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Abstract

In this thesis we focus on implementing an optimized version of Nuss-
baumer’s negacyclic convolution algorithm for the New Hope key exchange
protocol. To do so, we start by discussing the algorithm itself as specified
by Knuth and the optimizations that can be applied to lower the amount of
ring operations as specified by Nussbaumer. We shall see that the number-
theoretic transform, the alternative algorithm New Hope uses to calculate
the same, requires significantly fewer ring operations. Afterwards we build
an AVX2 implementation of Nussbaumer’s algorithm for New Hope, which
allows us to tweak a constant chosen in the key exchange increasing security
and furthermore simplifying reduction steps. We will then show that this
turns out to not just increase the security of New Hope, but it also gives a
more efficient implementation.
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Chapter 1

Introduction

With the emerging of some basic quantum computers [1], even though they
seem to provide a speedup of no more than a constant factor [2], the cryp-
tographic scenery is changing. Many public-key ciphers that are commonly
used, such as RSA and (elliptic curve) Diffie-Hellman, would efficiently
be broken by more advanced quantum computers [3] through Shor’s al-
gorithm [4]; as such, new standards are actively considered for providing
security in a post-quantum world [5].

One mathematical foundation for an algorithm that is efficient and fur-
thermore thought to be secure even post-quantum is the Ring Learning
with Errors (RLWE) problem [6]. Bos et al. proposed and implemented an
instantiation of such in the form of a key exchange protocol using this prob-
lem [7]. Alkim et al. built on this paper, further improving and optimizing
it [8].

Henceforth we will refer to the paper by Bos et al. as ‘BCNS’, after its
authors, and the paper by Alkim et al. as ‘New Hope’, after its title. The lat-
ter shall be used interchangeably to mean either the paper, its described key
exchange protocol or its accompanied implementation: its meaning should
be clear from the context.

Due to the choice of parameters by BCNS, a common operation in the
protocol is the multiplication of two polynomials in variable u with coef-
ficients in Z/qZ, reduced modulo un + 1, where n and q are picked to be
1024 and 232 − 1, respectively; these multiplications turn out to be equiva-
lent to the calculation of a negacyclic convolution. New Hope inherits these
calculations, with the exception that a different q is adopted [8].

BCNS opted to use Nussbaumer’s algorithm [9] in order to find the
negacyclic convolution. They base their implementation on that covered
in Knuth’s ‘the Art of Computer Programming’ [10], exercise 4.6.4.59, even
though “the algorithms are presented in unoptimized form” [10]. In fact, the
few implementations of Nussbaumer’s algorithm available are all based on
the version by Knuth, and lack the implementation of further optimizations
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Nussbaumer proposes in his paper.
New Hope introduces an improved analysis of the failure rate of a key

exchange, which allows the lower value of q = 12289 to be chosen, “which im-
proves both efficiency and security” [8]. The fact that q can not be decreased
further is due to limitations of the number-theoretic transform (NTT) al-
gorithm used instead of Nussbaumer’s to calculate the polynomial product,
which requires that q ≡ 1 (mod 2n). For this reason New Hope chose the
value q to be minimal under these constraints.

1.1 Contributions

In this work we focus on Nussbaumer’s algorithm, in particular in the context
of New Hope. We provide the following:

• We give an in-depth overview of Nussbaumer’s algorithm as described
by Knuth [10], including its theoretic background and corresponding
pseudo-code. We furthermore provide this version in the form of an
unoptimized C++ implementation.

• We discuss and implement in C++ the optimizations presented by
Nussbaumer in his paper [9], and consider their efficiency in terms
of number of ring operations required for the algorithm. We compare
the final implementation with that of the NTT implementation in New
Hope using the same measure.

• We implement an optimized hybrid version (using Karatsuba’s method
for the recursion step) of Nussbaumer’s algorithm using the AVX2
instruction set, in the context of New Hope. In particular, a different
q is selected (no longer being subject to NTT’s restrictions) in order to
make the algorithm more secure and the reduction steps more efficient.
We show that the implemented version actually beats the original NTT
implementation not only in terms of security, but also in terms of
performance.

The full source code is available at https://github.com/spoofedex/
nussbaumer1 and released under the public domain ‘unlicense’ [11].

We will not focus on perfecting our optimized version: we simply pro-
vide a version that is vectorized with thoroughly considered choices, even
though further optimizations may and will still exist. Also note that we will

1The C++ implementation of Nussbaumer’s algorithm is copied and slightly modified
for each optimization, even though this seems to contradict the design principle to min-
imize duplicate code. We opted for this approach in order to prevent clutter of code for
different versions, which would have a negative impact on readability, and in order to focus
on the progressive nature of the distinct versions without making version control history
an integral part of the project.

4

https://github.com/spoofedex/nussbaumer
https://github.com/spoofedex/nussbaumer


not go into depth on the cryptographic schemes associated to New Hope,
as we merely focus on the aspect of negacyclic convolutions and are not
immediately concerned with RLWE algorithms.

1.2 Related Work

Many algorithms exist to calculate a negacyclic convolution. First, it is pos-
sible to calculate a full polynomial multiplication, for example with Karat-
suba’s algorithm or the schoolbook algorithm, followed by a trivial reduc-
tion. However, there also exist specialized algorithms for calculating the
negacyclic convolution, such as the number-theoretic transform methods,
the Schönhage method and the Nussbaumer method [12].

We focus specifically on Nussbaumer’s algorithm. Besides his own paper,
the algorithm is explained both in exercise 4.6.4.59 of Knuth’s ‘the Art of
Computer Programming’ [10] and in the book ‘Prime Numbers: A Compu-
tational Perspective’ [12]. Neither of these produce the further optimizations
presented in Nussbaumer’s original paper.

Few implementations of Nussbaumer’s algorithm exist. GMP [13] and
MPIR [14] both have implementations available for multiplying large in-
tegers, libzn-poly [15] has an available implementation, and BCNS imple-
mented it for their RLWE key exchange algorithm [16]. However, each of
these implementations are non-vectorized and lack some of the optimizations
of Nussbaumer’s paper.

One more publicly available implementation exists, written for the paper
‘Sieving for Shortest Vectors in Ideal Lattices: a Practical Perspective’ [17].
This implementation [18], while still not implementing the optimizations
of Nussbaumer, has been implemented to use vectorization through SSE
instructions. However, not only does it implement a different set of pa-
rameters and does it lack vectorization of the forward transform, but most
significantly it lacks the comparison with another negacyclic convolution
algorithm on which we focus in this thesis.
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Chapter 2

Preliminaries

The following describes some of the preliminaries for this thesis. Addi-
tionally, the reader is assumed to be familiar with Fourier transforms, in
particular the decimation in time (DIT) fast Fourier transform, which is not
covered separately here due to its wide usage. We refer readers unfamiliar
with this subject to ‘Inside the FFT Black Box’ [19].

2.1 Convolutions

A core concept we consider in this thesis is that of convolutions.
Let (a0, a1, . . . , an−1) and (b0, b1, . . . , bn−1) be sequences of length n.

Then the acyclic convolution of these sequence is itself a length (2n − 1)
sequence (z̃0, z̃1, . . . , z̃2n−2) with

z̃i =
∑

n+m=i

anbm.

The cyclic convolution of (ai)
n−1
i=0 and (bi)

n−1
i=0 is then defined as a length

n sequence (zi)
n−1
i=0 with zi = z̃i + z̃i+n, whereas the negacyclic convolution

is defined as another length n sequence (yi)
n−1
i=0 with yi = z̃i − z̃i+n, where

(z̃i)
2n−2
i=0 is defined as above, padded with z̃2n−1 = 0.
These concepts have a strong correlation to that of modular polynomial

multiplication. Let A(u) and B(u) be polynomials of degree at most n− 1,
with A(u) =

∑n−1
i=0 aiu

i and B(u) =
∑n−1

i=0 biu
i. Then it is easy to check

that for (z̃i)
2n−2
i=0 the acyclic convolution of (ai)

n−1
i=0 and (bi)

n−1
i=0 , the following

holds for the product of A and B:

A(u)B(u) =
2n−2∑
i=0

z̃iu
i.

Note that for such polynomials A and B there exists exactly one polyno-
mial Z(u) ≡ A(u)B(u) (mod un−1) and one polynomial Y (u) ≡ A(u)B(u)
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(mod un + 1) for which the degrees of Z and Y are less than n. For these
polynomials Z(u) =

∑n−1
i=0 ziu

i and Y (u) =
∑n−1

i=0 yiu
i, it is easy to verify

that (zi)
n−1
i=0 and (yi)

n−1
i=0 are exactly the cyclic convolution and the negacyclic

convolution, respectively, of (ai)
n−1
i=0 and (bi)

n−1
i=0 .

A core theorem on which Nussbaumer’s negacyclic convolution algorithm
is based is a discrete version of the cyclic convolution theorem as given in
Theorem 1 in Appendix A, which states that the Fourier transform of a
cyclic convolution of two sequences is equivalent to the pointwise product of
the Fourier transform of these sequences.

2.2 Karatsuba’s Algorithm

The Karatsuba algorithm is an algorithm that calculates the product of two
polynomials. Here, we will cover a specialized version of Karatsuba that
requires the input polynomials to have 2n − 1 coefficients for some n: this
is true for the polynomials we consider in this thesis1.

Let p(u), q(u) be two such polynomials. We first split the polynomials in
half, that is, we find p1(u), p2(u), q1(u), q2(u) polynomials of degree at most
2n−1 − 1 such that p(u) = p1(u) + p2(u)u(2

n−1) and similar for q(u). Then:

pq = (p1 + p2u
(2n−1))(q1 + q2u

(2n−1))

= p1q1 + (p1q2 + p2q1)u
(2n−1) + p2q2u

2n

= p1q1 + [(p1 + p2)(q1 + q2)− p1q1 − p2q2]u(2
n−1) + p2q2u

2n

Karatsuba’s algorithm exploits the realization that this latter form re-
quires not four recursive polynomial multiplications, but three: one for p1q1,
one for p2q2 and finally one for (p1 + p2)(q1 + q2).

The number of steps these calculations require is now T (n) = 3T (n2 ) +
O(n). The complexity of this algorithm follows from the master theorem
as Θ(nlog2(3)), while the schoolbook algorithm with one extra polynomial
multiplication would have complexity Θ(n2).

When performing the algorithm as specified, some additions turn out to
be executed more than once. Figure 2.1 shows a schematic overview of the
additions. The lower half of the result requires the calculation of the upper
half of p1q1 minus the lower half of p2q2. However, the upper half of the
result requires the calculation of the lower half of p2q2 minus the upper half
of p1q1: note that the two are sign inversions of each other, so the latter can
be calculated by subtracting the first, omitting these additions.

Throughout this thesis we do not directly use the output of Karatsuba’s
algorithm, but first reduce modulo un + 1 to calculate a negacyclic convo-
lution. This can be calculated by subtracting the upper half of the output

1Of course one could append coefficients with value 0 in the general case, but this
would generally not be the most efficient method of applying Karatsuba’s algorithm.

7



from the lower half. It turns out that doing this we again duplicate the
calculation of certain additions, in this case the adding of the lower half of
p1q1 and the upper half of p2q2, which can similarly be omitted.

p1q1 p2q2

+(p1 + p2)(q1 + q2)

−p1q1
−p2q2

Figure 2.1: Schematic overview of additions/subtractions required for Karat-
suba’s algorithm, where light-gray fields indicate a single coefficient that is
always 0, due to the fact that the given polynomial can be of degree of at
most 2n − 2.
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Chapter 3

Nussbaumer’s Negacyclic
Convolution Algorithm

In his paper Nussbaumer [9] proposes an algorithm for calculating the ne-
gacyclic convolution of two N -sequences, where N is a power of two, say
N = 2n. Shifting perspective to that of polynomials with indeterminate u,
this equates to the calculation of the product, reduced modulo uN + 1, of
two polynomials; that is, the result being the remainder from dividing the
product by uN + 1. This chapter discusses Nussbaumer’s algorithm.

3.1 Overview

Nussbaumer’s algorithm is based on the observation in Theorem 2 (see Ap-
pendix A), being that for a given ring R, and for v1, v2 ∈ N with v1 ≤ v2
and v1 + v2 = n, and defining m = 2v1 and r = 2v2 (and hence rm = N and
m|r), that

R[u]/(uN + 1) ∼= (R[u1]/ (ur1 + 1)) [u2]/ (um2 − u1)

by the map (which we will call Ψ)

N−1∑
i=0

aiu
i 7→

m−1∑
i=0

r−1∑
j=0

amj+iu
j
1u

i
2.

As the resulting negacyclic convolution Z is reduced modulo uN + 1, its
degree can never exceed N−1, hence we can write Z =

∑N−1
i=0 ziu

i, where the

coefficients (zi)
N−1
i=0 are to be calculated. Accordingly, given X =

∑N−1
i=0 xiu

i

and Y =
∑N−1

i=0 yiu
i, with X,Y ∈ R[u]/(uN + 1), we find such Z with

Z = XY .
From the isomorphism property it follows that

Z = Ψ−1(Ψ(X)Ψ(Y )),
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where as per definition, if we set Xi =
∑r−1

j=0 xmj+iu
j
1 and similar for Yi,

Ψ(X)Ψ(Y ) =

(
m−1∑
i=0

Xiu
i
2

)(
m−1∑
i=0

Yiu
i
2

)
.

Note that
(∑m−1

i=0 Xiu
i
2

)(∑m−1
i=0 Yiu

i
2

)
is a polynomial with degree at

most 2m− 2, so reduction modulo u2m2 − 1 has no effect. Consequently the
product Ψ(X)Ψ(Y ) can be calculated as the length 2m cyclic convolution
of (Xi)

2m−1
i=0 and (Yi)

2m−1
i=0 with Xi and Yi set to 0 for i ≥ m, as the cyclic,

negacyclic and acyclic convolution each produce the same result.

In order to calculate this cyclic convolution, note that ω = u
r/m
1 is a

2m-th principal root of unity in R[u1]/(u
r
1 + 1) as shown in Theorem 3

(Appendix A), hence according to Theorem 1 the Fourier transform of this
convolution can be calculated as the pointwise product of the Fourier trans-
form of the 2m-sequences. These transforms can be calculated efficiently
with a fast Fourier transform algorithm, exploiting the fact that since the
calculations occur modulo ur1 + 1, multiplication by ω can be performed
merely by rotating coefficients and inverting the sign of overflows.

After performing the pointwise multiplications, themselves being nega-
cyclic convolutions of length r due to the ring the coefficients reside in,
followed by the inverse fast Fourier transform of the result we find the
cyclic convolution (Di)

2m−1
i=0 of (Xi)

2m−1
i=0 and (Yi)

2m−1
i=0 . As such, Ψ(Z) ≡∑2m−1

i=0 Diu
i
2 (mod um2 − u1).

