
Bachelor thesis
Computer Science

Radboud University

Persistent effects of
man-in-the-middle attacks

Author:
Ronnie Swanink
s4382838

First supervisor/assessor:
dr.ir. Erik Poll

E.Poll@cs.ru.nl

Second assessor:
dr. Peter Schwabe

P.Schwabe@cs.ru.nl

10th January 2016

Abstract

Does a man-in-the-middle attack have long term consequences? In man-in-
the-middle attacks, an attacker is able to read and alter internet communic-
ations. Given these possibilities, a lot of rewriting and sniffing attacks can
be executed on popular protocols. HTTP can be tampered with in order to
for example inject malware into pages, steal credentials and force victims to
cache tampered pages. DNS is easily spoofed, as there are no real counter-
measures for MITM attacks. This allows an attacker to store false records in
the DNS cache. We also take a look at SMTP, IMAP, POP3, FTP, SSH and
TLS/SSL. TLS/SSL is in most cases the standard countermeasure against
MITM attacks. However, TLS/SSL has weaknesses as well. We discuss a
few methods to circumvent the protection offered by TLS/SSL. In Chapter
9 we explain how an ordinary internet user can protect himself from these
kind of attacks in laymans terms.

Contents

1 Introduction 3

2 Effects and Impacts 6
2.1 Sniffing . 6
2.2 Malware . 6
2.3 Binary patching . 7
2.4 Cookie insertion/stealing . 7
2.5 Cache poisoning . 7
2.6 Fake certificates . 7
2.7 Session hijacking . 8
2.8 Downgrade attacks . 8

3 HTTP 9
3.1 Description . 9
3.2 Attacks . 10

3.2.1 Sniffing . 10
3.2.2 Cookie insertion . 10
3.2.3 Cache poisoning . 10
3.2.4 Binary patching . 11
3.2.5 Mixed content abuse 11
3.2.6 HTTPS stripping . 12
3.2.7 HTTPS splitting . 12
3.2.8 General SSL/TLS attacks 13

3.3 Protection . 13

4 DNS and DNSSEC 14
4.1 Description . 14
4.2 Attacks . 15

4.2.1 DNS cache poisoning 15
4.3 DNSSEC downgrade attack 15
4.4 Protection . 16

1

5 SMTP, IMAP, POP3 17
5.1 Description . 17
5.2 Attacks . 17

5.2.1 Sniffing . 17
5.2.2 Method downgrading 18
5.2.3 Email sniffing . 18
5.2.4 Malware insertion . 19
5.2.5 Fake certificates . 19

5.3 Protection . 20

6 FTP 21
6.1 Attacks . 21

6.1.1 Sniffing . 21
6.1.2 Binary patching . 22
6.1.3 Injections in NAT-FTPS servers 22
6.1.4 Injections with TCP termination 22
6.1.5 Splitting attacks against SFTP and FTPS 23

6.2 Protection . 23

7 SSH 24
7.1 Attacks . 25

7.1.1 Sniffing . 25
7.1.2 Session hijacking . 25
7.1.3 Attacks on VPN and other tunneled connections . . . 25

7.2 Protection . 26

8 TLS/SSL 27
8.1 Attacks . 28

8.1.1 Downgrade attacks . 28
8.1.2 False certificates . 28

8.2 Protection . 29

9 Personal protection 31
9.1 Web browsing . 31
9.2 Email . 32
9.3 File transfers . 33
9.4 Shell access . 33
9.5 VPN . 34

10 Future Work 35

11 Conclusions 36

2

Chapter 1

Introduction

The internet as we know it today is huge. Not only in terms of amount of
devices connected, but also how many different kinds of information flows
around. Complex languages, or protocols, are specified to make sure every-
one on the internet understands each other. A web browser for example uses
HTTP and HTTPS to request webpages from a server, and email clients use
IMAP or POP3 to retreive messages from the mailbox.

However, when two devices talk to each other, their traffic is not only
visible by themselves. The internet relies on a massive web of servers that
pass information to other servers, just like a physical mail service. But what
if the mailman ’attacks’ the letters he is meant to deliver? If the mailman
reads a letter, he is performing a passive man-in-the-middle attack. If he
alters the content, he is performing an active man-in-the-middle attack. Not
delivering the letter at all is a denial of service (DOS) attack.

In [6] researchers demonstrated a way to inject malicious javascript code
into webpages using a proxy server. But this example raises some questions.
Given that an attacker is able to read and alter any traffic flowing from/to
a client to/from the internet, what kind of attacks are possible? And is it
possible to create some sort of persisting effect?

At the time of writing, a lot of attacks are known. However, most attacks
are not documented in academic papers. Most attacks are described in
articles on the internet or presented at a security conference such as Blackhat
of DEFCON. Because of this, it is difficult to get a complete list of attack
vectors.

In this paper we document MITM attacks against a few popular proto-
cols. This documentation consists of a technical specification of the attack
and possible mitigations. In Chapter 9 we explain without jargon what an
ordinary internet user can do to protect him- or herself from the attacks
described in this paper.

The idea for this paper originates from an interest in WiFi-hacking and
MITM attacks, and was inspired by [6]. From personal experience while

3

working at a computer store I believe a lot of people are unaware of any
dangers while browsing the internet.

Attacker model All the attacks described in this paper assume the at-
tacker has already devised a way to be able to read and alter all traffic of
his victim. Possible ways to archieve this are for instance evil access points
(See [20]) or ARP-spoofing (See [1]). Attackers can also be internet service
providers or network administrators at internet exchanges.

The goal of his attack is to leave some persisting effect on the victim by
tampering with the victims’ connection. A result might be for example a
poisioned DNS cache.

Scope and structure In Chapter 2 we give a broad overview of the type
of effects a MITM attack might have.

In the following chapters, we discuss attacks against some selected pro-
tocols. The protocols we will discuss are:

• HTTP and HTTPS for web browsing in Chapter 3.

• DNS and DNSSEC for name resolution in Chapter 4.

• SMTP, IMAP and POP3 for e-mail in Chapter 5.

• FTP, FTPS and SFTP for file tranfers in Chapter 6.

• SSH for remote terminals in Chapter 7.

• TLS/SSL for secure tunnels in Chapter 8.

We have listed all documented attacks against these protocols, and a
few attacks that exist but do not seem to have been documented, most
likely because of a small usability. The reader should note that these lists
of attacks try to be exhaustive, but there is a possibility an attack was not
noticed and therefore not included. We give at least one mitigation against
every attack, but not an exhaustive list.

The protocols are chosen because they are widely used and are respons-
ible for the functioning of a large part of the internet. TLS/SSL does not
serve a direct use, but is the standard solution to secure otherwise plaintext
protocols. Some attacks can have effects on higher level protocols. The
attacks discussed are all MITM attacks, and should enable the attacker to
leave some persistent or semi-persistent effect on his victim.

All the attacks we discuss work by abusing a mechanism in these pro-
tocols, for instance caching commands. We will not discuss attacks against
specific vulnerabilities for example in parsing code.

Additionally, we discuss a few attacks that allow the attacker to bypass
the security offered by TLS/SSL and SSH.

4

Alongside these attacks, we discuss methods to protect a system against
these attacks, and who is responsible for executing that method (for instance
the end user or hosting provider). In Chapter 9 we discuss how a non-
technical end user is able to protect him- or herself against the discussed
attacks.

Figure 1.1: Relations between protocols

We will focus on attacks executed at protocol level. More specifically
protocols in the upper layers of the ISO/OSI model. The relation between
the protocols can be seen in Figure 1.1, this means that an attack on a lower
protocol might also have an impact on a higher one.

Topics we will not discuss in this paper are:

• Malware.

• How to attack specific applications.

• How to set up a MITM attack.

• How to use the tools mentioned in attack descriptions.

• Cracking a TLS/SSL or SSH connection with cryptanalysis.

Readers with knowledge about networking should be able to understand
every section. Readers that are only interested in the protection measures
should read all the ”Protection” sections and Chapter 9 at the end. Readers
without a computer background should only read Chapter 9.

