
Bachelor thesis
Computer Science

x

Radboud University

Training the CIA model using back
propagation

Author:
Stijn Voss
stijn.voss@student.ru.nl
s4150511

First supervisor/assessor:
MSc. Maya Sappelli

m.sappelli@cs.ru.nl

Second assessor:
prof. dr. T.M. (Tom) Heskes

t.heskes@science.ru.nl

February 20, 2015

Abstract

The SWELL project aims to improve the well being of knowledge work-
ers. For this purpose it might be useful to identify the context a knowledge
worker is working on at a given time. For example this could be used to
provide the knowledge worker with an overview of his or her day.

The CIA model is able to recognize and identify the context in which a
knowledge worker is working using low level computer events. The CIA
model is build without the need for any examples, instead it uses the doc-
uments of the knowledge worker to build the model. But in some cases
examples are available. In these cases it could be possible to increase the
accuracy of the model using supervised learning techniques.

In this thesis a method based on backpropagation is explored that could
be used to improve the accuracy of the model.

Contents

1 Introduction 2

2 Preliminaries 4
2.1 Feed forward neural network 5

2.1.1 Learning using backpropagation 6
2.2 CIA model . 8

2.2.1 Building the CIA network 8
2.2.2 Activating the network 9
2.2.3 Grossberg’s activation function 9

2.3 Unfold network to time . 10

3 Method 12
3.1 Data set and training . 12
3.2 Activation function . 13
3.3 Cost function . 14
3.4 Feeding forward and propagating back 14
3.5 Experiment . 17

3.5.1 Parameters . 17

4 Results 18
4.1 Behaviour on training set . 19
4.2 Performance on test set . 22
4.3 Other configurations . 24

5 Discussion 25

6 Conclusions 26

References 27

A Appendix 28

1

Chapter 1

Introduction

The SWELL project aims to improve the well-being of knowledge workers
by using intelligent tools. Knowledge workers are very vulnerable to stress
(Michie, 2002). To optimize knowledge workers well-being it is useful to
know on which project and in what context a knowledge worker spends his
or her time. For example, an overview of the time spent on his or her work-
ing day can provide feedback to the knowledge worker with which the worker
can improve his or her productivity.

Additionally the context could be used as input in other intelligent tools
of the SWELL project. For example notifications of emails could be su-
pressed untill the knowledge worker stops working on a specific task. Or
documents that are relevant to the current task could automaticly be shown.

When a knowledge worker has to provide information manually about their
time spent on different projects this can be very time-consuming. Addi-
tionally, manually providing information is more prone to errors. For in-
stance small tasks like responding to an email may be ignored. Thats why
Maya Sappelli (n.d.) proposed a method that is able to recognize the context
in which someone is working by using computer low level interaction data,
which in this case consisted of: mouse clicks, active windows and keystrokes.

The method devised by Sapelli recognizes the context of work by utiliza-
tion of the CIA model. This model works a lot like a neural network but
with a few special properties:

• The model contains recurrent connections

• The model uses a grossberg activation function that calculates the new
activation by using the neuron inputs and the current activation of the
neuron.

• During classification in most neural networks the label of certain input

2

is determined by using the label corresponding to the output node with
the highest activation. In the CIA model the output node with the
highest relative increase is used.

The current network is unsupervised, which means that it does not need
event samples to function. Instead it uses the information of documents on
the computer of the user to identify the project. This is called transductive
transfer learning. An advantage of this approach is that no event samples
or feedback are required to use the network.

The current model has an accuracy of 64.85%, meaning that 64.85% of
the events where identified correctly. An accuracy of 64.85% is high enough
to be useful in practice. We only need rough estimates for our overview
and each event only takes a limited amount of time. There is, however, still
room for improvement.

In some cases we might have feedback available. For example, when a
knowledge worker manually adjusts a project label for a given period of
time. When feedback is available it might be possible and useful to get a
higher accuracy by applying supervised learning.

In this thesis a method based on backpropagation that is able to train the
CIA model is proposed. Backpropagation cannot be applied to recurrent
networks directly. Therefore we will use a method called ‘unfolding’ that
enables us to apply back propagation. We will also introduce some small
adjustments to the back propagation algorithm to make sure it is possible
to use the Grossberg activation function.

In the second chapter the used techniques of neural networks, backprop-
agation and the CIA model will be explained. In the third chapter the used
data set is explained, the adjustments to the back propagation algorithm
and the application of the different techniques described in chapter 2. The
fourth chapter contains the research results, which will finally be discussed
in chapter five.

Our research question is: Can the accuracy of the CIA model be improved
using back propagation?

