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1 Introduction

There is an average of 1-10 bugs per thousand lines of code in software
of industrial standards [Cov][McC04]. That means that for a project
with 20 million lines of code, there is an average of 20.000 to 200.000
bugs. If this project happens to be a security protocol, bugs can easily
be (maliciously) exploited. An example is in [BBPV12] where a bug in
a function of the OpenSSL implementation is found. Considering that
money transfers, for example, rely on these protocols, where there are
supposedly no bugs, we want to have our ‘secure’ protocols truly secure.

That is why this thesis’s aims is to shrink the code size of an already
existing cryptographic protocol. Specifically, there was a challenge pro-
posed by cryptographer Matthew Green to fit an entire cryptographic li-
brary in 100 tweets, in C (1 tweet equals a maximum of 140 characters, so
14.000 characters in total). TweetNaCl is currently the only serious con-
tender in this category. TweetNaCl implements the NaCl library (found
at 2.2.5) in the smallest, still human-readable, form. Its paper can be
found at http://tweetnacl.cr.yp.to/index.html and the entire 100
tweets here: https://twitter.com/TweetNaCl. This bachelor’s thesis is
a part of this paper, and implements one of the five ‘core functions’ of the
NaCl library, namely the key-agreement protocol. NaCl uses curve25519
in its reference implementation, which is introduced here [Ber06]. This
is used as a basis for my own adaptation of this protocol. The five core
functions of NaCl were estimated to take up roughly the same amount
of code, so the goal for this thesis is 100/5 = 20 tweets! This is equal to
20 ∗ 140 = 2800 characters of code.

There have been other attempts to combine twitter’s short-message
constraints and cryptography, as seen for example in [Cyb] and [Twi].
These however, are no serious attempts at making a full cryptographic
library and as such, do not provide the security TweetNaCl (and therefore
this thesis’ algorithm) give.

One of the main focusses is readability. Because there are only a
handful of lines, one can easily check and verify every line in the entire
protocol. To make it easier to read, some conciseness of code has to
be sacrificed, while still being beneath the 20-tweet mark. Another goal
is portability, meaning the implementation is processor-indepedent, and
can be compiled and used on any computer.

In section 2 I explain some of the background information of key-
agreement, as well as the mathematics behind it. In section 3 I talk
about the actual implementation. I justify some of the choices I have
made in order to get the code as small as possible, without sacrificing
security or any of the aforementioned goals. In section 4 I briefly present
and discuss the achieved results.
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2 Background and the Problem

2.1 Mathematical background

2.1.1 Finite Fields

Elliptic curves in cryptography have first been proposed by [Mil86] and
[Kob87]. To understand an elliptic curve defined over a finite field, we
first need to get down to the basics of finite fields, fields in general, and
groups.

A group is a set of elements, together with an operator, which com-
bines any two elements of the group to form a third element. This oper-
ator has to satisfy four conditions, also known as the group axioms:

• Closure: all formed elements are also in the group.

• Associativity: ∀a, b, c: (a◦ b)◦ c = a◦ (b◦ c), where ◦ is the operator
used.

• Identity: there is an element Id, such that ∀a: (a ◦ Id = a).

• Invertibility: every element a in the group has an inverse, such that
a ◦ a−1 = Id.

If, in addition to these, it satisfies the commutativity equation a◦b = b◦a,
it is called an abelian group. In the case of the set of integers combined
with the + operator, ◦ = +, Id = 0, and a−1 = −a, because a+b = b+a,
this is also an abelian group.

A finite field Fp, also called a Galois Field, used in elliptic curve arith-
metic, is a field with a finite number of elements in it. The order p of
the field is the number of elements in it. A field is an abelian group with
addition and an extra operator, namely multiplication. Addition satisfies
all conditions from abelian groups. Multiplication is closed, associative
and commutative in the same way addition is. Additionally, it has a
neutral element of its own, 1, where 1 · a = a · 1 = a for some element
a. Every element, except for 0, has an inverse for multiplication as well,
such that a · a−1 = a−1 · a = 1. Lastly, multiplication is distributive with
respect to addition, i.e. ∀a, b, c: (a · (b+ c) = a · b+ a · c).
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2.1.2 Elliptic curves

Let F be a field, and E a curve defined over this F. E(F) is the set of
solutions to the following general equation:

y2 = x3 + ax2 + bx+ c

Where a, b, c ∈ F.
For us, Montgomery curves are more interesting because Montgomery

curves are used in the NaCl-library. They generally use less code and are
more resistant to timing attacks than normal elliptic curves [OKS00]. A
Montgomery curve E is of the form:

E(Fp) = {∞} ∪ {(x, y) ∈ Fp : By2 = x3 +Ax2 + x}

where ∞ is the ‘point at infinity’ which also serves as the identity ele-
ment, and A = a (large) integer, with A2 − 4 6= a square mod p. This
function should have no cusps, ‘sharp points’, and no self-intersections.
This is necessary because later on, we need to be able to take the deriva-
tive of the function, and a function with cusps has no unique derivative
at such a cusp. We can now define addition on this curve, in order to do
our encryption. Together with the point of infinity, the points now form
an abelian group.
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(a) Addition of points P

and Q, resulting in R 1
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•
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(b) Doubling of a point P ,
resulting in R = 2P 1

