CBACHELOR HESIS
OMPUTER SCIENCE

24N,

Q
S
iorrer

YiNe S

RADBOUD UNIVERSITY

A concrete deskolemization algorithm

Author: Supervisor/assessor:
Ramon VAN SPARRENTAK dr. Freek WIEDIJK
0757276

Second assessor:
prof. dr. Herman GEUVERS

July 8, 2014

Abstract

Skolemization is a common transformation in automated theorem provers. This paper presents an im-
plementation of the reverse process, deskolemization of a proof in sequent calculus. The implementation
is based on work of M. Baaz, S. Hetzl and D. Weller in On the complezity of proof deskolemization.

Contents

1 Introduction

1.1 Drinker paradox e e e e e e e

1.2 Automated theorem provers

1.3 Skolemization e e e e e e

1.4 Exampleo
2 Proof deskolemization

2.1 Example L e e e
3 Definitions

3.1 Expansions and LK®

3.2 Example of an expansion

4 Structural Skolemization
4.1 Example of Skolemization L L

5 Proof deskolemization

5.1 Expansion extraction L e
5.2 Example of expansion extraction
5.3 Skolemized expansion to deskolemized expansion L.
5.4 Example of expansion deskolemization o 0oL
5.5 Proof in LKP from deskolemized expansion
5.6 Example of proof construction in LK® L
57 LKEto LK
5.8 Example of LKF to LK

6 Conclusion
Appendices

A Haskell implementation

11

12
13

14
14
16
17
18
18
20
20
21

23

25

26

Chapter 1

Introduction

An automated theorem prover (ATP) is a computer program that tries to find a proof for a formula.
Automated theorem provers are used in for example program and integrated circuit verification. These
provers aid in development by proving the correctness of parts of the implementation. Finding a proof
is generally not easy, and an ATP may fail to find one.

A proof generated by an ATP system is unfortunately not a proof in natural deduction and is difficult
to understand. Natural deduction is a proof calculus that was designed to be close to actual reasoning [4].

One of the problems in transforming a proof from clausal logic to natural deduction are the Skolem
functions that are introduced by the automated theorem prover.

For an user seeking a proof of a theorem an automated theorem prover gives only a proof of the
Skolemized theorem. Due to the equisatisfiability of the formulas there exists a proof of the original
formula. But what does the proof look like? Or how do we construct it?

Obtaining a proof for a formula from proof a of the Skolemized formula is called deskolemization.

This paper describes an algorithm and its implementation for deskolemizing cut-free proofs in LK.
The algorithm is derived from the definitions in [7].

The remainder of this paper is organized as follows. In section 1.1 the drinker paradox is explained
which is used as a running example. In section 3 the calculus is described. Section 4 explains Skolem-
ization and finally in section 5 the deskolemization.

1.1 Drinker paradox

The drinker paradox will be used in this paper as the running example. The paradox is also called the
Drinkers’ Principle [10]. The drinker paradox as a first order formula is

Jz (D(x) — VyD(y))

In natural language the drinker paradox can be stated as There is someone in the pub such that, if
he is drinking, everyone in the pub is drinking. The statement seems to be false. How can it be that if
this person is drinking, then everybody must be drinking as well? There are two important points to
see why the paradox is true. There is no time involved. The paradox does not claim if someone starts
drinking, then everybody will drink. To show it is true, we can pick anyone we want to be the someone.
Thus given any pub, pick someone who is not drinking. (If we can’t pick someone who isn’t drinking, the
paradox is true since everyone is drinking). Then the paradox is true, because he or she isn’t drinking.
And if this person starts to drink? Just pick someone else who isn’t drinking.

1.2 Automated theorem provers

The best automated theorem provers can be found at the CADE ATP System Competition, CASC, an
annual competition for automated theorem provers [12][9]. CASC evaluates the performance of ATP
systems on problems from Thousands of Problems for Theorem Provers, TPTP [11].

The winner of the CASC-24 in 2013 in the division of formulas in first order form was Vampire 2.6.
Vampire and others like Prover9 use proof by refutation in clausal logic [1].

Most ATP systems use proof by refutation. They assume the theorem to be false and show the
negated theorem to be unsatisfiable by deriving a contradiction. A proof by refutation for the drinker
paradox will show there is someone who is drinking and not drinking if the drinker paradox is false.

1.3 Skolemization

Skolemization is commonly used in ATP systems before proving a formula. Skolemization replaces
existential quantifiers in a formula by Skolem functions. The resulting formula is equisatisfiable with the
original formula, but is easier to prove. The Skolemized formula preserves the satisfiability of the original
formula. Which means that iff there is a model that makes the Skolemized formula true then there is a
model that makes the original formula true. This is an useful property in a proof by refutation. A proof
by refutation proves there is no model that satisfies the negated formula, thus the formula itself must be
valid. A refutation proof of a Skolemized negated formula implies there is also no model for the negated
formula, and thus the formula is valid.

Herbrandization is the dual of Skolemization. It eliminates universal quantifiers. Herbrandization
preserves the validity of the formula.

1.4 Example

As an example we consider the case of constructing a proof in sequent calculus of the drinker paradox
using Prover9, an automated theorem prover. The drinker paradox in suitable input format is

formulas(goals).
(exists x (D(x) -> (all y D(y)))).
end_of_list.

Prover9 will negate the formula, put it in prenex normal form, Skolemize it and turn it in clausal
form. The resulting Skolemized form is

formulas(sos).

D(x). [deny(1)].
-D(f1(x)). [deny(1)].
end_of_list.

The function f; is the Skolem function introduced. The intermediate steps are

The actual proof constructed by Prover9 is

1 (exists x (D(x) -> (all y D(y)))) # label(non_clause) # label(goal). [goal].
2 -D(f1(x)). [deny(D)].

3 D). [deny(l)].

4 $F. [resolve(2,a,3,a)].

Thus the drinker paradox is true. Why it is true is not clear from this proof. We could transform
this proof in to a proof in LK. In sequent calculus the proof from Prover9 corresponds to a proof of
VaD(x) AVy=D(fi(y)) -

With this proof we can make a refutation proof in LK for the Skolemized drinker paradox

[¢] []
—(Fz (D(z) = D(f1(x)))) F VaD(x) ANVy—-D(fi(y)) VaD(x) AVy—D(f1(y)) b

=32 (D@) - D) - Cut

The calculus in this paper does not have a Cut rule. However, Cut rules can be eliminated from a
proof [5]. CERES is a system capable of eliminating cut in first order logic [2].

The proof ¢ is simple as the antecedent and succedent are logically equivalent. The proof of 7 can
be created from the proof by Prover9. This proof is still not a proof of the drinker paradox. There still
is a Skolem function fi.

Thus the last step necessary step to obtain a refutation proof of the drinker paradox, from the Skolem-
ized proof of = (3z (D(x) — D(f1(x)))) F, requires deskolemizing the proof. A method of deskolemizing,
and its implementation, is explained in the following sections.

Chapter 2

Proof deskolemization

We now present the algorithm for deskolemization, constructing a proof for a theorem from a proof of
the Skolemized theorem. The algorithm takes as input a sequent S to prove and a proof 7’ of S’, the
Skolemized S. The output is then a proof 7 of S. The sequent calculus, LK, for these proofs is defined
in section 3.

The deskolemization of a proof consists of four steps. In the first step a compact representation of
the proof, an expansion, is extracted. Secondly, this expansion is deskolemized. Thirdly, a proof of the
deskolemized expansion is constructed in LK® calculus. Finally, the proof in LK is transformed into
proof in LK.

Let

S The sequent to proof

S’ The Skolemized sequent

7w A proof of S’

E Expansion sequent of S

E’ Expansion sequent of S’, deskolemized S
¢ A proof of E’ in LKP

m A proof of § in LK

then the process of finding a proof m of S can be depicted as

LK S T
sk
LK, Skolemized S’ = sk(S) AP, proof ! rm,rmTF
e
LKF gtk o p P proof ¢ of S

The function sk Skolemizes a sequent. Given S and 7’ the goal is to construct a proof 7 of S.

The expansion is extracted by e from the proof, section 5.1. This expansion is deskolemized by desk,
section 5.3. The proof in LK is reconstructed by Pr and is transformed into a proof in LK by rm and
rmTF.

2.1 Example

Let S =F Jz(P(x) — VyP(y)) its Skolemization is S =F Iz P(z) — P(fo(x)). A proof w of S’ is

PRy

P(fo(a)), P(a) b 3z(P(x) — P(fo(x))), P(fo(fo(a))), P(fo(a))

P(fo(a)), P(a) F P(fo(a)), Fz(P(x) = P(fo(x))), P(fo(fo(a)))
P(a) - P(fo(a)), 3z(P(x) = P(fo(x))), P(fo(a)) = P(fo(fo(a)))

—R

3R (a)

P(a) - P(fo(a)), 3z(P(z) = P(fo(x)))

PRy

P(a) - 3x(P(z) = P(fo(2))), P(fo(a))
F 3z(P(x) = P(fo(2))), P(a) = P(fo(a))

IR,

F 3x(P(x) = P(fo(x)))

The goal is to construct the following proof of S

P(2), P(a) b (P (x) = YyP(y)), YyP(y)), P(2)

Pla) - P(2), 3z(P(x) = VyP(y)), P(2) = YyP(y))

P(a) F P(2),3z(P(x) — YyP(y))

Ra
& T
WV)
N
=Y
<~)
PWV
EEE
~— a(
A==~
SN NS
> > >
> =
HER
=55E
PH\er\
S~— x
Fs] T
._.H/x\._.
Slelx
Pﬂxnﬂ
€

Chapter 3

Definitions

In this section the first order sequent calculus used in this thesis is described. It is slightly different from
the calculus used in [7], T and L are omitted.

