u) · v′) = OUT(z).

Now suppose v′ = a′ ∈ A. Then

γ+H(σ(u) · a′) = γ(δ∗H(σ(u)), a′), by the definition of γ+H ,

= γ(T (σ(u)), a′), by Lemma 4,

= OUT(σ(u) · a′), by the definition of γ,

= OUT(z)

6= γ+H(z), as z is a counterexample,

= γ+H(u · a′)
= ΓH(δ∗H(u))(a′), by Lemma 1,

= ΓH(δ∗H(σ(u)))(a′), by the definition of σ,

= γ+H(σ(u) · a′), by Lemma 1.

Thus we can have v′ = a · v, and it follows that the decomposition
constrained by (2) exists, using the maximization property of u for the
inequality.

In general we have

T (σ(u) · a) = δ(T (σ(u)), a), by the definition of δ,

= δ(δ∗H(σ(u)), a), by Lemma 4,

= δ(δ∗H(u), a), by the definition of σ,

= δ∗H(u · a), by the definition of δ∗H ,

= δ∗H(σ(u · a)), by the definition of σ,

= T (σ(u · a)), by Lemma 4.
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However, (2) forces σ(u) ·a 6= σ(u ·a). It follows directly that adding v to E
will distinguish T (σ(u) ·a) from all T (s) for s ∈ S, such that it will be added
to the upper part of the observation table during the next enforcement of
closedness thereof.

Instead of adding the counterexample z and its prefixes to S, Rivest and
Schapire use a binary search algorithm to find the decomposition given by
(2) and then they simply add v to E. It follows that the algorithm will not
violate the property T (s) 6= T (s′) for any s, s′ ∈ S with s 6= s′.

Algorithm 2: Counterexample processing by binary search [26].

Input: a counterexample z
Output: a suffix distinguishing two currently equal rows
Function find suffix(z)

u← ε, a← z, v ← ε
while |a| > 1 do

divide a = x · y such that |x| − |y| ∈ {0, 1}
if OUT(σ(u · x) · y · v) = OUT(z) then

u← u · x
a← y

else
a← x
v ← y · v

return v

Pseudocode for the binary search is shown in Algorithm 2. The function
will maintain the properties u · a · v = z and OUT(σ(u) · a · v) = OUT(z)
for each iteration. Appropriately moving half of a to either u or v every
time, it will find a decomposition satisfying (2) when |a| = 1, since u will
be maximized (although possibly only locally) as in the above proof. We
present the full algorithm in Algorithm 3.

4.3.1 Minimality of Intermediate Hypotheses

Lee and Yannakakis [19] observed that the algorithm of Rivest and Schapire
[26] may make conjectures for different automata having the same number
of states. Related properties are that a hypothesis may not classify the
previous counterexample correctly [7] and that intermediate hypotheses are
not guaranteed to be minimal [29]. After all, the suffix-closedness of E is
sacrificed. This is, however, not a necessary condition for minimality,1 so
we will illustrate this last issue by means of an example.

1For example, if OUT is a constant function, consider any observation table with ε ∈ S
that does not have a suffix-closed E. The corresponding hypothesis will always have one
state. This same example shows that S does not have to be prefix-closed either.
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Algorithm 3: Rivest and Schapire’s algorithm [26] for Mealy machines.

S ← {ε}, E ← ∅
repeat

construct H
z ← EQ(H)
if z 6= yes then

E ← E ∪ {find suffix(z)}
while (S,E, T ) is not closed do

find s ∈ S ·A with T (s) 6= T (s′) for all s′ ∈ S
S ← S ∪ {s}

until z = yes
return H

Example 2. Consider the input alphabet A = {0}, the output alphabet
B = {0,1}, and the target function defined, for any u ∈ A+, by

OUT(u) =

{
1 if u = 0000
0 otherwise.

The only information needed to construct the initial hypothesis is the
output for the only transition, which is given by γ(T (ε), 0) = OUT(ε·0) = 0.
The result is as follows.

ε

0|0

An equivalence query tells us this is not the automaton we are looking for
by providing us with the counterexample 0000. Following Algorithm 2, we
initialize the execution of find suffix(0000) by assigning u← ε, a← 0000,
and v ← ε. Then we divide a = x · y by setting x← 00 and y ← 00, and we
find

OUT(σ(ε · 00) · 00 · ε) = OUT(00) 6= OUT(0000).

Therefore, we assign a ← x = 00 and v ← y · v = 00. Now we divide a by
setting x← 0 and y ← 0. Then we have

OUT(σ(ε · 0) · 0 · 00) = OUT(000) 6= OUT(0000).