Figure 1: E : y2 = x3 − x over R

1Taken from Peter Schwabe’s http://cryptojedi.org/misc/pstricks.shtml.
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We will start with the binary operator + which can most easily be
described in words as follows: consider different points A and B we want
to add and draw a line through these points. There now is exactly one
more point of intersection on the curve. Calculate where this third point
is, then reflect this point about the x-axis. An example can be seen in
figure 1a. “Doubling” a point is done by taking the tangent line of a
point A, then calculate the second point of intersection, then take the
negation of the point. If the line is parallel to the y-axis, we take the
identity-element ∞. Considering this, we can define + as:

1. ∞+∞ =∞

2. ∞+ (x, y) = (x, y) +∞ = (x, y)

3. (x, y) + (x,−y) =∞

4. If y 6= 0, then (x, y) + (x, y) = (x′′, y′′), where x′′ = λ − A − 2x =
(x2− 1)2/4y2, and y′′ = λ(x− x′′)− y. λ refers to the first derivate
of E, being λ = (3x2 + 2Ax+ 1)/2y. . (Doubling a point)

5. If x 6= x′, then (x, y)+(x′, y′) = (x′′, y′′), where x′′ = ∆2−A−x−x′,
and y′′ = ∆(x−x′′)−y. Here, ∆ is defined as ∆ = (y′−y)/(x′−x),
or in other words the slope of the function between points (x, y) and
(x′, y′). . (Addition)

The addition of the identity element and some other element X will result
in X, as seen in (1) and (2). Addition of a point and its negation will
also result in the identity element (3). In (4), doubling a point happens
by first computing the first derivative, then calculate the tangent line,
and taking the negation of y. In the case that y = 0, (x, 0) + (x, 0) =∞.
(5) defines the ‘normal’ addition, we take the slope between two lines ∆,
and compute the third point x′′. If x = x′′, then (4) will be in effect.
In figure 1b we can see the doubling of a point, in figure 1a we can see
addition.
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2.1.3 Elliptic curves over Fp

The above mentioned arithmetic are slow and not suitable for crypto-
graphical purposes, because we need an infinite amount of points. We
need something fast and precise, to obtain a finite group for the discrete
logarithm problem. This is achieved by combining the elliptic curves and
before-mentioned finite fields: elliptic curves over Fp. This elliptic curve
E(Fp) contains all points (x, y) which satisfy the elliptic curve equation,
modulo p: y2 mod p = x3 +Ax2 + x mod p.

As can be seen in figure 2, an elliptic curve defined over a finite field
does not quite look like a normal elliptic curve anymore, though the
points still form a group with the above-defined addition formulas. Be-
cause of this, a trivial geometric construction of addition and doubling
as seen in figure 1 is not possible. However, the arithmetic is the same,
but because we need to stay in Fp, every operation will become modulo
p.
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Figure 2: Elliptic Curve y2 = x3 + x

Because we have addition defined on an elliptic curve, we now want
to be able to do point multiplication. This is done by repeatedly adding
a point along the curve to itself. A neat property of this operation is
that it is a one-way operation: it is considered easy to compute this
multiplication, but considered hard to gain the initial point from the
output. In order to compute xn = nP , where x is the x-coordinate of P ,
and P a point on the curve E(Fp), we will use what is often called the
Montgomery Ladder. In this algorithm each x-coordinate xP of a point
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P is represented as (XP , ZP ), where xP = XP /ZP .
Algorithm 2 shows the pseudo-code for one step in the Montgomery-

function, the full algorithm is in algorithm 1.

Algorithm 1 Montgomery Ladder.

Input: a scalar n = (n0, . . . , nt) and the x-coordinate xP of point P on curve
E

1: X1 = xP , X2 = 1, Z2 = 0, X3 = xP , Z3 = 1
2: for i← t, 0 do

3: Swap if ni = even
4: Perform one Montgomery Ladder Step
5: Swap back if ni = 0
6: end for

7: return (X2, Z2)

Algorithm 2 Montgomery Ladder Step.

constE = (A+ 2)/4, where A is the A from the curve equation
Input: X1, XP , ZP , XQ, ZQ

1: t1 ← XP + ZP

2: t2 ← XP − ZP

3: t3 ← XQ − ZQ

4: t4 ← XQ + ZQ

5: t5 ← t21 − t22
6: t6 ← t1 · t4
7: t7 ← t2 · t3
8: XP+Q ← (t6 + t7)

2

9: ZP+Q ← X1 · (t6 − t7)
2

10: X2P ← t21 · t
2
2

11: Z2P ← t5 · (t
2
2 + constE · t5)

12: return (X2P , Z2P , XP+Q, YP+Q)

2.1.4 Curve25519

In [Ber06], Bernstein proposed the Curve25519 function for elliptic curve
Diffie-Hellman key agreement. This function uses the previously men-
tioned arithmetic on a curve E : y2 = x3 + Ax2 + x over the field Fp,
where A = 486662 and p = 2255 − 19. These parameters are all carefully
chosen for high-security high-speed reasons. See [Ber06] for a discussion
of the security properties.

