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Abstract

In this thesis we propose a method for classifying various terrain types from Landsat imagery
using random forest classification. OpenStreetMap is used to generate training data for the clas-
sifier, as well as to define areas for extracting statistics about the underlying terrain. This auto-
mated approach can be applied to large sets of data, reducing the need for manual labeling.
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1 | Introduction

The Landsat program run by NASA since 1972 provides satellite imagery to researchers. The
program aims for complete world coverage. Of the eight satellites in this program, the two
most recent satellites are still active1 and achieve complete coverage every eight days. The data
sets produced by these satellites can be downloaded using an online portal. The program lists
several areas of research their imagery is used for, including land use and mapping, environmental
monitoring, geology, and coastal resources [8].

The latest satellite in the program, Landsat 8, provides 11 different multispectral bands at a
resolution of 30 by 30 meters. This spatial resolution is far from the best that is (commercially)
available. However, the spectral resolution and amount of coverage it provides is not found in any
other satellite imagery aqcuisition program. This makes Landsat a great source of information
for comprehensive studies about the geography of the earth and its terrain. The longevity of the
Landsat program also enables researchers to conduct studies over long periods of time. A new
satellite for the program is scheduled to launch in 2023.

In this thesis we will focus on creating land cover maps using random forests. Land cover maps
visually show how an area is covered by certain features like forests, grassland, or buildings.
These maps are utilised by various studies such as assessing ecosystem status and health, and
monitoring urban development [20]. Automated methods for generating land cover maps are
required for these purposes, as for areas with rapidly changing terrain conditions a manual
approach would be very labor intensive. Several specialised applications have been developed
for classifying very detailed land cover maps [19], however the satellite imagery used does not
provide complete world coverage and thus can not be applied to any location on the globe.

With land cover maps, statistics about the underlying terrain can be obtained. These statistics
can then be used to monitor urban growth or document ecological conditions [15] for the length
of the Landsat program. While the focus of this thesis is on land cover map generation, we will
also explore how we can extract statistics for the resulting maps.

1Older satellites either failed or were decomissioned.
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2 | Preliminaries

In this chapter we will discuss the knowledge needed to read this paper. Some knowledge on
machine learning and classification algorithms is assumed. However an explanation of decision
trees and random forest classification follows.

2.1 OpenStreetMap

OpenStreetMap is a crowdsourced web application for creating a map of the world. Their maps
are accessible and editable by anybody for any purpose. The map contains several hundred
different features, a subset of which we will use to train a classifier. The degree of coverage and
accuracy of OpenStreetMap varies greatly per country. Not only are physical features mapped,
but also administrative borders, mapping city, state, and country borders. We will make extensive
use of this project and its public API to generate maps.

2.2 Decision tree learning

Decision tree learning aims to create a model of decisions that map input to labels. It is repre-
sented much like a directed acyclic graph. Figure 2.1 is an example of a decision tree. To obtain
a class for any input, the tree is traversed top to bottom. At every node, the criterion at that
node is checked against the value of the input. From there, the input is either redirected to the
left branch, or to the right branch, based on the condition at that node. Whenever the bottom
of the tree is reached in this manner, a class is returned for the input. Decision trees can be
automatically generated from labeled data sets. The Python package scikit-learn provides
excellent decision tree classifier implementations.

2.3 Random forest classification

Random forests are a collection of decision trees aimed to be an improvement in performance over
single decision trees. A random forest is constructed by generating decision trees for subsamples
of the data. Classifying is then performed much in the same way as with regular decision trees,
where the resulting class is the mean class of all the single decision trees in the forest. A random
forest can contain an arbitrary number of trees. We will explore how the quality of the resulting
classification changes with a varying number of trees in the forest.
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2.3. RANDOM FOREST CLASSIFICATION

Figure 2.1: Decision tree

The trees in a random forest are generated in a way that attempts to split the data set at every
node in half. The algorithm selects at every node the feature, and a value for that feature, that
best accomplishes this goal from a set of n =

√
n_features features. We will go into further

detail on random forest generation in Figure 4.3.1.
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3 | Data

3.1 Projections

To display coordinates from a sphere on flat surfaces like computer screens, a transformation
of coordinates is required. An example of this tranformation is the Mercator projection, which
projects the surface of the earth on a cylinder, which can be rolled out to a flat surface. This
projection is not ideal for satellite images, since it disproportionally stretches the top and bottom
of the sphere. In the case of the Mercator projection, this means the north- and south pole are
stretched along the entire length of the projection. A consequence of this is that measuring
distances between two points on this map is inaccurate.