Again we assign a ← x = 0 and v ← y · v = 0 · 00 = 000. Since |a| = 1,
we conclude that the suffix v = 000 should be added to E. The resulting
observation table, shown below on the left, is not closed, because we have
T (0) 6= T (ε), while T (ε) is the only row in the upper part of the table. Thus
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we add 0 to S, which results in the observation table shown below in the
middle.

000

ε 0

0 1

000

ε 0
0 1

00 0

ε 0

0|0

0|0

This last table is closed, so we construct the next hypothesis, which is il-
lustrated above. The point is that this hypothesis is not observable. More
specifically, we have T (ε) 6= T (0), but ΓH(T (ε)) = ΓH(T (0)) because every
transition generates the output 0. This concludes the example.

Because of Theorem 3 we do not have to worry about the final hypoth-
esis, but the loss of minimality of the intermediate hypotheses may give
problems for specific implementations of equivalence queries that assume
such a minimal model [e.g., 12].

A couple of authors have tried to overcome this problem. Shahbaz and
Groz [27] presented a minor optimization to a method introduced by Maler
and Pnueli [20], who processed a counterexample z by adding z and all of
its suffixes to E. This will include the suffix found by Rivest and Schapire,
which is a suffix of z. Obviously this keeps E suffix-closed, which guaran-
tees minimal hypotheses as shown in Lemma 6, but it also increases the
complexity of E.

Steffen et al. [29] were able to preserve the query complexity of the
algorithm of Rivest and Schapire, by keeping E semantically suffix-closed.
Translated to our setting, this means that for any two access strings s, s′ ∈ S
and any decomposition v1 ·v2 ∈ E with T (s)(v1 ·v2) 6= T (s′)(v1 ·v2), there is
some e′ ∈ E such that T (σ(s·v1))(e′) 6= T (σ(s′·v1))(e′). The intuition behind
this is that the “duty” of v2 to distinguish T (σ(s · v1)) from T (σ(s′ · v1)) is
delegated to e′. Their main theorem states that every hypothesis constructed
from an observation table with semantically suffix-closed E is minimal. That
this is incorrect follows from the fact that the delegations may be circular.
For instance, it is possible that e′ = v1 · v2 and {σ(s · v1), σ(s′ · v1)} = {s, s′}
for all of the decompositions.

This is the case in Example 2. The final observation table given by this
example shows that we may consider only s = ε and s′ = 0 in order to have
T (s) 6= T (s′). There is one suffix, so we must take v1 ·v2 = e′ = 000. Table 1
enumerates the four values v1 can take and shows that E is semantically
suffix-closed. However, we concluded in Example 2 that the corresponding
hypothesis is not minimal, which contradicts the theorem of Steffen et al.
Note that we have chosen this example such that it carries over to their
setting, which has the extended initialization of E.

Returning to the original method of Rivest and Schapire, one obvious
solution is to minimize the hypotheses before making an equivalence query
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v1 σ(s · v1) σ(s′ · v1) T (σ(s · v1))(e′) T (σ(s′ · v1))(e′)
ε ε 0 0 1
0 0 ε 1 0
00 ε 0 0 1
000 0 ε 1 0

Table 1: Semantic suffix-closedness of the last hypothesis in Example 2.

on them [29]. However, we will see that this may result in an unnecessary
increase in the number of equivalence queries.

Balcázar et al. [7] note that the same counterexample can potentially be
used to answer several equivalence queries. An interesting thought is that
reusing a counterexample for as long as it is applicable might be sufficient
to guarantee a minimal hypothesis when an equivalence query is finally
required. We use an example to demonstrate that this is not the case.

Example 3. For A = {0, 1} and B = {0,1,2}, consider the target function
given, for any u ∈ A+, by

OUT(u) =


2 if u = v · 1 · w · 1 for any v, w ∈ A∗
1 if u = 1 or u = 01
0 otherwise.

Initially, we construct the following hypothesis.

ε

0|0
1|1

An equivalence query yields the counterexample 101. Therefore, we start
the execution of find suffix(101) by setting u← ε, a← 101, and v ← ε.
For the first iteration we divide a = x · y with x← 10 and y ← 1. Then we
have

OUT(σ(ε · 10) · 1 · ε) = OUT(1) = 1 6= 2 = OUT(101).

Thus we assign a← x = 10 and v ← y · v = 1. Next we decompose a = x · y
by setting x← 1 and y ← 0. Now

OUT(σ(ε · 1) · 0 · 1) = OUT(01) = 1 6= 2 = OUT(101).