The function takes two 32-byte strings. One represents the x-coordinate
of a point P and the other represents a 256-bit scalar k. As output it
gives a 32-byte string output representing the x-coordinate of Q = kP .
More details are given in section 3.
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2.2 Cryptographic background

2.2.1 Introduction

Assume there are two parties that want to communicate securely with
each other. These parties, commonly called Alice and Bob for conve-
nience, need a way to send messages to one another, such that an evil
adversary - commonly called Eve or Mallory - cannot ‘listen’ to the mes-
sages being sent. When this attacker can only read the messages, he is
called a passive attacker. If he is also able to alter or even delete them,
he is an active attacker. When talking about the Internet, one can not
easily assume that the communication line is secure, so Alice and Bob
need to ‘encrypt’ their messages. Encryption is the process of transform-
ing messages in such a way that adversaries cannot read the messages
on this insecure line, but Alice and Bob can. Previously this was always
done by means of a shared secret: Alice and Bob both have a key with
which they can encrypt and decrypt messages. This key is practically
a long string of characters or numbers. Because both parties have the
same key, it is called symmetric cryptography.

2.2.2 Diffie-Hellman

But what do we do if we do not have a shared secret? Now key-agreement
protocols come into play, we are looking at Diffie-Hellman in particular,
as proposed by Whitfield Diffie and Martin Hellman in [DH76]. Algo-
rithm 3 shows how the protocol works. It assumes that there is some
common knowledge between A and B. If there is no such knowledge,
A can openly send it. The crucial part here is that Alice and Bob
never share their secret knowledge; they only share the public knowl-
edge. Standard Diffie-Hellman is based on discrete logarithms, i.e. PA =
gSA mod p, PB = gSB mod p, where p is some prime number, known by
both parties, and g is a generator of the multiplicative group of integers
modulo p. A generator is an element of the group G, such that any el-
ement a ∈ G can be written as a = gn for some integer n. From this
follows that (gA)B ≡ (gB)A mod p.

Algorithm 3 Diffie-Hellman Key Agreement.

1: Commonly known are a group G and a generator g of G.
2: Alice has secret knowledge XA ∈ G, Bob has XB ∈ G.
3: A and B compute their ‘public’ knowledge, respectively PA = gSA mod p

and PB = gSB mod p.
4: Alice sends PA to Bob, Bob sends PB back.
5: A computes SAB = XPA

B mod p, B computes SAB = XPB

A mod p
6: Both parties have a shared secret SAB now.

The only thing a passive attacker sees on the insecure line are G, g, and
Alice and Bob’s public keys, PA and PB . It is assumed that it is unfeasible
for this attacker to break Diffie-Hellman, based on the assumption of the
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discrete logarithm problem: Given g and gx, compute x. Infeasible means
that it is impossible for the adversary to compute it in reasonable time,
using modern supercomputers. An active attacker, i.e. an attacker that
can send, delete and alter messages is able to impersonate Bob, because
Alice is unable to check who the person sending actually is. There are
ways to deal with this particular problem, but this is out of the scope of
this thesis.

2.2.3 Elliptic curve Diffie-Hellman

The elliptic-curve key agreement protocol is based on the basic Diffie-
Hellman protocol, but uses, as its name implies, elliptic curves. Al-
gorithm 4 shows how the flow of the protocol goes. In the standard
case, first Alice and Bob need to agree upon the domain parameters. In
Curve25519 however, the curve E and prime p are fixed. A passive at-
tacker is assumed to be unable to break this protocol in reasonable time,
because all they can see is QA and QB , and by the elliptic curve discrete
logarithm assumption it is hard to compute dA such that dAG = QA.

Algorithm 4 Elliptic curve Diffie-Hellman Key Agreement.

1: Curve E, its group order n and a point P on this curve are agreed upon
between Alice and Bob.

2: Alice and Bob have as private key dA or dB, an integer between 0 and n.
3: A and B compute their public key, respectively QA and QB, by computing

dAG and dBG.
4: Alice sends QA to Bob, Bob sends QB back.
5: A computes dAQB, B computes dBQA.
6: The shared secret is now xk, where (xk, yk) = dAQB = dBQA = dAdBP =

dBdAP .