The EPSG Geodetic Parameter Registry hosts a number of coordinate transformation systems
for online reference [5]. The Python package pyproj lets us transform any latitude-longitude
coordinate to an x-y coordinate suited for displaying on screen, given an EPSG code. We will
make extensive use of this package to transform coordinates between various systems for the
purpose of generating training data.

3.1.1 Landsat 8

All Landsat imagery uses a subset of the WGS 84 EPSG standard. Metadata provided with
the Landat images contains the exact EPSG code which was used to transform the original
image. We can extract this code from the metadata to later apply the transformation of this
code to OpenStreetMap coordinates for the purpose of lining up OpenStreetMap coordinates
and Landsat images. In Figure 3.1 we can see the river Thames in blue from the OpenStreetMap
data, plotted over a satellite image of that area. In Section 4.2 we will go into detail on this
process.

WGS 84 is the primary standard used by the Global Positioning System (GPS). Developed by
the U.S. Department of Defense, it was later implemented by Landsat for its coordinate system.
This system is used for every Landsat image, regardless of its position on the globe.

3.1.2 OpenStreetMap

The OpenStreetMap website uses the EPSG code 3857, which is a subset of the WGS 84 stan-
dard1. This system is used to transform between latitude-longitude and x-y coordinate systems.

1EPSG 3857 is also known as Web Mercator and heavily used in web applications like Google Maps and
OpenStreetMap.
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3.1. PROJECTIONS

Figure 3.1: Satellite image of London with OpenStreetMap waterways

We can use the EPSG code provided by the Landsat image metadata to transform the Open-
StreetMap coordinates to the same system as the image in a similar fashion as described above
using pyproj, resulting in Figure 3.1. Transformations like this are required for mapping Open-
StreetMap labels to their actual positions on a satellite image which we can then use for training
a classifier.

Classifying Landsat Terrain Images via Random Forests 9



CHAPTER 3. DATA

3.2 OpenStreetMap

The OpenStreetMap archive provides downloads for their entire data set2. The data is a collection
of the following components, taken from the OpenStreetMap wiki [16]:

• nodes (defining points in space),

• ways (defining linear features and area boundaries), and

• relations (which are used to explain how other elements work together).

The relations component is most commonly used to define relationships between ways. In Open-
StreetMap, administrative boundaries mark country borders as well as region, district/county,
and city borders and are defined as relations between ways. We will use these relations for
deriving statistics from classified images as detailed in Section 4.5. Relations are not related
to physical objects and thus can not be detected on satellite images. Because of this, when
parsing OpenStreetMap data for training our model, we can skip relations and only use nodes
and ways.

As nodes define single points in space, they are used to represent lamp posts, park benches, fire
hydrants, and other small elements alike. Since the spatial resolution of the Landsat satellites
is not sufficient for classifying such small objects, we can safely ignore them. Hence, the node
elements are only used in conjunction with a way representing an area3 or line4. Nodes not
linked to a way are ignored. This leaves only ways to be parsed.

3.2.1 Training map generation

We use Python to generate an image which is used to map OpenStreetMap labels to correspond-
ing pixels on a satellite image. To do so, we need to generate an image which is overlaid on
top of the satellite image, where every pixel of our image relates to a single pixel of the satellite
image. The OpenStreetMap data can be parsed using the Python library imposm.parser5 and
drawn to an image. Figure 3.2 shows a subset of the OpenStreetMap data for the London area
with roads in black, railroads in red and water in blue. This map is drawn using the EPSG code
for this area, taken from the Landsat metadata. Using any other EPSG code will result in the
map not perfectly aligning with its related satellite image. It is also possible to manually draw
training maps. We will go into detail on this process in Section 4.2.1 and Section 4.2.2.

3.3 Landsat 8

The Landsat archive provides satellite imagery in 11 multispectral bands at a resolution of 30 by
30 meters. Figure 3.3 is an example of a Landsat image composited of bands 2, 3 and 4. Listed
in Table 3.1 are the band designations, listing per band the wavelength range it spans [9]. Note
that both thermal infrared bands are acquired at a resolution of 100 meters, but are resampled
up to 30 meters to match the resolution of the other bands. Also note that the resolution of the

2Subsets can also be downloaded.
3Buildings are represented by a closed polygon.
4Roads are represented as a list of nodes.
5Documentation at http://imposm.org/docs/imposm.parser/latest/
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3.3. LANDSAT 8

Figure 3.2: Generated image of London from OpenStreetMap data

panchromatic band is twice that of the other bands. We will later see that this band can be used
to improve the resolution of the other bands through a process called pan sharpening discussed
in Section 4.3.1.