Hence we assign a ← x = 1 and v ← y · v = 01. Since |a| = 1, we add
01 to E. The observation tables, before and after adding 0 and 1 to S to
achieve closedness, are shown below. Next to them we present the resulting
hypothesis.
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01

ε 1

0 0
1 2

01

ε 1
0 0
1 2

00 0
01 2
10 2
11 2

1

ε

0

0|0

1|1

0|0
1|1

0|0
1|2

One can easily verify that the counterexample is resolved, i.e., we now
have γ+H(101) = 2 = OUT(101). However, the transition sets going out of
the states labelled by ε and 0 are equal in terms of their output symbols
and target states. It follows that ΓH(T (ε)) = ΓH(T (0)), which concludes
this example.

It turns out that these minimality defects are related to other coun-
terexamples that can always be found in the observation table. Note that
Lemma 5 entails that the hypothesis is not consistent with its observation
table if it is not minimal. If this is the case, then there must be s ∈ S and
e ∈ E such that

γ+H(s · e) 6= T (s)(e) = OUT(s · e).
In other words, s ·e is a counterexample. Hence we can adjust the algorithm
to make equivalence queries only for minimal hypotheses, otherwise finding
a counterexample in the observation table. This solution is actually a minor
optimization, essentially similar to the one used by Balle [8]. Pseudocode
for our final algorithm is shown in Algorithm 4.

Example 4. We continue Example 3 using this method. Note that the
progress made so far is compatible with the new method because the first
hypothesis was trivially consistent with its observation table. Instead of
making an equivalence query, we find that the new hypothesis is not con-
sistent with its observation table. More specifically, γ+H(0 · 01) 6= T (0)(01).
Thus we process the counterexample 001, by adding find suffix(001) = 1
to E. Below we have expanded and closed the observation table and con-
structed a hypothesis out of it.

01 1

ε 1 1
0 0 1
1 2 2

00 0 0
01 2 2
10 2 2
11 2 2

01 1

ε 1 1
0 0 1
1 2 2
00 0 0

01 2 2
10 2 2
11 2 2
000 0 0
001 2 2

ε

0

1

00

0|0

1|1

1|1

0|0

0|0
1|2

1|0

0|0
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Algorithm 4: “Safe” adaptation of the algorithm of Rivest and Schapire.

S ← {ε}, E ← ∅
repeat

construct H
if H is consistent with (S,E, T ) then

z ← EQ(H)
else

find s ∈ S and e ∈ E with γ+H(s · e) 6= T (s)(e)
z ← s · e

if z 6= yes then
E ← E ∪ {find suffix(z)}
while (S,E, T ) is not closed do

find s ∈ S ·A with T (s) 6= T (s′) for all s′ ∈ S
S ← S ∪ {s}

until z = yes
return H

This hypothesis is consistent with its observation table, so we make an
equivalence query and find EQ(H) = yes.

4.4 Query Complexity

Variants of Angluin’s algorithm are usually assessed by the complexity of
their equivalence and output query usages, as these queries are considered
significantly more expensive than regular computation steps. We will de-
termine the worst case equivalence and output query complexities of our
adaptations of the algorithms given by Angluin [5], Maler and Pnueli [20],
and Rivest and Schapire [26]. The other algorithms are variants of those
that make no significant changes, as far as our setting is concerned. Let
m be the length of the longest counterexample and define n = |OUT| and
k = |A|.

We have already seen that the main loop is executed at most n times, so
the equivalence query complexity is O(n) for all considered algorithms. For
the output query complexity we assume that the results of these queries, at
least the ones covered by the observation table, are cached. That is, such
queries will never be made twice for the same input string. This is realis-
tic, considering the expensiveness of the queries. A typical implementation
actually stores T as a table, which is extended immediately when S or E is
augmented.

In general, the total output complexity of the algorithms is bounded by
the size of the final observation table and the additional queries made dur-
ing the processing of counterexamples. Let S and E be the sets of access
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strings and distinguishing suffixes when the algorithm terminates. The final
observation table has |S| ∗ (k+ 1) rows and |E| columns. If p represents the
output queries that are made during the processing of a single counterex-
ample and for which the result is not stored in the observation table, then
the total output query complexity is given by O(|S| ∗ k ∗ |E|+ np).

Note that |S| and |E| will always have to be at least O(n), since |S| ≥ n
and in the worst case n suffixes are required to distinguish the different rows.
Therefore, the number of queries needed for the enforcement of output-
consistency and the construction of the output functions is insignificant,
being in O(n ∗ |S| ∗ k) because the hypothesis preparation loop is executed
no more than n times in total as a result of Lemma 8 and Lemma 9.