Definition 1. Symbols

e Variables z,y,... and xg, yo, 1, Y1, - - -

Logical connectives =, A, V, —

e Predicates Py, Py, ...

e Functions fy, f1,...

e Quantifiers 3,V
Definition 2. Terms

e A variable symbol

e An expression f(t1,...,t,) where f is a function with arity n and ¢; are terms
Definition 3. Formulas

e P(ty,...,t,) where P is a predicate with arity n and t; are terms

e — A where A is a formula

e (A V Ay) where A; and A, are formulas
[]

A1 A Ag) where Ay and Ay are formulas

e (JzA) where z is a variable and A a formula

(

(

e (A; — As) where A; and As are formulas

(3zA

e (VxA) where z is a variable and A a formula

The result of a substitution A [z :=t] is A with all free occurrences of x substituted by ¢.

Definition 4. Every subformula of a formula is in positive or negative context. The formula itself is in
positive context.
For every (sub)formula A

e If A= -4 is in positive context, then A; is in negative context
e If A= -4, is in negative context, then A; is in positive context

o If A=A, — A, is in positive context, then A; is in negative context and A, is in positive context

o If A= A; — A is in negative context, then A; is in positive context and A, is in negative context
e If A=A VA, A=A NAy, A=3dxA; or A =VxA; then A; and As have the same context
parity as A

A quantifier Vz is called strong (weak) if it occurs in a positive (negative) context, a quantifier 3z is
called weak (strong) if it occurs in a positive (negative) context [7, Preliminaries]. The number of strong
quantifiers in a formula A will be denoted as qocc(A).

Definition 5. A sequent S = Aq,..., A, B1,...,B,, where A1,..., A, and Bi,..., B, are sequences
of formulas. The formulas Ay,..., A, are in negative context and By, ..., B,, are in positive context.
This differs from [7] where sequents are multisets of formulas.

Definition 6. Inference rules. A denote a single formula and I', A sequences of formulas

ATFAA L
THAA ATHFA
—ATHFA THA-A
ALTEA A TEA PEAALA o
AV Ay TFA v TFA A VA "
AL A THEA FEAA TEAA
A AATEA N TFA, A A Ay A
TEAA ApTEA AL TEAA
A = A TFA — TFAA — A,
Alz:=y],TFA F'-AJzA Az =1
aL,
JzAT A v A, 3zA TRy
Az :=t],VzA T F A TFA Az =y
VR
VzA T+ A Lt I'FAVzA v
A Ary oo A, A, A B A FEAy, A A, A Ay
A, L A FA PL; LFA,... A, PR,
y does not occur in A,I" nor A.

Definition 7. A proof 7 in LK of a sequent S is a tree built from inference rules, with at the root of the
tree S and all nodes are inferences. The length of a proof |7| is the number of inferences in 7, excluding
PR and PL [7, Definition 2].

3.1 Expansions and LKF

Expansion trees are a simple representation of proofs. In a classical proof the substitutions used are the
key element of a proof. These are the terms in the 3R and VL inference steps. Expansion trees make the
substitutions explicit, but the order of the inferences are omitted. Due to their compact representation,
expansions are well suited for transformations. [§]

Definition 8. Expansions [7, Definition 4]
e | is an expansion

e [is an expansion

P(t,...,

e —F where E is an expansion

(E1 V Es) where Ey and Es are expansions

(E1 A E3) where E7 and E, are expansions

(E1 — E») where E; and E» are expansions
o JxA+M By + -
o VxA+" By + -

t,,) where P is a predicate with arity n and ¢; are terms

+n» E,, is an expansion where A is a formula and E; are expansions

+n E,, is an expansion where A is a formula and E; are expansions

The + operator is commutative. A term ¢ in an expansion A +! F is called a selected term.

The shallow function maps expansions to formulas [8]. It will, for example, be used to convert a proof

from LKP® to LK in section 5.7.

Sh(T)=T
Sh(Ll) =1
Sh(P(tl,.. Jtn)) = P(t1, ..., tn)
Sh(=E) = =Sh(E)
Sh(E4 V E3) = Sh(E1) V Sh(E3)
Sh(Ey A Es) = Sh(E1) A Sh(E3)
Sh(E1 —>E2):S (Ey) — Sh(Ey)
Sh(VzA +" By - E,) =VzA
Sh(3zA +" By - —i—t"E) =3

For a sequence I' = F, ...,
shallow form Sh(I' = A) = Sh(T") - Sh(A).

Definition 9. Expansion of a formula [7, Definition 4]
e | is an expansion of every formula
e T is a dual expansion of every formula
e P(t1,...,t,) is a (dual) expansion of P(ty,...,t,)

e —F is a dual expansion of =A when FE is an expansion of A

e —F is an expansion of =A when E is a dual expansion of A

E,, its shallow form Sh(I') = Sh(E),...,

Sh(E,). For a sequent I' F A its

e F; V E5 is an (dual) expansion of A; V Ay when E; and Es are (dual) expansions of A; and As

e E; A Es is an (dual) expansion of A1 A As when E; and Es are (dual) expansions of A; and As

e F; — E5 is an expansion of A1 — A; when E; is a dual expansion of A; and FEs is an expansion

of A2

e F1 — FEs is a dual expansion of A; — Ay when E; is an expansion of A; and E5 is a dual expansion

OfA2
o JxA+M By + -

+in B, is an expansion of 3z A when E; are expansions of A [z := ;]

e 3z A 4Fttn) B s a dual expansion of 3zA when E is a dual expansion of A [z := f(t,...,t,)]

o Vx A+ By + -

+in B, is a dual expansion of VzA when E; are dual expansions of A [z := t]

o VoA /() B is an expansion of VoA when E is an expansion of A [z := f(t1,...,t,)]

Definition 10. LK [7, Definition 8]

ETFAE |
TFAE ETFA
—-E,THFA LA -E
EL,TFA E,TFA TFA, E,E
VL VR
E VEsTFA TFA EVE,
E, Es,TF A TFAE, TFAE
AL AR
ELAEsTFA TFA, BN E,
THABE ByTHEA ELTEAE
By — E5,TF A - TFA B — By
ETHA I'HA,3dzA E
- ALy SIETGE R,
WA+ ETFA THA A+ E+w
EVzA kA 'FAE
T VL, S VRy
VeA+t E4+w,TFA -AVZA+Y E
Ei)Ela-'-7E7;71;Ei+17"'aE’rLl_A F}_E17"'7E’i71aE’i+1a-"7E’I’L7Ei
E... E,FA PLi TFE,.. . E, PR
' does not occur in A,Sh(I') nor Sh(A).

The Skolem terms of an expansion SkTerms(FE) is the set of selected terms at its strong quantifiers.

SkTerms” (1) =
SkTerms’(T) =

SkTerms” (P(ty,...,t,))
SkTerms™ (=F)
SkTerms™ (—FE)
SkTerms” (B, v Ey) =
SkTerms” (E) A Ey) =
SkTerms' (E; — Ej) =
SkTerms™ (E; — E3) =
SkTerms™ (JzA+" Ey -+ +'" E,) =
)

) =

) =

SkTerms™ (3xA+f<th i) By = {f (t1,..

SkTerms™ (VzA +/(1
SkTerms™ (VzA 4+ By ---

For a expansion sequent S’ = Eq, ...,
.- U SkTerms™ (E,) U SkTerms™ (F;) U

Definition 11. The union of two expansions F; U F5 is a partial operator defined as |

E, &+ Fi,...
-~ U SkTerms ™ (F,)

..... tr)E — {f (tl’
+n E,) = SkTerms™ (E1) U

)
)
~(Ev)
SkTerms™ (E;)
(

SkTerms™ (Ey)U--- U

U

10

U SkTerms” (B
U SkTerms” (Fs
U SkTerms™ (Ey)
U SkTerms™ (E32)

)
)

SkTerms™ (E,,)

.y tn)} USkTerms™ (E)
tn)} U SkTerms™ (E)

SkTerms™ (E,,)

F,, its Skolem terms SkTerms(S) = SkTerms™ (E;) U

7, Definition 7]

e If By =1or Ey =T then £ UFEy = FE»

e If F5 =1 or E5 =T then F; U FEy = E;

o If By = -FE} and Ey = —E) then E; U Ey = —(E{ U EY)

o If £y = FE{VE{ and E; = E} V EY then E; UE, = (E} UE}) V (EY UEY)

o If By = E{ NE{ and Ey = E) A EY then Ey1 U Ey = (E] U EL) A (EY UEY)

o If £y = F{ — EY and Ey = El, — EJ then Ey1 U Ey = (E{ U E})) — (E{ U EY)

o If £, =3zA 4+t El,l NN 7 El,k +51 Fy - 45 R
and Fy = dzA +th E2’1 N Eg,k +" Gpo 4+ Gy, and
{s1,--,s1yN{r1,...,rm} =0 then
E1 U E2 =dzA —|—t1 (E171 U Eg,l) s —|—tk (El,k U E27k) +Sl F1 cee St Fl +m G1 s Tm Gm

o If £y =VzA +h El,l R El,k +51 Fy - 450 By
and E2 =VzA +t1 E271 s +tk E27k +" G1 cee T Gm and
{s1,...,siyN{re,...,rm} =0 then
EyUEy =VoA+" (E1gUEy)+ (B1p UEyg) +% Fr- -+ B 4" G-+ Gy

e For all other cases Fq U Fy is undefined

For sequences of expansions I'y = Ey,...,E, and I's = F},..., F, their union is 'y UTy = F; U
Fy,....,E,UF,

3.2 Example of an expansion

The following expansion is an expansion of the drinker paradox.