5

Chapter 2

Effects and Impacts

If an attack is successfully executed, this will have some kind of effect on
the victim. This effect is also called the impact. Some attacks might have
a direct impact on the user, for instance by injecting code into a webpage.
Some attacks do only have an impact some time after the attack. Finally,
some attacks do not have an impact on the victim user but on the integrity
of higher protocols. Some impacts do not fall into this model, which causes
classifying impacts into categories to be difficult.

In this chapter we give a broad overview of the impacts posed by the
attacks presented in this paper.

2.1 Sniffing

Sniffing, or eavesdropping, is the act of reading traffic and collecting inform-
ation. Mostly, sniffing is used to steal credentials that are sent in plain text.
The impact of sniffing depends on what kind of information is stolen. Pass-
words to bank accounts for instance are more valuable to an attacker than
passwords to some forum.

In some cases the attacker is only able to sniff encrypted credentials.
Depending on the system used to encrypt these credentials, the attacker
might launch a password cracking attack.

2.2 Malware

Malware is software that runs on the device of a victim. The damage this
malware might cause differs greatly as new malware keeps popping up. Mal-
ware can be installed in multiple ways, for instance:

• Using misleading advertisements to trick a user into installing the mal-
ware himself.

6

• Exploiting some browser vulnerability with for example a buffer over-
flow.

It is possible for an attacker to add malware to existing files. For instance
by injection code while a file is being transfered.

Further discussion of malware is however outside of the scope of this
paper.

2.3 Binary patching

Downloaded files can be altered in-transfer by an attacker. With executable
files, an attacker is able to rewrite part of the code in the executable file
to install malware, or perform other malicious actions. There are multiple
ways to achieve this. A tutorial on how to add code to executables can be
found at [13].

2.4 Cookie insertion/stealing

Cookies are a part of the HTTP and HTTPS protocols. Cookies allow a
web server to temporarily store some data on the clients’ device. This data
might consist of an session identifier in order to remember is the user was
logged in or not. By stealing cookies, the attacker might be able to copy the
session of the user and thus be logged in as the user. By inserting cookies,
the attacker places some forged data into the cookie storage of the user.
This forged data might for instance contain a stored XSS attack.

2.5 Cache poisoning

A cache is some local storage where a device can temporarily store some
data in order to speed up future requests. A DNS cache for example stores
the resolved IP-addresses for a while. Cache poisoning happens when an
attacker manages to place some forged data into a cache. In the case of
DNS, a poisoned cache might lead to a browser connecting to the wrong
IP-address when visiting a site.

2.6 Fake certificates

Fake certificates on their own can not cause any damage, but they are really
dangerous when these certificates end up being trusted as root. If an attacker
gets his root certificate on a device, the attacker is able to pretend to be
every site he wants to be and listen in on normally encrypted connections.

7

2.7 Session hijacking

Some protocols work with sessions. In these sessions, the user authenticates
himself and proceeds to do whatever needs to be done. An attacker might
observe connections from these protocols, and wait until the user has au-
thenticated himself. When the user has successfully authenticated himself,
the attacker can hijack the session. By closing the connection between the
user and the attacker, the attacker is able to claim the session for himself.

Another way for the attacker to hijack a session is by injecting com-
mands into a session. This way commands can be executed in name of the
user without the user knowing. However, if the user decides to terminate
the connection, the attacker is also disconnected. This attack is also more
difficult for the attacker to execute, as he has to make sure the victim does
not receive any of the attacker-injected material.

2.8 Downgrade attacks

A downgrade attack is an attack in which the attacker interferes in the
communication to restrict the usage of newer (and safer) protocols or cap-
abilities. By downgrading a protocol, the attacker might for instance force
two parties to use weaker encryption, or no encryption at all. The attacker
might also strip security-related parts of packets.

8

Chapter 3

HTTP

3.1 Description

HTTP, of HyperText Transfer Procotol, is a protocol designed for ’distrib-
uted, collaborative, hypermedia information systems’. A more simple de-
scription is that HTTP is the protocol responsible for retreiving webpages
from a server. This retreiving of webpages is done by a program called a web
browser. Some well-known web browsers are Firefox and Internet Explorer.

HTTP is old. HTTP/1.0 was specified in 1996 [RFC1945], followed by
HTTP/1.1 in 1999 [RFC2616]. Recently, a research project from Google
called SPDY was proposed as HTTP/2 [RFC7540]. We will primarily focus
on HTTP/1.1 as this is the current working standard.

The problem with old protocols is that they are not designed for security.
HTTP does not use any encryption or authentication. Anyone watching
traffic on a router is able to see what pages are accessed, and tamper with
the connection if desired. To prevent this, a standard called HTTPS was
introduced. In HTTPS, the plaintext traffic is tunneled through a SSL or
TLS connection. See Chapter 8 for more information about SSL/TLS.

In the past few years, more and more software is offered via a web page.
Mobile apps also tend to include web pages as part of their user interface.
Because of this, hacking a browser is almost as valuable as hacking a com-
puter itself. As browsers are becoming increasingly complex (See [2]), more
attack vectors are introduced.

The attacks described below read and tamper with HTTP traffic in order
to abuse webpages and the browser itself. How these attacks can be used
in practice, for instance with the framework described in [6], will not be
discussed.

9

3.2 Attacks

3.2.1 Sniffing

The most simple way to abuse HTTP is to watch connections go by and
sniff POST requests. If a user tries to log in on a website his username and
password are sent in plaintext. By simply listening what is sent, an attacker
is capable of collecting all kind of credentials. This attack can be combined
with SSL stripping or splitting (3.2.6, 3.2.7) in order to capture more data.
A tool such as mitmproxy [12] is able to display HTTP traffic.

Mitigation By upgrading the webserver to use HTTPS, this attack can
be easily mitigated.

3.2.2 Cookie insertion

As described in [23], in some browser implementations it is possible to over-
ride or set cookies whose HTTPS-only flag is set by defining a cookie with
the same name in a HTTP response.

With a standard HTTP connection, an attacker is also able to inject
cookies. To accomplish this, the attacker has to add Cookie headers to
a HTTP response. This kind of attack, against standard cookies or HT-
TPSOnly ones, allows an attacker to inject cookie material into the session
of a user.

Mitigation The attack described in [23] is possible due to a bug in webbrowsers.
Browser users should keep their browser up-to-date, and the browser vendors
should fix their implementations. Using HTTPS should prevent an attacker
from injecting cookie material into connections. Browser users are also able
to disable cookies altogether, but this breaks a lot of websites.

3.2.3 Cache poisoning

When browsing the web, a lot of content has to be frequently downloaded
over and over again. This is a waste of bandwidth and time. To prevent
this waste, browsers implement a content cache. HTTP provides headers
with which a server can control caching. Larger assets such as images will
be cached most of the time to improve load times.

But there is a problem. HTTP is a plaintext protocol, including the
cache-control headers. As demonstrated in [22], it is possible to inject ma-
licious javascript code into requested script files, which will then be cached
by the browser. Having attacker-controlled javascript on a webpage is a
security disaster. With javascript, the attacker is for instance able to read
all form inputs on a page, show whatever the attacker wants the user to see
and leak session information. Another serious problem is the possibility to

10

load a BeEF hook (See [30]). BeEF can be used together with Metasploit to
exploit browser vulnerabilities by injecting all kinds of exploits with the ul-
timate goal of breaking into the system. However, these exploits are beyond
the scope of this paper.

Mitigation Upgrading the webserver to HTTPS solves this problem. Wip-
ing the browser cache is a simple way to remove any poisoned files.

3.2.4 Binary patching

Downloading an executable can be a risky thing. A lot of sites distribute
all kinds of software installers bloated with crapware. But even if you man-
age to find the official page of the program you are trying to find, your
download is still at risk. A possible attack is to alter binary files with a
proxy. By wrapping the original executable code in malware, an attacker is
able to abuse downloads offered via HTTP. There is evidence that malicious
TOR nodes use this method (See [34]). This attack is now implemented in
BDFProxy [42], a utility which automatically wraps executable files.

By wrapping an executable with malware, an attacker is able to create
a persistant backdoor using this attack. How this works exactly is beyond
the scope of this paper.

Mitigation Again, upgrading the webserver to HTTPS solves this prob-
lem altogether. The end user should also use an antivirus scanner to detect
and remove known malware. Publishes binaries should be digitally signed,
as this allows users to verify the downloaded contents.