2.2.4 Timing attacks and countermeasures

A side-channel attack is an attack that is based on the actual imple-
mentation of a cryptographic protocol. Because this implementation is
very concise and manually verifiable, it should be easier to prevent any
implementation-specific attacks. As has been said before, the more lines
of code a program has, the bigger the chance that a bug will sneak in.
AES, for example, which is used in OpenSSL, has a couple of different
side-channel attacks. [Ber05] [Per05] and [OST06] [Koc96]

In the original paper [Ber06] Bernstein tries to prevent known side-
channel attacks, that are in some implementations of cryptosystems. One
of these is the timing attack. In general, timing attack is any attack that
analyses the time taken to execute the algorithm. More specific, there
are two particular timing attacks that Berstein tries to prevent.

First is the attack on lookup tables. If we have a secret key K =
(K0,K1, ...,Kn), and we want an element of K, equal to m, a naive
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implementation would be:

for(i=0; i<n; i++)

{

if(K[i] == m)

return i;

}

However, this is not very secure, as this lookup does not execute in
constant time. An adversary with a precise measuring device can measure
the time taken. This can result in a leak of information, an adversary
now knows at what spot in K m is located. There is no such lookup in
both the original implementation as my short one.

The other timing attack is a little more subtle, and harder to prevent.
It is based on modern processors’ ability to do branch prediction: if a
branch (e.g. an if-then-else structure) gets fetched in the microprocessor,
before the statement is actually executed, the processor will try to guess
which way this branch will go. If it fails to predict correctly, all fetched
statements in the pipeline will be discarded, leading to a measurable loss
in time. This can leak information if the branch is based on the secret
key, and is especially notable if we have something like:

for(i=0; i<n; i++)

{

if(K[i]%0)

swap;

}

This can leak information because if the ith bit of K is even, an
adversary will be able to know this because of the branch prediction. We
will need to counter this by swapping in constant time, this is explained
in more detail in section 3.3.

2.2.5 NaCl

NaCl (short for Networking and Cryptography library, pronounced “salt”)
is a software library for secure Internet communication, much like OpenSSL.
It was developed mostly by Daniel Bernstein, Tanja Lange and Peter
Schwabe, and offers high security, high speeds and already low code size
for its implementations. But best of all, anyone can contribute an im-
plementation of an already existing fuction. This is why this library was
chosen for this implemenation of the protocol. NaCl can be accessed at
http://nacl.cr.yp.to.
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2.2.6 Previous implementations

In most implementations [Ber06][CS09][vD][Lan12], code size is not what
most cryptographers aim for. The primary target here is almost always
speed, in clock cycles or actual milliseconds. My implementation is sig-
nificantly shorter than any of the above mentioned. With that comes the
highest manual verifiability of all of them. The obvious trade-off here is
speed. But because it is based on the fast NaCl-implementation, it is
sufficiently fast enough for typical cryptographical applications. Second,
my implementation is made in C for the NaCl-library, meaning that it
has higher portability than most implementations, meaning that it can
be compiled on most CPUs without any additional trouble. Because it is
based upon Bernstein’s original curve25519, there is no time variability,
it is immune to hyperthreading and cache timing attacks as seen in 2.2.4.
Check [Ber06] for further Security analysis.
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3 Implementation Details

The full code is given in Appendix A. The lines indicate where the
possible tweet-seperations could be. It has a total of 19 tweets, not 18,
because of aesthetic and functional reasons, mostly to try to maintain
readability of the code, unlike in Appendix B, where all layout characters
have been removed.

3.1 Representation of elements of F2255−19

We want to be able to perform arithmetic on integers modulo 2255 − 19.
Unfortunately, C does not support integers of this size, so we will have to
think of something else. A 32-bit integer in C holds values from −(231)
to (231 − 1). A long long integer (shortened as lli) has - independent of
the architecture - 64 bits, from −(263 − 1) to (263). It is still not quite
enough, so a long long integer array of length 16 is used. 16 · 64 = 1024,
which gives a lot of overhead. This overhead is used because we need to
be able to buffer the big outputs of the multiplication step. The signed
long long int representation was chosen here to minimise code size. An
element A ∈ F2255−19 is represented as 16 64-bit integers (a0, . . . , a15)
with A =

∑
15

i=0
ai2

16·i.
The code can be devided into two sections: the field arithmetic, and

the actual elliptic curve arithmetic.

3.2 Field arithmetic

The elliptic curve arithmetic needs to be able to do simple field arith-
metics such as addition, subtraction, multiplication and computing mul-
tiplicative inverses.

Algorithm 5 Addition.

Input: input arrays A and B

1: for i← 0, 15 do

2: outi ← bi + bi . (component-wise addition)
3: end for

4: return out

The pseudocode for addition and subtraction (here omitted) should
be trivial. They both get two input arrays, A and B, and produce an
output-array out by doing a component-wise addition or subtraction re-
spectively. Because we have so much overhead in this representation, and
assuming that we will not encounter many additions or subtractions in a
row, we will not have to worry about overflowing and carrying. Because
carrying requires a significant amount of extra coding (as can be seen for
instance in algorithm 7), having this representation helps to keep code
size down.
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Of course, there are a lot of different ways to compute multiplications.
This specific one was chosen because it is the algorithm with most concise
code. In this algorithm, multiplication exists of three steps: first com-
puting (out0, out1, ..., out31), then reducing it modulo p, which is done in
two steps. The first step, calculating the actual multiplication, is seen in
algorithm 6.