The U.S. Geology Survey (USGS) department, which hosts a number of online Landsat tools,
lists the type of terrain detection each band is most commonly used for. For example, band 5
emphasizes biomass content and shorelines [13]. However, since we let the classifier decide which
features are most important in certain scenarios, we will not be implementing any band preference
based on hints from the U.S. Geology Survey department. This ensures that, independent of
which Landsat release is used, our method utilizes every available band in a manner that results
in the best classification.
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CHAPTER 3. DATA

Figure 3.3: Landsat image of London Figure 3.4: Fill and cloud mask

Bands Wavelength (µm) Resolution (meters)
Band 1 - Coastal aerosol 0.43 - 0.45 30
Band 2 - Blue 0.45 - 0.51 30
Band 3 - Green 0.53 - 0.59 30
Band 4 - Red 0.64 - 0.67 30
Band 5 - Near Infrared 0.85 - 0.88 30
Band 6 - SWIR 1 1.57 - 1.65 30
Band 7 - SWIR 2 2.11 - 2.29 30
Band 8 - Panchromatic 0.50 - 0.68 15
Band 9 - Cirrus 1.36 - 1.38 30
Band 10 - Thermal Infrared 1 10.60 - 11.19 30
Band 11 - Thermal Infrared 2 11.50 - 12.51 30

Table 3.1: Landsat 8 band designations

Landsat 8 improves on previous Landsat satellites by providing additional bands across a broader
wavelength spectrum6. Our method works for any Landsat release as any subset of bands can
be used as input for the classifier. Some problems surface when anything other than Landsat 8
is used due to availability of training data. In Figure 4.3.2 we list possible solutions.

3.3.1 Quality Assessment Band

The Landsat imagery includes a quality assessment (QA) band [11]. From this band we can
derive whether a pixel is cloud-covered or not, whether the pixel is filler space or not, and a few
additional sensor conditions. We will use this band to discard any pixels that do not represent

6See Table A.1 for a list of Landsat 7 bands
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3.3. LANDSAT 8

(a) Cloud mask in blue (b) Actual scene

Figure 3.5: Built-in cloud detection errors over Brooklyn, caused by bright building tops

terrain data. For the satellite image in Figure 3.3, we see the fill mask in black and the cloud
mask in white in Figure 3.4. This QA band also includes a snow mask, and water mask. For
the reason listed previously, we will not implement any of the terrain hints from the QA band.
Moreover, the USGS states that none of the masks are expected to exceed an accuracy of 80%7.
Especially in urban areas close to bodies of water, we found that the built-in cloud detection
errs often. See Figure 3.5 for an example with the clouds from the QA band in blue. Notice
how most of the area covered by buildings is also covered by clouds, whereas any water or parks
are not. No clouds are actually present in this image. This is a known problem also present for
the snow/ice mask of the QA band. The Landsat program aims to have fixed this problem by
summer 2016 using post-processing [10]. This fix will also introduce a mask for cloud shadows
which is not present in the current QA band file.

7Fill mask excluded.
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4 | Approach

4.1 Scenarios

We define several groupings of classes as scenarios. Scenarios are used to list class labels to
classify in an image. Using scenarios we can generate training data, or define boundaries for
later statistics calculations.

We select several of the most often used OpenStreetMap labels to define a scenario in order to
test the performance our model, as discussed in Section 4.3.3. The features most commonly
defined in OpenStreetMap used in this scenario include:

• roads, including all motorways, roads, and otherwise paved surfaces,

• waterways, including rivers, riverbanks, seas, and water reservoirs,

• forests,

• buildings,

• grass, including parks, and meadows,

• farmland, including crops, and vegetables.

In this thesis we describe several other scenarios such as land-water separation, and cloud de-
tection. Any combination of features existent in OpenStreetMap1 can be defined as scenario to
suit various applications.