3.2.5 Mixed content abuse

When building a HTTPS-enabled webpage, developers should make sure
that every asset is loaded with HTTPS. When an asset is loaded with HTTP,
the attacker is able to tamper with it. By tampering with one asset, the
integrity of the whole page can be jeopardized. A breakdown of mixed
content errors is given in [39], along with a table of browsers differences
regarding this attack.

Mitigation To migitate this attack, two HTTP extensions have been in-
troduced:

• CSP (Content Security Policy [48]): Allows a developer to specify from
which domains content may be loaded in order to prevent cross site
scripting.

11

• HSTS (HTTP Strict Transport Security [RFC6797]): With this header,
a developer can specify that every asset on a page, including those that
would normally be loaded with HTTP, must be loaded using HTTPS.

These extensions should be enabled and implemented by server admin-
istrators and browser vendors. Only having support for these on one side of
the connection does not yield any benefits.

Current popular browsers (Firefox, Google Chrome, Internet Explorer)
alert their users when mixed content is loaded. However, which requests
are considered harmful and how this is shown to the user is implemented
differently. Google Chrome for instance changed its policy about mixed
content, see [7].

3.2.6 HTTPS stripping

HTTPS stripping is an attack that downgrades a HTTPS connection to
HTTP with a proxy. With some clever rewriting done by the proxy, the
victim is presented with a HTTP version of any site he is visiting. This
attack does not do anything on its own, but it allows the attacker to defeat
HTTPS and regain tampering capabilities. This attack was popularized by
the tool sslstrip [28], built by Moxie Marlinspike.

This attack differs from HTTPS stripping. With this attack, the attacker
maintains a TLS/SSL secured connection to the destination server, but the
connection to the victim user is not secured. This way, the attacker does
not have to forge certificates.

Mitigation Website administrators should use HSTS (See [RFC6797] as
not all implementations of sslstrip are able to handle this header. When
browsing, using a plugin such as HTTPS Everywhere (See [15]) can help, as
this switches the browser to HTTPS automatically. Finally, the user should
pay attention to the URL bar, and leave a page when HTTPS seems to be
missing.

3.2.7 HTTPS splitting

Just like HTTPS stripping, HTTPS splitting is a method of regaining tam-
pering capabilities. HTTPS splitting works with a proxy. The victim con-
nects to the proxy, and the proxy presents the user with a fake certificate for
any site the user requests. The proxy, being the CA of these certificates, is
able to decrypt any traffic from the victim. The proxy establishes a normal
HTTPS connection with any server the victim wants to visit. Sslsplit [40]
is a popular tool for this.

This attack differs from HTTPS stripping. With this attack, the at-
tacker maintains TLS/SSL secured connections to both the victim and the

12

destination server. The attacker does have to forge certificates for every
secure connection the client initiates.

In some cases, vulnerabilities in certificate checking allow the attacker
to produce valid certificates without actually being a certificate authority.
See Chapter 8 for more information about TLS/SSL and certificates.

Mitigation This attack is possible due to the way TLS/SSL is organized
on the web. See chapter 8 for Mitigations.

3.2.8 General SSL/TLS attacks

As HTTPS is just HTTP tunneled using SSL or TLS, all attacks on SSL
and TLS might give an attacker the oppertunity to attack the underlying
HTTP data. See chapter 8 for a breakdown on these attacks.

3.3 Protection

A website administrator should use HTTPS whenever possible, as this pre-
vents a lot of attacks. On top of that, HSTS should be used to enforce the
use of HTTPS. If a site contains a lot of sentitive data, the administrator
might consider pinning key information (See chapter 8 for more informa-
tion). This provides protection against HTTPS splitting.

Browser vendors should strive to separate secure and insecure parts of
a website. This is already done with the HTTPS Only flag on cookies, but
these implementations sometimes do not work completely as expected (See
[23]).

HTTPS stripping can be partially prevented by implementing HSTS on
the server side. Browser developers should implement these features as well.
The client should consider using HTTPS Everywhere or a comparable tool
to automatically switch to HTTPS.

When downloads are published, it is recommended to publish the hash
digests of these files as well. It should be noted that these hashes have to
be transferred by HTTPS, to prevent the attacker from editing the hash.
Binary files can also be signed, this allows verification as well.

13

Chapter 4

DNS and DNSSEC

4.1 Description

When browsing the internet, a computer does not actually connect to ”google.com”.
Instead, it connects to for instance 74.125.136.113. This conversion is done
by DNS, as specified in [RFC1034] and [RFC1035]. Because of this, DNS is
the so-called phonebook of the internet. This conversion is done by send-
ing small questions to a hierarchy of DNS-servers. All these questions are
deliberately small, as servers receive massive amounts of requests (See [11]).

DNS does not use any encryption, so tampering with requests has been a
common problem. In order to solve this, DNSSEC was introduced. DNSSEC
implements cryptography, allowing the receiver of a DNS-response to verify
that no one has altered it.

DANE, or DNS-based Authentication of Named Entities, is another ad-
dition to the DNS security toolkit. DANE is a possible alternative for the
currently used PKI system (See 8). We will not discuss DANE, as the ad-
option of this protocol is much lower than DNSSEC (See [43]).

DNS is riddled with problems. Server outtages can cause problems for
large groups of people (See [41]). Poorly configured servers can also be
abused to increase DDOS attack power (See [35]).

DNS, being a plaintext protocol, does not provide any protection against
MITM attacks. DNSSEC on the other hand does implement signing, and
does provide protection against MITM attacks. However, unless the usage
of DNSSEC is forced by a client, it is possible for an attacker to strip all
DNSSEC parts.

A lot of research has been done on DNS and its security. However, this
research is mostly pointed at attacking large DNS-caches. Here we focus on
attacks happening close to the victim, where the attacker might for instance
run a malicious DHCP server.

14

4.2 Attacks

4.2.1 DNS cache poisoning

When a DNS request has been made, the response packet is sent in plain
text. This allows an attacker to substitute the real IP with an IP that is
controlled by the attacker. This allows the attacker for instance to run all
attacks described in Chapter 3.

To speed up loading times, DNS implements a caching mechanism. Without
caching, a DNS request would have to be made for almost every connection.
A response is allowed to specify how many seconds it should be cached with
its TTL field. [RFC1035] paragraph 2.3.4 specifies that the size of this field
is 32 bits. This allows up to 4,294,967,295 seconds of caching, or a bit more
than 49710 days.

By setting the TTL to the maximum value, an attacker is able to make
his attack persist for all poisoned domains. After disconnecting, the cached
records live on, routing the domains to the wrong IP addresses.

Mitigation Preventing DNS spoofing is rather problematic. Neither DNS
nor DNSSEC do prevent a MITM attack. DNSSEC does allow a receiver
to verify the correctness. Domain owners should use DNSSEC to prevent
DNS spoofing attacks. However, with a MITM attack it is trivial to strip
the DNSSEC parts. Clients should therefore enforce DNSSEC verification
whenever possible.

4.3 DNSSEC downgrade attack

DNSSEC is gaining traction (See [8]), but a lot of domains still use stand-
ard DNS to resolve their domains. The attacker has limited attack power
because of DNSSEC.

Any domain that is not using DNSSEC can be spoofed, even if the
clients’ resolver validates DNSSEC records. This is because the chain of
trust ends at the last nameserver in the chain that does support DNSSEC.
Every record after this cannot be validated.

Domains that do use DNSSEC can be spoofed under some conditions.
Not all DNS resolver servers support DNSSEC, and these will not provide
their clients with all DNSSEC functions. Clients that are using these servers
can have their DNSSEC responses downgraded and spoofed.

Mitigation Clients can opt to only accept DNSSEC responses, but this
might lead to a large portion of the internet to be unreachable. As DNSSEC
adoption grows, this becomes less of a problem.

15

4.4 Protection

DNS does not provide any MITM protections. A user is able to connect
with a VPN server in order to increase the difficulty of spoofing any DNS
records. This does not protect the user against attacks aimed at the resolver
server, such as the Kaminsky attack (See [32]). These attacks are however
not possible if DNSSEC is used.