3

Chapter 2

Preliminaries

The current method (Maya Sappelli, n.d.) is based on the IA model (McClelland
& Rumelhart, 1981) which is a recurrent network. In this thesis a training
method for the CIA model based on the backpropagation method is pro-
posed. Backpropagation can only be used for feedforward neural networks.
In order to apply back propagation to the CIA model will be unfolded into
a feedforward neural network.

These methods will be explained in more detail in this chapter. Firstly
it will be explained what a feedforward neural network is, and how it can
be trained using the back propagation method. Secondly the details of the
CIA model will be described. Once the differences are clear, the unfolding
method which is required to apply back propagation to the CIA model will
be explained.

4

2.1 Feed forward neural network

A feedforward neural network can be trained using samples to estimate a
function. In our case, a function that maps low level computer events to a
project label. The basic building block of a feed forward neural network is
a neuron.

Figure 2.1: A neuron, Adapted from ”Neural networks and deep learning”
by M. A. Nielsen, 2015

A neuron has multiple inputs and one output. Each input has a weight.
An activation function determines based on the inputs and their weights
what the output of an neuron will be. Usually this is a function that uses
the sum of all activations of the connected neurons multiplied by the connec-
tion weight. A very common function is the sigmoid function: S(t) = 1

1+e−t .
This function has an S shape, meaning that the largest part of the function
domain will either have a value relatively close to the function maximum or
to the function minimum and the values in between only occur on a very
small part of the domain. In this way it is simulated that a neuron fires
(close to the maximum value) or does not fire (close to minimum value).
Often, a threshold is used to either delay or bring forward the firing of the
neuron.

A feed forward neural network consists of at least one layer of these neurons.
The output of each neuron in a layer is connected to an input of a neuron in
the next layer. The input of the first layer is the input of the whole network.
The output of the last layer is the output of the whole network. A one layer
neural network is only capable of representing very simple problems and
usually uses another training method and activation function, which will
not be discussed in more detail in this thesis.

A network consisting of more than one layer contains at least one hidden

5

layer, which is a layer where the output is hidden and only used inside the
network. When we want to predict or classify a certain input we use it as
input for the first layer of neurons. The output for this layer is the input
for the next layer and so forth until we reach the last layer. The output of
the last layer is the output of the whole network(meaning the prediction or
classification).

We will now introduce some basic math (Nielsen, 2015) to describe a neural
network which will become handy when we explain back propagation.

wljk denotes the weight for the connection from the kth neuron in the (l−1)th

layer.
blj denotes the bias for the jth node in the lth layer.

alj denotes the activation for the jth node in the lth layer

zlj denotes the input of the activation function for the jth node in the lth

layer
σ denotes the activation function

When we want to get a complete vector of a variable for example the input
of one layer l, we just remove the j parameter: zl.

2.1.1 Learning using backpropagation

Learning a function by training a neural network is usually done by changing
the weights of the network. To do so the back propagation (Rummelhart,
1986) method is the most common method for training feed forward net-
work. In order to train a neural network, an initial datas et is needed. This
data set, also called training set, consists of samples. Each sample is defined
by an input vector x̄ that gives an input for each input node of the network
and an output vector ȳ that gives an expected output for each output node
of the network. It is assumed that the data set is representive for the prob-
lem as a whole.

For each sample the output can be predicted using the current weights in
the network. Based on the expected output of the sample an error- or cost
function can be defined. The main property of such a function is that the
closer the actual output is to the expected output, the lower the output of
the cost function. The training problem can then be defined as a minimiza-
tion problem of the cost function for the complete training set.

Minimizing the cost function is done by using the gradient descent method.
The gradient descent method says that in order to minimize function F from
a point a we should move to point a−F ′(a). In terms of our neural network
this means that when we want to minimize the cost function C by altering

6

weight wljk we should update wljk = wljk −
∂C
∂wl

jk

In other words we should

update a weight in the opposite direction to the contribution it had to the
cost function.

It’s very common to add a learning parameter ξ to the gradient descent
formula. wljk = wljk − ξ ·

∂C
∂wl

jk

. A higher learning rate means that it will

learn faster but it is easier to miss the minimum of the error function. A
lower learning rate will cause the network to learn slower but will be more
likely to find the minimum.

In order to calculate ∂C
∂wl

jk

we will first introduce an extra variable that

is propagated back over the network.

δlj = ∂C
∂zlj

Intuitively, one could see this as the fraction of the error the input of the
neuron j in layer l is responsible for.

The error of the output layer can be calculated using:

δL = ∆aC � σ′(zL)

Here ∆aC means the vector with the ∂C
∂aLj

for each output node. This is the

derivative of the cost function.

With � we mean the hadamard product or element-wise multiplication.
Here we take two equals sized matrixes and get a new matrix with the same
size. Each element value of this new matrix is the product of the two values
of original matrix values corresponding to the same element. In this case
the error of each output node is multiplied with the delta of its activation.