The final step before trivially being able to perform the inverse Ψ−1 is
to find (Zi)

m−1
i=0 such that

2m−1∑
i=0

Diu
i
2 ≡

m−1∑
i=0

Ziu
i
2 (mod um2 − u1).

Note that

2m−1∑
i=0

Diu
i
2 ≡

m−1∑
i=0

Diu
i
2 +

2m−1∑
i=m

Diu
i
2

≡
m−1∑
i=0

Diu
i
2 +

2m−1∑
i=m

Diu1u
i−m
2 (mod um2 − u1)

≡
m−1∑
i=0

Diu
i
2 +

m−1∑
i=0

u1Di+mu
i
2

≡
m−1∑
i=0

[Di + u1Di+m]ui2 (mod um2 − u1),

hence we get Zi = Di + u1Di+m, noting again that multiplication by u1
only requires rotations of coefficients and sign inversion of overflows. The
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final step of performing Ψ−1 is then trivial performed as a shuffle (more
specifically a transpose) of coefficients.

This shows that the negacyclic convolution can be calculated as follows
(the case for N = 2 being excluded as a simple base case):

1. Pick m and r under above conditions.

2. Set Xi =
∑r−1

j=0 xmj+iu
j
1 and Yi =

∑r−1
j=0 ymj+iu

j
1 for 0 ≤ i < m and

Xi = Yi = 0 for m ≤ i < 2m.

3. Perform a fast Fourier transform with 2m-th principal root ω = u
r/m
1

on (Xi)
2m−1
i=0 and (Yi)

2m−1
i=0 ; name these (X̃i)

2m−1
i=0 and (Ỹi)

2m−1
i=0 , respec-

tively.

4. Calculate (Z̃i)
2m−1
i=0 as the pointwise product of (X̃i)

2m−1
i=0 and (Ỹi)

2m−1
i=0 ;

more specifically Z̃i is the negacyclic convolution of X̃i and Ỹi. This
can be done through recursion or some alternative algorithm.

5. Perform an inverse fast Fourier transform of (Z̃i)
2m−1
i=0 ; call this (Di)

2m−1
i=0

(note that 2m ∈ R needs to be invertible for this step).

6. Say Di =
∑r−1

j=0 diju
j
1. Find (zi)

n−1
i=0 with Zi =

∑r−1
j=0 zmj+iu

j
1, such

that Zi ≡ Di + u1Di+m.

Then (zi)
n−1
i=0 is the negacyclic convolution of (xi)

n−1
i=0 and (yi)

n−1
i=0 .

3.2 Parameter Choice

The algorithm described thus far still has a degree of freedom, namely the
choice of r or m (the other is then defined through mr = N). The optimal
choice of this parameter clearly depends on the algorithm used to calculate
the length r negacyclic convolution of Step 4 in the previous section.

In his paper Nussbaumer suggests that “it is often advantageous to use
only one small polynomial product algorithm to construct the various poly-
nomial products required for the cyclic convolution of length N . In par-
ticular, choosing (u2 + 1) as the basic building block with which all other
polynomial products are constructed is particularly interesting, since only
one algorithm with 3 multiplications and 3 additions need to be stored.” [9]1.
As such, both Knuth’s implementation and Nussbaumer’s concept recurse
into the algorithm itself, and both algorithms use r = 2dn/2e for each in-
stance.

As we will see in Section 5.6.1, recursing into Nussbaumer’s algorithm is
not optimal for our optimized implementation (and most implementations in

1Notation in this citation has been adapted to ours. Also note that as explained later,
the number of additions required is different if all transforms are considered towards the
operation count, which we will assume.
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general). Instead, we will use Karatsuba’s algorithm to calculate the smaller
negacyclic convolutions.

In Chapter 4 we consider the optimizations Nussbaumer proposes in his
paper. In order to analyze these optimizations as envisioned by Nussbaumer
we will imitate the method Nussbaumer proposed; hence in that chapter we
will recurse into Nussbaumer’s algorithm with the same r as proposed in his
paper. However, as we will not use this method for the final implementation,
arguing the choice of r in Nussbaumer’s application is outside the scope of
this thesis.

3.3 Implementation

Nussbaumer’s algorithm is made explicit in the form of a well-defined list of
calculations2 by Knuth [10]. We base our initial, unoptimized code on this
version; as do the implementations publicly available. In this section the
corresponding pseudo-code is given and its correctness is argued by show-
ing the correlation with the steps provided in the mathematical description
of Section 3.1. In the code the naming conventions of Knuth have been
preserved, but the code has been changed slightly with respect to Knuth’s
description for sake of clarity.

The algorithm is subdivided into three parts. First, we show the algo-
rithm for calculating the forward transforms, similar to Steps 2 and 3 of the
description in Section 3.1. Second, we show the inverse transform from Steps
5 and 6 in the same section. Finally, we wrap this into the full algorithm
that uses the other two in order to implement all steps.

Throughout this chapter we take the notation BitRevn(a) to be the
reverse of the lower n bits of an index a, and X(u) mod Y (u) to be the
remainder of dividing the polynomial X(u) by the polynomial Y (u).

3.3.1 Forward Transform

First we introduce the forward transform similar to Steps 2 and 3 of Sec-
tion 3.1. The result is not identical: we calculate X̃ and Ỹ as the fast
Fourier transform where the output is in bit-reversed order, as this allows
for a somewhat simpler implementation [19]. It will be shown later that this
is acceptable. The pseudo-code for this part of the algorithm is given in
Algorithm 1.

The butterfly operations in lines 16 and 17 can efficiently be calculated by
combining the multiplication (which is merely rotating and sign inversions)
with the addition in order to prevent the sign inversions to be performed

2It is too high-level to be referred to as pseudo-code, but lower level and more explicit
than the mathematical description given in Section 3.1.
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Algorithm 1 Knuth’s version of Nussbaumer’s negacyclic convolution
transformation algorithm.

Precondition: Let n, v1, v2 ∈ N, N = 2n, m = 2v1 and r = 2v2 with
mr = N and m|r. Let R be a ring, and let X = (xi ∈ R)N−1i=0 be a
length N sequence.

Postcondition: Returns the transformed polynomial as described in Nuss-
baumer’s algorithm Step 2 and 3 of Section 3.1, with the output in
bit-reversed order.

1: function Transform(N,m, r,X)
2: B Initialize X̃ for the fast Fourier transform.
3: for i← 1 to m− 1 do
4: for j ← 1 to r − 1 do
5: X̃ij ← xmj+i

6: X̃(i+m)j ← xmj+i

7:

8: B Perform all but the first step in the fast Fourier transform.
9: B Here X̃i(u) indicates the polynomial

∑r−1
j=0 X̃iju

j.
10: for j ← bn/2c − 1 to 0 do
11: for ŝ← 0 to m/2j − 1 do
12: s ← ŝ · 2j+1

13: s′ ← BitRevbn/2c−j(ŝ) · 2j
14: for t← 0 to 2j − 1 do
15: B Perform the Cooley-Tukey butterfly [19]
16: Z(u) ← X̃s+t(u)− {us′r/mX̃s+t+2j (u) mod (ur + 1)}
17: X̃s+t(u) ← X̃s+t(u) + {us′r/mX̃s+t+2j (u) mod (ur + 1)}
18: X̃s+t+2j (u) ← Z(u)

19: return X̃
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explicitly. These lines can thus be implemented merely with additions and
subtractions.

Note the similarity between the second part of the algorithm (lines 10
to 18) and the DIT FFT algorithm with natural ordered input and bit-
reverse ordered output. Should the iteration of the outer loop start with
the value j = bn/2c rather than bn/2c − 1, then it would be a regular
implementation of said algorithm (cf. algorithm 7.2 of ‘Inside the FFT
Black Box’ [19], where the variables Distance, K and J in the book are
represented by 2j , ŝ and s+ t in this algorithm, respectively).

This apparent discrepancy between the DIT FFT with bit-reverse or-
dered output and this part of the algorithm stems from an optimization
exploiting the property of the input (Xi)

2m−1
i=0 that the second half is set to

0. The result of an iteration with j = bn/2c is then easily confirmed to be
the first half repeated twice. This optimizes the calculations as the first 2m
polynomial additions of the FFT algorithm need not be calculated.

The first half of the algorithm, lines 3 to 6, initializes the input for
the second half in this manner. It reorders the coefficients to provide the
Xi (respectively Yi) in intuitive order (as per Step 2 of Section 3.1) and
duplicates the output twice to mirror the first iteration of the fast Fourier
transform.

It follows that Algorithm 1 performs Steps 2 and 3 of Section 3.1, with
the exception that the output is in bit-reversed order; that is, where the
order of the output is such that a coefficient is positioned at the index with
its binary representation mirrored with respect to the index of its position
in the order of output of a regular Fourier transform. For details, see ‘Inside
the FFT Black Box’ [19].

3.3.2 Inverse Transform

The second part of the algorithm as described by Knuth is the inverse trans-
form as described in Steps 5 and 6 in Section 3.1. Similar to the reasoning
for the forward transform the input is provided in bit-reversed order; this
furthermore allows the output of the former to be used as input of the latter
without a need for reordering.

The pseudo-code for this algorithm is shown in Algorithm 2. Note again
that the multiplication by u−s

′r/m modulo ur + 1 can be calculated through
rotating and sign inversion of coefficients.

We can see that the first part of the algorithm, lines 3 to 12, performs
the inverse of the fast Fourier transform of Algorithm 1. Namely, j iterates
though the same values a standard forward fast Fourier transform would, but
in reverse order, where each iteration updates Z̃i for i ∈ {0, 1, . . . , 2m − 1}
exactly once, for the same pairs X̃s+t and X̃s+t+2j as in their corresponding
iterations in the forward transform.
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Algorithm 2 Knuth’s version of Nussbaumer’s negacyclic convolution in-
verse transformation algorithm.

Precondition: Let n, v1, v2 ∈ N, N = 2n, m = 2v1 and r = 2v2 with
mr = N and m|r. Let R be a ring where 2 ∈ R is invertible. Let
Z̃ = (Z̃i)

2m−1
i=0 be a length 2m sequence of length r sequences in R.

Postcondition: Returns the coefficients of the polynomial after inverse
transformation as described in Nussbaumer’s algorithm Steps 5 and 6 of
Section 3.1, where the input is in bit-reversed order.

1: function InverseTransform(N,m, r, Z̃)
2: B Perform the full inverse Fourier transform.
3: for j ← 0 to bn/2c do
4: for ŝ← 0 to m/2j − 1 do
5: s ← ŝ · 2j+1

6: s′ ← BitRevbn/2c−j(ŝ) · 2j
7: for t← 0 to 2j − 1 do
8: i1 ← s+ t
9: i2 ← s+ t+ 2j

10: Y (u) ← 1
2(Z̃i1(u) + Z̃i2(u))

11: Z̃i2(u) ← 1
2u
−s′r/m(Z̃i1(u)− Z̃i2(u)) mod (ur + 1)

12: Z̃i1 ← Y (u)

13:

14: B Perform Step 6 of the algorithm described in Section 3.1
15: for i← 0 to m− 1 do
16: zi ← Z̃i0 − Z̃(m+i)(r−1)
17: for j ← 0 to r − 1 do
18: zmj+i ← Z̃ij + Z̃(m+i)(j−1)

19: return (zi)
2m−1
i=0
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These steps in the forward transform calculate (albeit in-place):

X̃ ′s+t(u)← X̃s+t(u) + {us′r/mX̃s+t+2j (u) (mod ur + 1)}

X̃ ′s+t+2j (u)← X̃s+t(u)− {us′r/mX̃s+t+2j (u) (mod ur + 1)}

For which we can easily see that

X̃ ′s+t(u) + X̃ ′s+t+2j (u) = 2X̃s+t(u), and

X̃ ′s+t(u)− X̃ ′s+t+2j (u) ≡ 2us
′r/mX̃s+t+2j (u) mod (ur + 1).

It follows that lines 10 to 12 perform the inverse of the Cooley-Tukey but-
terfly, and thus that this part calculates the inverse of the Fourier transform
(with input in bit-reversed order). Note that this deviates from a regular
inverse Fourier transform as the constant multiplications would normally be
accumulated to after the final round of butterflies.

The second part of the algorithm, lines 15 to 18 sets zmj+i to the j-
th component of the remainder of dividing Z̃i(u) + uZ̃m+i(u) by ur + 1
(whose calculation is made explicit), which matches Step 6 in the algorithm
of Section 3.1.

3.3.3 Negacyclic Convolution

The algorithm combining these two components is shown in Algorithm 3.
The core of the algorithm, lines 8 to 14, used when N 6= 2, transforms the
two polynomials, performs pointwise negacyclic convolutions, and finally
uses the inverse transform. This is in accordance to the steps given in
Section 3.1. In order to calculate the 2m length r negacyclic convolutions
the algorithm recurses into itself; it is noteworthy that other methods may
be used instead in actual implementations.

We use N = 2 as a base case for which, as Nussbaumer’s algorithm is no
longer applicable lacking a sane choice for r and m, an alternative algorithm
is applied as seen in lines 3 to 6. It is easy to verify that these lines indeed
perform the negacyclic convolution for this case. It does so using three
multiplications and five additions3, unlike the schoolbook method which
uses four multiplications and two additions. As a multiplication operation
is significantly more expensive than an addition on most modern processors,
including Intel and AMD according to the instruction tables by Agner [20],
the version used by Knuth generally requires fewer clock cycles.

3Nussbaumer’s paper assumes one of the input polynomials is fixed and does not count
operations towards the preparative calculations that can be done on it. As such, only 3
additions are considered to be required, as x0 + x1 and x1 − x0 can be calculated for free.
In our application no polynomial is fixed, so we will include these operations in the total
count.
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In the algorithm specified here the values for m and r are assigned to be
2bn/2c and 2dn/2e, respectively. This is not a requirement for Nussbaumer’s
algorithm, but it is explicitly set as such in Knuth’s implementation. Fur-
thermore, it is the method Nussbaumer suggests and assumes in his analysis,
so we use the same for a fair comparison.

We remind the reader that the output of both forward transforms is in
bit-reversed order. As the pointwise negacyclic convolutions are independent
of the ordering, the input for the inverse transform maintains this. Indeed,
the inputs for the inverse transform is also bit-reversed, as expected by the
given implementation in the previous section. As such the lack of re-ordering
has no effect on the result while simplifying both the forward and inverse
fast Fourier transform algorithms.

Algorithm 3 Knuth’s version of Nussbaumer’s negacyclic convolution al-
gorithm.