Enabling DNSSEC provides the verification most of the time. Some
resolver servers do not support DNSSEC, leaving their users vulnerable to
spoofing attacks. Users behind resolvers that do support DNSSEC are able
to verify answers, and are protected against MITM attacks.

If DNSSEC adoption keeps growing, resolvers might consider to only
accept DNSSEC signed records. This will however break a part of the in-
ternet.

16

Chapter 5

SMTP, IMAP, POP3

5.1 Description

SMTP, IMAP and POP3 are protocols used to send and receive mail. The
email infrastructure consists of mailservers and mail readers such as Outlook.
Mail is sent using the SMTP protocol. If a server receives a message for one
of its users, the message is stored. Reading mail is done by receiving the
messages from the server by POP3 and IMAP. POP3 used to be the standard
for collecting messages, but it has mostly been replaced with IMAP. Just
as HTTP and DNS, these three protocols do not use encryption by default.
Instead, TLS/SSL tunnels should provide security.

5.2 Attacks

5.2.1 Sniffing

By default, user information is sent in plaintext. Because of this an attacker
is able to simply collect credentials by listening on the wire. SMTP and
IMAP implement different kinds of authentication which do not leak the
password to the attacker.

The authentication mechanisms of these protocols do however support
ways of authentication without revealing the credentials. The default au-
thentication method is PLAIN. There are some other methods, for example
CRAM-MD5, that use hashing in order to keep the credentials a secret.

To sniff on SMTP, IMAP and POP3 sessions, generic packet sniffing
tools can be used. The penetration testing framework metasploit ([37])
does include tools to capture email credentials.

Mitigation The server should be configured to accept TLS/SSL connec-
tions. The user should upgrade his connection to use SSL/TLS. As a server

17

administrator, leaking passwords can be prevented by allowing more secure
authentication methods.

5.2.2 Method downgrading

Setting up a secure tunnel is possible in two different ways in case of the mail
protocols. Servers can provide connections that enable TLS/SSL from the
start, but there is a second option allowing a client to choose to use TLS/SSL
if so desired. In the second case, the client connects to the server, and is (in
plaintext) presented with a list of possible actions, including STARTTLS.
An attacker is able to strip this line, and force the user to continue on in
plaintext. This attack is not only used for malicious reasons. Some corpor-
ate routers disable encryption inside corporate networks in order to be able
to scan email messages for viruses. Some discussion about STARTTLS can
be found at [9]. Besides the downgrade attack, there are more arguments
against using STARTTLS. For instance, STARTTLS breaks TLS termina-
tion proxies.

Another way for an attacker to downgrade a connection is by remov-
ing login mechanics from the server EHLO. When a connection is set up
between a server and the client, the client should authenticate himself. The
most simple way is for the client to send his username and password directly
to the server, but this might leak the credentials to a listening attacker. To
prevent this, more authetication mechanisms were introduced, and server
administrators are allowed to choose which ones they want to support on
their servers. The server will then tell any connecting client which mechan-
isms are supported. An attacker is able to remove methods from this list,
and might for instance leave the client to believe the only way to authentic-
ate is PLAIN.

Mitigation Most of the email clients configured to use STARTTLS will
refuse to connect when the STARTTLS flag is missing. A bigger problem
arises when the user is setting up his email client. In this case, the user
should be informed that his provider does allow STARTTLS. If the option
is provided, users should connect to the mail server with TLS/SSL enabled
from the start.

Server administrators should disable the PLAIN login method, as this
way of authenticating is extremely vulnerable to sniffing. Users connecting
to email servers should exclude the PLAIN mechanism from being used.

5.2.3 Email sniffing

Even if an email sent from a client to his/her mail server was transmitted
securely, there is a potential vulnerability in the communication between
SMTP servers. Not all SMTP servers support the transmission of email via

18

a secure connection, forcing the transmission of email messages to plaintext.
If an attacker is able to find a way of placing himself between these two
servers, he is able to read all mail sent between these servers and potentially
modify them.

Mitigation As a mail server administrator, mail servers should be con-
figured to at least try using an encrypted channel. By forcing encryption,
some mail might be silently discarded as the other party does not allow
encryption. As a user, it is best to stay away from mail servers not using
encryption. Larger providers such as Gmail do employ secure connections
most of the time. The end user is also able to use some kind of signing/en-
cryption tools such as PGP to protect his messages.

A different method to add confidentiality to email is S/MIME, defined
in [RFC2045]. S/MIME has comparable functionality to PGP. The content
of the message is encrypted, and the headers are left untouched to aid in
routing. S/MIME is not well known, and like PGP suffers from the problem
that it is not simple to set up (See [31]).

5.2.4 Malware insertion

Email messages are made up of some headers with text data. Because of this
the attacker is able to inject attachments or text into messages with relative
ease. Healthy attachments can also be infected. Email servers tend to run
virus scans on incoming messages, but injecting malware when a message
is retreived bypasses that. Some email clients sort mail based on antivirus
headers added by the scan done on the mail server, so this can be abused to
gain the users’ trust.

Mitigation Upgrading to SSL/TLS stops the attacker from tampering
with the connection. Running a local antivirus scanner should prevent the
user from opening appended malware. Antivirus scanners at server level can
detect any sent or injected malware.

5.2.5 Fake certificates

Email clients seem to be notorious for having bad SSL/TLS implementations
and/or bad certificate checking when reading about this on the internet. If
this is actually true is hard to tell, as there does not seem to be an actual
statistic about this. The goal of using fake certificates is to generate an
invalid certificate, and trick a client into connecting with a proxy server.
This proxy server relays the email traffic to the real server, decoding and
encoding traffic on the fly.

In [46], problems regaring domain validation are shown. When email
servers connect with each other, the presented certificates have to be checked

19

against a domain name. This domain name will be the MX record associated
with the destination email address. With standard DNS, this domain can be
spoofed. This article might also explain why people think email encryption
is broken. It is not caused by the TLS implementation itself, but the way
the client has to determine what certificate to use.

Mitigation See Chapter 8 for Mitigations. In order to prevent an at-
tacker from spoofing MX records, server administrators should implement
DNSSEC or DANE in order to secure their certificates.

5.3 Protection

Mail server administrators should configure their mailservers to at least sup-
port encryption. Wether the administrator should avoid using STARTTLS
is arguable, because this might leave the client vulnerable to the method
downgrading attack in Section 5.2.2. This does however break some legitim-
ate uses of stripping STARTTLS capabilities. Enforcing encryption secures
email transfer between servers, but this causes messages destined to servers
without encryption support to be dropped. A pleasant side effect of enfor-
cing encryption is that a lot of spam is dropped as well, as spambots usually
do not support encryption.

Server administrators should disable the PLAIN mechanism for authen-
tication. Email users should disable PLAIN authentication as well.

Domain holders should register their domains with DNSSEC. By using
DNSSEC, an attacker is unable to spoof MX records to another server,
preventing MITM attacks against the TLS/SSL connection. DANE is a
system to allow administators to attach their certificate to the DNS records
of a domain. This solves the current certificate validation problems.

To improve awareness about security, email providers should be trans-
parent about their security. At the time of writing, it is difficult to find
out wether a email provider uses encryption. Google did announce their
support, but this was meant as a incentive to encrypt email globally. If a
provider does not support encryption when sending email, the user might
consider using PGP or S/MIME. These tools are not easy to set up, so this
option will probably not work for ordinary internet users.

Email users should run an antivirus scanner, but antivirus is also possible
on the server level. Mail servers are able to detect and remove malware
before it reaches the user.

20

Chapter 6

FTP

FTP, or File Transfer Protocol, is a protocol used to tranfer files over the
internet. Currently, FTP is mostly used to upload files to websites and to
provide public downloads. FTP is defined in [RFC959]. There are multiple
ways to connect to FTP servers:

• The first and obvious way is to directly connect to the ftp server.

• To provide integrity and confidentiality, FTPS (FTP over SSL) can be
used.

• Another way to connect to FTP is by tunneling all FTP traffic through
SSH. This is called SFTP. By using SFTP, the actual FTP server
doesn’t need to be directly connected to the internet.

FTP on its own does not use any encryption or verification, which allows
for a man-in-the-middle attack. FTPS and SFTP were introduced to provide
the neccesary security.