Algorithm 6 Multiplication, step 1.

Input: input arrays A and B

1: out← 0
2: for i← 0, 15 do

3: for j ← 0, 15 do

4: temp← ai · bi
5: outi+j ← outi+j + temp
6: end for

7: end for

8: return out mod p

The next step is reducing it modulo p, which, in turn, is done in two
steps. First we bring it down to the regular size of 16 elements, which is
seen in algorithm 7.

Algorithm 7 Reducing.

Input: an input array out = (out0, out1, ..., out31)

1: for i← 0, 15 do

2: outi ← outi + 38 · outi+16

3: end for

4: return out, (out0, out1, ..., out15)

This is correct because in our representation out16 = out · 216·16 =
out · 2256 and 2256 = 38 mod p, because:

2255 − 19 ≡ 0 mod p⇔

2 · (2255 − 19) ≡ 0 mod p⇔

2256 − 38 ≡ 0 mod p⇔

2256 ≡ 38 mod p if p = 2255 − 19

After we have fitted the original array into 16 elements, these elements
will have a size of more than 32 bits, and can therefore not be used for
another operation. We thus have to carry from each limb to the next
higher in what is called here the “carrying algorithm”. Its pseudocode is
shown in algorithm 8:
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Algorithm 8 Carrying.

Input: an input array out = (out0, out1, ..., out15)

1: for i← 0, 15 do

2: outi ← outi + 216 . (needed for ’packing’)
3: temp← outi
4: temp← temp/216

5: if (i 6= 15) then
6: outi+i ← outi+i + temp
7: else

8: out0 ← out0 + (temp− 1) · 38 . (if i = 15, carry to first bit)
9: end if

10: outi ← outi − (temp · 216)
11: end for

12: return out mod p

It is implemented as follows:

for(i=0; i<16; i++)

{

o[i]+=(1<<16);

c = o[i]>>16;

o[(i+1)*(i<15)]+=c-1+37*(c-1)*(i==15);

o[i] -= c<<16;

}

Here it can be seen that the last step is actually integrated inside the
for-loop, to decrease code size.

Inversion is done with Fermat’s little theorom, which states that if p
is prime, for any integer a it holds that ap − a is an integer multiple of
p, or:

→ ap − a ≡ 0 mod p

→ ap ≡ a mod p

→ ap−1 ≡ 1 mod p

→ ap−1 ≡ a−1 · a mod p

→ ap−2 ≡ a−1 mod p

where p is prime and a−1 is the multiplicative inverse of a mod p. So
what we want to compute in order to get the inverse is a2

255
−21. However,

in C exponentiations are not natively supported, so we need something
else to compute exponentiations. Other implementations often use an
algorithm consisting of a set amount of squarings and multiplications for
maximisation in speed. Instead, the square-and-multiply algorithm was
chosen here because it needs much less code and speed is not the main
focus of this thesis. The pseudocode can be seen in algorithm 9.
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Algorithm 9 Square-and-multiply algorithm.

Input: an input array X , exponent n = (n0, n1, ..., n`)

out← X
for i← `, 0 do

out← out2

if(ni == 1) out← out ·X
end for

return out

Because we only need to do exponentiations with a fixed exponent,
namely p−2, we do not need to have the exponent as a (dynamic) input,
and we can try to shorten the algorithm. Luckily for us, 2255 − 21 has a
very structured representation in binary: 111...111

︸ ︷︷ ︸

250

01011. This makes it

possible to write very short code as follows:

for(a=253;a>=0;a--)

{

sq(c,c);

if(a!=2&&a!=4)

mul(c,c,i);

}

This works because it always needs to multiply when the exponent’s
ith bit is odd, and pi is only even at p2 and p4, as seen in the binary
representation.

3.3 Elliptic curve arithmetic

The main loop is an implementation of the Montgomery Ladder as seen
in Algorithm 1 in section 2.1.3. It iterates over the bits of the scalar
n, swapping bits if ni == 0, and then performing a Ladder Step. The
swapping is a very important part to make the implementation secure.
A naive implementation might be:

if(!ni)

swap(...)i;

In section 2.2.4 the notion of timing attacks was introduced. The naive
implementation is not protected against these kind of attacks, so we need
something capable of withstanding them: a constant-time conditional
swap:
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Algorithm 10 Conditional Swap for one bit.