Jz(P(x) = VyP(y))
+oU (P(fo(a)) = L)
+ (T = ¥yP(y) +") P(fo(a)))

From this expansion a proof of the Skolemized drinker paradox can be constructed, x has to be substituted
by a and fo(a), and y by fo(a).

11

Chapter 4

Structural Skolemization

Skolemization (and its dual Herbrandization) comes in two forms, structural and prefix Skolemization.
In structural Skolemization the universal quantifiers are in place replaced by Skolem functions. Prefix
Skolemization first puts the formula in prenex normal form and then replaces the quantifiers by the same
method as structural Skolemization.

Structural Skolemization has the advantage that it is unique up to renaming of the Skolem terms.
Prefix is not unique, since there is in general no unique prenex normal form.

Also structural Skolemization has fewer arguments in the Skolem terms as prenex normal form moves

quantifiers outwards. [3]

Structural Skolemization removes all strong quantifiers, V in positive context and 3 in negative con-
text. The number of strong quantifiers in a formula A is denoted as qocc, (A).

qoccy (P(t1,... tn)) =
qocc, (—A) = qocc_ (A)
gocc_ (mA) = qocc, (A)

occ_ (A1) +qocc, (Az)
qocc_ (A; — Ap) = qocc, (Ay) + qocc_ (Az)
qocc, (JxA) = qocc, (A)
gocc_ (JxzA) =14 qocc_ (A)
qocc, (VxA) =1+ qocc, (A)
qocc_ (VzA) = qocc_ (A)
For a formula A its structural Skolemization A’ = skzg’o(A) in positive context and A’

negative context.

12

-0
= sk<>

(A) in

KIS (P(t1, ... tm)) = P(t1, ... tm)
sk (- A
sk, " (—A

ski?"(A1 V Ag) =
ski?"(A1 A Ag) =

K (Az) when n’ = n + qoccg (A1)
kﬁ’”(Al A skﬁ’”' (Az) when n’ = n + qoccg (A1)

. "(Az) when 2’ = n + qocc_ (A1)
— skf’”/(Ag) when n' =n + qocc, (Ay)
(3z4) =s u;,.f. (A fo = Fulps o)) whon nf =+ 1
S (T d) = skE (A= fulan, o gu)]) when ' =0+ 1
(=V Skjljl-..,m w(4)

The structural Skolemization of a sequent S = Ay,..., A, F By,...,Bnis A},..., AL - B{,..., By

o with Bj,..., B}, =sk[*(BiV---V By,) if n =0
o with Af,..., A, = sk *(A1 A-- A Ay) i m =0

o with Af,..., A}, = Bi,..., B}, = sk (At A+~ A Ay, = Bi V.-V By,) if n>0and m >0

4.1 Example of Skolemization

The structural Skolemization S of the drinker paradox, S =+ Jz(P(z) — VyP(y))

ski)" (3z(P(x) = VyP(y)
Jz sk<+’>0(P(x) — YyP(y

)
)

V(P(x)) = sk (YyP(y))

(x)
Iz (P() — sk+0 (VyP(y))

3a (sk 7

dx (P() — sk?”> (2)
Jz (P(x) — P(fo(x)))

S" =F 3z P(x) — P(fo(x))

13

Chapter 5

Proof deskolemization

In this section the actual algorithm is presented. The four steps of the deskolemization process are in
the next sections. Each section is followed by example on the drinker paradox.

5.1 Expansion extraction

The first step in the deskolemization is the extraction of the tautological expansion from the proof in LK.
The resulting expansion represents the proof in a simpler form. The extraction function e is recursively
defined [7, Lemma 2].

For an axiom

e(W):A,T,...,TFJ_,...,J_,A

Note that formulas that are irrelevant for the axiom inference are substituted by T and L. This reduces
the size of the resulting expansion and the complexity of the proof deskolemization process. After the
deskolemization step T and L are substituted by the correct formula’s in section 5.7.

For the inference rules

¢
e< TFA A) =BT+ A

-ATHFA

where I' - A’ E = e(ﬁ)

¢
e< ATHFA >:F’I—A’,ﬂE
FFA A

where E,T' F A’ = e(ﬁ)

14

o1 b2
e(A,FFA BTFA L)zEl\/EQ,F’luF’QI—A’IUA’Q
AVBTEFA

/ ! ¢1
where B, F A} = e(iA,F A) and

EZ’F“A'FQ(B,%A)

o
e(F}_A,A,B >=F/|_A/,E1\/E2
rraave 'R

o e
where T’ I—A7E1’E2_e(I‘FA,A,B)

@
e< ABTFA >:E1/\E2,P'I—A’
ArBTFA M

/ r ¢
where E1, Ex, I F A 7e<7A,B,F}—A)

o1 @2

e[TFA A4 TFrAB =T/ UT, F A, UAL, By A B

R 2 2
TFA AAB

where I, - A}, By = e(L) and

TFA A
/ ! _ ¢2
FQFAQ,EQ_e(iwA?B)
?1 b2
el TFA,A "BTFA = B, — B, T, UT, - A, UA),
—L
A= BTFA
where I"ll—A’l,Elze(FJbﬁ) and
/ I ¢2
EQ,FQ}—AQ—e(iB,FFA)
___ ¢
el ATFAB =T'F A, E, — Es
TFAASB
where By, T' - A’ Ey = e(ﬁ)

For JL, and VR, the function e is undefined as these inferences can not occur in a proof of a Skolemized
formula.

15

¢
e(A[m =y],T'FA 1P)is undefined
dzA,THA Y

¢
e<FFA,E|xA,A[x:t} R)F'FA’,Elu(ElethEg)
LA, JzA t

here I' - A’ By, By = ¢
where H e(FI—A,HxA,A[x::t])

¢
e(A[x::t],VxA,F}—A L>:E1U(Va:A+tE2),F’}—A’
VzA, T F A '

here Ep, E1, T A/ = 2
where Lo, Ly, e(A[x::t],vavr}_A)

¢
e(TEA Az :=y] VR)is undefined
'k A VzA Y

o
e(AT, ToF A) =T,,E,T)F A
LA, FA

¢
where E,T,T5 - A" = e(m)

¢
E<FFA1,A2,A)—F/FALE,AIQ
TFALA A,

AN AN o O
where T’ I—ApA%E_e(I‘i—AhA%A)

5.2 Example of expansion extraction

Applying the extraction e on the proof 7w from 2.1 gives

= P(fo(a)), T+ L, L, P(fo(a))

= P(fO(a))a TH P(fO(a))a J—a 1

e(P(fo(a)), P(a) b Jz(P(x) = P(fo(x))), P(fo(fo(a))), P(fo(a))

¢
[

0(2))), P(fola)) = P(fo(fo(a))

.)

(P(fo(a)), P(a) = P(fo(a)),3Iz(P(z) — P(fo(x))), P(fo(fo(a))))

e(Pa) F P(fo(a)), 32(P(x) — P()
}_

¢

e< P(a) F P(fo(a)), 3z(P(z) — P(fo(x)))
where I' + A, E1, By = T + P(fo(a)), L, P(fo(a)) —

=T+ P(fola)), LU (3z(P(z) = P(fo(z >>)+f° (@) P(fo(a)) — L)

=T+ P(fo(a), (Bz(P(z) = P(fo(x))) +7° P(fo(a)) — L)

) =T AL E U (Fed +' By)

16

;)
PUo(). PUFola)

) =F @2(P@) = P(fo(@)) +7@ P(fo(a) = 1), T = P(fo(a)

=T F (3z(P(x) — P(fo(x))) +7 P(fo(a)) = L), P(fo(a))

e(P(a) - J2(P(z) —
. é
(Fhww+Pmm»H@+Hmw
¢
e(FﬂﬂP@%%PUM@D
where I' = A", By, By =F (3a(P(z) = P(fo(2))) +7 P(fo(a)) = L), T — P(fo(a))
((H@%P%WW+M”HE@%+HU
(Bx(P(x) = P(fo(2))) +* T = P(fo(a)))
=+ Ju(P(z) = P(fo(2))) +7°@ P(fo(a)) = L +° T = P(fo(a))

) =T'F AL E U (oA +' Bp)

Thus the Skolemized expansion is E' =F 3z(P(z) — P(fo(x))) +7@) P(fo(a)) — L +* T — P(fo(a)).

5.3 Skolemized expansion to deskolemized expansion

Now that the proof is in expansion form, it can be easily deskolemized. The strong 3 and V quantifiers,
removed by the Skolemization, have to be restored at the correct place. The Skolem terms corresponding
to these strong quantifiers are added as a selected term. The selected term is f(s1,...,s,) where f is
the Skolem functions for the strong quantifier and si,...,s, are the selected terms in its scope. The
process is similar to that of the Skolemization. In the Skolemization, sk, the quantified variables VY are
recorded to create the correct function. During the deskolemization here the actual selected terms, s;,
are kept to create the correct Skolem term.