Precondition: Let n ∈ N, N = 2n. Let R be a ring where 2 ∈ R is
invertible. Let X = (xi ∈ R)N−1i=0 and Y = (yi ∈ R)N−1i=0 be two length
N sequences.

Postcondition: Returns the negacyclic convolution of X and Y .

1: function Nussbaumer(N,X, Y )
2: if N = 2 then . Base case for recursion
3: t ← x0(y0 + y1)
4: z0 ← t− (x0 + x1)y1
5: z1 ← t+ (x1 − x0)y0
6: return (zi)

N−1
i=0

7:

8: m ← 2bn/2c

9: r ← 2dn/2e

10: X̃ ← Transform(N,m, r,X)
11: Ỹ ← Transform(N,m, r, Y )
12: for i← 0 to 2m− 1 do
13: Z̃i ← Nussbaumer(r, X̃, Ỹ ) . Where Z̃i = (Z̃ij)

r−1
j=0

14: return InverseTransform(N, Z̃)

3.4 Results

In the referenced source code the test for this implementation of the al-
gorithm is named ‘Knuth version’. As ring, R = Z/12289Z is used as in
accordance with the choice of q in the New Hope paper [8] and for the same
reasons we set N = 1024.
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Additions Mults Const Mults

Transformation 10 240 0 0

Recursion 186 624 24 576 61 440

Inverse transformation 15 376 0 12 288

Table 3.1: Number of operations for Knuth’s description of Nussbaumer’s
negacyclic convolution algorithm. ‘Const Mults’ lists the multiplications by
constants, which are omitted in the ‘Mults’ column.

The test calculates the negacyclic convolution of two random polyno-
mials (where the random polynomial generation routines of New Hope are
used) through both this implementation of Nussbaumer’s algorithm and
through an implementation of the schoolbook algorithm; the latter is used
to confirm the results of the former.

Note that the source code is written to be easy to follow, but completely
unoptimized. In the next chapter we will reduce the number of operations
for this implementation, followed in the subsequent chapter with the pre-
sentation of an optimized and vectorized form of Nussbaumer’s algorithm.

Table 3.1 shows the number of operations required to calculate the ne-
gacyclic convolution by the given implementation of Knuth’s description of
Nussbaumer’s algorithm. In the table we count sign inversions as additions.
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Chapter 4

Nussbaumer’s Optimizations

The algorithm described and implemented so far merely encompasses a part
of Nussbaumer’s observations; it is a version consisting of only his general
ideas and observations, and is in the form as given by Knuth [10]. However,
in his paper Nussbaumer proposes several optimizations to decrease the
number of ring operations required.

This chapter will describe such optimizations by Nussbaumer, along with
a few trivial optimizations in the number of ring operations that can be made
from Knuth’s version that are not explicitly stated in Nussbaumer’s paper.

A significant note on this matter by Nussbaumer is that “one of the
input sequences [...] is usually fixed” [9]. If it is indeed fixed, then one
forward transform and some preparative steps for the pointwise multiplica-
tions that only depend on this input can be considered free, as is assumed
by Nussbaumer.

As we will see in the following chapter this is not generally the case
in the New Hope algorithm, where most polynomials are distinct for each
key exchange; with the exception of two transforms that could be re-used
exactly once. Only for one of the input sequences, a, it is stated that
“if in practice it turns out to be too expensive to generate a for every
connection, it is also possible to cache a on the server side for, say a few hours
without significantly weakening the protection against all-for-the-price-of-
one attacks” [8].

While this would suggest one input sequence can be transformed almost
for free (at least being amortized for these few hours), we shall not depend
on this potential optimization as it poses constraints on the usage of the
algorithm which has a potential effect on the algorithm’s security. As such
we shall assume a general case where a is not cached, and as such we will
not consider one of the transforms to be free like Nussbaumer does in his
paper.

This explains why some optimizations we propose here are not considered
by Nussbaumer: it only reduces some operations that he would consider to
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be free. As they are not considered free in our context, they are counted as
optimizations here.

Another deviation of our counting of operations with respect to Nuss-
baumer’s is that we consider sign inversions to be additions. They may
be implemented more efficiently however, as reductions can be mitigated.
Nussbaumer does not count these sign inversions to the operation count at
all, as can be seen due to the fact that Step 6 in appendix A in his paper is
considered free, even though sign inversions are clearly needed. In this thesis
we count sign inversions to be equal to additions and subtractions. This,
too, causes us to consider optimizations that are irrelevant with respect to
Nussbaumer’s method of operation counting.

The names of the optimization in the results table correspond to their
name in the provided source code, given in the directory ‘tests’.

4.1 Multiplication Factor Accumulation

We first consider Algorithm 2, lines 3 to 12. Here, after each iteration of j
every new value of Z̃i(u) for i ∈ {0, 1, . . . , 2m} is the sum or difference of
two elements from the end of the previous iteration, one of which multiplied
by some value (depending on j and i), with the total again multiplied by 1

2 .
As each step forms linear combinations with each value having an equal

number of multiplications by 1
2 , it is clear that rather than multiplying with

1
2 at the end of each iteration we can accumulate these multiplications and
perform this after the complete transform. By pre-calculating the resulting
factor of (12)bn/2c+1 = 1

2m and multiplying it in one round, most of these
multiplications can thus be mitigated. Note that after this optimization we
end up with an implementation of a standard inverse Fourier transform as
we will show in the next section.

The results are shown in Table 4.1, listed as ‘Knuth optimized 1’ corre-
sponding to its name in the associated source code. The number of constant
multiplications of the recursion and inverse transformation steps have de-
creased by respectively 53% and 83%.

4.2 Inverse Transform Modification

After removing the multiplication factor as described in the previous opti-
mization, this portion of the algorithm becomes identical to a DIF FFT with
bit-reversed ordered input with u−r/m as 2m-th root of unity (cf. algorithm
5.2 in ‘Inside the FFT Black Box’ [19], where Distance (= NumOfProblems),
JFirst and J take the place of 2j , t and s+ t, respectively). Lines 10 to 12
form a Gentleman-Sande butterfly. The result of the fast Fourier trans-
form is then multiplied by the accumulated constant found in the previous
section.
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Transf Recurse Transf−1 Correct

Knuth version Adds 10 240 186 624 15 376

Mults 0 24 576 0

CMults 0 61 440 12 288

Knuth Adds 10 240 186 624 15 376

optimized 1 Mults 0 24 576 0

CMults 0 28 672 2 048

(-32 768) (-10 240)

Knuth Adds 10 240 182 272 13 312

optimized 2 (-4 352) (-2 064)

Mults 0 24 576 0

CMults 0 28 672 2 048

Knuth Adds 10 208 126 567 15 264

optimized 3 (-32) (-55 705) (+1 952)

Mults 0 11 907 0

(-12 669)

CMults 0 21 672 2 048

(-7 000)

Knuth Adds 10 208 126 567 15 264

optimized 4 Mults 0 11 907 0

CMults 0 0 0 1 024

(-21 672) (-2 048) (+1 024)

Table 4.1: Number of additions, multiplications by constants (CMults) and
non-constant multiplications (Mults) for both the original implementation
of Knuth’s version of the Nussbaumer algorithm and the optimizations dis-
cussed in Chapter 4 of the forward transformation, recursion and inverse
transformation steps (with in parenthesis the difference between this and
the previous version, if any).
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This version of the FFT algorithm has a downside for our implementa-
tion. Namely, it multiplies by u−s

′r/m (modulo ur + 1), which requires sign
inversions1, rather than the DIT FFT algorithm which combines the mul-
tiplication with additions or subtractions, which can be combined to avoid
the need of explicit sign inversions.

While this can be solved by changing the implementation of the DIF FFT
(by not performing the rotation until the next iteration for j, noting that the
last iteration does not require rotations at all), this results in an awkward
dependency between different iterations. Rather than crafting an ugly fix for
our algorithm, we move to the commonly used DIT FFT algorithm, which
as stated before easily and cleanly solves the problem.

The results are shown in Table 4.1, listed as ‘Knuth optimized 2’. The
number of additions of the recursion and inverse transformation steps are
decreased by 2% and 13%, respectively.

4.3 Removal of Convolution

One observation by Nussbaumer allows for one recursive call calculating the
negacyclic convolution of length r sequences to be omitted. This is based
on the observation that as (Xi)

2m−1
i=0 and (Yi)

2m−1
i=0 both have their upper

half set to 0, their cyclic convolution (Di)
2m−1
i=0 has D2m−1 = 0. This can

easily be seen shifting perspective to that of polynomials: the product of two
polynomials of degree at most m− 1 itself has a degree of at most 2m− 2.

Hence, for i = 0, 1, . . . , 2m− 1 we have

Di = Di −D2m−1.

Using the notation from the previous chapter, where (Z̃i)
2m−1
i=0 is the

input into the inverse Fourier transform (that is, the pointwise product of
the transformed inputs) with 2m-th root of unity ω = u1

−r/m, the result of
which being (Di)

2m−1
i=0 , it follows by definition of the inverse Fourier trans-

form that

2bn/2c+1Di =
2m−1∑
k=0

Z̃k(u1)ω
ik.

1Note again that in his article, Nussbaumer does not consider sign inversions as addi-
tions, as we do.
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So

2bn/2c+1Di = 2bn/2c+1Di − 2bn/2c+1D2m−1

=
2m−1∑
k=0

Z̃k(u1)ω
ik −

2m−1∑
k=0

Z̃k(u1)ω
(2m−1)k

=

2m−1∑
k=0

Z̃k(u1)(ω
ik − ω(2m−1)k).

Since ωik − ω(2m−1)k = 0 for k = 0 we obtain

2bn/2c+1Di =
2m−1∑
k=1

Z̃k(u1)(ω
ik − ω(2m−1)k).

As a result, when exploiting this fact the result of Z̃0 is never used
and as such we need not calculate it; we can set this to any value prior to
calculating the inverse Fourier transform, as long as afterwards D2m−1 is
subtracted from each Di.

This comes at the expense of 2m−1 polynomial subtractions (we need not
subtract Z2m−1 from itself), so 2mr − r = 2N − r ring additions. However,
we can omit some of these additional additions in both the forward and
inverse Fourier transforms through two observations.

First, in the forward Fourier transformations, note that X̃0 and Ỹ0 need
not be calculated, so the polynomial additions in the final iteration of the
forward Fourier transforms that calculate these are unnecessary. This de-
creases the number of additions required for the forward transformations by
r per transform, so 2r in total.

Second, before the inverse Fourier transform we can choose to set Z̃0
0 = 0,

where Z̃n
i represents the value of Z̃i after n iterations for j in the Fourier

transform. During the first iteration of j, we set

Z̃1
0 = Z̃0

0 + Z̃0
1 = Z̃0

1 , and

Z̃1
1 = Z̃0

0 − Z̃0
1 = −Z̃0

1 .

So the polynomial addition for Z̃1
0 need not be calculated, and the poly-

nomial addition of Z̃1
1 can be done only through sign inversion (which Nuss-

baumer does not count as addition, but we do).
Hence 3r extra additions can be mitigated, not counting those in the

recursion calls. As such, implementing this optimization has a cost of 2N −
4r extra additions. On the other hand we gain the amount of operations
required for the calculation of a single length r negacyclic convolution.

Whether this is indeed an optimization depends on the recursion method
used, the method used for counting operations and the considered ratio of
weights for multiplication to addition operations.
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From Nussbaumer’s perspective this modification would always become
an optimization after performing the matrix exchange algorithm explained
later, which will place the additional cost in a single forward transform
that is considered to be free. In other contexts whether this is actually an
optimization should be considered separately; we shall not do so for the
current implementation as another recursion method will be used in the
actual implementation of Chapter 5, making such results superfluous.

The operation counts after implementing this modification are shown in
Table 4.1, listed as ‘Knuth optimized 3’. Note that the number of multi-
plications for the recursion step has decreased by 52% for the non-constant
multiplications and 24% for the constant multiplications, while the inverse
transformation additions has increased by 15%. The number of additions in
the recursion step decreases by 30%, while the number of additions in the
forward transform has decreased slightly, by less than 1%.

4.4 Recursion Factor Accumulation

An observation Nussbaumer does not make allows us to decrease the number
of multiplications further2. Namely we can remove the multiplication we
created in Section 4.1 entirely from the inverse transform algorithm. As the
steps of the inverse transform algorithm after the inverse Fourier transform
are trivially linear the result of the algorithm will be the expected negacyclic
convolution multiplied by 2m.

Note that each recursive call to the Nussbaumer algorithm will then be
off by a factor that depends only on the input value N (for N = 2 the output
is correct as we fall back to another algorithm). As the inverse Fourier
transform itself is also linear [21] this factor simply propagates through the
inverse transform function. Each recursive step will add such a factor, which
can be removed in a single sweep of multiplications of all N terms after the
result has been calculated. This last step is called the ‘Correction’ step and
used only once for each instantiation of the algorithm.

Not only does this correction step supersede the multiplications in the
recursion calls; it also reduces the number of the multiplications by post-
poning it to after the last steps of the algorithm. Recall that the inverse
transform has 2m polynomials as output, requiring 2mr = 2N multipli-
cations for a regular inverse Fourier transform, whereas the output of the
entire algorithm only has N coefficients that need to be multiplied.

The results are shown in Table 4.1, listed as ‘Knuth optimized 4’. The
multiplications of the inverse transform moved to the correction and were
halved. The removal of the multiplications in the inverse transform during

2The fact Nussbaumer does not note this is because in the optimization presented in
the next section these multiplications are moved to one of the initial transforms, which
we remind the reader is considered to be free from his perspective.
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the recursion calls results in fewer multiplications in the recursion step: all
the constant multiplications were omitted in the recursion step.

4.5 Matrix Exchange Algorithm

In his paper, Nussbaumer mentions an additional optimization step that
is advantageous if one polynomial transformation can be re-used multiple
times; that is, if the same polynomial is multiplied multiple times. He
achieves this by applying “a matrix exchange algorithm similar to that given
in [22]” [9], which allows the more complex matrix responsible for perform-
ing the inverse transform to be exchanged with one of the cheaper forward
transform matrices. In this section we cover the matrix exchange algorithm.

4.5.1 Exchange

In order to perform the exchange algorithm, we first write the calculations
of Nussbaumer’s algorithm in the codomain of the isomorphism Ψ (we shall
refer to this as ‘Nussbaumer’s domain’) in the form

z = C((Ax)⊗ (By)).

Where A = (ai,j) and B = (bi,j) are 2m × m matrices, C = (ci,j) an
m × 2m matrix, and x and y column vectors of size m, each in the ring
R[u]/(ur + 1). Here ⊗ denotes the pointwise product of the two vectors.