Input: input bits P and Q, and Bool ∈ 0, 1

1: X ← ((P XOR Q) AND Bool)
2: P ← (P XOR X)
3: Q← (Q XOR X)

If Bool = 0, then

X ← 0 because for any A, A AND 0 = 0.(1)

P XOR 0 = P(2)

Q XOR 0 = Q because for any A, A XOR 0 = A.(3)

If Bool = 1, then

X ← P XOR Q because for any A, A AND 1 = A.(1)

P XOR Q = Q(2)

Q XOR Q XOR P = P(3)

(3) works because for any A,B it holds that

A XOR (A XOR B) =

(A XOR A) XOR B =

0 XOR B = B

Of course, this is only for a single bit, but it can be extended to handle
larger numbers. In the code, it is implemented as follows:

long long int b1=~(b-1);

for(i=0;i<16;i++)

{

t=b1&(p[i]^q[i]);

p[i]^=t;

q[i]^=t;

}

The b − 1 operation ensures that we get a long string of all zeros or all
ones, depending on b, the ∼ negates this bit-wise, so we get a long string
of b’s back. Now it is possible to XOR this b1 bit-wise with an element
of the input array. Lastly, a for-loop is needed to go through all the
elements in the array.

16



3.4 Packing and unpacking

To be able to communicate with the NaCl-library, we need translation
functions that convert from and to NaCl’s representation of large num-
bers, unpack and pack respectively. The large numbers NaCl uses are
32-byte hexadecimal strings, which means we need 256 bits, or 8 bytes,
to encode it.

Unpacking is fairly straightforward:

Algorithm 11 Unpacking.

Input: input bytestring n, outputarray out

1: for i← 0, 15 do

2: outi ← n2i + n2i+1 ∗ 2
8

3: end for

Packing is a lot more complicated, and reuses the carrycode, which
is why we needed to add 216 in that algorithm, but in general it comes
down to:

Algorithm 12 Packing.

1: Carry enough times to get small enough limbs.
2: With these small limbs go from signed to unsigned representation.
3: Fit this unsigned array into the 8 bytes.
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4 Results

As can be seen in Appendix A, the quotum of 20 tweets is reached. Specif-
ically, my implementation of Curve25519 has 2442 characters. 2442/140 ≈
17.4, so the code is even smaller than 18 tweets! But most importantly, no
compromises were made with respect to the goals previously mentioned,
namely security, readability and portability.

As we have seen in section 2.2.6, we still have the same amount of
security as Bernstein’s original implementation.

In Appendix B is a version where all aesthetic newline characters,
tabs and spaces have been removed. This version is terribly unreadable,
but will still compile and has exactly the same behaviour as the ‘normal’
version. It is used to show the minimum amount of characters necessary,
namely 1964! That is only 1964/140 ≈ 14 tweets! It is so short, when
printed on a single A4-sheet in an 11-point font, it fits on a 51

4
-inch floppy

disk! This means that 2442− 1964 = 478 characters used in the original
code are layout characters: newlines, tabs and spaces.

There is also a third program, it is the result of maximising size reduc-
tion. Methods used include: removing all whitespaces and unnecessary
newlines (as in the other short program, seen in Appendix B), shortening
variable and function names to 1 character and substituting the frequent
for-loops with short function names. With these techniques, the code can
be shortened to just 1611 characters! That is 1611/140 ≈ 11.5 tweets.
So we started at 2442 characters. Without the newlines, it was 1964,
and with all these substitutions and short variable names, we got 1611
characters!

Although Appendix B and C have fewer characters, readability has a
higher priority. In any case, the code of the original version is still short
enough to be printed on 2 sheets of A4-paper (as seen in Appendix A).
Compare this to other libraries, e.g. OpenSSL, with 21 million lines
of code! Every independent function can easily be manually verified to
check for any side-channel attacks, for maximum protection.

This is only the key-agreement of the library. The original challenge
was to create a full cryptographical library in 100 tweets, which has been
met by TweetNaCl. Its paper can be found at http://tweetnacl.cr.
yp.to/index.html and the entire 100 tweets here: https://twitter.

com/TweetNaCl.
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A Program, seperated in tweets

typedef long long int lli;

typedef lli gf[16];

typedef unsigned char uch;

#define sv static void

#define sq(o,i) mul(o,i,i)

static gf _121665 = {0xDB41,1};

static const uch base[32] = {9};

sv car(gf o)

{

int i;

lli c;

for(i=0;i<16;i++)

{

o[i]+=(1<<16);

c = o[i]>>16;

o[(i+1)*(i<15)] +=

c-1 + 37*(c-1)*(i==15);

o[i] -= c<<16;

}

}

sv add(gf o,gf a,gf b)

{

int i;

for(i=0;i<16;i++)

o[i]=a[i]+b[i];

}

sv sub(gf o,gf a,gf b)

{

int i;

for(i=0;i<16;i++)

o[i]=a[i]-b[i];

}

sv mul(gf o,gf a,gf b)

{

lli i,j,c[31];

for(i=0;i<31;i++)

c[i] = 0;

for(i=0;i<16;i++)

for(j=0;j<16;j++)

c[i+j] += a[i] * b[j];

for(i=16;i<31;i++)

c[i-16] += 38*c[i];

for(i=0;i<16;i++)

o[i] = c[i];

car(o);

car(o);