For each algorithm we must express |S|, |E| and p in n, m and k. Con-
sider Angluin’s method first. Adding the counterexample and all of its pre-
fixes to S puts the complexity of |S| at O(nm). E will only be augmented
when a distinction can be made, so |E| ≤ n. The counterexample processing
method does not make any output queries for which the result is not stored
in the observation table, so p is in O(1). Hence the output query complexity
of Angluin’s algorithm, adapted to our setting, is O(n2mk). Balcázar et al.
[7] arrive at the same result for the algorithm for regular languages.

For the method of Maler and Pnueli [20] we also find an output query
complexity of O(n2mk), after swapping |S| and |E|. Note that Maler and
Pnueli did not intend to improve on the complexity of Angluin, but merely
introduced their change in order to eliminate the notion of consistency. How-
ever, Shahbaz and Groz [27] did find an improved complexity for Mealy ma-
chines when comparing their derivative of this method to Angluin’s method.
This improvement is a result of their initialization of E = A. Their method
is invariant to this difference in initialization, but compared to our setting
they worsened the complexity of Angluin’s method.

Rivest and Schapire [26] keep the size of the observation table minimal.
Their counterexample processing method adds one distinguishing suffix to
E, and an improvement of the closedness of the observation table consists
in adding one string to S. Using the results of Section 4.2, we find that
|S| and |E| are in this case both at most n. The binary search on the
counterexample has p in O(logm), so, in our setting, their output query
complexity is O(n2k + n logm). Rivest and Schapire also obtain this result
for their algorithm for regular languages.

5 Discussion

We have presented a reconstruction of the algorithms by Angluin [5] and
Rivest and Schapire [26] adapted to Mealy machines, along with a full for-
mal correctness proof. Furthermore, we have shown that equivalence queries
are not required for non-minimal hypotheses, since a counterexample can be
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found in the observation table whenever the hypothesis is not minimal. In
particular, this overcomes problems induced by the counterexample process-
ing method of Rivest and Schapire [26]. Our solution enables the direct use
of standard conformance testing methods for equivalence query approxima-
tions while retaining the efficiency of the algorithm.

Mealy machine adaptations of Angluin’s algorithm have appeared many
times before. Most of them are very brief, such as the description given by
Pena and Oliveira [25]. More details were provided by Shahbaz and Groz
[27], but this thesis is influenced most significantly by the work of Steffen
et al. [29], who elaborated on the underlying theory and presented an adap-
tation of the optimized algorithm of Rivest and Schapire. However, these
are all missing formal proofs. Adaptations with formal proofs are given for
automata that assign output strings to transitions by Niese [23] and for au-
tomata that allow output strings both on states and on transitions by Vilar
[30], but these authors consider only the counterexample processing method
of Angluin. Our proofs explicitly handle the methods of both Angluin and
Rivest and Schapire.

We did not consider the algorithm presented by Kearns and Vazirani
[18]. Note that the approximated right congruence can more efficiently be
represented by a tree that has the distinguishing suffixes as its nodes and
the access strings as its leafs. This is what Kearns and Vazirani propose.
A string is classified by sifting it through the tree, where taking the right
branch from a node means that the concatenation of the string with the suffix
of that node is accepted by the target language and taking the left branch
means that it is not. It might be interesting to adapt this algorithm formally
to Mealy machines and compare the results with our findings. Balcázar et al.
[7], who provide a unified view on the algorithms for regular languages, claim
that this algorithm can be optimized such that its query complexity matches
that of the algorithm by Rivest and Schapire.

Our reconstruction of Angluin’s algorithm in Section 4 is strongly con-
nected to the theory due to Nerode [22] presented in Section 3.2. In the
case of Mealy machines this may not be very exciting, but this approach has
been used to learn more complicated types of automata [11, 15], and it may
inspire even more interesting future results.

Instead of using the right congruence, the minimal automaton can equiv-
alently be constructed from the total response of the target machine [6],
which in our setting is given by ΓM ◦ δ∗M for a Mealy machine M . From this
point of view, Lemma 1 actually expresses a property that is essential for the
applicability of the algorithm: the output query function, being a rational
function, completely determines the total response of the target machine.
This approach is also closer to the more abstract reformulation of Jacobs and
Silva [16]. Although lacking a correctness proof, they demonstrate that the
algorithm can be applied to automata in other categories. Further research
in this direction may lead to many more elegant generalizations.
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