The error of the previous layers can be calculated using:

δl = ((wl+1)T∂l+1)� σ′(zl)

As you can see the error of the previous layers depends on the error of
the next layer. Therefore the error is propagated back in the network when
calculating the new weights. This is why the method is called the back prop-
agation algorithm. Based on the errors it is easy to calculate the change of
bias, namely:

7

∂C
∂blj

= δlj

The change of the weight can be calculated using:

∂C
∂wl

jk

= al−1
k δlj

2.2 CIA model

The method used by Maya Sappelli (n.d.) is an adapted version of the IA
model McClelland and Rumelhart (1981) especially developed for recogniz-
ing context. It works like a feedforward network but connections can be
cyclic and the connection of each layer could be connected to multiple other
layers. The network is build using the documents found on the users com-
puter including the weights. Each node has a minimun activation and a
maximum activation, these values are user-defined parameters. In the CIA
model the nodes are divided into multiple layers.

Each layer represents a type of real world objects.

• Input layer This layer has a node for each possible event block.

• Context information layer This layer contains nodes for different
types of context information: terms or topics, entities, (file) location
and date/time information.

• Document layer Contains nodes for all documents used by the user
including e-mails and webpages.

• Context identification layer These are the nodes that represent a
label that identifies the context.

Figure 2.2. shows these different layers and how the are connected.

2.2.1 Building the CIA network

Firstly, all the documents of a user are gathered. For each document a
node is created in the document layer. Additionally, the context informa-
tion from each document is extracted. The document location creates a
location node and using the Stanford entity recognizer (Finkel, Grenager,
& Manning, 2005) the entities are extracted. Topics are determined using
the Latent Dirichlet Allocation (McCallum, 2002) . All the connections be-
tween a document node and the context information nodes are bidirectional.
However the weight of the connection varies depending on the direction of
the connection.

The label identification nodes are connected to the context information layer.
To decide which labels one could use to identify context and how it should

8

Figure 2.2: The CIA model layers. Adapted from Maya Sappelli, W. K.,
Suzan Verberne. A network-based model for working with context. n.d.

be connected to the context identification layer some form of user input is
required. One proposed method is to use documents organised in folders
where each folder name is a label and the documents are used to create the
connections between the context information layer.

2.2.2 Activating the network

The event blocks are loaded into the network. The algorithm determines
which context information nodes are related to which event nodes. To de-
termine the labels of the events we start by the first event. We activate the
corresponding input node, meaning we set the activation to 1.0. The activa-
tion is calculated multiple times for each node. The number of interations is
a parameter of the algorithm. During the iterations the input node is kept at
an activation of 1.0. Once the calculation is done the identification node that
has the highest increase in activation compares to its baseline is selected.
The network works in such a way that the activation of the previous event
influences the activation of the next event block. This is done by activating
the next event node while keeping the rest of the activations the same. The
old activation then slowely fades away using the decay parameter.

2.2.3 Grossberg’s activation function

The activation function used in the network is the Grossberg’s activation
function. It uses the sum of the positive inputs (excitatory) and the sum
of the negative inputs (inhibitory). Grossberg’s activation function uses the
current activation a, the inhibitory input: in, the excitatory input: ex as

9

input. And uses a couple of parameters. The max activation value: max,
the lowest possible activation: min, the speed in which a node loses its
activation if no input is received: decay and the rest value when a node is
not activated: rest. The activation is then calculated using:

MAX(min,MIN(max, a+ (max− a) · ex+ (a−min) · in− decay(a− rest)))

We can calculate the excitatory and inhibitory using the following formula’s.
When we want to calculate the excitatory and inhibitory input of node alj
we sum as follows:

ex =
∑
k∈K

if al−1
k > 0 : α · wajk · a

l−1
k else : 0

in =
∑
k∈K

if al−1
k < 0 : α · wajk · a

l−1
k else : 0

Note that with MIN and MAX we mean the functions MIN and MAX that
select the lowest and highest arguments respectively. And with lowercase
min and max we mean the parameters of the network. α and γ are user
defined parameters.

2.3 Unfold network to time

Normally the backward propagation algorithm is designed to train feed for-
ward networks. However the CIA model is not a feed forward neural net-
work, at each iteration the activation of all the layers are determined and
the network contains cyclic links. The network therefore has to be unfolded
to a feedforward neural network (Rogers et al., 2004). This is referred to as
the unfolded network. To achieve this a property, that it runs for a limited
number of iterations, of the CIA model is used.