Note that with this notation the algorithm can be written as

z = Ψ−1(C[(AΨ(x))⊗ (BΨ(y))]).

Writing the calculations in this matrix form for Nussbaumer’s domain it
follows immediately from the definitions that

zi =
2m−1∑
j=0

ci,j(Ax)j(By)j =
2m−1∑
j=0

ci,j{
m−1∑
k=0

aj,kxk}{
m−1∑
l=0

bj,lyl}

=

m−1∑
k=0

m−1∑
l=0

xkyl

2m−1∑
j=0

ci,jaj,kbj,l.

We have already seen that zi = di + udi+m for i ∈ {0, 1, . . . ,m − 1},
where (di)

2m−1
i=0 is the acyclic convolution3 of (xi)

m−1
i=0 and (yi)

m−1
i=0 . As per

definition
di =

∑
k+l=i

xkyl.

3We calculated this as the cyclic convolution, but the results are identical due to the
upper half of (xi)

2m−1
i=0 and (yi)

2m−1
i=0 being 0.
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Such that

zi =

m−1∑
k=0

m−1∑
l=0

xkylSi,k,l

where for i, k, l < m

Si,k,l =


1 if k + l = i,

u if k + l = i+m,

0 otherwise.

Comparing the two forms of zi gives the equality

Si,k,l =
2m−1∑
j=0

ci,jaj,kbj,l.

Now we define two matrices C ′ = (c′i,j) and A′ = (a′i,j) as

c′i,j =

aj,0 if i = 0,

−ur−1aj,m−i otherwise,

and

a′i,j =

c0,i if j = 0,

ucm−j,i otherwise.

If we now consider the equation z′ = C ′((A′x) ⊗ (By)) we find similar
to above that

z′i =
m−1∑
k=0

m−1∑
l=0

xkylS
′
i,k,l

where

S′i =

2m−1∑
j=0

c′i,ja
′
j,kbj,l.

By Theorem 4 we find that Si,k,l = S′i,k,l, so zi = z′i. Hence we find that
for all m-vectors x, y:

C((Ax)⊗ (By)) = C ′((A′x)⊗ (By)).

Consequently, we can generate the same result using these alternative
matrices. This could allow for a movement of certain operations from the
inverse transform to one of the forward transforms (and vice versa), which
could be advantageous if the result of this transform, A′x, can be used more
than once. In fact, Nussbaumer does not consider A or A′ in the operation
count, as he assumes that x is fixed and the associated transform can be
pre-calculated.
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4.5.2 Matrix Form

In order to perform this exchange we need to write the calculations of the
algorithm in Nussbaumer’s domain in the form z = C((Ax) ⊗ (By)) for
matrices A, B and C. That is, for the input we set the coefficients of the
vectors xi(u) and yi(u) respectively to Xi(u1) and Yi(u1) of Section 3.1, and
as a result we expect zi(u) to be set to the value of Zi(u1) of the same
section.

We can achieve this form by setting A = B to the matrix performing
the Fourier transform for the input vector appended with m zeroes, and C
to the matrices performing the inverse transform described above.

More specifically, we find that the forward Fourier transform, where as
in accordance with the optimization of Section 4.3 the first output is not
required, can be represented as

A = B =



0 0 0 · · · 0

ω0 ω1 ω2 · · · ωm−1

ω0 ω2 ω4 · · · ω2(m−1)

...
...

...
. . .

...

ω0 ω2m−3 ω(2m−3)2 · · · ω(2m−3)(m−1)

ω0 ω2m−2 ω(2m−2)2 · · · ω(2m−2)(m−1)

ω0 ω2m−1 ω(2m−1)2 · · · ω(2m−1)(m−1)


∈ (R[u]/(ur+1))2m×m.

The matrix C calculates the inverse Fourier transform, followed by the
correction required that allows for the calculation of the first coefficient to
be omitted as explained in Section 4.3 (if we wish to do so), which calculates
(Di)

2m−1
i=0 of Section 3.1. Finally, we need to calculate the (zi)

m−1
i=0 from this

as explained in that section, setting zi(u) = Di + u1Di+m.
If we remove the constant multiplications from the inverse transform

and perform it only at the very end, as in the optimization described in
Section 4.4, we can write this as the scaled product of three matrices C =
kC3C2C1, where4 k ∈ R and

C1 =



0 ω0 ω0 · · · ω0

0 ω−1 ω−2 · · · ω−(2m−1)

0 ω−2 ω−4 · · · ω−(2m−1)2

...
...

...
. . .

...

0 ω−(2m−1) ω−2(2m−1) · · · ω−(2m−1)(2m−1)


∈ (R[u]/(ur+1))2m×2m,

4We do not formally define these matrices, as they should be easily understood when
compared with the prior descriptions.
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C2 =



1 0 0 · · · 0 −1

0 1 0 · · · 0 −1

0 0 1 · · · 0 −1
...
...
...
. . .

...
...

0 0 0 · · · 1 −1

0 0 0 · · · 0 0


∈ (R[u]/(ur + 1))2m×2m, and

C3 =



1 0 0 · · · 0 u 0 0 · · · 0

0 1 0 · · · 0 0 u 0 · · · 0

0 0 1 · · · 0 0 0 u · · · 0
...
...
...
. . .

...
...

...
...
. . .

...

0 0 0 · · · 1 0 0 0 · · · u


∈ (R[u]/(ur + 1))m×2m.

Here k represents the accumulated correction factor, C1 the inverse
Fourier transform ignoring the first entry (as per Section 4.3) and without
incorporating the scaling factor which has been moved to k. Furthermore,
C2 represents the correction required that allowed the omission of a sin-
gle length r negacyclic convolution call (also as per Section 4.3), and C3

calculates zi given the Di.
By multiplying these matrices it is seen5, then, that C = (ci,j) ∈ (R[u]/(ur+

1))m×2m is defined as follows:

ci,j =

0 if j = 0,

k[(1 + (−1)ju)ω−ij − (1 + u)ωj ] otherwise.

After performing the matrix exchange algorithm as described above, it is
easily seen that we have arrived at the algorithm as described in appendix A
of Nussbaumer’s paper [9], with some additional optimizations with regards
to the accumulation of the correction factor.

4.5.3 Implementation

In above form it is clear that the calculations of matrix C ′ can be performed
by a slightly modified fast Fourier transform algorithm followed by a rotation
and a sign inversion of coefficients of all but the first polynomial (being the
multiplication by the factor −ur−1 in the definition of the coefficients of C ′

above). That is
C ′ = AtA

T ,

5The result for i = m − 1 when calculating this is slightly different, but turns out to
fall in the ‘otherwise’ case as well by the identity ω−(m−1)j = (−1)jωj .
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where, informally,

At =



1 0 0 · · · 0 0

0 0 0 · · · 0 −ur−1

0 0 0 · · · −ur−1 0
...

...
... . .

. ...
...

0 0 −ur−1 · · · 0 0

0 −ur−1 0 · · · 0 0


.

The At operation is trivially performed, whereas AT can again be cal-
culated through a fast Fourier transform where the first entry is ignored; as
such, a polynomial addition can be omitted similar to the previous forward
transform.

The work required to apply the matrix A′ is not immediately clear; Nuss-
baumer does not consider this aspect relevant as these operations are not
counted toward the number of required operations. As we do count these we
still require an efficient method to perform these calculations, which should
clearly incorporate a fast Fourier transform in order not to significantly slow
down the algorithm.

To perform these calculations efficiently, note that the definition of A′

incorporates the multiplication of all but the first elements in the input
vector with u, inverting the order of these elements, and finally performing
the transpose of C, CT . That is,

A′ = CTCt.

with

Ct =



1 0 0 · · · 0 0

0 0 0 · · · 0 u

0 0 0 · · · u 0
...
...

... . .
. ...

...

0 0 u · · · 0 0

0 u 0 · · · 0 0


.

Through the identity [kAB]T = BTATk we find that CT = CT
1 C

T
2 C

T
3 k.

It is easy to see that CT
1 can be calculated by a fast Fourier transform, which

can be slightly optimized because the first element is 0, saving one of the
polynomial additions in the last iteration. The other matrices are sparse
and therefore efficient to perform trivially.

A small further optimizations can be made. Namely, note that the last
element of the input vector is not used in CT

2 , hence this value need not
be calculated. Note that the multiplication by k should be performed as
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Adds Mults CMults

Slow Forward Transform 14 334 0 1 024

Fast Forward Transform 10 208 0 0

Pointwise Multiplication 137 340 11 907 0

Inverse Transform 11 263 0 0

Table 4.2: Number of ring operations (additions, non-constant and constant
multiplications) required to calculate the negacyclic convolution after im-
plementing the matrix exchange algorithm. The ‘slow’ forward transform
corresponds to the matrix that was exchanged with the inverse transform
matrix.

first step rather than last, since the input vector has only m elements while
the output has 2m; performing it at a later time doubles the amount of
multiplications required.

4.5.4 Results

The results of implementing the matrix exchange algorithm into the previous
version, as implemented in the test ‘Nussbaumer version’ in the associated
source code, are shown in Table 4.2.

It is noteworthy that not only the total number of additions in the for-
ward and inverse transforms are greater than in the previous version; the
total number of additions in the recursion step is, as well. This comes from
the fact that the same exchange has been implemented for the recursive
calls of the algorithm. It would be possible to use the same recursive calls
as in the previous version, in which the algorithm only requires 125 extra
additions. On the other hand, for each time the transformed polynomial
is re-used, 14 334 - 10 208 = 4 126 additions are saved when compared to
re-using the original transformed input.

This table allows for easy comparison with Nussbaumer’s paper. The
slow forward transform is considered to be free in Nussbaumer’s paper, so
ignoring this row the number of multiplications matches exactly that of
the predictions by Nussbaumer [9]. More additions than predicted are re-
quired, however: while it is easy to verify that the forward fast Fourier
transform matches the number of predicted operations (Appendix A, Step
3 of his paper), the inverse transform requires 54 more additions. This can
be explained by the fact that Nussbaumer does not count sign inversions as
additions, while we do. Furthermore, the pointwise multiplication is more
expensive due to this effect propagating into the recursive calls.

As indicated in Nussbaumer’s paper it is also possible to perform more
preparative steps from the pointwise multiplication at the forward transform
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Adds Mults CMults

Slow Forward Transform 85 398 0 1 024

Fast Forward Transform 34 967 0 0

Base Case 7 938 11 907 0

Inverse Transform 44 842 0 0

Total 173 145 11 907 1 024

Table 4.3: Number of ring operations (additions, non-constant and constant
multiplications) required to calculate the negacyclic convolution after im-
plementing the matrix exchange algorithm, where the preparative steps for
the pointwise multiplications have been moved to the forward transforms.

stage. So far we considered the algorithm to run recursively: the pointwise
multiplication required again transforms that were dependent on only one
of the inputs. As such, these additions can also be moved into the forward
transform steps.

The results, implemented in the same test as the previous, are shown in
Table 4.3. Note that the total number of operations does not change, but
they are merely moved to different stages. Rather than the 4 126 additions
that can be saved by re-using the transformed input as explained previously,
the saved number of additions per re-use becomes 85 398 - 10 208 = 75 190,
which is nearly 45% of the total additions required for a full run of the
algorithm.

4.6 Missing Optimization

We omit a single optimization Nussbaumer suggests. He states that “the
number of additions can still be slightly reduced by replacing two of the
interpolation polynomials u2−uk1 by the simpler polynomials u2, 1/u2.” [9]6

The means to this optimization, unfortunately, remains unclear. In fact,
in the remainder of the article he no longer refers to this: in appendix A
he counts the ring operations without taking this optimization into account.
As such, this optimization falls outside of the scope of this thesis.

4.7 Comparison

The number of operations required for Nussbaumer’s algorithm as imple-
mented by BCNS [7] are shown in Table 4.4. As the stages of the algorithm

6Notation adapted to ours.
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Additions 105 520

Non-constant Multiplications 65 536

Constant Multiplications 12 288

Table 4.4: Number of ring operations (additions, non-constant and constant
multiplications) required for the Nussbaumer algorithm as implemented by
BCNS.

Adds Mults CMults

Forward Transform 15 360 0 6 144

Pointwise Multiplication 0 1 024 0

Inverse Transform 15 360 0 6 144

Total 46 080 1 024 18 432

Table 4.5: Number of ring operations (additions, non-constant and constant
multiplications) required for the NTT algorithm as implemented in New
Hope. The row ‘total’ provides the operation count for the full calculation
of a negacyclic convolution; note that two forward transforms are required.

are not implemented separately we list only the total number of ring oper-
ations for a full calculation of the negacyclic convolution.

This implementation does not use Nussbaumer’s algorithm for any but
the first level of recursion: for the second level, the schoolbook approach
is used for calculating length 32 negacyclic convolutions. For fairness of
comparison we will consider an alternative implementation using the same;
also, since the parts are combined into one method the matrix exchange
optimization is not possible, so we will assume this has not been implemented
as this would come at the expense of extra additions without any gains in
this context.

As we will see in Section 5.6.1 the calculation of length 32 negacyclic
convolutions using the schoolbook method requires 992 additions and 1 024
multiplications, and 2m − 1 = 63 such convolutions are to be calculated.
In our implementation this results in 2 · 10 208 + 15 264 + 63 · 992 = 98 176
additions, 63·1 024 = 64 512 non-constant multiplications and 1 024 constant
multiplications. As can be seen when compared with Table 4.4 we were more
efficient for each type of operation, but most significantly so for constant
multiplications, which we managed to reduce by 92%.

We now consider the NTT as implemented in New Hope; the number
of ring operations, as implemented in the test ‘NewHope version’ in the
associated source code, are shown in Table 4.5.
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For n multiplications with the same polynomial using NTT one forward
transform can be used, hence the total number of operations required are
15 360 + n · 30 720 additions and 6 144 + n · 14 336 multiplications. On the
other hand, the implementation of Nussbaumer’s algorithm requires 85 398+
n · 87 747 additions and 1 204 + n · 11 907 multiplications.

It is obvious that Nussbaumer’s algorithm requires somewhat fewer mul-
tiplications, but significantly more additions. While the ratio of cost of a
multiplication to an addition differs per architecture and implementation it
is unlikely this ratio is ever high enough on modern systems to make Nuss-
baumer’s algorithm more efficient than the NTT in terms of time required
to perform the additions and multiplications.

Furthermore, most multiplications for NTT are constant multiplications,
while Nussbaumer’s method uses mostly non-constant multiplications. This
is yet another advantage for NTT, since constant multiplications may be im-
plemented more efficiently than non-constant multiplications. For example,
in the case of New Hope integers are stored in Montgomery domain [23] (see
[8, Section 7.2]), and the translation to this domain can be pre-calculated
in the case of constant multiplications.