}

sv inv(gf o,gf i)

{

gf c;

int a;

for(a=0;a<16;a++)

c[a]=i[a];

for(a=253;a>=0;a--)

{

sq(c,c);

if(a!=2&&a!=4)

mul(c,c,i);

}

for(a=0;a<16;a++)

o[a]=c[a];

}

sv sel(gf p,gf q,int b)

{

lli t,u,i,b1=~(b-1);

for (i=0;i<16;i++)

{

t = b1 & (p[i]^q[i]);

p[i] ^= t;

q[i] ^= t;

}

}

sv mainloop(lli x[32],uch *z)

{

gf a,b,c,d,e,f;

lli p,i;

for(i=0;i<16;i++)

{

b[i] = x[i];

d[i] = a[i] = c[i] = 0;

}
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a[0] = d[0] = 1;

for(i=254;i>=0;--i)

{

p = (z[i>>3] >> (i&7))&1;

sel(a,b,p);

sel(c,d,p);

add(e,a,c);

sub(a,a,c);

add(c,b,d);

sub(b,b,d);

sq(d,e);

sq(f,a);

mul(a,c,a);

mul(c,b,e);

add(e,a,c);

sub(a,a,c);

sq(b,a);

sub(c,d,f);

mul(a,c,_121665);

add(a,a,d);

mul(c,c,a);

mul(a,d,f);

mul(d,b,x);

sq(b,e);

sel(a,b,p);

sel(c,d,p);

}

for(i=0;i<16;i++)

{

x[i] = a[i];

x[i+16] = c[i];

}

}

sv unpack(gf o,const uch *n)

{

int i;

for(i=0;i<16;i++)

o[i] = n[2*i] +

((lli)n[2*i+1]<<8);

}

sv pack(uch *o,gf n)

{

int i,j,b;

gf m;

car(n);

car(n);

car(n);

for(j=0;j<2;j++)

{

m[0] = n[0] - 0xffed;

for(i=1;i<15;i++)

{

m[i] = n[i] - 0xffff -

((m[i-1] >> 16)&1);

m[i-1] &= 0xffff;

}

m[15] = n[15] - 0x7fff -

((m[14] >> 16)&1);

b = (m[15] >> 16)&1;

m[14] &= 0xffff;

sel(n,m,1-b);

}

for(i=0; i<16; i++)

{

o[2*i] = n[i]&0xff;

o[2*i+1] = n[i]>>8;

}

}

int crypto_scalarmult(uch *q,

const uch *n,const uch *p)

{

uch z[32];

lli x[32];

int i;

for(i = 0;i < 31;++i)

z[i] = n[i];

z[31] = (n[31] & 127) | 64;

z[0] &= 248;

unpack(x,p);

mainloop(x,z);

inv(x+16,x+16);

mul(x,x,x+16);

pack(q,x);

return 0;

}

int crypto_scalarmult_base(uch *q,

const uch *n)

{

return crypto_scalarmult(q,n,base);

}
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B Program, no layout short version

#define sv static void

#define sq(o,i) mul(o,i,i)

typedef long long int lli;typedef lli gf[16];typedef unsigned char uch;

static gf _121665 = {0xDB41,1};static const uch base[32] = {9};sv car(gf

o){int i;lli c;for(i=0;i<16;i++){o[i]+=(1<<16);c=o[i]>>16;o[(i+1)*(i<15

)]+=c-1+37*(c-1)*(i==15);o[i]-=c<<16;}}sv add(gf o,gf a,gf b){int i;for

(i=0;i<16;i++)o[i]=a[i]+b[i];}sv sub(gf o,gf a,gf b){int i;for(i=0;i<16

;i++)o[i]=a[i]-b[i];}sv mul(gf o,gf a,gf b){lli i,j,c[31];for(i=0;i<31;

i++)c[i]=0;for(i=0;i<16;i++)for(j=0;j<16;j++)c[i+j]+=a[i]*b[j];for(i=16

;i<31;i++)c[i-16]+=38*c[i];for(i=0;i<16;i++)o[i]=c[i];car(o);car(o);}sv

inv(gf o,gf i){gf c;int a;for(a=0;a<16;a++)c[a]=i[a];for(a=253;a>=0;a--

){sq(c,c);if(a!=2&&a!=4)mul(c,c,i);}for(a=0;a<16;a++)o[a]=c[a];}sv sel(

gf p,gf q,int b){lli t,u,i,b1=~(b-1);for(i=0;i<16;i++){t=b1&(p[i]^q[i])

;p[i]^=t;q[i]^=t;}}sv mainloop(lli x[32],uch *z){gf a,b,c,d,e,f;lli p,i

;for(i=0;i<16;i++){b[i]=x[i];d[i]=a[i]=c[i]=0;}a[0]=d[0]=1;for(i=254;i

>=0;--i){p=(z[i>>3]>>(i&7))&1;sel(a,b,p);sel(c,d,p);add(e,a,c);sub(a,a,

c);add(c,b,d);sub(b,b,d);sq(d,e);sq(f,a);mul(a,c,a);mul(c,b,e);add(e,a,

c);sub(a,a,c);sq(b,a);sub(c,d,f);mul(a,c,_121665);add(a,a,d);mul(c,c,a)