In this unfolded network each layer contains all the nodes of the original
network. Each layer represents one iteration. This is why the activation of
the nodes in the input layer is the same as the activation of the CIA model
before the first iteration. The activations of the nodes in the second layer
correspond with activation of the CIA network after the first iteration. The
connection are mapped in a very simple way. If the CIA model contains a
connection from node a to b then and only then there will be a connection
in the unfolded network from node a in layer l to b in layer l + 1. Figure
2.3 illustrates the working of this unfolding mechanism.

10

It is possible to calculate the delta weight of the now unfolded network us-
ing the back propagation network as one would do for a feedforward neural
network. All the connections of the CIA model will be mapped to multiple
connections in the unfolded network for each iteration. Because the back-
propagation method is applied to the unfolded network, now it is possible
to find delta weight values for each of the connections. However, in the CIA
model there is only one connection, so to use all these delta values, they will
have to be combined in some way. Rogers et al. (2004) has determined that
a good way to do this is to simply sum the delta values. Therefore all the
delta weight values of the connections in the CIA model are summed into
one number. Now there is a delta weight value for each connection of the
CIA model, which can be used in the gradient descent step.

Figure 2.3: Unfolding a recurrent network adapted from “Explorations in
Parallel Distributed Processing: A Handbook of Models, Programs, and
Exercises” by James L. McClelland, 2014.

8.2. THE RBP PROGRAM 175

Figure 8.2: Standard (top) and unfolded (bottom) visualization of a recurrent
neural network like the one used in the Rogers et al. (2004) model. The unfolded
network makes clear the fact that activation at one time influences the activa-
tions at the next time step. In this unfolded form, the network is equivalent
to a feed-forward network, where forward refers now to time. Activation feeds
forward in time, and error signals (delta terms) feed back.

11

Chapter 3

Method

3.1 Data set and training

The data set used to train and test the network is the SWELL-KW data
set (Koldijk, 2014). It contains the data of 25 participants, each partici-
pating for roughly 3 hours. The participants performed typical knowledge
work: writing reports, makings presentations, reading and performing re-
search during an experiment. The data set contains three different working
conditions: email interruptions, time pressure and neutral conditions

The data set contains different types of features: computer interaction, facial
expressions, body postures and physiology.In this thesis only the computer
interaction data is used. The data consists of the feautres: mouse position,
words typed, window titles and application names. This data is collected
using the keylogger ulog and IEhistory.

The same data set is used by (Maya Sappelli, n.d.) for training and testing
the CIA model. There were 8 different topics the partcipants could be work-
ing on. The events were labeled with these topics using amazon mechanical
turk. Some events could not be identified. These received the 9th label:
‘unidentified’.

The unidentified events will be discarded in the training or test set since
it is impossible to calculate error or determine accuracy based on these
events. For all the events that have a label other than ‘unidentified’ the
events that belong to each label are determined. For each label 70% of the
events are being put into the training set and 30% are being put into the
test set.

Since the network uses information of previous events to determine the acti-
vation of the next event, all the events (including the ones labelled ‘unidenti-

12

fied’) will have to be activated in the same order to train or test the network.
During training the error is only propagated back if the activated event is
part of the training set (and thus isn’t labelled as unidentified). During the
test phase the accuracy is calculated as follows:

events that are part of the test set and correctly identified
events that are part of the test set

The accuracy of the test set on the network will be determined twice: once
before the network has been trained and once after the training has taken
place. Both are determined by running the original cia model.

During training for each epoch, track is also being kept of the average error
and accuracy on the training set. The accuracy is calculated in the same
way as the accuracy was calculated on the test set:

events that are part of the train set and correctly identified
events that are part of the train set

3.2 Activation function

One property of the backpropagation algorithm is that we need a derivative
of the activation function to calculate the deltaweight values. In case of the
grossberg activation network we have a function with 3 arguments:

α(a, in, ex) = MAX(min,MIN(max, a+(max−a)∗ex+(a−min)∗
in− decay(a− rest)))

Where a is the old activation, in is the inhibitory input and ex the ex-
citatory input. Our network has two types of input connections, namely
inhibitory and excitatory input connections. Two derivatives are therefore
needed. First:

∂α
∂in = a−min

∂α
∂ex = max− a

Where a is the current activation or in the case of the unfolded network the
activation of the same node in the previous layer and min and max are
parameters of the network.

13

3.3 Cost function

The cost function is difficult to define since the node with the highest in-
crease in activation is selected instead of the node with the highest absolute
activation. First the Mean Sqaured Error(MSE) is used. It is assumed that
the ideal situation would be that the activation of an output node that is
not the output node belonging to the label of this event is equal to the pa-
rameter min. And the ideal activation of the output node that corresponds
with the label of this event is assumed to be equals to the parameter max.