4.8 Conclusion

The implementations publicly available lack all or most of the optimizations
described here, even though merely one of these implementations is vector-
ized and as such the others could easily implement these. We have shown
these optimizations are able to drastically reduce the number of operations
required when compared with the implementation by BCNS [7].

Nevertheless, we have shown that NTT still greatly outperforms Nuss-
baumer’s algorithm in terms of ring operations. We may gather from this
that Nussbaumer’s algorithm would need to be deprecated. However, as
we will see in the next chapter, it turns out that the use of Nussbaumer’s
algorithm in the context of New Hope provides an additional freedom that
allows for significant optimizations that are not possible with NTT.

The final recursive implementation of the algorithm, slightly modified for
aesthetic reasons, can be seen in Appendix B. For brevity we omit the iter-
ative part corresponding to the moving of preparative steps in the recursion
calls to the forward transform.
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Chapter 5

Vectorization

5.1 Introduction

Whereas the previous chapter introduced the ring operation count as a mea-
sure of work required for Nussbaumer’s algorithm, the results are not directly
transferable to implementations on most modern hardware. The reason for
this is that modern hardware often supports vectorization of certain in-
structions, allowing multiple independent operations of the same kind to be
done in parallel. As we will see in this chapter, exploiting such support the
number of clock cycles required can be reduced drastically.

In this section we present an AVX2 implementation, written in Assembly
language, of Nussbaumer’s algorithm. For sake of completeness we will start
by giving a brief overview of AVX2. This is followed by details about the
implementation and finally its performance with respect to NTT. For our
implementation we shall focus on the Intel Haswell processor architecture.

By no means do we attempt to give an optimal implementation here; the
ideal answers to the questions posed in this chapter themselves would require
thorough studies and, as such, further improvements will be possible. How-
ever, we do try to supply a well-considered and optimized implementation
that can be used for an initial comparison between AVX2 implementations
of NTT (as given in New Hope) and Nussbaumer’s algorithm.

5.2 AVX2

AVX2 [24], which stands for Advanced Vector Extensions 2, is an extension
of the x86 instruction set supported by several CPUs from both Intel and
AMD, the first of which, the Intel Haswell, released in 2013. AVX2, itself
an extension of AVX, is an instantiation of the concept of Single Instruc-
tion, Multiple Data (SIMD): that is, it allows a single instruction to act on
multiple fields of data simultaneously.

In the case of AVX2 sixteen 256-bit registers, named ymm0-15, were
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introduced, whose content can consists of vectors of either floating point
numbers or integers of various sizes. Each of these registers can then be
acted on by a variety of instructions, where the nature of these vectors are
often encoded in the instruction: examples are vpaddw and vaddpd, which
perform a pointwise addition for two pairs of vectors consisting of word-sized
integers and double precision floating point numbers respectively.

Many of these added instructions perform pointwise operations of multi-
ple vectors, such as the mentioned addition instruction, but other operations
are also included. Notable examples are “horizontal” instructions, which can
operate on all of the entries of a single vector (for example finding its max-
imum), and instructions to rearrange or combine vectors.

Through AVX2 it is possible to parallelize the calculation of a single
operation on multiple fields of data - as many as 32 for byte-sized inte-
gers - while the instructions achieve similar speed in terms of clock cycles
when compared with the execution of their non-vectorized original of the
x86 instruction set, as can be seen in Agner Fog’s instruction tables [20].
Exploiting this, an algorithm may be able to significantly decrease the exe-
cution time of certain algorithms.

5.3 Parameter Choice

In order to fairly evaluate the usefulness of Nussbaumer’s algorithm we shall
compare its performance for an optimized implementation comparable to
that of New Hope’s NTT algorithm. As such we use the same N = 1024 for
some chosen q with R = Z/qZ, where N is the length of the sequences to
calculate the negacyclic convolution for and R the ring of the coefficients.

Note that the NTT algorithm requires q ≡ 1 (mod 2N) “so that the
number-theoretic transform (NTT) can be realized efficiently” [8]. In fact,
as “the security level grows with the noise-to-modulus ratio, it makes sense
to choose the modulus as small as possible, improving compactness and
efficiency together with security,” [8] q is chosen to be minimal under said
condition.

Nussbaumer’s algorithm, on the other hand, does not suffer this limita-
tion. As a consequence we can choose an even smaller q, further improving
the security1 of New Hope. In fact, q does not even need to be prime; it
merely needs to be odd2. BCNS, for one, decided to use a composite q; in
accordance with their paper we will not restrict it to a prime number. The
discussion of the security implications of this choice of q is out of the scope
of this thesis.

1The compactness of the packets used in key exchanges could also be improved, but
this is considered irrelevant for our comparison.

2As seen above, the only requirement for R = Z/qZ for the algorithm is that 2m has
an inverse, which is true if and only if q is odd.
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In order to allow for reduction to be performed efficiently, we choose
q = 2k− 1 for a certain k, such that no division is required for reduction. In
fact, reduction can then be performed by shift, bitwise-AND and addition
operations as we will show later.

We pick k = 11, that is, q = 2047, in order to keep q relatively close to
the original to prevent alternative issues, such as increasing the error rate3.
Should one not wish to depend on the assumption in BCNS that a composite
q is acceptable, one could build a similar implementation with k = 13, for
which q is a Mersenne prime in the same form, still lower than the value
used in New Hope. This would somewhat slow down the implementation
when compared to the version we present here however, as reductions are
required more frequently.

5.4 Integer Representation

Since the numbers (easily) fit in 16 bits, but not in 8, we treat each AVX2
register as a 16-tuple of 16-bit integers to maximize the number of simul-
taneous operations performed by each instruction. The extra bits allow us
to amortize the reduction over multiple addition instructions. To exploit
this we keep track of the possible range of all integers through static anal-
ysis, and perform the reduction step for intermediate results only when an
overflow could be caused at the next.

Furthermore, as the algorithm requires a large number of subtractions
we treat the integers as signed in most cases; only when it is relevant for
reduction we add multiples of q in order to get an equivalent but positive
number that is then treated unsigned.

In the following we discuss the strategy of reduction of said integers.

5.4.1 Reduction After Addition

In order to reduce the vectorized integers before an overflow may happen,
we add a multiple of q such that the result is still correct modulo q and
the result is always a positive integer. After this step the sign bit is no
longer required but an overflow into this bit can occur, which both forces
and allows us to treat the integers as unsigned.

Following this each entry in the resulting vector register is a 16-bit integer
x, say x = xl + 211xh, where xl, xh ∈ N with xl < 211 and xh < 25. This is
then reduced to xl + xh ≡ xl + 211xh ≡ x (mod q). These calculations can
trivially be performed by a shift (to find xh), bitwise-AND (to find xl) and
an addition operation (to find xl + xh).

3Note that one of the contributions of New Hope improves the analysis of the failure
probability which allowed q to be decreased in the first place.
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One such reduction step does not provide an output that is at most 11
bits: note that x′ = xl + xh < 211 + 25 < 212, so the output is guaran-
teed to contain at most 12 bits. For intermediate results the value is not
reduced further and is treated as usual (in particular, note that the sign bit
is guaranteed to be 0, so we can again interpret this integer as signed).

At the end of the algorithm the numbers need to be fully reduced: failure
to do so could potentially disclose information about the input of polyno-
mials which in the context of New Hope could pose a security risk, and
reducing it allows for a tighter packing for transmission. To achieve this, we
perform another reduction: say x′ = x′l + 211x′h is the output of a partial
reduction, where x′l ∈ N with x′l < 211 and x′h ∈ {0, 1}, such that the reduc-
tion step produces x′′ = x′l + x′h ≡ x (mod q). Since x′ < 211 + 25 if x′h = 1
then x′l + 211 < 211 + 25, and if x′h = 0 then x′l + x′h < 211; in either case
x′′ = x′l + x′h < 211.

Finally, to perform a full reduction, we require that x′′ < q; that is,
if x′′ = q it needs to be reduced further to x′′ = 0. For this we use the
vpcmpeqw instruction to compare equality with q. As the individual entries
in the destination ymm register of this comparison will be filled with either
ones or zeroes on equality and inequality respectively, subtracting these from
the result combined with a bitwise-AND to select the proper bits produces
the wanted form.

5.4.2 Reduction After Multiplication

The results of the required non-constant multiplications generally do not
fit in 16-bit integers; even the product of two 11-bit integers could take up
22 bits. This problem is mirrored in the AVX2 instructions by having a
separate instruction to store the lower and upper halves of a multiplication
or alternatively, in the case of the vpmaddwd instruction, to store only the
sum of adjacent multiplications.

While the vpmaddwd instruction performs not only sixteen full multi-
plications but also eight additions, and as such will likely result in a quicker
implementation when properly incorporated, we opted for a more intuitive
implementation by retrieving the lower and upper half of the multiplication
separately and combining the two while reducing the results.

Incorporating the vpmaddwd instruction is advisable as future work,
though it may be seen implemented in its SSE counterpart for the ‘Sieving
for Shortest Vectors in Ideal Lattices’ paper [17,18].

Here, like in the reduction after addition, the reduction is amortized
over several additions of the upper halves of the multiplication which are
guaranteed not to overflow, as the addition is cheaper than the reduction.
More specifically, the inputs for any multiplication are guaranteed to contain
at most 15 bits4 and be non-negative. Let x1, x2 be such inputs. Then

4This number of bits turned out to be the natural size of the outputs of the algorithms
feeding these integers, when maximally postponing reduction steps.
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x1x2 ≤ 230, so for y = x1x2 = yl + 216yh, where yl and yh represent the low
and high half 16-bit integers of the result respectively, we see that yh < 214.
As the sum of reductions is equal to the reduction of a sum, both modulo
q, we can add multiple of such higher halves; due to the upper bound these
are guaranteed not to overflow as unsigned integers when four are added
up. Incorporating these into the reduced result can thus be postponed. The
resulting upper half is then reduced by trivial appropriate shift, AND and
addition instructions.

For the lower halves this postponing is not possible: the result requires
a full 16 bits, and as such may cause an overflow after any such addition.

Note that the results of these non-constant multiplications are always
intermediate and as such not fully reduced. The constant multiplications,
by the resulting constant factor 1

2m , turns out to be far simpler: as 1
2m = 32,

this is implemented as a rotation of bits, and reduction according to the
addition strategy is used instead.

5.5 Operation Cost

In the remainder of this chapter we will discuss several decisions made on
the trade-off between addition and multiplication operations. To do so, we
need to discuss the relative cost of these operations. For this we interpret the
instruction tables from Agner [20]; specifically those concerning the Haswell
processor architecture for which we optimize our implementation.

Whereas several measures of the speed of these instructions exist, we
focus on the optimistic side, namely the reciprocal throughput: “the aver-
age number of core clock cycles per instruction for a series of independent
instructions of the same kind in the same thread.” [20] In practice subse-
quent instructions may not be independent causing these measurements to
be lower than in practice, but they do give a general indication of the clock
cycles required for an operation.

We see that the applicable vpaddw instruction has a reciprocal through-
put of 0.5 clock cycles, while each of the two halves of the multiplication
instruction has a reciprocal throughput of 1 clock cycle. This implies a 1 to
4 ratio in number of clock cycles for additions to multiplications.

However, this view is incomplete as it does not measure reductions.
Where reductions after addition steps can be amortized as seen above, mea-
sures need to be taken to handle the output of the two multiplication oper-
ations: in any case, an operation is required to combine the two results into
a single register. Hence in practice a multiplication step will require more
than 4 times the amount of clock cycles an addition operator costs.

The exact balance is outside the scope of this thesis as the number is
only used as an estimate. As such, we assume a multiplication operation
to require approximately the same number of clock cycles as 5 addition
operations.
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Adds Mults CMults

Nussbaumer’s algorithm 2 180 189 32

Schoolbook method 992 1 024 0

Karatsuba’s algorithm 1 145 243 0

Table 5.1: Number of ring operations (additions, non-constant and con-
stant multiplications) required to calculate the negacyclic convolution of a
sequence of length 32.

5.6 Secondary Method

Recall that in the previous chapter we recursed into Nussbaumer’s algo-
rithm, as suggested by Nussbaumer. In the following we argue the secondary
method we use, and the structure the input takes in the vector registers.

5.6.1 Secondary Algorithm

The pointwise multiplications required in Nussbaumer’s algorithm with N =
1024 are themselves negacyclic convolutions of sequences with 32 coefficients.
So far we used the algorithm recursively in accordance with Knuth and
Nussbaumer, even though Nussbaumer’s algorithm may be less efficient for
small instances of the problem. To explore some alternatives, the ‘secondary
method’ test in the associated source code lists the number of additions
and multiplications required for recursion into the schoolbook method and
Karatsuba’s algorithm.

The results are shown in Table 5.1. Unlike in Nussbaumer’s original
paper, forward transformations are counted towards the operation count,
as their results can not generally be pre-calculated in the instance of New
Hope; in fact, as shown later, they can be used twice at best. As such, even
though some of the operations can be combined into a preparative stage,
the gains from a matrix exchange algorithm are limited, so we will ignore
the possibility in this section.

The schoolbook method requires 1 188 fewer additions, but 835 more
non-constant multiplications than recursing into Nussbaumer’s method, and
thus introduces a significant increase in estimated clock cycles. Karatsuba’s
method on the other hand only costs 54 additional non-constant multipli-
cations, so, assuming the 5-to-1 ratio of clock cycles described above, 270
additions could be performed in an approximately equal time. However,
Karatsuba saves significantly more than that in number of additions, as
it requires 1 035 fewer than Nussbaumer’s method. In our implementation
we omit the small optimization discussed for negacyclic convolutions using
Karatsuba’s method in Section 2.2, so the number of additions can be even
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be slightly reduced further.
According to these metrics (and even for significantly larger multiplica-

tion to addition clock cycle ratios), Karatsuba’s method would likely out-
perform Nussbaumer’s method, and as such is as per our estimation the
preferred method to use to calculate the length 32 negacyclic convolutions.

This is contrary to the results given in ‘Practical Fast Polynomial Mul-
tiplication’ [25], which states that “it may be seen that at degree 31 Karat-
suba’s algorithm takes three times longer than the classical method.” How-
ever, it continues to state: “on reason for the poor performance of the
algorithm was that it had to labour very hard to perform many operations
both in the form of procedure calls and arithmetic operations close to the
base of its recursion. Therefore, one way to improve the algorithm would be
to stop the recursion at some small degree and perform this multiplication
classically.”

While this article would suggest that for the 32 coefficient polynomials
in this case the schoolbook method would outperform Karatsuba’s method,
it is relevant that said article stems from 1976, well before the introduction
of AVX2 or predecessors, or many other improvements such as increased
cache-size that can affect these results. As such, these results should not be
directly adopted in our setting.