At the time of writing, a lot of public facing FTP servers do still use
FTP instead of a secure variant such as SFTP or FTPS (See [3]). When
downloads are offered via an insecure connection, some sites publish hashes
to verify if the download was not tampered with.

6.1 Attacks

6.1.1 Sniffing

As with any protocol that does not utilize encryption, FTP is vulnerable to
sniffing attacks. Passwords can be captured using standard packet sniffing
tools or with tools such as the sniffers offered by the Metasploit framework
(See [37]).

21

Mitigation Sniffing can be prevented by upgrading the connection to
FTPS, or by using SFTP. Both of these protocols might however be vulner-
able to splitting attacks. See Section 6.1.5 for more information on splitting
attacks.

6.1.2 Binary patching

Because FTP does not utilize encryption, an attacker is able to modify files
sent from server to client and vice-versa. The client can be attacked by in-
fecting downloaded executables with malware. The server can be attacked
by adding malicious code to php scripts, or by infecting uploaded execut-
ables.

Mitigation Again, upgrading the connection defeats simple MITM at-
tacks. If a server is solely used for providing people with files, publishing
the hash codes of these files allows people to detect if their files have been
modified. Be sure that these hash codes are sent securely, as the attacker
might try to alter these as well.

6.1.3 Injections in NAT-FTPS servers

This attack does only apply to FTPS servers positioned behind an active
NAT. As described in [45], it is possible for an attacker to inject data into
a secure FTPS session. Because of NAT, the server needs to downgrade the
FTPS connection to plaintext in order to allow the NAT to rewrite the PASV
and PORT commands. When this happens, the attacker can intervene and
inject data into an upload.

Mitigation By statically assigning ports to the server the NAT doesn’t
have to modify any packets. This allows the connection to be secure all the
time. Using an FTPS terminating proxy on the NAT device might also solve
this problem.

6.1.4 Injections with TCP termination

As described in [45], by injecting a TCP termination (RST/FIN) it is pos-
sible to inject data into a FTPS session. By terminating the connection,
the attacker forces the victim to try and restart the connection. This causes
the connection to be downgraded to plaintext for a moment. The attacker
is now able to inject some prepared data into the upload.

This attack is possible due to the handling of TCP terminations. A client
should send a TLSShutdown message before terminating the connection, but
most do not. FTP servers implement this as a corner case and allow this
behaviour.

22

Mitigation FTP servers should not allow resuming after a non-graceful
termination of the connection. This might break compatibility with some
clients, but these clients do not follow the standards.

6.1.5 Splitting attacks against SFTP and FTPS

In the case of FTPS, attacks against SSL/TLS (See Chapter 8 have an
impact on transport security. Attacks against SSH (See Chapter 7) have an
impact on the transport security of SFTP.

6.2 Protection

As FTP does not provide any MITM protection, connections should be made
securely. A FTP connection can be secured by using FTPS or SFTP. A lot
of FTP usage originates from webhosting, but these providers do not always
advertise alternative/secure ways to connect.

In general, downloads should be published together with hashes. This
does not prevent MITM attacks, but this allows users to verify if a file was
transferred without any interference.

Uploads should also be done via a secure channel, such as SFTP or
FTPS. This is in the best interest of any hosting provider, as this prevents
malicious code from being injected into an upload. This does not protect
the hosting provider against malicious users. Server administrators should
therefore use an antivirus utility.

FTP uses a second connection for actual file transfers. When a FTP
server uses TLS/SSL and is positioned behind a NAT, encryption needs to
be dropped in order to correctly forward connection ports. Ports can be
statically assigned by a network administrator to allow the connection to
stay encrypted all the time. Another way to prevent connection downgrades
is to use SFTP. Because SSH supports multiple channels, it is possible to
dynamically create extra connections without having to downgrade the con-
nection.

23

Chapter 7

SSH

SSH is a relatively new protocol. The first formal specification is done in
[49]. SSH was created in order to prevent password sniffing attacks on a
university network. The goal was to replace plaintext protocols such as
telnet and rlogin. SSH has become more than just a login protocol. Besides
the standard remote shell, SSH can be used for file transers and even VPN
connections.

SSH consists of a few layers:

• The first layer is the transport layer. This transport layer provides
SSH with connection security and compression, this layer provides a
secure tunnel.

• A user authentication layer is responsible for client authentication.
Authentication can be done in multiple ways, including the well-known
password method and authentication by public key.

• The last layer is the connection layer. This layer is responsible for
channels and SSH services. A single SSH connection is able to run
multiple channels at once. Channels can be of different types, and can
be used for traffic forwarding.

SSH is divided into two different specifications, named SSH1 and SSH2.
SSH1 is known to be riddled with vulnerabilities, and was replaced with
SSH2 in 2006. Support for SSH1 is dropping, but servers supporting this
protocol still exist at the time of writing (See [4]).

The attacks discussed here are mostly mitigated in the same way. Be-
cause of this we discuss the general mitigations in Section 7.2.

24

7.1 Attacks

7.1.1 Sniffing

Sniffing passwords is possible on SSH. As described in [44], by simply rewrit-
ing the version string a connection can be downgraded to the SSH1 protocol.
The SSH1 protocol allows the attacker to easily sniff the credentials. There
are a lot of tools available to sniff SSH1 passwords, for instance: ettercap
and dsniff.

However, downgrading the connection requires the SSH server to still
support the SSH1 protocol version. Support for this insecure version is
dropping, but some hosts are still vulnerable.

In the case of SSH2 the attacker has fewer possibilities. The only publicly
available tool to perform MITM attacks on SSH2 is jmitm2 as decribed in
[18]. This tool is able to sniff SSH2 passwords, but this does alert the victim
of a change in server fingerprint. If public key authentication is used on the
SSH2 connection, it is not possible to sniff passwords.

A problem with SSH server impersonation is that the host signature will
differ from the original server. This causes SSH clients to display a warning,
or refuse connecting altogether.

7.1.2 Session hijacking

If an attacker manages to obtain MITM capabilities, he is able to alter the
commands sent from client to server. The attacker might for example hijack
the session by disconnecting the client after authentication was successful.
The attacker is also able to inject a channel for himself, allowing the client
to continue without notice.

A demonstration for this attack against SSH1 is described in [10]. At the
time of writing, there are no publicly available tools to hijack SSH2 sessions.

7.1.3 Attacks on VPN and other tunneled connections

SSH is capable to tunnel traffic between two endpoints. A tool called sshuttle
(See [33]) is capable of using SSH as a ’poor man’s VPN’. SFTP is a FTP
connection in which the FTP traffic is first tunneled through SSH to the
server. If an attacker is able to obtain MITM capabilities on the main SSH
connection, he is able to see and attack every channel of the SSH session as
well.

Mitigation Traffic that is tunneled through SSH is visible to the SSH
server, and any attacker that manages to get access to the connection. It
is possible to apply encryption to any traffic tunneled through SSH, for in-
stance by using HTTPS, to prevent an attacker from undoing the protection
offered by SSH.

25

7.2 Protection

Server administrators and users should disable SSH1 support as the newer
SSH2 is more secure. Users should not simply accept a new host signature
if they connect to their SSH server.

To fully prevent MITM attacks against SSH2, users and server admin-
istrators should work together to set up public key authentication. As de-
scribed in [5], using public keys prevents MITM attacks because of a change
in how keys are negotiated.

26

Chapter 8

TLS/SSL

As seen in the previous chapters, a lot of protocols have not been designed
to be secure when used on the open internet. In 1993, Secure Network Pro-
gramming was introduced to add transport security to otherwise unsecured
protocols. This was followed by SSL 1.0, 2.0 and 3.0, all developed by Nets-
cape. TLS was introduced in 1999 as the successor of SSL 3.0. SSL 3.0 was
deprecated in June 2015. TLS 1.2, as defined in [RFC5246], is the current
version of TLS. The naming of these protocols is somewhat confusing, as a
lot of references to SSL actually refer to TLS.

The TLS/SSL suite of protocols provide a secure tunnel. These tunnels
provide a point-to-point connection that provides confidentiality as well as
integrity by using encryption and certificates. The goal of TLS and SSL is
to secure otherwise insecure protocols. A plain HTTP connection can be for
instance tunneled through TLS, preventing MITM attacks.