The selected terms +! will still contain Skolem functions, these will be replaced by fresh terms in
section 5.7. [7, Lemma 3]

deskfﬁ,}s” (A,T)=T
deskfl’f’f_,sn (A, L)y=1
desk?™ . (P(t1,....ta), P(t),....t,)) = P(t},... 1))
desk;’f_‘_7sn (mA,-F) = ﬂdesk;’f_l_7sn (A E)
desk;’f." (mA-E) = ﬂdesk:l’f_'_’_ﬁn (A E)
desk®™ | (A1 V Az, By V Ep) = desk®™ | (A1, E1) V desk?™ | (As, Ey)

when m’ = m + qoccy (A1)
desk?™ _ (Ay A Az, By A Es) = desk?™ | (A1, Er) Adesk?™ | (A, Es)
when m' = m + qoccg (A1)
desk,™ | (A1 — Ag, By — Bp) = desk;™ | (A1, Er) — desk,™ | (As, Es)
when m’ = m + qocc, (4)
desk; ™ . (A1 — Ao, By — Ep) = desk!™ | (A1, B1) — desk;,™ | (As, E»)
when m’ = m + qocc_ (4;)
desk!™ | (3zA, 3z A +" By -+ B,) = JwA+" desk]™ | (Alzi=t1] ,EBy) -+ desk[™ [(Alzi=t,], Ey)
desk ™ | (JzA, E) = 3w A Im1e) desk ™ (Al = frn(s1,.-.,50)], E)
when m’' =m +1
desk,™ | (VaA, E) = VoA 4150 deskt™ | (Az = frn(s1, .-, 50)], E)
when m' =m+1
desk ™ . (VoA VoA +" By -+ E,) = VoA +" desk; ™ | (Alz:=t1],Ey)--- 4" desk ™"

17

The deskolemization of an expansion sequent E1,...,E, - Fi,..., F,, for a sequent S = Ay,..., A, F
Bi,...,B,, is desk” (A1, Ey), ..., desk (A, E,) F desk™ (By, Fy),...,desk™ (B, Fi)

5.4 Example of expansion deskolemization
The deskolemized expansion E is
desk ™ (3z(P(z) — VyP(y)), Jx(P(x) = P(fo(z))) +7@ P(fo(a)) = L+ T — P(fola))) =

Jz(P(x) — YyP(y)) +7) desk™ (P(fo(a)) — YyP(y)), P(fo(a)) — L)
+%desk™ (P(a) — YyP(y)), T — P(fo(a)))

desk™ (P(fo(a)) — YyP(y)), P(fo(a)) = L) =
desk™ (P(fo(a)), P(fo(a))) — desk™ (VyP(y), L) = P(fo(a)) — L

desk™ (P(a) — YyP(y)), T — P(fo(a)
desk™ (P(a), T) — desk™ (VyP(y), P(fo(a)
T = VyP(y) +7) desk™ (P(fo(a)) P(fo(a)

T = VyP(y) +7) P(fo(a

desk* (3a(P(x) — YyP(y)), 3a(P(x) = P(fo(x)) +@ P(fo(a) = L+ T = P(fo(a))) =
32(P(x) = YyP(y) 7 (P(fo(a)) = L)+ (T = YyP(y) +@ P(fo(a)))

5.5 Proof in LK? from deskolemized expansion

In this section the proof is reconstructed from the expansion. The key point is that the selected terms
in the expansions do not have an explicit order. For the 3R; and VL, rules the terms may not be in
the SkTerms(). This ensures the correct ordering, and the eigenvariable restrictions for the inferences
rules.[7, Lemma 6]

First, the definition of two helper functions that handle the correct permutation inferences.

permL,((E;,TFA), 7)==

T
permL,;((T'1, E;, T2 F A) 7)) = WPLi
permR,(C+AE;) ,m) ==
T
permRi((F + A17Ei7A2) 771—) —TF Al,Ei,AQ PR;

The actual reconstruction of the proof is done by Pr. It takes an expansion sequent as input and produces
a proof in LK® by recursion. Pr is not uniquely defined, yet every possible branch will result in a correct
proof. For example A A B+ AV B matches the cases for E1 A E5 and Eq V E».

18

PI’ (F]_,Ei,rg }_ Al,Ej,Ag) = permLi((Fl,Ei,Fg }_ Al,Ej,Ag),

permR; ((E;,T'1, T2 - Ay, Ej, Ay), E;,T1,TaF Ay, Ay E;))

when F = Ei = E]‘

Pr (Fl,Ei,FQ l_ A) = permLi ((Fl,Ei,FQ }_ A), PI’ (FI’FZ }_ A’E) —)

E;, T, s A
when F; = —-F

Pr (F - Al,Ei7A2) = permLi ((1" [Al,Ei,Az), Pr (E;F F Al,AQ) _ >

A Ag B
when F; = —-F

Pr (I, B Ty - A) = permL, ((rl,Ei,rz oy PR A Prife Tl 4) VL)

E;,I'1,I's A
when Ez = E1 \ EQ

Pr (F F AlthAZ) = Perml_i ((F (o Al;Ei, A2)7 Pr (F - A17A27E17E2))

'+ Ay, Ag B
when EZ = E1 V E2

Pr(I'1, By, s = A) = permL,; ((FlaEi;FQ FA), Pr(Ey, By, Ty, o F A) >

E, ', TaFA
when Ez = E1 A EQ

Pr(T'+ Ay, E;, Ay) = permL, ((F F Ay B Ag), Pril - Ai Az, B1) PrlF Ay Ao, By) /\R>

'+ AlaAQaE'L
when l;‘z = El AN E2

Pr (I, B Dy - A) = permL, ((Fl,Ei,rg -y, POl E A B PrifyTular 4) —>L>

E;, T, T FA
when F; = E1 — FEy

Pr (F - Al,Ei,Ag) = permLi ((1“ [AlyEi,AQ), Pr (Ela].—‘ F AhAQ,Eg) R)

FFA13A27Ei
when F; = F1 — Ey
Pr (E7F17F2 = A))
Pr(I'y, Es, o H A) =permL, | (T'1, E;, T2 F A), dL
(1 B, T> - 4) =p ((RS ey % v vy U

when F; = 3z A +® B

Pr(TF A, E;, As) = permL, ((r A, B, Ay), DI A1 A0, Fzd +w, B) HRt)

't A, As E;
when F; = ItA+' E+w
and t € SkTerms(I' F A1, E;, Ag)
Pr(E,VzA+w,I'F A)
VL,
Ei7F17F2 = A

Pr (Fl,EZ',FQ " A) = permLi ((Fl,Ei,FQ }_ A),

when E; =VzA+'E+w
and t ¢ SkTerms(T'y, E;, s - A)
Pr(F,}—Al,Ag,E))
VR
TFALAE, o

Pr (F F Al,Ei,AQ) = permLZ- <(F F Al,EfL',AQ),

when E; = Vo A+ E

19

5.6 Example of proof construction in LKFP
From the previous section we have - 3z (P(z) — YyP(y))+7@ (P (fo(a)) — L)+(T = VyP(y) +7) P(f(a)))
to construct the proof we simply apply Pr.

Pr (- 3u(P(x) = VyP(y)) +7) (P(fo(a) » L)+ (T = vyP(y) +7C) P(fo(a))))

Only the rule 3 at the right matches, with ¢ = fy(a) or ¢ = a. However fo(a) € SkTerms(S) = fo(a)
since SkTerms™ (VyP(y) +/(®) P(fy(a))) = fo(a). Thus the first step is IR,.

Pr (- 3z(P(z) = YyP(y)) +5@ (P(fo(a)) = L), T = VyP(y) +7(@) P(fo(a)))
F 3z(P(z) = VyP(y)) +70 (P(fo(a)) — L) +* (T = VyP(y) +*) P(fo(a)))

IR,

The next possible step is —R, since IR, (4 is still in SkTerms() and can not be applied. The final result
of Pr is

P(fo(a)), T F Jz(P(x) = VyP(y)), L

); P(
P(fo(a)), T+ P(fo(a)), Jz(P(x) = VyP(y
TF P(fo(a), Jz(P(z) = VyP(y)), (P(fo(a)
T F P(fo(a)), F2(P(z) = YyP(y)) +7 (P(fo(a)) = 1) p
T 32(P(x) = VyPly))+f° Y (P(fo(a)) = L), P(fo(a))
T F 3a(P(x) = YyP(y)) +7°0) (P(fo(a)) — 1), ¥yP(y) +7°) P(fo(a))
- 3u(P(2) = YyP(y)) +7° (P(fola)) = L), T = VyP(y) +7 P(fo(a))
F 3z (P(x) = YyP(y)) +° (P(fola)) = L) +* (T = YyP(y) +7(*) P(fo(a)))

fo
)

)
(

) ppg,

(
), L R
_>
— 1)
IRy (a)

)
)
(
)

1

VR fo(a)
—R

5.7 LKF to LK

The proof generated is not yet a proof in LK. The sequents are made from expansions and not formulas,
the terms in for example IR may have Skolem functions. The Skolem terms are removed in the first
step [7, Lemma 7]

m(TEA)=Sh(I'F A)

T rm ()
[S—] _ mir)
n(tra ®) ShT - A)
when R € {-L, R, VR, AL, R, 3R, VL,, PL,,, PR,»,}

1 T2 rm (71) rm (73)
rm (7r X R) ST A R when R € {VL, AR, L}

m _m(r [f(?) ==y])
m < STA T ETEA HLf@) = 324, Sh(D) F Sh(A) ™

when y does not occur in 3z A, Sh(T') F Sh(A)
m ___m(r[f(#) :=y])
rm (TFAViATOE VRf@) = Sh([) F Sh(A),Ved R
when y does not occur in Sh(I') - Sh(A),Vz A

wn

20

The final step is to remove T and L from the formulas. This is simply done by reconstructing the proof
by applying the inference steps.

rmTF((A,Fr—A,A), A,TP_”TFL,W’J_’A):A,Fl—A,A

™ rmTF((I F A", 7)
AN, R — 9

S) rFA

I’ F A

TFa *
o R) _ rmTF((T" - A'),m) rmTF((T" = A"), m5) »

A
F/ '_ A/ I‘l// '_ A//
r-A

rmTF ((F FA),

when

mTF ((F FA), T

R

when

Now the deskolemization process is completed. An expansion was extracted, e, deskolemized, desk, a
proof was reconstructed, Pr and finally rewritten as a proof in LK by rm and rmTF. The appendix A
lists an actual implementation in Haskell of the described deskolemization process.