4.1.1 Cloud detection

While the QA band provides built-in cloud detection, we propose a scenario to label clouds
in satellite images, independent of the quality assessment band cloud labels. The goal of this
scenario is to try and improve on the built-in cloud detection algorithms of Landsat 8, since
NASA does not recommend the built-in cloud detection be used for more than an indication
of where clouds might be present. This is where an improved cloud detection method would
improve the overall results of classification. Our method does not detect shadows cast by clouds,
so it should be noted that without sufficient training data pixels covered by cloud shadows are
likely to be misclassified due to the darker tones of the pixels. An example of the built-in cloud
detection can be seen in Figure 3.4.

1See http://wiki.openstreetmap.org/wiki/Map_Features for a comprehensive list of OpenStreetMap fea-
tures.
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4.2. TRAINING DATA

4.2 Training data

Training data for our method consists of an image with colored pixels representing classes. There
are several ways to generate training maps.

The Landsat metadata provides information about image dimensions. We adhere to those di-
mensions when generating a training image so that we can overlap the training map and the
Landsat imagery as shown in Figure 3.1. This approach enables manual verification of the
training data.

4.2.1 OpenStreetMap

The OpenStreetMap data dumps contain coordinates in a geographic coordinate system. To
transform those coordinates for plotting an image, we can make use of the same transformation
used by Landsat to display part of a sphere on a flat surface.

We generate a training image where different colors correspond to the different labels. Colors
for labels can be specified in the scenario definition file. The Landsat metadata provides us
with image dimensions as well as designated fill pixels. We can make use of the cloud detection
scenario to overlay cloud cover, or use the built-in cloud detection algorithm.

This method of generating training data for our classifier is highly dependent on correct data
from OpenStreetMap. Currently, we have no way of verifying the accuracy of the crowdsourced
data. Figure 4.1 is an example of incorrectly labeled roads. Also shown in this figure is the
incompleteness of the OpenStreetMap dataset, which should not matter for our classifier as long
as enough instances of every class are present.

4.2.2 Manual

The training data for our method consists of a generated image where classes are labeled using
different colors. In contrast to directly using OpenStreetMap dumps as input for our classifier,
this approach enables us to manually draw training images to then be parsed as training data.
For several scenarios, this is the only approach that allows us to label certain classes. The
cloud detection scenario is a prime example of this, since OpenStreetMap does not map any
clouds. An additional benefit of this flexible approach is that it somewhat reduces the runtime
of our method since the training images can be re-used across classifications of the same scenario
because they are generated using a separate application. Parsing the OpenStreetMap data is
only done once.

These manually defined training maps can be generated by drawing colored pixels on a satellite
image where pixels line up with classes using any image editor2. See Figure 4.2a for an example
where the green pixels cover only land, and blue pixels cover only water3. A classification using
this scenario applied to satellite Figure 3.3 results in Figure 4.2b. This approach is not practical
for classifying small objects like highways since labeling training instances for these classes pixel
by pixel is very time consuming. Manually drawing/augmenting training maps from Section 4.2.1
allows fixing incorrect and incomplete OpenstreetMap data.

2Image dimensions should equal satellite image dimensions.
3The Landsat provided fill mask and cloud map is also shown.
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CHAPTER 4. APPROACH

Figure 4.1: Misaligned and missing roads

(a) Manually drawn training map (b) Resulting classification

Figure 4.2: Example of ’land-water’ scenario, with cloud mask in white
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4.3. CLASSIFICATION

4.3 Classification

4.3.1 Training the model

Pan sharpening

A multispectral image contains a higher spectral resolution than a panchromatic image, while a
panchromatic image has a higher spatial resolution than a multispectral image. A pan sharp-
ened image represents a combination between the multispectral and panchromatic images which
combines the best of both image types, namely high spectral resolution and high spatial res-
olution [17]. An example of pan sharpening can be seen in Figure 4.3. Note that since the
panchromatic band in the case of Landsat imagery is twice the resolution of the other bands, the
pan sharpened image contains four times as many pixels as the non-pan sharpened image.

The Python package landsat-util4 developed by Developmentseed specializes in downloading
and processing Landsat images [3]. Their tools offer a convenient way to implement pan sharp-
ening in any project and has helped a great deal in improving the accuracy of this method. Their
tools have also been used to color-correct the pan sharpened images for previewing, as Landsat
images come in grayscale only.