If we have a vector a which contains the activation of each output node
for event x and have a vector y that gives the expected output for each out-
put node(thus max for the expected node and min for all the other output
nodes). Then the error for event x can be written as:

Ex = 1
2 · ‖y − a‖

2

The avarage error of the complete training set then looks like:

E = 1
|N | ∗

∑
n∈N

∑
x∈X

Enx

Where N are the training samples and thus |N | the number of training
events. X denotes the set of all output nodes and Enx denotes the error of
output node x in training set n.

The derivative of the error is:

∂E
∂a = a− y

So the delta error of the identification node that belongs to the event label
will be its activation minus the max parameter. And the rest of the identifi-
cation nodes have a delta error of their activation minus the min parameter.
Note that the last layer of the unfolded network contains more nodes than
just the identification nodes. However the only nodes that have a target
activation are the identification nodes. The error for all the nodes in the
last layer that are not identification nodes will be 0, since it doesn’t matter
what the activations are as long as the identification nodes have the right
value. Since the error is 0 in the non identification nodes, the derivative will
also be 0.

3.4 Feeding forward and propagating back

When we predict a label for an event the corresponding input node is ac-
tivated, meaning we set the activation to 1.0. During all the iterations to

14

calculate the output of the network the activation is kept at 1.0, so the de-
cay of this node is ignored. The number of iterations is a parameter. In
this case it is set to 10. The activation step is exactly the same as used by
(Maya Sappelli, n.d.)

Since the Grossberg activation function uses two types of input, inhibitory
and excitatory, track is also being kept of both types separately during the
feedforward process. The input is then calculated using the following for-
mulas:

ex =
∑
k∈K

if al−1
k > 0 : α · wajk · a

l−1
k else : 0

in =
∑
k∈K

if al−1
k < 0 : γ · wajk · a

l−1
k else : 0

More information about activation can be found in section 2.2.3

Since there are two types of inputs there are also two types of errors when
propagating back. Namely, the error that is created via the inhibitory in-
puts and the error that is created via the excitatory input. When calculating
the error of a node there are two possible cases. If the node has a positive
activation, we sum the excitatory error of the output connected nodes into
a number. If the node has a negative activation we sum the inhibitatory er-
rors of the output connected nodes into a number. This can be explained in
the following way: if a node has a positive activation it will only contribute
to the excitatory error of the connected nodes. Additionaly if a node has
a negative activation it will only contribute to the inhibitory error of the
connected nodes.

Then we want to propagate the number back over the node to get the ex-
citatory and inhibitory error of the node. The excitatory error of the node
is dertermined by multiplying the number with the delta activation with
respect to the excitatory input. The inhibitory error of the node is derter-
mined by multiplying the number with the delta activation with respect to
the inhibitory input. In formula form:

∂elj = ∂α
∂zel
· elj

∂ilj = ∂α
∂zil
· elj

Here

15

if alj ≥ 0 :

elj =
∑
n∈J

wljn · δel+1
n

otherwise:

elj =
∑
n∈J

wljn · δil+1
n

δelj describes the excitatory error of node l in layer j, δilj describes the in-

hibitory error of node l in layer j. elj is a temporary variable that we use. It

describes the error after the node j in layer l. zilj describes the inhibitory in-

put of node j in layer l. And zelj describes excitatory input of node j in layer l

Once the errors for all nodes have been calculated, the delta weights of
all the connections can be calculated. This is done by multiplying the error
of the next node with the activation of the previous node. If a connection
starts at a node with a positive activation the excitatory error is used.

In a feedforward neural network the weights of connections from nodes that
are not activated are not altered. Since the delta weights are calculated
using δC

δwl
jk

= al−1
k δlj

and the activation would be 0. In the case of the CIA model the minimum
activation is set to -0.2. Therefore the weights of the connections connected
to nodes that are not activated are still altered. It was found that the net-
work performed better when the connections that start with a node with a
negative activation are not altered. Therefore in our case these deltaweights
are set to 0.0.

The delta weights for each connection are derived from the errors as fol-
lows:

if al−1
k < 0 :

δC
δwl

jk

= 0

else:
δC
δwl

jk

= al−1
k · δelj

Since we are using an unfolded network the deltaweight of the connections in
multiple layers representing one connection in the orginal layer are summed
to find the deltaweight for the original network (as described in section 2.3).

To prevent local-minima problems all the delta weights of all training events
during one training epoch are summed and the deltaweights are substracted

16

from the connections once the epoch is done. This method is called ”batch-
ing”. In the unfolded network the same connections between the different
layers always have the same weight. When adjusting the weights of the un-
folded network using gradient descent the same delta weights are used for
each connection used in the CIA model.