5.8 Example of LKF to LK

Applying rm to the generated proof is simple. In most cases only Sh is needed, which turns the expansions
into formulas. The first step is as follows

m z Ra) =
< = 3z(P(x) — YyP(y)) +° (P(fo(a)) — L) +* (T = VyP(y) +7) P(fo(a))))
rm () R —
Sh(- 3z(P(z) — YyP(y)) +° (P(fo(a)) — L)+ (T = YyP(y) +7) P(fy(a)))) ~
rm (7)
IR, =

F Jz(P(x) — VyP(y))

The next step for the =R inference rule is similar. For the third step at the inference rule VR, (q) a
fresh variable is needed, for example x5. All occurrences of fo(a) in the proof have to be substituted by
x9 because of rm(w [f(¢) := y]). Thus

PR,
—R

P(fo(a), T F 3z(P(z) = VyP(y)), L, P(fo(a))
P(fola)), T+ P(fo(a)), 3(P(x)—>VyP(); L
T F P(foa)), 3x(P(x) = VyP(y)), (P(fo(a)) = 1)
T P(fo(a)), Ju(P(z) = VyP(y)) +7° (P(fo(a)) — 1)

Tk 3x(P(z) = VyP(y)) +7° (P(fo(a)) = L), P(fo(a))

becomes

P(z3), T+ 3x(P(x) — YyP(y)), L, P(x2)
P(z5), T F P(x2),3z(P(z) — VyP(y)), L

T F P(a2), Jz(P(x) = VyP(y)), (P(z2) — 1)
TF P(xg),3z(P(x) = VyP(y)) +*2 (P(x2) — 1)
TFJz(P(x) = VyP(y)) +*2 (P(x2) — 1), P(z2)

PR,

PR,

Note that also the inference IR, (,) changed to JIR,,. The final result of rm is

21

P(x3), T+ 3x(P(x) — VyP(y) P(x3) PR
(P .

), L

P(x2), T+ P(x3),3x) —>VyP(), L
TF P(xzy),3x(P(z) = VyP(y)), P(xz2) — L
Tk P(z2),3x(P(z) — YyP(y))
T+ Jz(P(x) = VyP(y)), P(z2)
T+ 3ax(P(z) = VyP(y)), VyP(y)
F 3z(P(x) — VyP(y)), T — YyP(y)

F Jz(P(z) — VYyP(y))

IR,,

PR,
YRa,

IR,

The final function to produce the proof in LK is rmTF. This function simply applies the inferences
rules starting at the root of the proof. The result of rmTF is

P(r2). P(a) F 32(P(a) » WP(y) YuPW). Pa) o
P(zz). P(a) F Plaa). 32(P(@) — YP). WPW)
P(a) F Pla), 32(Pa) = YyP(). Plaz) = VyPW) on
P()F P(ra). 36(P@) 5 YWP) Lo
Pla) F3(P() = ¥PW). Plas) !
P(@) F 3(P() > PW) WPW)
- 30(P() 5 VyP(y). Pla) & P()

F 3z (P(x) — YyP(y))

This indeed is a proof of the drinker paradox b Jx(P(z) — YyP(y)).

22

Chapter 6

Conclusion

We have shown an algorithm to deskolemize a proof. The algorithm takes a sequent a proof of the
skolemized sequent and produces a proof of the original sequent. The implementation can be found in
appendix A.

The algorithm works for cut-free proofs. The expansions trees that are extracted from the proof do
not support a cut rule. One way to overcome this limitation is to use a cut elimination. However, an
extension to expansions trees, expansions trees with cut[6] is a promising result to deskolemization with
cut rules.

23

Bibliography

ALEXANDRE Ri1AzANOV, A. V. The design and implementation of vampire. AI Communications
15 (2002), 91-110.

Baaz, M., HETZL, S., LEITSCH, A., RICHTER, C., AND SPOHR, H. Cut-elimination: Experi-
ments with ceres. In Logic for Programming, Artificial Intelligence, and Reasoning, F. Baader and
A. Voronkov, Eds., vol. 3452 of Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2005, pp. 481-495.

Baaz, M., AND LEITSCH, A. On skolemization and proof complexity. Fundamenta Informaticae
20, 4 (1994), 353-379.

GENTZEN, G. Untersuchungen tiber das logische schliessen. Mathematische Zeitschrift 39 (1934),
176-210.

GENTZEN, G. Untersuchungen tiber das logische schliessen. Mathematische Zeitschrift 39 (1934),
405-431.

HETzL, S., AND WELLER, D. Expansion trees with cut. CoRR abs/1308.0428 (2013).

M. Baaz, S. H., AND WELLER, D. On the complexity of proof deskolemization. The Journal of
Symbolic Logic 77, 2 (2012).

MILLER, D. A. A compact representation of proofs. Studia Logica 46, 4 (1987), 347-370.

PELLETIER, F., SUTCLIFFE, G., AND SUTTNER, C. The Development of CASC. AI Communica-
tions 15, 2-3 (2002), 79-90.

SMULLYAN, R. M. What is the name of this book? Prentice-Hall Englewood Cliffs, New Jersey,
1978.

SUTCLIFFE, G. The TPTP Problem Library and Associated Infrastructure: The FOF and CNF
Parts, v3.5.0. Journal of Automated Reasoning 43, 4 (2009), 337-362.

SUTCLIFFE, G., AND SUTTNER, C. The State of CASC. AI Communications 19, 1 (2006), 35-48.

24

Appendices

25

Appendix A

Haskell implementation

The implementation includes a tablaux prover for testing purposes. The core functionality, extract,
desk, pr, rm and rmTF can be found in Expansion.hs. Function.hs contains a function sk that implements
the Skolemization of a formula.

Formula.hs

module Formula (allVariables,substituteTerm,Formula(..),Term(..),Function,
Variable,Predicate,Symbol(..),Sequent,substitute, fnot, for, fand, fimp, fpred,
Proof(..),LR(..),Rule(..),drinkerParadox,RuleResult, termsS, freshVariable,
freeTerms)where

import Prelude hiding(Left,Right)
import Data.List
import Data.Maybe

type Function = String
type Variable = String
type Predicate = String

data Term = Fun Function [Term] | Var Variable deriving (Eq)

instance Show Term where
show (Var name) = name
show (Fun name terms) = name ++ "" ++ (show terms) ++

data Symbol = Not | Or | And | Imp | Exists | Forall deriving (Eq)

instance Show Symbol where
show Not = "\xac"
show Or = "\x2228."
show And = "\x2227."
show Imp = "\x2192."
show Exists = "\x2203"
show Forall "\x2200"

data Formula = TopBot | Pred Predicate [Term] | Unary Symbol Formula |
Binary Symbol Formula Formula | Quantifier Symbol Variable Formula
deriving (Eq)

instance Show Formula where
show (Pred p terms) = p ++ (show terms)

26

show (Unary s f) = show s ++ (show f)
show (Binary s f1 f2) = "(" ++ (show f1) ++ (show s) ++ (show f2) ++ ")"
show (Quantifier s x f) = (show s) ++ x ++ (show f)

type Sequent = ([Formula],[Formula])

ant :: Sequent -> [Formula]
ant (gamma,delta) = gamma
suc :: Sequent -> [Formula]

suc (gamma,delta) = delta

data LR = Left | Right deriving (Eq, Show)

data Rule = Axiom | SymbolRule LR Symbol | QuantifierRule LR Symbol Term |
Perm LR Int deriving (Show)

type RuleResult = (Rule,[Sequent])

data Proof = Proof Rule Sequent [Proof]

indent :: Int -> String
indent n = (replicate (n*4) ’ ’)
printProof :: (Int,Proof) -> String
printProof (n, (Proof rule s proofs)) = concat
(map printProof (zip [n..(length proofs)] proofs)) ++
"\n" ++ (indent n) ++ "-------------- " ++ (show rule) ++ "\n" ++ (show s)

instance Show Proof where
show proof = printProof (0,proof)

breakFormula :: Formula -> [Formulal]
breakFormula (Pred _ _) = []
breakFormula (Unary s f) = [f]
breakFormula (Quantifier s _ f) = [f]
breakFormula (Binary s f1 f2) = [fl,£f2]

formulaSymbol :: Formula -> Maybe Symbol
formulaSymbol (Pred _ _) = Nothing
formulaSymbol (Unary s _) = Just s

formulaSymbol (Quantifier s _ _) = Just s
formulaSymbol (Binary s _ _) = Just s
fpred :: String -> [Term] -> Formula

fpred s terms = Pred s terms

fnot :: Formula -> Formula
fnot £ = Unary Not £

fand :: Formula -> Formula -> Formula
fand f1 f2 = Binary And f1 f£2

for :: Formula -> Formula -> Formula
for f1 f2 = Binary Or f1 f2

fimp :: Formula -> Formula -> Formula
fimp f1 £2 = Binary Imp f1 £2

fexists :: Variable -> Formula -> Formula
fexists x f = Quantifier Exists x f

27

fforall :: Variable -> Formula -> Formula
fforall x £ = Quantifier Forall x f

-- |A list of all variables x1, x2,

allVariables :: [Variable]
allVariables = vars 1

where

vars :: Int -> [Variable]

vars n = ("x" ++ show(n)):vars (n+1)

freshVariable :: Sequent -> Variable
freshVariable (ant,suc) = head
[x | x <- allVariables, (not (elem (Var x) sequentterms))]
where
sequentterms = concat (map terms ant) ++ concat (map terms suc)

freeTerms :: Formula -> [Term]
freeTerms f = (terms f) \\ (binderTerms f£f)

binderTerms :: Formula -> [Term]

binderTerms f = nub (binderTerms’ f)
where
binderTerms’ (Pred _ t) = []
binderTerms’ (Quantifier Exists x f) = (Var x):(binderTerms f)
binderTerms’ (Quantifier Forall x f) = (Var x):(binderTerms f)
binderTerms’ (Unary _ f) = terms f

binderTerms’ (Binary _ f1 £f2) = (binderTerms f1) ++ (binderTerms £2)

termsS :: Sequent -> [Term]
termsS (gamma,delta) = (concat $§ map terms gamma) ++ (concat $ map terms delta)
terms :: Formula -> [Term]
terms f = nub (terms’ f£)
where

terms’ (Pred _ t) = t

terms’ (Quantifier Exists x f) (Var x):(terms f£f)
terms’ (Quantifier Forall x f) = (Var x):(terms f)
terms’ (Unary _ f) = terms f

terms’ (Binary _ f1 f2) = (terms fl1) ++ (terms f£2)

substituteTerm :: Term -> Term -> Term -> Term
substituteTerm a@(Var _) b t = if a == b then t else a
substituteTerm a@(Fun f terms) x t = if a == x then t else