There are multiple ways to accomplish pan sharpening in the context of satellite imagery [1] -
we did not further investigate different pan sharpening methods but assume that if a consistent
method is used for all bands, resulting classifications will be similar. No methods currently
exist to improve the resolution of the panchromatic image, so any pan sharpening method pulls
up the resolution of the multispectral image to the resolution of the panchromatic band. The
resolution of the resulting image can not be improved further with any of the aforementioned
methods.

We apply pan sharpening to every band5 using the panchromatic band as input. This results in
10 bands6 with a resolution of 15 meters per pixel up from the 30 meters originally supplied by
Landsat. From here on, we only consider pan sharpened images unless stated otherwise. In all
of the following experiments pan sharpened images have been used. Note that a panchromatic
band is supplied for Landsat 7 and Landsat 8 only. The pan sharpening step can be skipped for
previous releases as it is not essential to our approach.

Random forest generation

A random forest is a collection of decision trees. In our model, the forest consists of 300 randomly
generated trees. In Figure 4.4 we show that increasing the number of trees improves the accuracy
of a model. Increasing the number of trees also lengthens the total runtime of our approach as
shown in Table 4.1. The number of trees used for our model has been chosen arbitrarily.

A tree of a random forest is generated on a sample size of the original data set. This sample
size is generated by drawing samples (with replacement) from the training set at random until
the number of samples in the tree equals the total number of training samples. This process is

4Documentation at https://github.com/developmentseed/landsat-util
5Except the panchromatic band itself.
6The panchromatic band is discarded from the set of bands since its spectral resolution is contained in other

bands and does not provide any additional information.
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CHAPTER 4. APPROACH

(a) Before pan sharpening (b) After pan sharpening

Figure 4.3: Example of pan sharpening

Number of trees Training (minutes) Classification (minutes) Total (minutes)
300 trees 17 104 121
150 trees 12 49 61
10 trees 4 11 15
2 trees 2 9 11

Table 4.1: Classification duration for varying number of trees

repeated for every tree in the forest. The way a single tree is generated for a random forest is the
same as the generation of a regular decision tree7. These two properties of random forests imply
a single decision tree will behave differently than a random forest with a single tree since the
random forest has been trained on a slightly different set of samples. This also means that when
choosing too few trees for a forest, any rare classes may not have been selected by the random
selection algorithm, and cause the corresponding label to be excluded from classification.

Decision trees are generated by selecting a feature and a value for that feature that best split the
training set in half. For both halves, this algorithm is repeated until every leaf in the tree contains
only one sample. The corresponding parameters for the RandomForestClassifier class are as
follows: max_depth controls the amount of layers of the tree. We are looking for a tree with only
single samples in the leaves, resulting from setting this parameter to None. min_samples_split
and min_samples_leaf are kept at the default value, being 2 and 1 respectively. Again, this is to
make sure any leaf containing more than a single sample are split once more. The max_features
parameter controls how many features are considered for every split. The default value for this
is auto, which results in max_features =

√
n_features8. For the 10 bands we are left with

after pan sharpening, this means max_features = 3.

7Using Python package sklearn.
8Documentation at http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

RandomForestClassifier.html
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4.3. CLASSIFICATION

(a) Classification using 2 trees (b) Classification using 10 trees

(c) Classification using 300 trees (d) Actual scene

Figure 4.4: Classification using varying number of trees

Feature ranking

Some features may contribute to the outcome of a classification more than others do. Feature
ranking shows which features are being used for splits more. The random forest shows which
features are most important by counting the number of splits a feature is used for. This in-
formation follows after a model has been trained and the nodes of the tree can be traversed.
Whenever a node is split using a certain feature, the importance of this feature is increased since
it contributes to the outcome of the classification.

In the case of the ’all’-scenario (Figure 4.5), we see that features 10 and 11 are not used, i.e. are
not informative. Features 10 and 11 correspond to bands 10 and 11 of the Landsat product, which
are the two thermal bands. This implies the thermal bands do not contain useful information
for classifying any of the classes in the scenario. This might be caused by the resolution being
resampled from 100 meters which is, when compared to the resolution of the other bands, just
not detailed enough for some of the classes with finer features.