3.5 Experiment

The complete process follows the following steps:

f o r pp in pa r t i c i p an t s :
bu i ld c i amode l (pp)
s p l i t t r a i n a n d t e s t s e t (pp)
d e t e rm in e a c cu r a c y u s i n g t e s t s e t (pp)
r e s e t c i amode l (pp)
bu i ld un fo lded network (pp)
f o r epoch in epochs :

c a l c d e l t a we i g h t (epoch)
update we ights c iamode l (l e a r n i n g r a t e)
update we ights unfo lded network (l e a r n i n g r a t e)

d e t e rm in e a c cu r a c y u s i n g t e s t s e t (pp)

3.5.1 Parameters

We used the same parameters values as the values used in the original CIA
model paper (Maya Sappelli, n.d.) namely:

min -0.2

max 1.0

rest -0.1

alpha 0.1

gamma 0.1

decay 0.1

The CIA model supports a few of topic extraction algorithms from which
LDA gets the best results. However LDA (Latent Dirichlet Allocation) is
not deterministic. We prefer that the results are deterministic so we can
meassure the differences in performances without uncertainty. For this pur-
pose, the latent semantic analysis (Deerwester, Dumais, Landauer, Furnas,
& Harshman, 1990) is used to retrieve the topics.

17

Chapter 4

Results

We have optimized the network by trying different learning rates and epochs
numbers and use the performance as an indicator. We found that training
the network with a learning rate of 0.00075 and 10 epochs for each partic-
ipant was a good configuration. We also used batching, which means we
summed all the deltaweights of all training events during one training cycle
and after the epoch substracted it from the network weights. We described
the batching process in chapter 3. Based on this configuration the behaviour
on the training set and the test set will be shown in this chapter. In the last
section some of the results of other configurations are also shown.

18

4.1 Behaviour on training set

First, the behaviour on the training set is shown. Table 4.1 shows the ac-
curacy on the training set and the change of the error for each participant.
It was found that in almost all cases the error decreased slightly except for
participant 25. The accuracy on the training set for participant 3, 9, 10,
14, 20, 22 and 24 went down while the error also went down. All other
participants showed a decrease of the error while showing an improvement
of the performance.

In figure 4.1 the error and performance of participant 1 for each training
epoch is plotted. Participant 1 is an example of an participant where the
error went down and the performance went up. We see that the error went
down very smoothly and the performance is went up in the opposite direc-
tion.

In figure 4.2 the error and performance of participant 14 for each train-
ing epoch is plotted. Participant 14 is an example of an participant where
the error went down while the performance also went down. We see that
the error went down in a straight line but the decrease of the performance
also slowed down.

In figure 4.3 the error and performance of participant 25 for each train-
ing epoch is plotted. Participant 25 is the only participant where the error
went up. We see that the performance jumps back and forth while the error
slowly increases.

19

pp first accuracy last accuracy error diff

1 0.630 0.760 -0.00134

2 0.377 0.410 -0.00012

3 0.577 0.440 -0.00030

4 0.207 0.241 -0.00114

5 0.280 0.360 -0.00005

6 0.227 0.302 -0.00012

7 0.439 0.485 -0.00038

8 0.464 0.470 -0.00017

9 0.358 0.317 -0.00020

10 0.515 0.491 -0.00022

11 0.239 0.310 -0.00037

12 0.308 0.321 -0.00012

13 0.425 0.467 -0.00056

14 0.560 0.432 -0.00021

15 0.311 0.419 -0.00028

16 0.429 0.476 -0.00042

17 0.504 0.556 -0.00017

18 0.184 0.194 -0.00011

19 0.000 0.027 -0.00040

20 0.657 0.624 -0.00020

21 0.624 0.682 -0.00027

22 0.578 0.374 -0.00005

23 0.482 0.491 -0.00017

24 0.557 0.542 -0.00016

25 0.624 0.624 0.00003

Table 4.1: Showing the accuracy of the first training epoch, accuracy of the
last training epoch and the difference in error for each participant. Accu-
racy is obtained by diving the number of training event correctly identified
divided by the number of training events.

20

0 2 4 6 8

0.6435

0.644

0.6445

epoch

error
0 2 4 6 8

65

70

75

performance

Error
Performance

Figure 4.1: Error and performance of participant 1 during training. Perfor-
mance is defined as the number of training events correctly identified.

0 2 4 6 8

0.649

0.6491

0.6492

epoch

error
0 2 4 6 8

120

140

performance

Error
Performance

Figure 4.2: Error and performance of participant 14 during training. Per-
formance is defined as the number of training events correctly identified.

21

0 2 4 6 8

0.6493

0.64931

0.64932

0.64933

epoch

error
0 2 4 6 8

110

111

112

performance

Error
Performance

Figure 4.3: Error and performance of participant 25 during training. Per-
formance is defined as the number of training events correctly identified.

4.2 Performance on test set

In table 4.2 the accuracy of the test set for each participant before and after
training is shown. We see that the accuracy decreased for participants 2, 8
and 14. The performance did not change for the participants 4, 11, 16 and
19. For all other participants the accuracy improved..