Fun £ (map (\y -> (substituteTerm y x t)) terms)

substitute :: Formula -> Term -> Term -> Formula
substitute (Pred p terms) var t = Pred p
(map (\x -> substituteTerm x var t) terms)
substitute err@(Quantifier Exists x f) var t =
if (Var x) == var
then error ("Oops."++(show var)++"_is_bound_in." ++(show err))
else Quantifier Exists x (substitute f var t)
substitute err@(Quantifier Forall x f) var t =
if (Var x) == var
then error ("Oops."++(show var)++"_is_bound_in." ++(show err))
else Quantifier Forall x (substitute f var t)
substitute (Unary b f) var t = Unary b (substitute f var t)
substitute (Binary b fl1 f2) var t =
Binary b (substitute f1 var t) (substitute £f2 var t)

drinkerParadoxPart :: Formula

28

drinkerParadoxPart = fimp (fpred "p" [Var "x1"])
(fforall "x2" (fpred "p" [Var "x2"]))

drinkerParadox Formula
drinkerParadox = fexists "x1" (drinkerParadoxPart)

drinkerParadoxAlmost Sequent
drinkerParadoxAlmost = ([],

[substitute drinkerParadoxPart (Var "x1") (Var

29

x"),drinkerParadox])

Expansions.hs

module Expansion(Expansion,extract,desk,pr,sh,skolemTerms, shS,skolemTermsS,
rm, rmTF) where

import Prelude hiding (Left,Right)

import Formula
import Prover
import Data.List
import Data.Maybe
import Functions

data Expansion = Top | Bot | Pred Predicate [Term] | Unary Symbol Expansion |
Binary Symbol Expansion Expansion |
Quantifier Symbol Variable Formula [(Term,Expansion)] deriving (Eq)

instance Show Expansion where
show Top = "Top"
show Bot = "Bot"
show (Expansion.Pred p terms) = p ++ (show terms)
show (Expansion.Unary s f) = show s ++ (show f)

show (Expansion.Binary s f1 £2) = "(" ++ (show f1) ++ (show s) ++
(show f2) ++ ")"

show (Expansion.Quantifier s x f omega) = (show s) ++ x ++ (show f) ++
"+" ++ (show omega)

type ExpSequent = ([Expansion],[Expansion])

data LKEProof = LKEProof Rule ExpSequent [LKEProof]

indent :: Int -> String

indent n = (replicate (n*4) ’ ’)

printProof :: (Int,LKEProof) -> String

printProof (n,(LKEProof rule s proofs)) = concat (map printProof

(zip [n..(length proofs)] proofs)) ++ "\n" ++ (indent n) ++

—————————————— ++ (show rule) ++ "\n" ++ (show s)

instance Show LKEProof where
show proof = printProof (0,proof)

shS :: ExpSequent -> ExpSequent
shS (gamma,delta) = (map sh gamma,map sh delta)

sh :: Expansion -> Expansion

sh Top = Top

sh Bot = Bot

sh (Expansion.Pred p terms) = Expansion.Pred p terms

sh (Expansion.Unary s e) = Expansion.Unary s (sh e)

sh (Expansion.Binary s el e2) = Expansion.Binary s (sh el) (sh e2)

sh (Expansion.Quantifier s x f omega) = Expansion.Quantifier s x f []

skolemTermsS :: ExpSequent -> [Term]
skolemTermsS (gamma,delta) = union (concat § map (skolemTerms False) gamma)

(concat $ map (skolemTerms True) delta)

skolemTerms :: Bool -> Expansion -> [Term]
skolemTerms _ Top = []

30

skolemTerms _ Bot = []
skolemTerms _ (Expansion.Pred _ _) = []
skolemTerms b (Expansion.Unary Not e) = skolemTerms (not b) e

skolemTerms b (Expansion.Binary And el e2) =

union (skolemTerms b el) (skolemTerms b e2)
skolemTerms b (Expansion.Binary Or el e2) =

union (skolemTerms b el) (skolemTerms b e2)
skolemTerms b (Expansion.Binary Imp el e2) =

union (skolemTerms (not b) el) (skolemTerms b e2)

skolemTerms True (Expansion.Quantifier Exists _ _ omega) =
foldll union (map (skolemTerms True) [e | (t,e) <- omegal)

skolemTerms False (Expansion.Quantifier Exists _ _ [(t,e)]) =
union [t] (skolemTerms False e)

skolemTerms True (Expansion.Quantifier Forall _ _ [(t,e)]) =
union [t] (skolemTerms True e)

skolemTerms False (Expansion.Quantifier Forall _ _ omega) =

foldll union (map (skolemTerms False) [e | (t,e) <- omegal)

eterms :: Expansion -> [Term]
eterms e = nub (terms’ e)
where
terms’ (Top) = []
terms’ (Bot) = []

terms’ (Expansion.Pred _ t) =t
terms’ (Expansion.Quantifier Exists x f omega) =

(Var x):(concat $ map eterms [e | (t,e) <- omegal)
terms’ (Expansion.Quantifier Forall x f omega) =

(Var x):(concat $ map eterms [e | (t,e) <- omega])

terms’ (Expansion.Unary _ e) = eterms e
terms’ (Expansion.Binary _ el e2) = (eterms el) ++ (eterms e2)
efreshVariable :: ExpSequent -> Variable

efreshVariable (ant,suc) =
head [x | x <- allVariables, (not (elem (Var x) sequentterms))]
where
sequentterms = concat (map eterms ant) ++ concat (map eterms suc)

substituteTE :: (Term,Expansion) -> Term -> Term -> (Term,Expansion)
substituteTE (t,e) x t’

| t == x = (t’,esubstitute e x t’)

| otherwise = (t,esubstitute e x t’)
esubstituteS :: ExpSequent -> Term -> Term -> ExpSequent

esubstituteS (gamma,delta) var t =
(map (\x -> esubstitute x var t) gamma,
map (\x -> esubstitute x var t) delta)

esubstituteP :: LKEProof -> Term -> Term -> LKEProof
esubstituteP (LKEProof (QuantifierRule lr symbol term) s proofs) x y =
(LKEProof (QuantifierRule 1lr symbol (substituteTerm term x y))
(esubstituteS s x y) (map (\p -> esubstituteP p x y) proofs))
esubstituteP (LKEProof rule s proofs) x y =
(LKEProof rule (esubstituteS s x y)
(map (\p -> esubstituteP p x y) proofs))

esubstitute :: Expansion -> Term -> Term -> Expansion
esubstitute Top _ _ = Top
esubstitute Bot _ = Bot

esubstitute (Expansion.Pred p terms) var t =
Expansion.Pred p (map (\x -> substituteTerm x var t) terms)

31

esubstitute err@(Expansion.Quantifier Exists x f omega) var t =
if (Var x) == var
then error ("Oops."++(show var)++"_is_bound._in." ++(show err))
else Expansion.Quantifier Exists x (substitute f var t) omega’

where omega’ = [substituteTE te var t | te <- omegal]
esubstitute err@(Expansion.Quantifier Forall x f omega) var t =
if (Var x) == var

then error ("Oops."++(show var)++"_is_bound_in." ++(show err))
else Expansion.Quantifier Forall x (substitute f var t) omega’
where omega’ = [substituteTE te var t | te <- omega]

esubstitute (Expansion.Unary b e) var t =
Expansion.Unary b (esubstitute e var t)

esubstitute (Expansion.Binary b el e2) var t =
Expansion.Binary b (esubstitute el var t) (esubstitute e2 var t)

toExpansion :: Formula -> Expansion
toExpansion (Formula.Pred p terms) = Expansion.Pred p terms
toExpansion (Formula.Unary s f) = Expansion.Unary s (toExpansion f)

toExpansion (Formula.Binary s f1 f2) =
Expansion.Binary s (toExpansion f1) (toExpansion f£2)
toExpansion (Formula.Quantifier s x f) = Expansion.Quantifier s x f []

extract :: Proof -> ExpSequent
extract (Proof Axiom (a:gamma,b:delta) proofs) =
(toExpansion a : replicate (length gamma) Top,
toExpansion b : replicate (length delta) Bot)
extract (Proof (SymbolRule Left symbol) sequent proofs) =
extractLeft symbol (map extract proofs)
extract (Proof (SymbolRule Right symbol) sequent proofs) =
extractRight symbol (map extract proofs)
extract (Proof (Perm Left n) sequent [proof]) = (fromFirst n gamma’,delta’)

where (gamma’,delta’) = extract proof
extract (Proof (Perm Right n) sequent [proof]) = (gamma’,fromFirst n delta’)
where (gamma’,delta’) = extract proof

extract (Proof (QuantifierRule Right Exists term)
sequent@(_,f@(Formula.Quantifier Exists x a):_) [proof]) =
(gamma , eunion el e2’:delta)

where
(gamma,e2:el:delta) = extract proof
e2’ = Expansion.Quantifier Exists x a [(term,e2)]
eunion :: Expansion -> Expansion -> Expansion
eunion Top e2 = e2
eunion Bot e2 = e2
eunion el Top = el
eunion el Bot = el
eunion (Expansion.Pred pl termsl) (Expansion.Pred p2 terms2)
| and [pl == p2,termsl == terms2] = Expansion.Pred pl termsl

| otherwise = error "No._union"
eunion (Expansion.Unary sl el) (Expansion.Unary s2 e2)
| s1 == s2 = Expansion.Unary sl (eunion el e2)
| otherwise = error "No_union"
eunion (Expansion.Binary sl el el’) (Expansion.Binary s2 e2 e2’)
| s1 == s2 = Expansion.Binary sl (eunion el e2) (eunion el’ e2’)
| otherwise = error "No._union"
eunion (Expansion.Quantifier sl x1 al el) (Expansion.Quantifier s2 x2 a2 e2)
| and [s1 == s2,x1 == x2,al == a2] =
Expansion.Quantifier sl x1 al (eunion’ el e2)
| otherwise = error "No_union"
where
eunion’ :: [(Term,Expansion)] -> [(Term,Expansion)] -> [(Term,Expansion)]