However, TLS and SSL do have their flaws. Attacks against these pro-
tocols have been published, the POODLE attack for instance driving the
final nail in SSL 3.0s’ coffin (See [RFC7568] section 4.1). A lot of attacks
are targeting the cryptographic aspect of these protocols, and are mostly of
academic interest.

TLS and SSL rely on certificates to exchange key information when con-
nections are made. These certificates contain information about the public
key used, and what domain it can be used for. Some certificates called root
certificates are pre-installed in a system, and are trusted by default. These
root certificates can be used to sign intermediary certificates. Intermediary
certificates are not trusted on their own. If the intermediary certificate is
signed by a trusted higher level certificate, such as a root or another in-
termediary certificate, the intermediate certificate is trusted as well. Leaf
certificates are the certificates on the end of the tree, and do actually provide
key material to secure a connection. Typically, a certificate used to secure
the connection to a website is signed by an intermediary certificate. These
trees of certificates are also called certificate chains.

27

Root certificates are owned by certificate authorities, or CAs. Well-
known CAs include VeriSign, or the hacked DigiNotar. The hack at Di-
giNotar shows the amount of trust that is put into these authorities, as any
certificate that is signed by a trusted CA is trusted as well.

Thorough checking of these certificates is critical, because otherwise an
attacker would be able to create false certificates. A problem with certific-
ate checking was demonstrated by Moxie Marlinspike in [25], where anyone
with a valid certificate could sign new certificates. In 2009, Marlinspike
demonstrated another attack in [26], defeating ownership tests.

The problem with having the ability to obtain valid but false certificates
is that they allow an attacker to pretent to be the server. A client connecting
to a server receives a valid certificate from the attacker, triggering no alarms.
The attacker can simply forward all traffic to the real server with a second
TLS/SSL connection.

8.1 Attacks

8.1.1 Downgrade attacks

As described in [29], TLS implements some sort of downgrade dance. With
every connection attempt that fails, an older version of the protocol is tried
instead. An attacker is able to interfere with this downgrade dance, and
force both parties to use SSL 3.0.

When the connection is downgraded, the attacker might try to steal
information with for instance the POODLE attack. Another option is to
save the traffic and try decrypting it later, this strategy is applied by the
NSA. If the attacker is able to find the keys, he is able to recreate the server
certificate and pose as the server. Cracking keys is still a tough problem
however.

Mitigation Downgrading attacks can be mitigated by disabling support
for older and broken, in particular SSL 3.0 and RC4, should be disabled.
This can be done on the client and server side. Client software might also
warn the user if an older cipher suite is used, this is already the case with
some internet browsers.

8.1.2 False certificates

If an attacker is able to create valid certificates for any domain, it’s trivial to
terminate the TLS/SSL connection and perform a MITM attack. There is
a tool called sslsplit (See [40]) that is capable of creating forged certificates
given an authority. A tool called sslsniff (See [27]) is able to forge certi-
ficates and exploit some checking vulnerabilities. Sslsniff is also capable of
substituting specific certificates.

28

But how does the attacker obtain these certificates? The most ideal case
for an attacker is having access to a root or intermediary certificate from a
CA. In this case, he is able to create certificates for any domain he wants.
With this, he is able to break up almost all TLS/SSL connections without
alarms ringing at the user. Another way would be to obtain a certificate
for a specific domain. Most CAs use automated systems to verify domains,
and this can sometimes be easily abused. As described in [17], a researcher
was able to obtain a SSL certificate for live.com by registering the address
sslcertificates@live.com.

Sometimes, these fake certificates are used for good. Larger companies
for example use their own CA to be able to inspect in- and outgoing traffic
for viruses. This does raise questions about privacy, but in some cases
network security is crucial. An example of how false certificates can be
abused is demonstrated by the Kazachstan government. Starting in 2016,
all Kazachstan citizens will have to install a CA certificate issued by the
government, to allow traffic interception. Some discussion about this can be
found at [24].

Mitigation False but valid certificates can be blocked with the use of
certificate pinning on the client side. When connecting to a server, the server
transfers its’ certificate to the client. The client then checks the fingerprint
of this certificate, and matches that to the fingerprint the client is told to
trust. If the fingerprints do not match, the client abort the connection. Even
if an attacker is able to produce valid certificates, he would have to get the
fingerprint right in order to fool the client.

OWASP maintains a detailed explaination of the workings of certificate
pinning at [47].

8.2 Protection

In the general sense, TLS and SSL are the protection. These protocols do
have to be used in a correct way to actually offer any protection however.

Clients and servers should disable old and broken protocols and cipher
suites. The linux distribution Fedora for instance has implemented this since
version 23 (See [38]). App developers are able to pin their certificates, and
should use this functionality to prevent their app from getting attacked.

Setting up certificate pinning on HTTPS connections is a more involved
process. Some browsers implement pinning for large sites, and allow site
operators to add headers to add their own pinning. The problem with these
headers is that they only work on a clean load.

Certificate pinning can be setup with SMTP servers, but it is an involved
process. Postfix for example requires manual specification of fingerprints and
policies regarding each domain.

29

A solution to these complicated setups might be to add certificate fin-
gerprints to DNSSEC responses. This way a clean load is not required, and
no manual specification is required.

30

Chapter 9

Personal protection

In this chapter we discuss tips and guidelines for protection against the
attacks described in this paper. This chapter is free of technical jargon and
is aimed at internet users without a computer science or security background.
All guidelines are grouped based on the type of internet activity.

This chapter covers attacks described in this thesis. For more inform-
ation on how to safely use the internet, see for instance [14], a website
dedicated to educating dutch people about online safety.

Regardless of internet activity, its strongly recommended to keep the
operating system and any programs up-to-date. If a system did not receive
recent updates, it might be unnecessarily vulnerable. Running antivirus
software on the side is also recommended, as this blocks a large portion of
malware and hacking attempts.

9.1 Web browsing

While browsing the web, some sites are accessed in a secure way, and others
are not. To determine wether the connection to a website is secured, check
the URL-bar. If the URL of the site starts with http://, the site was loaded
insecurely. If the URL starts with https://, the site is using encryption.

Most browsers display a green lock icon left of the website address when
the connection is secure. If the lock is missing, or if it is colored yellow1,
something is not completely right and therefore the connection might not be
completely secure. Some browsers display a pop-up message asking the user
if the browser should load ’mixed content’, Internet Explorer is an example
of such a browser. These questions should be answered with no, as mixed
content might leave you vulnerable to be attacked.

1The meaning of a yellow lock depends on the browser, ranging from weak hashes
to mixed content. It is best to have people distrust the yellow icon, this way website
administrators will try to have their certificates set up correctly

31

Some websites do not just have a green lock, but a complete green bar,
including some name. This is called extended validation. If a website has
this green bar, it should be considered safe to use as well.

If the connection is not secured, an attacker is capable of eavesdropping
the connection and/or modifying it. In this case, it is not recommended to:

• Log into important services such as bank accounts.

• Log in with usernames and passwords that you also use with important
services.

• Download executable files.

Browser plugins exist to help users regain their privacy and also secure
their connections:

• HTTPS Everywhere (See [15]) is a plugin that forces the browser to
use secure connections whenever possible.

• NoScript (See [21]) is a plugin to disable scripts on all webpages. If
an attacker manages to add malicious code into a website, the browser
will ignore it when this plugin is installed.

9.2 Email

The security of email starts at configuring the email reader. Most internet
service providers publish simple step-by-step instructions for setting up your
email reader, but these settings might not be the most secure. To check
wether the offered settings are secure, look at the connection settings of the
email reader. Look for the following:

• Receiving email:

– If using POP3, port 995 should be used. TLS/SSL should be
enabled.

– If using IMAP, port 993 should be used. TLS/SSL should also
be enabled.

• Sending:

– The best protection is offered when using port 465, and have
TLS/SSL enabled.

– A second option is to use port 587, and require the use of TLS/SSL.

If this is too complicated, a local computer store is most likely able to
help.

32

With a secure connection to the mail server set up, it is important to
know not all communications can be deemed safe. Some destinations might
not have a secure connection when transfering mails and/or while delivering
them. Determining what providers do and don’t use these secure connections
is complicated. Google has enabled this for the Gmail service, and other
providers most likely have too.