22

pp train set size test set size before after

1 100 43 0.488 0.581

2 122 52 0.288 0.269

3 168 73 0.685 0.767

4 58 23 0.261 0.261

5 214 93 0.344 0.355

6 172 72 0.361 0.431

7 66 29 0.690 0.724

8 151 65 0.554 0.538

9 123 53 0.434 0.528

10 171 70 0.614 0.643

11 71 31 0.581 0.581

12 78 32 0.438 0.469

13 120 50 0.600 0.660

14 273 117 0.607 0.538

15 167 72 0.361 0.431

16 84 36 0.639 0.639

17 135 57 0.632 0.649

18 196 84 0.464 0.524

19 37 15 0.600 0.600

20 181 76 0.500 0.539

21 85 34 0.676 0.676

22 211 91 0.692 0.703

23 112 48 0.479 0.500

24 201 83 0.470 0.518

25 178 75 0.280 0.293

Total 3474 1474

Average .510 0.537

Table 4.2: Accuracy per participant on the test set before and after training.
Accuracy is determined by dividing number of events correctly identified on
test set by the number of events in the test set. Averages are obtained by
dividing the sum of all accuracies by the number of participants.

23

4.3 Other configurations

Some additional experiments with different learning rates and different num-
bers of epochs were also run. In the following table 4.3 the different config-
urations and their performance on the test and training set are shown.

The results show that with a higher learning rate the error decreased faster.
However, at the same time the performance on the training set decreased
and the accuracy of the test set decreased faster. We also see that with
batching enabled the performance on the training set is higher.

Additionally we see that a dividing the learning rate by 2 and increasing
the number of epochs with a factor 2 increased the error while improving
the error on the test set slightly.

ε η Batching Accuracy Per. diff Error
diff

0.0025 10 no 0.434 - 88 -0.000836

0.001 10 no 0.498 - 62 -0.000449

0.001 10 yes 0.501 - 36 -0.000433

0.0005 20 yes 0.501 - 34 -0.000533

Table 4.3: The performance of different configurations. ε denotes the learn-
ing rate, η denotes the number of training epochs, batching denotes if we
batched all the delta weight values(as described in chapter 3). Accuracy is
obtained by dividing the total number of test events correctly identified af-
ter training by the total number of test events. The performance difference
denotes the total number of training events correct after the training minus
the total number of training events correct before the training. The error
difference shows the average error after training minus the average error
before training.

24

Chapter 5

Discussion

Training the CIA network with backpropagation improves the accuracy of
the context detection slightly. There is an increase from an average ac-
curacy of 51% to 53.7%. Since optimizing a neural network is very time
intensive, we have trained all the different networks for each participant
with the same configuration. Table 4.2 shows that there are differences in
performance gain among te different participants. Since for each partici-
pant there is a separately network with a different number of nodes and
connections. It is possible that higher performance gains could be achieved
when the training configuration is optimized separately for each participant.

The used learning rate and number of epochs might seem low. This is
mainly caused by the relatively low differences in activation of the nodes.
Only a relatively small activation difference is required to change the identi-
fication label. Also when comparing these values with other neural networks
it should be considered that the unfolding process sums the delta weight val-
ues of all iterations. In our case this makes the learning rate effectively 10
times higher. .

Perhaps the most notable fact of the results is that in many cases the er-
ror goes down while the actual performance on the training set also goes
down. Table 4.3 indicates that a higher learning rate will also lead to even
more performance loss on the training set while decreasing the error. This
strongly suggests that the error function isn’t performing well. One possible
cause might be that we assume that the activation of an identification node
should be equal to either the minimum or maximum parameter. However,
in a normal feedforward neural network this is not a problem, because the
previous input does not influence the result of the next input.

25

Chapter 6

Conclusions

In this thesis a method was proposed that is able to improve the accuracy of
the CIA model using back propagation. Since the CIA model is a recurrent
network the unfolding technique has been applied. Also the thesis describes
a method that is able to handle the two types of inputs for the Grossberg
activation function.

The research question was: Can the accuracy of the CIA model be im-
proved using back propagation? We were able to improve the accuracy of
the network just a litte from 51% to 53.7% on the SWELL-KW data set.
The results strongly suggest that the proposed error function isn’t perform-
ing well. Since in most cases the error is decreasing steady, while at the
same time in many cases the accuracy on the training set is decreasing. We
therefore believe that with the right error function the accuracy is very likely
to show more improvement. Future research is required to find a better er-
ror function that is capable of improving the performance on the training set.