32

eunion’ [] b =b
eunion’ (a@(t,el):as) b

| (elemIndex t bterms) == Nothing = a:eunion’ as b
| otherwise = (t,eunion el e2) : eunion’
where

(bterms,_) = unzip b

(t2,e2) = b !! (fromJust (elemIndex t bterms))
eunion el e2 = error $ "No_union_for_" ++ (show el) ++ "_and."++ (show e2)
enot :: Expansion -> Expansion
enot e = Expansion.Unary Not e

eimp :: Expansion -> Expansion -> Expansion
eimp el e2 = Expansion.Binary Imp el e2

extractLeft :: Symbol -> [ExpSequent] -> ExpSequent
extractlLeft Not [(gamma,e:delta)] = (enot e:gamma,delta)

extractRight :: Symbol -> [ExpSequent] -> ExpSequent
extractRight Not [(e:gamma,delta)] = (gamma,enot e:delta)
extractRight Imp [(el:gamma,e2:delta)] = (gamma,eimp el e2:delta)

desk :: Bool -> Int -> [Term] -> Formula -> Expansion -> Expansion
desk _ _ _ _ Top = Top

desk _ _ _ _ Bot = Bot

desk _ _ _ f@(Formula.Pred p terms) e@(Expansion.Pred p2 terms2)

| and [p == p2] = e
| otherwise = error ("Predicates.don’t.match:." ++
(show f) ++ "_" ++ (show e))

desk b n mu (Formula.Unary Not f) (Expansion.Unary Not e) =
desk (not b) n mu f e -- TODO check?

desk True n mu (Formula.Binary Imp f1 f2) (Expansion.Binary Imp el e2) =
Expansion.Binary Imp (desk False n mu fl1 el) (desk True m mu f2 e2)
where m = n + (qocc False f1)

desk True n mu (Formula.Quantifier Exists x a)

(Expansion.Quantifier Exists _ _ omega) =
(Expansion.Quantifier Exists x a omega’)
where
omega’ = [(term,desk True n (mu ++ [term]) a e) | (term,e) <- omega]

desk True n mu (Formula.Quantifier Forall x a) e =
Expansion.Quantifier Forall x a [(Fun (skolemFunc n) mu,e’)]
where e’ = desk True (n+l1) mu a e

desk b _ _ a _ = error $§ "Error." ++ (show b) ++ (show a)

permL :: Int -> ExpSequent -> LKEProof -> LKEProof
permL ® _ proof = proof
permlL index s proof = LKEProof (Perm Left index) s [proof]

permR :: Int -> ExpSequent -> LKEProof -> LKEProof
permR O _ proof = proof
permR index s proof = LKEProof (Perm Right index) s [proof]

symbolIndex :: Symbol -> [Expansion] -> Maybe Int
symbolIndex s e = symbolIndex’ 0 s e
where
symbolIndex’ :: Int -> Symbol -> [Expansion] -> Maybe Int
symbolIndex’ _ symbol [] = Nothing
symbolIndex’ index symbol ((Expansion.Binary symbol’ _ _):e)
| symbol == symbol’ = Just index

33

as

b

| otherwise = symbolIndex’ (index+1) symbol e
symbolIndex’ index symbol ((Expansion.Unary symbol’ _):e)

| symbol == symbol’ = Just index

| otherwise = symbolIndex’ (index+1) symbol
symbolIndex’ index symbol ((Expansion.Quantifier symbol’ _ _ _):e)

| symbol == symbol’ = Just index

| otherwise = symbolIndex’ (index+1) symbol e

symbolIndex’ index symbol (_:e) symbolIndex’ (index+1) symbol e
pr :: ExpSequent -> LKEProof
pr s@(gamma,delta)
| length (intersect gamma’ delta’) > 0 =
axiom gamma delta
| leftRight == Left =
permL index s (prLeft (setFirst index gamma,delta))
| leftRight == Right =
permR index s (prRight (gamma,setFirst index delta))

where
gamma’ = deleteBy (==) Bot (deleteBy (==) Top gamma)
delta’ = deleteBy (==) Bot (deleteBy (==) Top delta)

axiom gamma delta = let

e = head (intersect gamma’ delta’)

li = fromJust (elemIndex e gamma)

ri = fromJust (elemIndex e delta)

in permL 1i (gamma,setFirst ri delta)

(permR ri s (LKEProof Axiom
(setFirst 1i gamma,setFirst ri delta) []))

(leftRight ,index) = head $ catMaybes

(map C(hasExpansionOf s) [Or,And, Imp,Forall,Exists])

prlLeft :: ExpSequent -> LKEProof
prLeft ((Expansion.Binary Imp el e2):gamma,delta) =
LKEProof (SymbolRule Left Imp) s
[pr (gamma,el:delta),pr (e2:gamma,delta)]
prlLeft (e:gamma,delta) = error § "Left." ++ show e

prRight :: ExpSequent -> LKEProof
prRight (gamma, (Expansion.Quantifier Exists x a omega):delta) =
LKEProof (QuantifierRule Right Exists t) s
[(pr (gamma,e:e2:delta))]

where

(t,e) = head [(t’,e’) | (t’,e’) <- omega,
elemIndex t’ (skolemTermsS s) == Nothing]

omega’ = delete (t,e) omega

e2 = Expansion.Quantifier Exists x a omega’

prRight (gamma, (Expansion.Binary Imp el e2):delta) =
LKEProof (SymbolRule Right Imp) s [pr (el:gamma,e2:delta)]
prRight (gamma, (Expansion.Quantifier Forall x a [(t,e)]):delta) =
LKEProof (QuantifierRule Right Forall t) s [pr (gamma,e:delta)]
prRight (gamma,e:delta) = error $ "Right" ++ show e

hasExpansionOf :: ExpSequent -> Symbol -> Maybe (LR,Int)
hasExpansionOf (gamma,delta) s
| symbolIndex s gamma /= Nothing
Just (Left, fromJust(symbolIndex s gamma))
| symbolIndex s delta /= Nothing =
Just (Right, fromJust(symbolIndex s delta))
| otherwise = Nothing

rm :: LKEProof -> LKEProof
rm (LKEProof Axiom s []) = (LKEProof Axiom (shS s) [])

34

rm (LKEProof rule@(SymbolRule 1lr symbol) s proofs) =
(LKEProof rule (shS s) (map rm proofs))
rm (LKEProof (QuantifierRule Left Exists term) s [proof]) =
(LKEProof (QuantifierRule Left Exists y)
(esubstituteS (shS s) term y) [esubstituteP (rm proof) term y])
where y = Var (efreshVariable s)
rm (LKEProof (QuantifierRule Right Forall term) s [proof]) =
(LKEProof (QuantifierRule Right Forall y)
(esubstituteS (shS s) term y) [esubstituteP (rm proof) term y])
where y = Var (efreshVariable s)
rm (LKEProof rule@(QuantifierRule _ _ term) s [proof]) =
(LKEProof rule (shS s) [rm proof])
rm (LKEProof rule@(Perm _ _) s [proof])
(LKEProof rule (shS s) [rm proof])
rm p = error ("Error" ++ (show p))

rmTF :: Sequent -> LKEProof -> Proof

rmTF s (LKEProof Axiom _ []) = Proof Axiom s []

rmTF s (LKEProof rule _ proofs) = Proof rule s proofs’
where
(_,nextsequents) = fromJust $ applyRule s rule
r = zip nextsequents proofs
proofs’ = [rmTF s’ p’ | (s’,p’) <-r]