That does not mean that the article has no merit; Karatsuba could
indeed be outperformed by the schoolbook method for small-degree polyno-
mials. For this reason we fall back to the schoolbook method for polynomials
with 4 coefficients. As stated before, this need not be the fastest choice, but
deciding the optimal methods falls outside the scope of this thesis.

5.6.2 Parallelization Direction

The parallelization of the polynomial manipulation instructions through
AVX2 can be done either horizontally or vertically. The parallelization is
called horizontal if a single register contains subsequent coefficients of the
same polynomial, while it is called vertical if a single register contains the
same coefficient for subsequent polynomials.

Each of these directions will cause distinct advantages and disadvantages
during implementation of Karatsuba’s algorithm. The vertical parallelized
implementation itself has very little overhead, as the multiplication can be
done similar as one would do without any parallelization and the additional
polynomials that are represented in the registers - in our case fifteen - would
be multiplied for free. The horizontal version on the other hand does require
overhead, as there are no instructions in AVX2 to easily perform the required
operations on a single register. For example in Karatsuba’s method, adding
part of a register with another part of itself takes additional operations to
permute the coefficients in the inputs.

Note that vertical parallelization of Nussbaumer’s algorithm is infeasible:
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at different stages of the fast Fourier transform each polynomial is rotated
a different amount, so collecting the right coefficients to add is expensive.
Here, horizontal parallelization is obligatory in order to achieve efficiency.
This also means that the natural order to store the output of Nussbaumer’s
forward transform algorithm or, similarly, the input for the inverse transform
algorithm is horizontal.

This is where one of the disadvantages of vertical parallelization comes
from: Nussbaumer’s transform algorithms require the inputs and outputs
from Karatsuba’s method to be changed in direction. In other words the
input and output needs to be transposed, which does impose an additional
overhead. Second, as the vertical parallelization in our case multiplies a
multiple of sixteen polynomials, the optimization in Section 4.3, allowing
for one convolution to be removed, is no longer applicable as the removed
convolution is calculated for free.

From this it is not apparent which version will be faster. We have decided
to go with vertical parallelization, as this further simplifies Nussbaumer’s
algorithm by making said optimization superfluous.

5.6.3 Optimizations

In Chapter 4 we considered optimizations proposed by Nussbaumer. We
must further consider whether these optimizations have merit in our vec-
torized implementations: we have already seen that, given our choices, the
removal of a convolution of Section 4.3 is not applicable.

The multiplication factor accumulation of Section 4.1 is trivially appli-
cable, but the recursion factor accumulation of Section 4.4 only partially:
while it is still better to postpone the multiplication as described in that
section, there is no longer a factor in the used recursion method as Karat-
suba’s algorithm is used instead of Nussbaumer’s algorithm. As such, no
factor multiplication from the algorithm calculating the length r negacyclic
convolution can be postponed.

Using the horizontal vectorization of Nussbaumer it is not possible to
combine the rotation of polynomials with addition to another polynomial,
as it is when arrays of scalars are used. Instead the rotation has to happen
explicitly. As such, the modified inverse transform of Section 4.2 is irrele-
vant, and there is no longer any preference between the two versions. We
still implement the DIT FFT for consistency with the forward transform
used.

The matrix exchange algorithm of Section 4.5 remains to be discussed.
As we will see later most transformed polynomials are used only once and,
without imposing additional constraints on the New Hope algorithm, the
others are used at most twice. That is, the transformed input can be re-
used only once at maximum.

Note that no matrix exchange is required to perform the preparative
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steps of the pointwise multiplication (that do not depend on the other poly-
nomial input) at the forward transform. In the recursive strategy used by
Nussbaumer this amplifies the effect of the matrix exchange algorithm, as
each level of recursion moves work to the preparation. As we use Karatsuba
as secondary method, and no matrix exchange can be performed for this
algorithm, the only gain is that of the instance of Nussbaumer’s algorithm
with N = 1024.

We have seen that this optimization was able to save 4 126 additions
per re-use, with an added cost of 125 additions. However, these results
were considering the removal of convolution of Section 4.3, which we omit
in our implementation. This makes the inverse matrix significantly cheaper,
further reducing the gains of this optimization.

Furthermore, the constant multiplications at the inverse transform do
not require a matrix exchange to move to the forward transform: they can
trivially be moved to the initial step, as can be seen from the definition of
the negacyclic convolution, since calculating the negacyclic convolution with
a fixed polynomial preserves scalar multiplication.

It would be possible to somewhat speed up the algorithm exploiting
these facts at the cost of complicating the code. However, combining the
facts the gains are minimal and they can not commonly be exploited as most
transforms can either not at all or merely once be re-used we chose to omit
this optimization.

In our implementation we do perform the preparative steps for the Karat-
suba algorithm, which do not depend on the secondary input, at the forward
transform. This omits these steps from being repeated in the case of re-use,
without significantly complicating the code.

5.7 Application to New Hope

As can be seen in protocol 3 of ‘Post-Quantum Key Exchange – a New
Hope’ [8], New Hope’s key-exchange algorithm requires 4 forward transfor-
mations, 2 inverse transformations and 4 pointwise multiplications.

Said algorithm will not work directly in the case of Nussbaumer for two
reasons. First of all, note that the transformations in New Hope are one-to-
one, as the forward and inverse transformations are easily seen to be inverses
of each other. As the polynomial a is uniform noise and, due to the bijective
property, “the NTT transforms uniform noise to uniform noise” [8], the two
forward transforms on these inputs can be skipped as long as both parties
agree.

The transformations in Nussbaumer’s algorithm are not bijections, which
is easy to see as the cardinality of the codomain is double that of the domain.
As such, on both ends an additional forward transform must be performed.

Second, the algorithm in New Hope communicates the polynomials in
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the NTT domain. While this is still possible using Nussbaumer’s algorithm
it would, due to the double size of the cardinality of Nussbaumer’s domain,
double the amount of bits required to communicate the polynomial. As we
wish the implementation of Nussbaumer’s algorithm to impose no negative
side-effects on the algorithm, the polynomials should be sent in their original
domain in order to not increase the bandwidth requirement. In fact, due to
the fewer number of bits required to represent the coefficients the polynomial
could even be packed tighter, reducing the bandwidth.

Protocol 5.1 shows the corresponding protocol that is no more demand-
ing on network resources than the original. Here six forward transforma-
tions, four inverse transformations and four pointwise multiplications are
required: this is two more forward transformations and two more inverse
transformations than the original.

As we can see most of the polynomial transforms (ŝ and û on the server
side and â and b̂ on the client side) are only used once, whereas the others,
â on the server side and t̂ on the client side are used exactly twice.

5.8 Theoretical Lower Bound

In order to count the number of instructions, the GDB script shown in
Listing 5.1 is used. This can be used by executing GDB as

gdb −ex ’ set $s ta r taddr=StartAddress ’ −ex ’ set $endaddr=
EndAddress ’ −x S c r i p t F i l e BinaryFi l e

where StartAddress and EndAddress represent the program counter for the
first and last instruction of the code to count operations for, ScriptFile the
file containing the GDB script and BinaryFile the binary file to get the
instruction count for. GDB will then output all instructions executed with
the program counter starting at StartAddress until it reaches EndAddress.

break ∗ $s ta r taddr
set pag inat ion o f f
display/ i $pc
run
while ( $pc != $endaddr )

stepi
end
quit

Listing 5.1: GDB script responsible for dumping executed instructions.

The number of AVX2 instructions, ignoring loading, storing and moving
instructions, are shown in Table 5.2. The corresponding total number of
micro-operations per set of ports are shown in Table 5.3. As previously
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mentioned the preparative steps for the pointwise multiplications are listed
under the forward transform.

We now consider for the three sections of the algorithm the minimum
amount of clock cycles required for these instructions as a measure of a
lower-bound for the time required to execute our algorithm. To do so, we
find the bottleneck CPU port(s), assuming they are ideally distributed, and
its corresponding operation count. This indicates the minimum number of
clock cycles the port requires for the total of the algorithm. The results are
listed in Table 5.4; we omit the proofs, as they are simple to verify.

These lower bounds, then, indicate the minimum running time of each
stage of the algorithm in clock cycles, assuming the provided implementa-
tion.

5.9 Benchmark and Comparison

As in accordance with the New Hope paper [8], we perform the bench-
marks on an Intel Core i7-4770K (Haswell) processor, running at 3491.924
MHz, with Hyperthreading and Turbo Boost disabled. Also, the code
was compiled using g++ and gcc version 4.9.2 and GNU assembler ver-
sion 2.25, where for the C(++) code the flags ‘-O3 -fomit-frame-pointer
-march=corei7-avx -msse2avx’ were used, again in accordance with New
Hope.

The benchmarks, as shown in Table 5.5, give the mean and average (in
parenthesis) running time in clock cycles of each relevant function, over 1,000
runs. Only the AVX2 implementations are considered. The number of clock
cycles was determined using the rdtsc instruction; the routines from New
Hope are used for this purpose.

As seen when comparing with the results of the previous section, we
have achieved speeds of 57%, 57% and 70% of the theoretical lower bounds
for respectively the forward transform, inverse transform and the pointwise
multiplication.

For a single polynomial multiplication the total average time required
using the NTT algorithm is 24 872 cycles, while for Nussbaumer’s algorithm
the running time is a mere 15 660 clock cycles, providing a speed up of about
37% with respect to NTT.

As discussed in the Section 5.7 more transformations are required when
Nussbaumer’s algorithm is applied to the New Hope key exchange protocol.
Given these running times we can estimate the running time of the part of
the protocol calculating the negacyclic convolution using NTT to be about
4 · 10 536 + 2 · 11 620 + 4 · 2 716 = 76 248 clock cycles, while similar for
Nussbaumer’s algorithm would be about 6 · 2 348 + 4 · 2 724 + 4 · 10 588 =
67 336. In this case, considering the additional transformations required,
Nussbaumer’s algorithm would still provide a speed up of approximately
12%.
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Instruction Count

Ports Forward Inverse Pointwise

vpaddw p15 1 136 1 216 6 808

vpsubw p15 418 578 1 056

vpmullw p0 1 728

vpmulhuw p0 1 728

vpand p015 256 448 3 236

vpxor p015 1 1

vpor p015 64

vpsrlw p0 p23 256 512 3 236

vpsllw p0 p23 64 756

vpcmpeqw p15 64

vpalignr p5 136 200

vperm2i128 p5 388 452

vpunpcklwd p23 p5 96 96

vpunpckhwd p23 p5 96 96

vpunpckldq p23 p5 96 96

vpunpckhdq p23 p5 96 96

vpunpcklqdq p5 96 96

vpunpckhqdq p5 96 96

Table 5.2: Number of non-moving AVX2 instructions required for Nuss-
baumer’s algorithm. Unused instructions for certain parts of the algorithm
are left blank. The ‘ports’ column indicating the execution ports of the
processor used, as seen for the Haswell processor architecture by Agner [20]:
each column (separated by space) indicates the usage of a port, and a ‘p’
followed by multiple digits indicates exactly one of the following ports must
be used.
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Ports Forward Inverse Pointwise

0 256 576 7 448

5 1 100 1 228

1 or 5 1 554 1 858 7 864

2 or 3 640 960 3 992

0, 1 or 5 257 513 3 236

Table 5.3: The number of micro-operations to each group of ports for Nuss-
baumer’s algorithm.

Stage Bottleneck Lower Bound

Forward ports 1 and 5 1 327

Inverse ports 1 and 5 1 543

Pointwise port 0 7 448

Table 5.4: The lower bounds on the number of micro-operations required,
together with the CPU port(s) that form the bottleneck.

It is noteworthy that the pointwise multiplication of New Hope’s imple-
mentation has not been vectorized. However, even if we assume this step
can be optimized to a no-op in the case of NTT, but still considering it
for Nussbaumer, we see that the latter is merely 3% slower. Note that of
course this assumption is unrealistic: some clock cycles will be required for
this step. Without an optimized implementation for this step we can only
conclude the results will not deviate much in terms of speed when such an
optimized implementation is provided, but are likely somewhat favorable for
Nussbaumer’s algorithm in terms of speed.

NTT Nussbaumer

Forward Transform 10 536 (10 579) 2 348 (2 372)

Inverse Transform 11 620 (11 621) 2 724 (2 727)

Pointwise Multiplication 2 716 (2 719) 10 588 (10 623)

Table 5.5: Median and average (in parenthesis) running times in clock cycles
of portions of the NTT and Nussbaumer’s algorithm.
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Alice (server) Bob (client)

seed
$←− {0, . . . , 255}32

a← Parse(SHAKE-128(seed))

s, e
$←− ψn

16 s′, e′, e′′
$←− ψn

16

â← Transform(a)

ŝ← Transform(s)

b← Transform−1(â ◦ ŝ) + e

ma ← encodeA(seed,b)
ma−−→ (b, seed)← decodeA(ma)

a← Parse(SHAKE-128(seed))

â← Transform(a)

b̂← Transform(b)

t̂← Transform(s′)

u← Transform−1(â ◦ t̂) + e′

v← Transform−1(b̂ ◦ t̂) + e′′

r
$←− HelpRec(v)

(u, r)← decodeB(mb)
mb←−− mb ← encodeB(u, r)

û← Transform(u)

v′ ← Transform−1(û ◦ ŝ)
v← Rec(v′, r) v← Rec(v, r)

µ← SHA3-256(v) µ← SHA3-256(v)

Protocol 5.1: Protocol for New Hope, akin to protocol 3 in the New Hope
paper [8], except that it uses Nussbaumer’s algorithm for calculating nega-
cyclic convolutions. Conventions of the original have been used, although
here Transform and Transform−1 indicate the forward and inverse Nuss-
baumer transformations respectively, elements in Nussbaumer’s domain are
denoted with a hat and ◦ means the pointwise product in the corresponding
Nussbaumer domain.
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Chapter 6

Conclusion

We have seen that Nussbaumer’s negacyclic convolution algorithm is rarely
implemented and, in the few instances it has been implemented, it lacks the
optimizations specified by Nussbaumer. In particular, while a vectorized im-
plementation exists, its performance is not compared to similar algorithms;
also, the specific instance uses a different choice of parameters and is therefor
not directly applicable to or comparable with our implementation.

As we have shown, Nussbaumer’s algorithm requires significantly more
ring operations to calculate the same negacyclic convolution when compared
to NTT. We conclude that any implementation using the same parameters
for Nussbaumer and NTT would most likely result in a favorable outcome
efficiency-wise for the latter.