;mul(a,d,f);mul(d,b,x);sq(b,e);sel(a,b,p);sel(c,d,p);}for(i=0;i<16;i++)

{x[i]=a[i];x[i+16]=c[i];}}sv unpack(gf o,const uch *n){int i;for(i=0;i<

16;i++)o[i]=n[2*i]+((lli)n[2*i+1]<<8);}sv pack(uch *o,gf n){int i,j,b;

gf m;car(n);car(n);car(n);for(j=0;j<2;j++){m[0]=n[0]-0xffed;for(i=1;i<

15;i++){m[i]=n[i]-0xffff-((m[i-1]>>16)&1);m[i-1]&=0xffff;}m[15]=n[15]-

0x7fff-((m[14]>>16)&1);b=(m[15]>>16)&1;m[14]&=0xffff;sel(n,m,1-b);}for

(i=0;i<16;i++){o[2*i]=n[i]&0xff;o[2*i+1]=n[i]>>8;}}int crypto_scalarmult

(uch *q,const uch *n,const uch *p){uch z[32];lli x[32];int i;for(i=0;i<

31;++i)z[i]=n[i];z[31]=(n[31]&127)|64;z[0]&=248;unpack(x,p);mainloop(x,

z);inv(x+16,x+16);mul(x,x,x+16);pack(q,x);return 0;{int

crypto_scalarmult_base(uch *q,const uch *n){return crypto_scalarmult

(q,n,base);}

23



C Program, shortest version

#define sv static void

#define sq(o,i) m(o,i,i)

#define F for(i=0;i<16;i++)

#define FS(a,b) for(i=a;i<b;i++)

typedef long long int l;typedef l g[16];typedef unsigned char c;static g cc

={0xDB41,1};static const c bs[32]={9};sv r(g o){l i;l c;F{o[i]+=(1<<16);c=o

[i]>>16;o[(i+1)*(i<15)]+=c-1+37*(c-1)*(i==15);o[i]-=c<<16;}}sv a(g o,g a,g b

){l i;F o[i]=a[i]+b[i];}sv b(g o,g a,g b){l i;F o[i]=a[i]-b[i];}sv m(g o,g a

,g b){l i,j,c[31];FS(0,31)c[i]=0;F for(j=0;j<16;j++)c[i+j]+=a[i]*b[j];FS(16,

31)c[i-16]+=38*c[i];F o[i]=c[i];r(o);r(o);}sv iv(g o,g x){g c;l i;F c[i]=x[i]

;for(i=253;i>=0;i--){sq(c,c);if(i!=2&&i!=4)m(c,c,x);}F o[i]=c[i];}sv e(g p,

g q,l b){l t,u,i,b1=~(b-1);F{t=b1&(p[i]^q[i]);p[i]^=t;q[i]^=t;}}sv ml(l y[32]

,c *z){g x,w,v,u,t,s;l p,i;F{w[i]=y[i];u[i]=x[i]=v[i]=0;}x[0]=u[0]=1;for(i=254

;i>=0;i--){p=(z[i>>3]>>(i&7))&1;e(x,w,p);e(v,u,p);a(t,x,v);b(x,x,v);a(v,w,u);

b(w,w,u);sq(u,t);sq(s,x);m(x,v,x);m(v,w,t);a(t,x,v);b(x,x,v);sq(w,x);b(v,u,s)

;m(x,v,cc);a(x,x,u);m(v,v,x);m(x,u,s);m(u,w,y);sq(w,t);e(x,w,p);e(v,u,p);}F{y

[i]=x[i];y[i+16]=v[i];}}sv up(g o,const c *n){l i;F o[i]=n[2*i]+((l)n[2*i+1]<<

8);}sv pk(c *o,g n){l i,j,b;g m;r(n);r(n);r(n);for(j=0;j<2;j++){m[0]=n[0]-

0xffed;FS(1,15){m[i]=n[i]-0xffff-((m[i-1]>>16)&1);m[i-1]&=0xffff;}m[15]=n[15]

-0x7fff-((m[14]>>16)&1);b=(m[15]>>16)&1;m[14]&=0xffff;e(n,m,1-b);}F{o[2*i]=n

[i]&0xff;o[2*i+1]=n[i]>>8;}}int crypto_scalarmult(c *q,const c *n,const c *p)

{c z[32];l x[32],i;FS(0,31)z[i]=n[i];z[31]=(n[31]&127)|64;z[0]&=248;up(x,p);

ml(x,z);iv(x+16,x+16);m(x,x,x+16);pk(q,x);return 0;}int crypto_scalarmult_bs

(c *q,const c *n){return crypto_scalarmult(q,n,bs);}
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