A final but somewhat complicated way to secure an email reader is by
using plugins such as Mailvelope (See [16]) or Enigmail (See [36]). Using
extra encryption requires the receiver to support this as well.

With the email client set up for security, it’s still important to be alert.
The general rules of email security still apply here. It is not recommended
to open email attachments you don’t trust. Also, clicking on links might
lead you to websites trying to infect you or steal your password.

9.3 File transfers

In this section we focus on file transfers done with FTP. FTP is the standard
way to upload files to web hosting space. Most hosting providers publish a
connecting with FTP manual on their site, but this is not a secure way to
connect.

Some hosting providers have started to support a more secure way to ac-
cess the files of a website by supporting SSH and SFTP. This support is still
scarce. Out of the ten best rated hosting packages on www.hostingwijzer.

nl, none support connecting by SFTP of FTPS. When looking for a hosting
provider, it is recommended to look for SSH support.

One.com for instance offers SFTP support with most packages, and
they provide instructions on how to set up your file transfer client to use
SFTP. Yourhosting.nl advertises SFTP as an ’advanced’ feature, and doesn’t
provide instructions. Mijndomein.nl doesn’t offer SFTP at all.

If you are using a provider without SFTP, it is recommended to only
connect to your provider from a home network.

9.4 Shell access

A connection to a remote shell, for instance the shell access provided by
hosting providers, is secured by default. On Linux, the ssh program should
be used with -2 as an argument to force SSH2 usage. On Windows, the
PuTTY program can be launched with the -2 argument to force SSH2 as
well.

In order to maximize shell security, public key authentication should be
used. This feature does require configuration on the server as well. To set
this up, contact the server administrator.

33

If public key authentication can not be used, be sure to check the finger-
print of the server you are connecting with. If the fingerprint has changed,
the software will alert you of this. Contact the server administrator if the
fingerprint has changed without notice. Do not connect if an unknown fin-
gerprint is shown to you.

9.5 VPN

To further improve security and to regain some privacy, consider using a
VPN. Using a VPN adds extra security to a connection, and hides the true
origin of your internet traffic. In general, VPN providers offer software to
simplify configuration. Using a VPN is recommended when connecting with
a public network, such as free WiFi services.

34

Chapter 10

Future Work

In this thesis we discussed MITM attacks against a few protocols. There
is however a lot of material outside of the scope that we did not cover.
There are a lot of protocols in use today that we did not cover and might
be vulnerable to MITM attacks as well, for instance OpenVPN and IPSec.
We also did not cover different types of attacks such as DoS and social
engineering attacks. These attacks are a field of reasearch on their own. In
short, there is still much to learn about.

We discussed a few protocols to give a higher level overview of the current
state of security. However, by focussing on one specific protocol in the future,
more elaborate attack possibilies might be found.

As the DANE extension of DNS is not adopted as well, we opted to skip
this protocol. Research into the possibilies of DANE might yield to major
advancements in the PKI.

Malware was mentioned throughout this thesis, but we did not further
discuss the capabilities malware can provide to an attacker. Research might
be done in how to infect a system, how malware can stay undetected, or
what kinds of malware exist today.

In this thesis we did not focus on a specific platform. Different plat-
forms contain their own specific security challenges. Apps for instance are a
somewhat new concept, and problems that have already been solved in tra-
ditional software resurface again here. See for instance [19]. By researching
vulnerabilities in apps, these newer platforms can mature.

35

Chapter 11

Conclusions

Before writing this thesis, I expected security researchers to document their
findings in papers. This was not exactly the case. MITM attacks against
TLS and SSL get a lot of interest from the academic community, but these
attacks do mostly focus on the cryptographic side. Other attacks try to
break into network- or data link protocols. A lot of attacks were found on
the open web, where people documented their findings in blog posts. It is
interesting to note that the non-cryptographic aspect of security is a more
open topic, not restricted to the academic community.

The research itself was very interesting. While the state of internet
security is looking somewhat grim, there are a lot of technologies to improve
this. Reading into all kinds of attacks and mitigations left me fascinated by
the systems built to secure our communications. What did surprise me was
the limited availability of tools to attack SSH2. The only tool to effectively
attack SSH2 seems to be jmitm2.

As shown in this thesis, the internet is built upon protocols that were
designed before security became an issue. Since then, new protocols have
been introduced to secure the expanding web. In this thesis we collected
some of the most prominent attacks and discussed how to protect a system.
These protections might not last forever. Internet security is a cat-and-
mouse game, and it is just a matter of time before new vulnerabilities are
discovered.

36

Bibliography

[1] url: http://www.cisco.com/c/en/us/products/collateral/
switches/catalyst-6500-series-switches/white_paper_

c11_603839.html.

[2] url: https://www.openhub.net/p/chrome.

[3] url: https://www.shodan.io/search?query=ftp+port%
3A21 (visited on 03/01/2016).

[4] url: https://www.shodan.io/search?query=ssh\%2B1.99
(visited on 10/01/2016).

[5] abb. SSH Man-in-the-Middle Attack and Public-Key Authen-
tication Method. Dec. 2010. url: http : / / www . gremwell .

com / ssh - mitm - public - key - authentication (visited on
27/11/2015).

[6] Chema Alonso and Manu “The Sur”. Owning Bad Guys {&
Mafia} with JavaScript Botnets. 2012. url: https://media.
blackhat.com/bh-us-12/Briefings/Alonso/BH_US_12_

Alonso_Owning_Bad_Guys_WP.pdf (visited on 01/10/2015).

[7] Sebastian Anthony. Chrome finally kills off the HTTP-HTTPS
“mixed content” warning. Oct. 2015. url: http://arstechnica.
com/information-technology/2015/10/chrome-finally-

kills-off-the-http-https-mixed-content-warning/ (vis-
ited on 19/10/2015).

[8] APNIC. url: http://stats.labs.apnic.net/dnssec/XA?c=
XA&x=1&g=1&r=1&w=7&g=0 (visited on 18/12/2015).

[9] Andrew Ayer. STARTTLS Considered Harmful. Aug. 2014.
url: https://www.agwa.name/blog/post/starttls_considered_
harmful (visited on 07/12/2015).

[RFC7568] R. Barnes, M. Thomson et al. Deprecating Secure Sockets Layer
Version 3.0. June 2015. url: https://tools.ietf.org/html/
rfc7568 (visited on 02/12/2015).

37

[10] Julian Beling. Conducting SSH Man in the Middle attacks with
sshmitm. url: http://www.giac.org/paper/gsec/2034/
conducting- ssh- man- middle- attacks- sshmitm/103515

(visited on 27/11/2015).

[RFC7540] M. Belshe, BitGo et al. Hypertext Transfer Protocol – HT-
TP/1.0. May 2015. url: https://tools.ietf.org/html/
rfc7540 (visited on 05/10/2015).

[RFC1945] T. Berners-Lee, MIT/LCS et al. Hypertext Transfer Protocol –
HTTP/1.0. May 1999. url: http://tools.ietf.org/html/
rfc1945 (visited on 05/10/2015).

[11] Jeremy K. Chen. Google Public DNS: 70 billion requests a
day and counting. Feb. 2012. url: https : / / googleblog .

blogspot.nl/2012/02/google-public-dns-70-billion-

requests.html (visited on 12/10/2015).

[12] Aldo Cortesi. mitmproxy. url: https://mitmproxy.org/ (vis-
ited on 07/01/2016).

[13] A. Danehkar. Inject your code to a Portable Executable file.
Dec. 2005. url: http://www.codeproject.com/Articles/
12532/Inject- your- code- to- a- Portable- Executable-

file (visited on 03/01/2016).

[RFC5246] T. Dierks, E. Rescorla et al. The Transport Layer Security
(TLS) Protocol Version 1.2. Aug. 2008. url: https://tools.
ietf.org/html/rfc5246 (visited on 02/12/2015).

[14] Stichting ECP-EPN. Veilig internetten. url: https://veiliginternetten.
nl/ (visited on 03/01/2016).

[15] EFF. HTTPS Everywhere. url: https : / / www . eff . org /

HTTPS-everywhere (visited on 19/10/2015).