However, NTT is limited in its use in the way that it restricts the allow-
able parameters, namely it restricts freedom of choice of ring over which the
coefficients are chosen. Nussbaumer’s algorithm on the other hand works
with far less restriction on this ring; only that 2m needs to be invertible.

In the context of New Hope the ring can be chosen freely. We have
modified this ring to make reductions more efficient. We have shown that
in this context Nussbaumer’s algorithm turns out not to merely enable a
greater security for New Hope, but even performs better than the commonly
used number-theoretic transforms.

This conclusion can be transferred to a generic subset of ring learning
with error algorithms: if the choices of parameters cause a negacyclic con-
volution to be a central part of the algorithm (as in New Hope and BCNS),
then preferring Nussbaumer’s algorithm over NTT gives additional freedom
for the chosen ring. This choice may in general lead to more efficient and
secure algorithms.

To conclude, we have seen that implementing Nussbaumer’s algorithm
in the context of the ring learning with errors key exchange provides a new
hope for Nussbaumer’s algorithm.
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Appendix A

Proofs

Theorem 1. Let R be a ring with ω an n-th principal root of unity in R, and
let A = (ai ∈ R)n−1i=0 and B = (bi ∈ R)n−1i=0 be sequences. Let F : Rn → Rn

denote the discrete Fourier transformation (using ω). Then

∀k ∈ {0, . . . , n− 1} : Fk(A ∗B) = Fk(A)Fk(B),

where ∗ denotes the cyclic convolution of the given sequences, and Fk

indicates the k-th component function of F .

Proof. Let (z̃i)
2n−2
i=0 be the acyclic convolution of A and B, padded with

z̃2n−1 = 0, and let k ∈ {0, . . . , n− 1}. Then it follows from ωn = 1 that

Fk(A)Fk(B) = (

n−1∑
i=0

anω
ik)(

n−1∑
i=0

bnω
ik) =

2n−2∑
i=0

(
∑

j1+j2=i

aj1bj2)ωik

=
2n−2∑
i=0

z̃iω
ik =

2n−1∑
i=0

z̃iω
ik =

n−1∑
i=0

z̃iω
ik +

2n−1∑
i=n

z̃iω
ik

=

n−1∑
i=0

z̃iω
ik +

n−1∑
i=0

z̃i+n(ωn)kωik =

n−1∑
i=0

(z̃i + z̃i+n)ωik

= Fk(A ∗B).

So ∀k ∈ {0, . . . , n− 1} : Fk(A ∗B) = Fk(A)Fk(B).

Theorem 2. Let R be a ring, and n, v1, v2 ∈ N with v1 + v2 = n. Define
N = 2n, m = 2v1 and r = 2v2. Then

R[u]/(uN + 1) ∼= (R[u1]/ (ur1 + 1)) [u2]/ (um2 − u1)

by the mapping:

N−1∑
i=0

aiu
i 7→

m−1∑
i=0

r−1∑
j=0

amj+iu
j
1u

i
2.
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Proof. Call the given mapping Ψ.
If p ∈ R[u]/(uN +1) then there is a unique remainder q ∈ R[u] of division

of p by uN + 1. Then p = q, and q has degree of at most N −1. Hence there
exists a sequence (ai)

N−1
i=0 ∈ RN with q =

∑N−1
i=0 aiu

i, so Ψ(p) is defined.
From unicity of q it follows that Ψ is well-defined.

Conversely, if p ∈ (R[u1]/ (ur1 + 1)) [u2]/ (um2 − u1) then there exists a
unique remainder after division of p by um2 − u1, q =

∑m−1
i=0 Aiu

i
2 with

q = p, where Ai ∈ R[u1]/ (ur1 + 1). Similarly, each Ai has a unique form∑r−1
j=0 amj+iu

j
1 ≡ Ai (mod ur1 + 1); this gives us the corresponding ai such

that Ψ(
∑N−1

i=0 aiu
i) = p, hence Ψ is surjective.

Furthermore, Ψ is trivially injective, as a change in ai in
∑N−1

i=0 aiu
i

introduces a similar change for the corresponding amj+i in the codomain. It
follows that Ψ is a bijection.

It is trivial to see that addition is preserved by Ψ and that Ψ(0) = 0. It
remains to be proven that multiplication is also preserved.

First assume that p = u and q = cuk with c ∈ R and k ∈ N with k < N .
We begin by showing that Ψ(pq) = Ψ(p)Ψ(q).

Find the unique i ∈ {0, . . . ,m − 1} and j ∈ {0, . . . , r − 1} such that
mj + i = k. Then q = cumj+i, so Ψ(q) = cuj1u

i
2, and it is easily confirmed

that Ψ(p) = u2. We find, then, that Ψ(p)Ψ(q) = cuj1u
i+1
2 . We distinguish

three cases:

1. If i = m − 1 and j = r − 1, then k = mr − 1 = N − 1, so Ψ(pq) =
Ψ(ucuk) = Ψ(cuN ) = Ψ(−c) = −c. On the other hand, Ψ(p)Ψ(q) =
cur−11 um2 = cur−11 u1 = cur1 = −c. Hence Ψ(pq) = Ψ(p)Ψ(q).

2. If i = m−1 but j 6= r−1, then Ψ(pq) = Ψ(cumj+i+1) = Ψ(cum(j+1)) =
cuj+1

1 . On the other hand, Ψ(p)Ψ(q) = cuj1u
m
2 = cuj1u1 = cuj+1

1 .
Again, Ψ(pq) = Ψ(p)Ψ(q).

3. If i 6= m− 1, then Ψ(pq) = Ψ(cumj+(i+1)) = cuj1u
i+1
2 = Ψ(p)Ψ(q).

So Ψ(pq) = Ψ(p)Ψ(q). It is furthermore easy to see that Ψ(1q) =
Ψ(1)Ψ(q). It follows, then, that for p = uk1 and q = cuk2 with c ∈ R
and k1, k2 ∈ N with k1, k2 < N and k1 ≥ 1:

Ψ(pq) = Ψ

(
[

k1∏
i=1

u]cuk2

)
= Ψ

(
u[

k1−1∏
i=1

u]cuk2

)

= Ψ(u)Ψ

(
[

k1−1∏
i=1

u]cuk2

)
.

From induction with as base case k1 = 0 it follows that Ψ(pq) = Ψ(p)Ψ(q).
It is furthermore easy to verify that Ψ(c1)Ψ(c2u

k2) = Ψ(c1c2u
k2), where

c1, c2 ∈ R and k1, k2 ∈ N with k1, k2 < N .
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Next consider the case where p = c1u
k1 and q = c2u

k2 with c1, c2 ∈ R
and k1, k2 ∈ N with k1, k2 < N . Then

Ψ(pq) = Ψ(c1u
k1c2u

k2) = Ψ(uk1c1c2u
k2) = Ψ(uk1)Ψ(c1c2u

k2)

= Ψ(uk1)Ψ(c1)Ψ(c2u
k2) = Ψ(c1)Ψ(uk1)Ψ(c2u

k2)

= Ψ(c1u
k1)Ψ(c2u

k2) = Ψ(p)Ψ(q).

Note that the same now holds without the restriction k1, k2 < N , as
there exists a unique polynomial in the equivalence class that is in the form
adhering to the restriction, and Ψ is well-defined.

Finally, we consider the general case p =
∑N−1

i=0 ciu
i and q =

∑N−1
i=0 diu

i,
where ci, di ∈ R.

Ψ(pq) = Ψ

(
(

N−1∑
i=0

ciu
i)(

N−1∑
i=0

diu
i)

)
= Ψ

N−1∑
i=0

N−1∑
j=0

[ciu
i][dju

j ]


=

N−1∑
i=0

N−1∑
j=0

Ψ([ciu
i][dju

j ]) =

N−1∑
i=0

N−1∑
j=0

Ψ(ciu
i)Ψ(dju

j)

=

(
N−1∑
i=0

Ψ(ciu
i)

)N−1∑
j=0

Ψ(dju
j)

 =

= Ψ

(
N−1∑
i=0

ciu
i

)
Ψ

(
N−1∑
i=0

diu
i

)
= Ψ(p)Ψ(q)

Hence multiplication is also preserved, so Ψ is an isomorphism.

Theorem 3. If m|r, then ω = ur/m is a 2m-th principal root of unity in
R[u]/(ur + 1).

Proof. Note that:

ω2m ≡ u2r ≡ −ur ≡ 1 (mod ur + 1)

So ω is indeed a 2m-th root of unity.
Let k ∈ N with 1 ≤ k < 2m. Find k′, l ∈ N such that k′l = k with k′ odd

and l a power of two. Define n = 2m
l ; note that this is a power of 2, so in

particular gcd(k′, n) = 1 and as such, k′ has order n in the group (Z/nZ,+).
This indicates the identity

n−1∑
i=0

ωki =

n−1∑
i=0

(ωl)k
′i =

n−1∑
i=0

(ωl)i
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the latter equals sign giving a permutation of the order of the (finite)
sum. It follows, then, that

n−1∑
i=0

ωki =

n
2
−1∑

i=0

(ωl)i +
n−1∑
i=n

2

(ωl)i =

n
2
−1∑

i=0

(ωli + ωli+ln
2 )

=

n
2
−1∑

i=0

(ωli + ωliωln
2 ) =

n
2
−1∑

i=0

(ωli + ωliωm)

=

n
2
−1∑

i=0

(ωli + ωliur) =

n
2
−1∑

i=0

(ωli + ωli(−1))

=

n
2
−1∑

i=0

0 = 0.

Note that if j = i+ tn for some t ∈ N, then

ωkj ≡ ωki(ωkn)t ≡ ωki(ωln)k
′t ≡ ωki(ω2m)k

′t

≡ ωki1k
′t ≡ ωki (mod ur + 1),

and hence:
tn+n−1∑
i=tn

ωki ≡ 0 (mod ur + 1).

As such

2m∑
i=0

ωki ≡
l−1∑
t=0

tn+n−1∑
i=tn

ωki ≡
l−1∑
t=0

0 ≡ 0 (mod ur + 1),

which holds for all 1 ≤ k < 2m, such that ω is also a principal 2m-th
root of unity.

Theorem 4. Let A = (ai,j) and B = (bi,j) be 2m×m matrices in R[u]/(ur+
1), and let C = (ci,j) an m× 2m matrix in the same ring. Let ω = ur/m be
a 2m-th principle root of unity. Say for i, k, l < m

Si,k,l =
2m−1∑
j=0

ci,jaj,kbj,l =


1 if k + l = i,

u if k + l = i+m,

0 otherwise.

Define two matrices C ′ = (c′i,j) and A′ = (a′i,j) with

c′i,j =

aj,0 if i = 0,

−ur−1aj,m−i otherwise
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and

a′i,j =

c0,i if j = 0,

ucm−j,i otherwise,

and let

S′i,k,l =

2m−1∑
j=0

c′i,ja
′
j,kbj,l.

Then Si,k,l = S′i,k,l for i, k, l ∈ {0, 1, . . . ,m− 1}.

Proof. Let i, k, l ∈ {0, 1, . . . ,m− 1}.
Note that

(m− i) + l = (m− k) ⇐⇒ k + l = i, and

(m− i) + l = (m− k) +m ⇐⇒ k + l = i+m,

so Sm−k,m−i,l = Si,k,l. We see, then, that if i 6= 0 and k 6= 0,

S′i,k,l =

2m−1∑
j=0

c′i,ja
′
j,kbj,l =

2m−1∑
j=0

−urcm−k,jaj,m−ibj,l

=
2m−1∑
j=0

−ωmcm−k,jaj,m−ibj,l =
2m−1∑
j=0

cm−k,jaj,m−ibj,l

= Sm−k,m−i,l = Si,k,l.

If i = 0 and k 6= 0, note that k + l = i can not hold, so

Si,k,l =

u if k + l = m,

0 otherwise,

and similarly 0 + l = (m− k) +m can never hold, such that

S′m−k,0,l =

1 if 0 + l = m− k,

0 otherwise,

which makes it easy to see that S0,k,l = uSm−k,0,l. Hence

S′0,k,l =

2m−1∑
j=0

c′0,ja
′
j,kbj,l =

2m−1∑
j=0

ucm−k,jaj,0bj,l

= uSm−k,0,l = S0,k,l.
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Similarly if i 6= 0 and k = 0, k+l = i+m can not hold and (m−k)+l = 0
can not hold, hence

Si,k,l =

1 if k + l = i,

0 otherwise,

and

S′0,m−i,l =

u if (m− i) + l = m,

0 otherwise.

As k + l = i ⇐⇒ (m− i) + l = m, uSi,0,l = S0,m−i,l, and we find that

S′i,0,l =
2m−1∑
j=0

c′i,ja
′
j,0bj,l =

2m−1∑
j=0

−ur−1c0,jaj,m−ibj,l =

= −ur−1S0,m−i,l = −urSi,0,l = Si,0,l.

Finally, if i = 0 and k = 0, then

S′0,0,l =

2m−1∑
j=0

c′0,ja
′
j,0bj,l =

2m−1∑
j=0

c0,jaj,0bj,l = S0,0,l.

We conclude that for any i, k, l ∈ {0, 1, . . . ,m− 1}: S′i,k,l = Si,k,l.
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Appendix B

Nussbaumer Source Code

/**
* @file NegaNussbaumer.h

* @author Gerben van der Lubbe

*
* File containing Nussbaumer’s negacyclic convolution algorithm.

*/

#ifndef NEGANUSSBAUMER_H
#define NEGANUSSBAUMER_H

#include <vector>
#include <cassert>
#include <cmath>

#include "Polynomial.h"
#include "BitManip.h"

/**
* Class for performing the Negacyclic Nussbaumer algorithm.

* To run it, transform both polynomials, one with the slow

* transform and one with the fast transform; perform a

* componentwise() product, and calculate the inverse

* transform.

*/
template<typename RingElt>
class NegaNussbaumer {
public:

/// Transformed polynomial
typedef std::vector<Polynomial<RingElt>> Transformed;

NegaNussbaumer(std::size_t N);

Transformed transformSlow(
const Polynomial<RingElt>& orig,
bool fixFactor = true

) const;
Transformed transformFast(
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const Polynomial<RingElt>& orig
) const;

Polynomial<RingElt> inverseTransform(
const Transformed& trans

) const;

Transformed componentwise(
const Transformed& t1,
const Transformed& t2

) const;
static Polynomial<RingElt> multiply(

std::size_t N,
const Polynomial<RingElt>& p1,
const Polynomial<RingElt>& p2

);

protected:
Polynomial<RingElt> addRotatedPolynomial(

const Polynomial<RingElt>& p1,
const Polynomial<RingElt>& p2,
int steps

) const;
Polynomial<RingElt> rotatePolynomial(

const Polynomial<RingElt>& pol,
int steps

) const;

Polynomial<RingElt> correct(
const Polynomial<RingElt>& p

) const;
unsigned int getFactor() const;

private:
std::size_t n_;
std::size_t m_, r_;

};

/**
* Constructor for an object that will perform

* multiplications on the given polynomial modulo uˆN + 1,

* according to the Nussbaumer algorithm. The value "N"

* must be a power of 2 for this algorithm.