The SWELL-KW data set consists of 25 participants. For each participant a
seperate CIA model is build. But in our approach we use the same learning
rate and number of training epochs for each participant. It is likely that
optimizing the learning rate and number of training epochs for each partic-
ipant separately will lead to better accuracies. Future reasearch would be
required to verify if the accuracy increases when optimizing the networks
separately.

26

References

Deerwester, S. C., Dumais, S. T., Landauer, T. K., Furnas, G. W., & Harsh-
man, R. A. (1990). Indexing by latent semantic analysis. JASIS ,
41 (6), 391–407.

Finkel, J. R., Grenager, T., & Manning, C. (2005). Incorporating non-local
information into information extraction systems by gibbs sampling.
In Proceedings of the 43rd annual meeting on association for compu-
tational linguistics (pp. 363–370).

Koldijk, S. M. V. S. N. M. . K. W., S. (2014). The swell knowledge work
dataset for stress and user modeling research. Proceedings of the 16th
ACM International Conference on Multimodal Interaction.

Maya Sappelli, W. K., Suzan Verberne. (n.d.). A network-based model for
working with context.

McCallum, A. K. (2002). Mallet: A machine learning for language toolkit.
(http://mallet.cs.umass.edu)

McClelland, J. L., & Rumelhart, D. E. (1981). An interactive activation
model of context effects in letter perception: I. an account of basic
findings. Psychological review , 88 (5), 375.

Michie, S. (2002). Causes and management of stress at work. Occupational
and Environmental Medicine, 59 (1), 67–72.

Nielsen, M. A. (2015). Neural networks and deep learning. Determination
Press.

Rogers, T. T., Lambon Ralph, M. A., Garrard, P., Bozeat, S., McClelland,
J. L., Hodges, J. R., & Patterson, K. (2004). Structure and deterio-
ration of semantic memory: a neuropsychological and computational
investigation. Psychological review , 111 (1), 205.

Rummelhart, D. (1986). Learning representations by back-propagating
errors. Nature, 323 (9), 533–536.

27

Appendix A

Appendix

28

pp train set
size

First
perfor-
mance

Last
perfor-
mance

First
error

Last
error

1 100 63 76 0.644532 0.643191

2 122 46 50 0.649225 0.649102

3 168 97 74 0.648566 0.648270

4 58 12 14 0.644988 0.643847

5 214 60 77 0.649724 0.649642

6 172 39 52 0.649727 0.649606

7 66 29 32 0.646295 0.645916

8 151 70 71 0.648357 0.648182

9 123 44 39 0.649174 0.648975

10 171 88 84 0.648751 0.648530

11 71 17 22 0.648196 0.647825

12 78 24 25 0.649689 0.649565

13 120 51 56 0.647172 0.646612

14 273 153 118 0.649187 0.648973

15 167 52 70 0.648898 0.648615

16 84 36 40 0.646080 0.645659

17 135 68 75 0.648250 0.648082

18 196 36 38 0.650440 0.650329

19 37 0 1 0.650693 0.650290

20 181 119 113 0.649080 0.648881

21 85 53 58 0.646855 0.646589

22 211 122 79 0.648654 0.648571

23 112 54 55 0.647905 0.647735

24 201 112 109 0.649679 0.649516

25 178 111 111 0.649300 0.649333

total 3474 1556 1539

Average 0.648377 0.648073

Table A.1: For each participant the train set size, the correctly identified
events during the first epoch and the last epoch. And the average error of
the first epoch and the last epoch.

29

pp train set size test set size before after

1 100 43 21 25

2 122 52 15 14

3 168 73 50 56

4 58 23 6 6

5 214 93 32 33

6 172 72 26 31

7 66 29 20 21

8 151 65 36 35

9 123 53 23 28

10 171 70 43 45

11 71 31 18 18

12 78 32 14 15

13 120 50 30 33

14 273 117 71 63

15 167 72 26 31

16 84 36 23 23

17 135 57 36 37

18 196 84 39 44

19 37 15 9 9

20 181 76 38 41

21 85 34 23 23

22 211 91 63 64

23 112 48 23 24

24 201 83 39 43

25 178 75 21 22

Total 3474 1474 745 784

Table A.2: For each participant the train and test set sizes and the number
of events of the test set correctly identified before and after the training.

30

ε η B tea trpf trpl tref trel

0.0025 10 no 676 1583 1495 .64833456 .64749828

0.001 10 no 775 1574 1512 .64835992 .64791072

0.001 10 yes 780 1556 1520 .64837668 .64794416

0.0005 20 yes 780 1556 1522 .64837668 .64784348

Table A.3: Performance of different configurations. Tea denotes the cor-
rect number of events after training. trpf and tref denotes the number of
events of the training set correctly identified and the average error during
first epoch. trpl and trel denotes the number of events of the training set
correctlye identified and the average error during last epoch.

31