35

Functions.hs

module Functions where
import Formula

gocc :: Bool -> Formula -> Int

gocc b (Pred _ _) =0

gocc b (Unary Not f) = qgocc (Prelude.not b) f

gocc b (Binary Or f1 £f2) = (qocc b f1) + (qocc b £2)

gocc b (Binary And f1 £2) = (qocc b f1) + (qocc b £2)

gocc True (Binary Imp f1 f2) = (qocc False fl1) + (qocc True £2)
gocc False (Binary Imp f1 f2) = (qocc True f1) + (qocc False f£2)
gocc True (Quantifier Forall x f) = 1 + (qocc True f)

gocc False (Quantifier Forall x f) = gocc False f

gocc True (Quantifier Exists x f) = qocc True f

gocc False (Quantifier Exists x f) = 1 + (qocc False f)

skolemFunc :: Int -> Function
skolemFunc n = ("f" ++ (show n))

sequentAsFormula :: Sequent -> Formula

sequentAsFormula ([],[]) = error "Empty.sequent"

sequentAsFormula ([],delta) = foldll for delta

sequentAsFormula (gamma,[]) = foldll fand gamma

sequentAsFormula (gamma,delta) = fimp (foldrl fand gamma) (foldrl for delta)

unfoldFormula :: Int -> Symbol -> Formula -> [Formula]
unfoldFormula 1 f = [f]

unfoldFormula n symbol (Binary symbol’ f1 f£2)

| symbol == symbol’ = fl: unfoldFormula (n-1) symbol f£f2
| otherwise = error "Wrong.symbol"
unfoldFormula _ _ f = error § "Can’t_unfold." ++ (show f)
formulaAsSequent :: Int -> Int -> Formula -> Sequent
formulaAsSequent ® 0 _ = error "Empty.formula"
formulaAsSequent n 0 f = (unfoldFormula n And f,[])
formulaAsSequent ® m £ = ([],unfoldFormula m Or £f)

formulaAsSequent n m (Binary Imp f1 f2) =
(unfoldFormula n And fl,unfoldFormula m Or £2)

skSequent :: Sequent -> Sequent
skSequent s@(Cant,suc) = formulaAsSequent (length ant) (length suc)
$ sk True ® [] $§ sequentAsFormula s

sk :: Bool -> Int -> [Term] -> Formula -> Formula
sk b n mu f@(Pred _ _) = f
sk b n mu (Unary Not f) = Unary Not (sk (not b) n mu f)

sk b n mu (Binary Or fl1 f2) = Binary Or (sk b n mu f1) (sk b m mu £2)
where m = n + (qocc b £f1)
sk b n mu (Binary And f1 f2) = Binary And (sk b n mu f1) (sk b m mu f£2)
where m = n + (qgocc b f1)
sk b n mu (Binary Imp f1 f2) = Binary Imp (sk (not b) n mu f1) (sk b m mu £2)
where m = n + (qgocc (not b) f1)
sk True n mu (Quantifier Forall x f) = sk True m mu f’ where
m=n+ 1
f’ = substitute f (Var x) (Fun (skolemFunc n) mu)
sk False n mu (Quantifier Forall x f) =
Quantifier Forall x (sk False n (mu ++ [Var x]) f)

36

sk True n mu (Quantifier Exists x f) =
Quantifier Exists x (sk True n (mu ++ [Var x]) f)
sk False n mu (Quantifier Exists x f) = sk False m mu f’ where
m=mn + 1
f’ = substitute f (Var x) (Fun (skolemFunc n) mu)

37

Prover.hs

module

Prover (allVariables,substituteTerm,allRules,applyRule,Formula(..),

Term(..),Function,Variable,Predicate,Symbol(..),Sequent, fromFirst,
setFirst,applyLeftRight,substitute, fnot, for, fand, fimp, fpred,Proof(..),

LR(..),Rule(..),drinkerParadox,proof)where

Just (makeProof (fromJust len) s)

hasProofRule (n-1) t]

import Formula
import Prelude hiding(Left,Right)
import Data.List
import Data.Maybe
proof Int -> Sequent -> Maybe Proof
proof max s | len == Nothing = Nothing
| otherwise =
where len = prooflength max s
makeProof Int -> Sequent -> Proof
makeProof n s = ¢ goodStep
where
goodStep RuleResult
goodStep = head [t | t <- applylLeftRight s,
C RuleResult -> Proof
¢ (rule,sequents) = Proof rule s (map (makeProof (n-1)) sequents)
prooflLength Int -> Sequent -> Maybe Int

prooflLength max s |

hasProofRu
hasProofRu
hasProofRu

hasProof
hasProof 0

not (hasProof max s)
| and [hasProof max s,not
| otherwise prooflLength

le Int -> RuleResult -> Bool

le max (_,[]) = True
le max (_,sequents)

Int -> Sequent -> Bool

False

Nothing

(hasProof (max-1) s)] Just max

(max - 1) s

and (map (hasProof max) sequents)

hasProof max s = or ((map (branchProvable (max-1))) branches)
where

br
br
br
br
br
br
br

applyRule
applyRule

applyRule’
applyRule’

applyRule’

applyRule’

applyRule’

eak (Rule, [Sequent])
eak (r,s) = s

anches [[Sequent]]
anches map break (applyLeftRight s)
anchProvable Int -> [Sequent]
anchProvable _ [] True
anchProvable m sequents

-> [Sequent]

Sequent -> Rule -> Maybe RuleResult

s r | result == Nothing Nothing
| otherwise Just (r,

where result applyRule’

Sequent -> Rule -> Maybe [Sequent]

-> Bool

and (map (hasProof m) sequents)

fromJust result)

S r

((Unary Not a):gamma,delta) (SymbolRule Left Not)

Just [(gamma,a:delta)]

((Binary Or a b):gamma,delta) (SymbolRule Left Or)

Just [(a:gamma,delta),(b:gamma,delta)]

((Binary And a b):gamma,delta) (SymbolRule Left And)

Just [(a:b:gamma,delta)]

((Binary Imp a b):gamma,delta) (SymbolRule Left Imp)

38

= Just [(gamma,a:delta),(b:gamma,delta)]
applyRule’ s@((Quantifier Exists x a):gamma,delta) (QuantifierRule Left Exists t)

| elem t (termsS s) = Nothing
| otherwise = Just [(a’:gamma,delta)]
where a’ = substitute a (Var x) t

applyRule’ (f@(Quantifier Forall x a):gamma,delta) (QuantifierRule Left Forall t)
= Just [(a’:f:gamma,delta)]
where a’ = substitute a (Var x) t
applyRule’ (gamma,delta) (Perm Left index)
= Just [(setFirst index gamma,delta)]

applyRule’ (gamma, (Unary Not a):delta) (SymbolRule Right Not)
= Just [(a:gamma,delta)]
applyRule’ (gamma,(Binary Or a b):delta) (SymbolRule Right Or)
= Just [(gamma,a:b:delta)]
applyRule’ (gamma, (Binary And a b):delta) (SymbolRule Right And)
= Just [(gamma,a:delta), (gamma,b:delta)]
applyRule’ (gamma, (Binary Imp a b):delta) (SymbolRule Right Imp)
= Just [(a:gamma,b:delta)]
applyRule’ (gamma,f@(Quantifier Exists x a):delta) (QuantifierRule Right Exists t)
= Just [(gamma,a’:f:delta)]

where a’ = substitute a (Var x) t
applyRule’ s@(gamma, (Quantifier Forall x a):delta) (QuantifierRule Right Forall t)
| elem t (termsS s) = Nothing
| otherwise = Just [(gamma,a’:delta)]
where a’ = substitute a (Var x) t

applyRule’ (gamma,delta) (Perm Right index)
= Just [(gamma,setFirst index delta)]
applyRule’ _ _ = Nothing

applyLeftRight :: Sequent -> [RuleResult]

applyLeftRight s@(ant, suc)
| and [ant /= [],suc /=[],head ant == head suc] = [(Axiom,[])]
| otherwise = catMaybes § map (applyRule s) (allRules s)

allRules :: Sequent -> [Rule]

allRules s@(gamma,delta) = allSymbolRules ++ allPerms ++ allQuantifiers
where
allSymbolRules =

[(SymbolRule 1lr symbol) | 1lr <- [Left,Right], symbol <- [Not,Or,And,Imp]]
allPerms = [(Perm Left index) | index <- [1..length(gamma)-1]]
++ [(Perm Right index) | index <- [1..length(delta)-1]]
sequentFreeTerms = (concat (map freeTerms gamma))
++ (concat (map freeTerms delta))
terms = (Var (freshVariable s)):sequentFreeTerms
allQuantifiers = [(QuantifierRule lr symbol term)
| 1r <- [Left,Right], symbol <- [Exists,Forall], term <- terms]

setFirst :: Int -> [a] -> [a]
setFirst ® as = as
setFirst index as
| (index - 1) == (length as) = (as !! index) : (take (index - 1) as)
| otherwise = (as !! index)
(take index as) ++ (drop (index+1) as)

fromFirst :: Int -> [a] -> [a]

fromFirst ® as = as

fromFirst index (x:as) = (take index as) ++ [x] ++ (drop index as)
permLeft :: Sequent -> [(Rule,[Sequent])]

permLeft (gamma,delta) =

39

[(permLeft’ (gamma,delta) i) | i <- [1l..((length gamma)-1)]]

where
permLeft’ :: Sequent -> Int -> (Rule,[Sequent])

permLeft’ (gamma,delta) index =
(Perm Left index,[(setFirst index gamma,delta)])

permRight Sequent -> [(Rule, [Sequent])]

permRight (gamma,delta) =
[(permRight’ (gamma,delta) i) |
where
permRight’

permRight’ (gamma,delta) index =
(Perm Right index,[(gamma,setFirst index delta)])

i <- [1..((length delta)-1)]1]

Sequent -> Int -> (Rule,[Sequent])

40

Main.hs

module Main(main) where
import Functions

import Formula

import Expansion

import Data.Maybe
import Prover

f = Pred "p" []
f2 = Pred "q" []
£3 Pred "r" []
f4 = Pred "s" []

skDrinker = skSequent ([],[drinkerParadox])
proofDrinker = fromJust (proof 10 $ skDrinker)
([],expDrinker:[]) = extract proofDrinker

expDeskDrinker = desk True 0 [] drinkerParadox expDrinker

test = rmTF ([],[drinkerParadox]) (rm $ pr ([],[expDeskDrinker]))

main = do
putStrLn $§ show § test

41