* @param[in] N The "N" of the algorithm; the

* multiplication is calculated modulo

* "uˆN + 1". This must be greater than 2, as

* a trivial alternative should be used there.

*/
template<typename RingElt>
NegaNussbaumer<RingElt>::NegaNussbaumer(

std::size_t N
) {
assert(N > 1);
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// Get the n = log_2 N (which must be an integer)
n_ = 0;
while((1u << n_) < N)
++n_;

assert((1u << n_) == N);

// Find m = 2ˆlg_m and r = 2ˆlg_m (with lg_m and lg_r
// integers), such that m*r = n with r minimum; that is,
// m = floor(lg_n/2) and lg_m + lg_r = n.
std::size_t lg_m, lg_r;
lg_m = n_ >> 1;
lg_r = n_ - lg_m;
m_ = 1 << lg_m;
r_ = 1 << lg_r;

}

/**
* Perform the full multiplication of the two given

* polynomials, modulo uˆN + 1.

* @param[in] N The N in the modulo uˆN + 1

* @param[in] p1 The first polynomial to multiply.

* @param[in] p2 The second polynomial to multiply.

* @return The Negacyclic convolution

*/
template<typename RingElt>
Polynomial<RingElt> NegaNussbaumer<RingElt>::multiply(

std::size_t N,
const Polynomial<RingElt>& p1,
const Polynomial<RingElt>& p2

) {
// Otherwise, recurse into the algorithm again
NegaNussbaumer<RingElt> nussbaumer(N);
auto t1 = nussbaumer.transformSlow(p1, false);
auto t2 = nussbaumer.transformFast(p2);
auto resTrans = nussbaumer.componentwise(t1, t2);
return nussbaumer.inverseTransform(resTrans);

}

/**
* Perform the componentwise multiplication of the

* transformed polynomials. One must be transformed through

* the transformSlow method, the other through the

* transformFast method.

* @param[in] slow The slow-transformed polynomial.

* @param[in] fast The fast-transformed polynomial.

* @return The transformed result of the multiplication.

*/
template<typename RingElt>
typename NegaNussbaumer<RingElt>::Transformed

NegaNussbaumer<RingElt>::componentwise(
const Transformed& slow,
const Transformed& fast
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) const {
// Special case where N = 2, where Nussbaumer’s algorithm
// is not applicable.
if(n_ == 1) {
Transformed resTrans;
Polynomial<RingElt> res(2);
RingElt t = slow[0][0]*fast[0][2];
res[0] = t - slow[0][1]*fast[0][1];
res[1] = t + slow[0][2]*fast[0][0];
resTrans.push_back(res);
return resTrans;

}

Transformed resTrans;
resTrans.push_back(Polynomial<RingElt>(r_));
for(std::size_t i = 1; i < slow.size(); ++i) {
auto term = NegaNussbaumer<RingElt>::multiply(

r_, slow[i], fast[i]
);

resTrans.push_back(term);
}

return resTrans;
}

/**
* Transform the polynomial to the list of polynomials

* that can be multiplied componentwise (see algorithm

* description for a more thorough explanation). This is

* the slow transform; the other polynomial input for

* "componentwise" must be a polynomial transformed by

* transformFast.

* @param[in] orig The original polynomial, must be of

* degree N.

* @param[in] fixFactor Whether to compensate for the

* factor (should be false for

* recursive calls).

* @return The transformed polynomial.

*/
template<typename RingElt>
typename NegaNussbaumer<RingElt>::Transformed

NegaNussbaumer<RingElt>::transformSlow(
const Polynomial<RingElt>& orig,
bool fixFactor

) const {
assert(orig.getSize() == (1u << n_));

// Handle the special case N = 2, where another algorithm
// is used (with some pre-processing)
// We make 2 as the first componentwise multiplication is
// skipped.
if(n_ == 1) {
Transformed trans(1, Polynomial<RingElt>(3));
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trans[0][0] = orig[0];
trans[0][1] = orig[0] + orig[1];
trans[0][2] = orig[1] - orig[0];
return trans;

}

Transformed trans(2*m_, Polynomial<RingElt>(r_));

// Correct the scale of the polynomial. Do so now, as
// this needs less steps then at a later point. Also, as
// this result may be re-used, it’s better to do here
// than at the end.
Polynomial<RingElt> scaledOrig =

fixFactor ? correct(orig) : orig;

// Get the input polynomials, transformed, applying the
// C_4’ matrix immediately.
for(std::size_t j = 0; j < r_; ++j)
trans[0][j] = scaledOrig[m_*j];

for(std::size_t i = 1; i < m_; ++i)
trans[i][0] = -scaledOrig[m_*(r_ - 1) + m_ - i];

for(std::size_t i = 1; i < m_; ++i) {
for(std::size_t j = 1; j < r_; ++j) {
trans[i][j] = scaledOrig[m_*(j - 1) + m_ - i];

}
}

// Apply the C_3ˆT matrix.
for(std::size_t i = 0; i < m_ - 1; ++i)
trans[m_ + i][0] = -trans[i][r_ - 1];

for(std::size_t i = 0; i < m_ - 1; ++i) {
for(std::size_t j = 1; j < r_; ++j) {

trans[m_ + i][j] = trans[i][j - 1];
}

}

// Apply the C_2ˆT matrix.
Polynomial<RingElt> lastEntry(-trans[0]);
for(std::size_t i = 1; i < 2*m_ - 1; ++i)
lastEntry -= trans[i];

trans[2*m_ - 1] = lastEntry;

// Perform the FFT
std::size_t j = (n_ >> 1) + 1;
while(j > 0) {

--j;

for(std::size_t sPart = 0;
sPart < (m_ >> j);
++sPart) {

std::size_t s, sRev;
s = sPart << (j+1);
sRev = bitrev((n_ >> 1) - j, sPart) << j;
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int k = -static_cast<int>((r_/m_)*sRev);

for(std::size_t t = 0; t < (1u << j); ++t) {
std::size_t e, f;
e = s + t;
f = e + (1u << j);

// Now, we set (simultaneously):
// trans[e] = trans[e] + uˆk*trans[f]
// trans[f] = trans[e] - uˆk*trans[f]
Polynomial<RingElt> tmp;
if(e == 0 && j == 0) {
// Don’t calculate trans[0]; we don’t need it.
tmp = Polynomial<RingElt>(r_);

}
else {
tmp = addRotatedPolynomial(

trans[e], trans[f], k
);

}
trans[f] = addRotatedPolynomial(

trans[e], trans[f], k + r_
);

trans[e] = tmp;
}

}
}

return trans;
}

/**
* Transform the polynomial to the list of polynomials that

* can be multiplied componentwise (see algorithm

* description for a more thorough explanation). This is

* the fast transform; the other polynomial input for

* "componentwise" must be a polynomial transformed by

* transformSlow.

* @param[in] orig The original polynomial, must be of

* degree N.

* @return The transformed polynomial.

*/
template<typename RingElt>
typename NegaNussbaumer<RingElt>::Transformed

NegaNussbaumer<RingElt>::transformFast(
const Polynomial<RingElt>& orig

) const {
assert(orig.getSize() == (1u << n_));

// Prepare for another algorithm if N = 2.
if(n_ == 1) {
Transformed trans(1, Polynomial<RingElt>(3));
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trans[0][0] = orig[0];
trans[0][1] = orig[1];
trans[0][2] = orig[0] + orig[1];
return trans;

}

Transformed trans(2*m_, Polynomial<RingElt>(r_));

// First get the polynomials to perform the fourier
// transform on. These are 2m polynomials of which r
// coefficients will be considered, where two sets of
// m polynomials are created by shuffling "orig".
for(std::size_t i = 0; i < 2*m_; ++i) {
for(std::size_t j = 0; j < r_; ++j) {
trans[i][j] = orig[m_*j + (i % m_)];

}
}

// Do the fast fourier transform.
std::size_t j = (n_ >> 1);
while(j > 0) {
--j;

for(std::size_t sPart = 0;
sPart < (m_ >> j);
++sPart) {

std::size_t s, sRev;
s = sPart << (j+1);
sRev = bitrev((n_ >> 1) - j, sPart) << j;

int k = static_cast<int>((r_/m_)*sRev);

for(std::size_t t = 0; t < (1u << j); ++t) {
std::size_t e, f;
e = s + t;
f = e + (1u << j);

// Now, we set (simultaneously):
// trans[e] = trans[e] + uˆk*trans[f]
// trans[f] = trans[e] - uˆk*trans[f]
Polynomial<RingElt> tmp;
if(e == 0 && j == 0) {
// Don’t calculate trans[0]; we don’t need it.
tmp = Polynomial<RingElt>(r_);

}
else {
tmp = addRotatedPolynomial(

trans[e], trans[f], k
);

}
trans[f] = addRotatedPolynomial(

trans[e], trans[f], k + r_
);
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trans[e] = tmp;
}

}
}

return trans;
}

/**
* Perform the inverse transform (see paper).

* @param[in] trans The transformed form of the

* polynomial.

* @return The polynomial form.

*/
template<typename RingElt>
Polynomial<RingElt>

NegaNussbaumer<RingElt>::inverseTransform(
const Transformed& trans

) const {
// Special case for N = 2, where no actual inverse
// transform is needed
if(n_ == 1)
return trans[0];

// Do the inverse FFT (through a DIT with
// unordered input)
Transformed z(trans);
std::size_t jMax = n_ >> 1;
for(std::size_t j = 0; j <= jMax; ++j) {
for(std::size_t t = 0; t < (1u << j); ++t) {
int k = (int)((r_/m_)*( t << (jMax - j) ));

for(std::size_t s = 0; s < 2*m_; s += (1 << (j+1))) {
std::size_t e, f;
e = s + t;
f = e + (1u << j);

Polynomial<RingElt> tmp;
if(j == 0 && e == 0) {
z[e] = z[f];
z[f] = -z[f];

}
else {
// Now, we set (simultaneously):
// z[e] = z[e] + uˆk*z[f]
// z[f] = z[e] - uˆk*z[f]
tmp = addRotatedPolynomial(z[e], z[f], k);
if(j != jMax) {
// We don’t need the last half of the result.
z[f] = addRotatedPolynomial(

z[e], z[f], k + r_
);

}

66



z[e] = tmp;
}

}
}

}

// Inverse the order of all but the first element.
std::size_t from, to;
for(from = 1, to = m_ - 1; from < to; from++, to--) {
std::swap(z[from], z[to]);

}

// Multiply all but the first element with
// -uˆ{r-1} = uˆ{2r - 1}
for(std::size_t i = 1; i < m_; ++i)
z[i] = rotatePolynomial(z[i], 2*r_ - 1);

// Unpack the polynomial
Polynomial<RingElt> res(1u << n_);
for(std::size_t i = 0; i < m_; ++i) {
for(std::size_t j = 0; j < r_; ++j) {

res[m_*j + i] = z[i][j];
}

}

return res;
}

/**
* Calculate p1 + (uˆsteps)*p2 modulo uˆr + 1. This could

* be done by a separate rotate/add step, but this would

* require possible negations followed by additions,

* rather than immediately subtracting.

* @param[in] p1 The first polynomial

* @param[in] p2 The second polynomial.

* @param[in] steps The number of steps to "rotate" p2.

* @return p1 + (uˆsteps)*p2 modulo uˆr + 1.

*/
template<typename RingElt>
Polynomial<RingElt>

NegaNussbaumer<RingElt>::addRotatedPolynomial(
const Polynomial<RingElt>& p1,
const Polynomial<RingElt>& p2,
int steps

) const {
Polynomial<RingElt> ret(r_);

// Get "steps" as negative value, with 2*r_ < steps <= 0
steps %= 2*r_;
if(steps > 0)
steps -= 2*r_;

for(std::size_t i = 0; i < r_; ++i) {
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int src = static_cast<int>(i) - steps;
std::size_t srcIndex = static_cast<size_t>(src) % r_;
bool signInverse = (src / r_) & 1;

if(signInverse)
ret[i] = p1[i] - p2[srcIndex];

else
ret[i] = p1[i] + p2[srcIndex];

}

return ret;
}

/**
* The function "rotates" the polynomial, as though

* multiplying it with uˆsteps, modulo uˆr + 1.

* @param[in] pol The polynomial to rotate.

* @param[in] steps The number of steps to rotate.

* @return The resulting polynomial.

*/
template<typename RingElt>
Polynomial<RingElt>

NegaNussbaumer<RingElt>::rotatePolynomial(
const Polynomial<RingElt>& pol,
int steps

) const {
Polynomial<RingElt> ret(r_);

// Get "steps" as negative value, with 2*r_ < steps <= 0
steps %= 2*r_;
if(steps > 0)
steps -= 2*r_;

for(std::size_t i = 0; i < r_; ++i) {
int src = static_cast<int>(i) - steps;
std::size_t srcIndex = static_cast<size_t>(src) % r_;
bool signInverse = (src / r_) & 1;

if(signInverse)
ret[i] = -pol[srcIndex];

else
ret[i] = pol[srcIndex];

}

return ret;
}

/*
* Corrects the result of the Nussbaumer algorithm by

* dividing the factor of getFactor out of this one.

* @param[in] p The polynomial to correct.

* @return The polynomial.
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*/
template<typename RingElt>
Polynomial<RingElt>

NegaNussbaumer<RingElt>::correct(
const Polynomial<RingElt>& p

) const {
// To calculate the inverse FFT we need the inverse of
// the correction factor
RingElt inverseElt;
int inverse;
if(!RingElt::getInverse(inverseElt, getFactor())) {
std::cerr << "Factor does not have an inverse"

" in the given ring" << std::endl;
exit(1);

}

inverse = inverseElt.toInt();

// Multiply with the inverse
auto ret = p;
ret *= inverse;
return ret;

}

/**
* Calculate the factor that the result is multiplied with

* after the Nussbaumer algorithm. The final step should be

* to multiply the result with the inverse of this factor.

* @return The factor.

*/
template<typename RingElt>
unsigned int NegaNussbaumer<RingElt>::getFactor() const {
unsigned int factor = 1;
unsigned int nTest = n_;
while(nTest != 1) {

unsigned int lgmTest = nTest >> 1;
unsigned int lgrTest = nTest - lgmTest;
factor *= 2*(1 << lgmTest);
nTest = lgrTest;

}
return factor;

}

#endif
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