[RFC2616] R. Fielding, UC Irvine et al. Hypertext Transfer Protocol – HT-
TP/1.1. June 1996. url: http://tools.ietf.org/html/

rfc2616 (visited on 05/10/2015).

[RFC2045] N. Freed, Innosoft et al. The Transport Layer Security (TLS)
Protocol Version 1.2. Nov. 1996. url: https://tools.ietf.
org/html/rfc2045 (visited on 07/01/2016).

[16] Mailvelope GmbH. Mailvelope. url: https://www.mailvelope.
com/ (visited on 02/12/2015).

[17] Dan Goodin. How is SSL hopelessly broken? Let us count the
ways. Apr. 2011. url: http://www.theregister.co.uk/

2011/04/11/state_of_ssl_analysis/ (visited on 04/12/2015).

[18] David Guembel. jmitm2. url: http://www.david-guembel.
de/index.php?id=6 (visited on 27/11/2015).

38

[19] Priyank Gupta. Validating SSL certificates in mobile apps. Mar.
2005. url: http://priyaaank.tumblr.com/post/81172916565/
validating-ssl-certificates-in-mobile-apps (visited on
03/01/2016).

[20] Ethical Hacking. Evil Twin and Fake Wireless Access Point
Hacks: What They Are, How To Defends. Apr. 2014. url:
http : / / breakthesecurity . cysecurity . org / 2014 / 04 /

evil-twin-attack-fake-wifi-hack.html (visited on 10/01/2016).

[RFC6797] J. Hodges, PayPal et al. HTTP Strict Transport Security (HSTS).
Nov. 2012. url: https://tools.ietf.org/html/rfc6797
(visited on 05/10/2015).

[21] InformAction. NoScript. url: https://noscript.net/ (vis-
ited on 01/12/2015).

[22] Matt Johansen Jeremiah Grossman. Million Browser Botnet.
2013. url: https://media.blackhat.com/us-13/us-13-
Grossman-Million-Browser-Botnet.pdf.

[23] Jian Jiang, Nicholas Weaver et al. Vulnerability Note VU#804060.
2015. url: http://www.kb.cert.org/vuls/id/804060 (vis-
ited on 24/09/2015).

[24] Hugo Landau. TLS and the Policy MitM Armageddon. Dec.
2015. url: https : / / www . devever . net / ~hl / policymitm

(visited on 04/12/2015).

[25] Moxie Marlinspike. Internet Explorer SSL Vulnerability 08/05/02.
Aug. 2002. url: http://www.thoughtcrime.org/ie-ssl-
chain.txt (visited on 02/12/2015).

[26] Moxie Marlinspike. Null Prefix Attacks Against SSL/TLS. July
2009. url: http://www.thoughtcrime.org/papers/null-
prefix-attacks.pdf (visited on 02/12/2015).

[27] Moxie Marlinspike. sslsniff v0.8. Apr. 2011. url: https://

github.com/moxie0/sslsniff (visited on 02/12/2015).

[28] Moxie Marlinspike. sslstrip. 2009. url: http://www.thoughtcrime.
org/software/sslstrip/ (visited on 21/02/2009).

[RFC1034] P. Mockapetris and ISI. DOMAIN NAMES - CONCEPTS AND
FACILITIES. Nov. 1987. url: https://tools.ietf.org/

html/rfc1034 (visited on 19/10/2015).

[RFC1035] P. Mockapetris and ISI. DOMAIN NAMES - IMPLEMENT-
ATION AND SPECIFICATION. Nov. 1987. url: https://
tools.ietf.org/html/rfc1035 (visited on 19/10/2015).

39

[29] Bodo Möller, Thai Duong and Krzysztof Kotowicz. This POODLE
Bites: Exploiting The SSL 3.0 Fallback. Sept. 2014. url: https:
//www.openssl.org/~bodo/ssl- poodle.pdf (visited on
02/12/2015).

[30] Nbblrr. The browser exploitation framework project. url: http:
//beefproject.com/ (visited on 12/10/2015).

[31] Mark Noble. S/MIME Secure Email - A Beginners Guide. url:
http://www.marknoble.com/tutorial/smime/smime.aspx

(visited on 07/01/2016).

[32] Matthew Olney, Patrick Mullen and Kevin Miklavcic. Dan Kam-
insky’s 2008 DNS Vulnerability. July 2008. url: https://www.
ietf.org/mail-archive/web/dnsop/current/pdf2jgx6rzxN4.

pdf (visited on 04/12/2015).

[33] Avery Pennarun. sshuttle: where transparent proxy meets VPN
meets ssh. Apr. 2010. url: https://github.com/apenwarr/
sshuttle (visited on 27/11/2015).

[34] Josh Pitts. THE CASE OF THE MODIFIED BINARIES. Oct.
2014. url: http://www.leviathansecurity.com/blog/the-
case-of-the-modified-binaries/ (visited on 12/10/2015).

[RFC959] J. Postel, J. Reynolds and ISI. FILE TRANSFER PROTOCOL
(FTP). Oct. 1985. url: https://www.ietf.org/rfc/rfc959.
txt (visited on 16/11/2015).

[35] Matthew Prince. Deep Inside a DNS Amplification DDoS At-
tack. Oct. 2012. url: https://blog.cloudflare.com/deep-
inside- a- dns- amplification- ddos- attack/ (visited on
19/10/2015).

[36] The Enigmail Project. Enigmail: A simple interface for Open-
PGP email security. url: https://www.enigmail.net/home/
index.php (visited on 02/12/2015).

[37] Rapid7. metasploit. url: http://www.metasploit.com/ (vis-
ited on 07/01/2016).

[38] Inc. Red Hat et al. Disable SSL3 and RC4 by default. url:
https://fedoraproject.org/wiki/Releases/23/ChangeSet#

Disable_SSL3_and_RC4_by_default (visited on 04/12/2015).

[39] Ivan Ristic. HTTPS Mixed Content: Still the Easiest Way to
Break SSL. Mar. 2014. url: https://community.qualys.

com / blogs / securitylabs / 2014 / 03 / 19 / https - mixed -

content-still-the-easiest-way-to-break-ssl (visited
on 05/10/2015).

40

[40] Daniel Roethlisberger. SSLsplit - transparent and scalable SSL/TLS
interception. 2015. url: https://www.roe.ch/SSLsplit (vis-
ited on 29/07/2015).

[41] Joost Schellevis. Ziggo lost tweede storing op door ddos-aanval
op dns af te weren. Aug. 2012. url: http://tweakers.net/
nieuws/104853/ziggo- lost- tweede- storing- op- door-

ddos-aanval-op-dns-af-te-weren.html (visited on 12/10/2015).

[42] secretsquirrel. BDFProxy. url: https://github.com/secretsquirrel/
BDFProxy (visited on 12/10/2015).

[43] Verisign Labs Shumon Huque. Next Steps in DANE Adoption.
Oct. 2015. url: https://indico.dns- oarc.net/event/

24/session/6/contribution/23/material/slides/0.pdf

(visited on 02/01/2016).

[44] Click Death Squad. Performing an SSH Man-in-the-Middle down-
grade attack. url: https://sites.google.com/site/clickdeathsquad/
Home/cds-ssh-mitmdowngrade (visited on 27/11/2015).

[45] Milan Singh Thakur. CRACKING FTPS - NOT SFTP. Sept.
2015. url: http://www.sectivenet.com/index.php/blog/
76 (visited on 16/11/2015).

[46] Filippo Valsorda. THE SAD STATE OF SMTP ENCRYP-
TION. Apr. 2015. url: https://blog.filippo.io/the-

sad-state-of-smtp-encryption/ (visited on 07/12/2015).

[47] Jeffrey Walton et al. Certificate and Public Key Pinning. url:
https://www.owasp.org/index.php/Certificate_and_

Public_Key_Pinning (visited on 04/12/2015).

[48] Mike West, Adam Barth and Dan Veditz. Content Security
Policy Level 2. June 2015. url: http://www.w3.org/TR/CSP2/
(visited on 19/10/2015).

[49] T. Ylonen and Helsinki University of Technology. The SSH
(Secure Shell) Remote Login Protocol. Nov. 1995. url: http:
//www.snailbook.com/docs/protocol-1.5.txt (visited on
17/11/2015).

41