After experimenting with a variety of scenarios, we found that bands 10 and 11 are not infor-
mative in any of the proposed scenarios. We did however continue any further experiments with
band 10 and 11 as some method of classification might still make use of the bands. See Sec-
tion 4.4 for a comparison of random forest classification to other approaches which might utilise
the thermal bands.
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Figure 4.5: Feature ranking for ’all’ scenario classification

Incorrect labels

We found an instance of incorrectly labeled pixels where our training data contained underwater
railway tracks. In our case the channel tunnel railway mislabeled ’sea’ pixels as ’rails’ pixels.
This would not have been a problem, if there would have been sufficient ’sea’ pixels in our
training data. However, the OpenStreetMap dataset did not include any of the North Sea pixels.
This resulted in most of the ’sea’ pixels being classified as ’rails’ resulting in the classification in
Figure 4.6a, with railways colored in red. This can be fixed by augmenting the original training
data with a chunk of ’sea’ pixels that significantly lowers the probability of sea being classified
as railway tracks (or removing the rail pixels from the training samples). This small change
in training data now results in Figure 4.6b which does not have this problem. This particular
problem is discussed in more detail in Section 4.3.3 where we describe how the accuracy of
OpenStreetMap (at least for this application) can not be guaranteed. This problem resulted
not from pixels being labelled incorrectly in OpenStreetMap, but from our parser not removing
railway tagged as underground from the data. This further reinforces the idea that results of
our method will improve after careful manual inspection of the training data. We assume this
problem is still present in our implementation to a lesser extent for overhangs, bridges, tunnels,
and underground waterways.

4.3.2 Applying the model

Since Landsat satellite images do not cover the entirety of an image, filler pixels are included.
Those pixels should not be used by the classifier to either train or classify since they do not
represent actual terrain data. Those pixels can be discarded from the pixels fed to the classifier
as discussed in Section 4.3.1.
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(a) figure
Railway overclassification

(b) figure
No railway overclassification

Figure 4.6: Classification of London. No pan sharpening had been applied

Because of the size of the data, we have to classify the data in chunks since most computers would
run out of ram. To do this, we simply split the 10 bands in chunks of x pixels where x is the
number of pixels that fit in the computer’s memory. The predict method for any scikit classifier
works on chunks of any size. Not all classification methods suffer from memory limitations and
related problems as we will see in Section 4.4.

After classification, we have an array of classified pixels. Together with the filler pixels from
the QA band, a complete image can be generated. The resulting image does not contain any
unclassified pixels. The fill mask may be substituted in the resulting image.

Cloud detection

Now that we have seen how we can manually label training data, we will continue implementing
the cloud detection scenario. Labeling clouds is done by selecting several clouds on a satellite
image. This resulting image will serve as input for the classifier. Figure 4.7 is an example of
several labeled clouds. The polygons are filled with the color specified in the scenario definition
file. After generating a traning image, the process of classifying clouds is exactly the same as
for any other scenario. In Figure 4.8 we compare our results to the built-in cloud detection
provided by Landsat. From this9 we conclude that without manually labeling more training
examples, cloud detection using our model is not as accurate as other methods [21]. Since we
have labeled only the cloud centers, our method falls short on cloud edge detection. Manually
tracing cloud edges is tedious, but would increase the performance of our method slightly. We
did not further investigate improving cloud detection accuracy. Any classifications onwards use
the built-in cloud detection.

9Comparing the results with the satellite images counting any discrepancies.
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Figure 4.7: Labeling clouds

Re-using models

Dependent on normalisation of the different Landsat bands, we can re-use a trained model for
multiple images. If we assume the model has been trained with sufficient coverage for each
class, this model will work for any Landsat imagery. This is especially useful for areas where
OpenStreetMap coverage is lacking, such as in third-world countries, or sparsely populated areas.
It is preferred to use a model trained on an image taken of an area with comparable terrain
conditions to the image to be classified10. It would not serve much purpose to classify an area
with desert-like terrain with a model trained on a tundra-like area since the conditions differ too
much. In Section 6.2.1 we will see how we can train our model using multiple Landsat images as
input making it viable to generate a model that will perform well given any terrain type.

10The date of capture should also be similar when comparing two Landsat scenes, especially since the range of
the thermal sensor values will change with the seasons.
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(a) Result of the cloud detection scenario (b) Landsat’s built-in cloud detection

Figure 4.8: Comparison of cloud detections

Due to improvements made to Landsat satellites over the years, re-using the model for different
Landsat releases is not an option unless data that is not within the wavelength ranges of both
satellites is discarded. For the transition between Landsat 7 and Landsat 8 two new spectral
bands have been added, and some bands have had their wavelength range shortened (see Ta-
ble A.1 for Landsat 7 band designations). Decreasing the wavelength range may result in different
values for the same pixel across different Landsat releases. Our approach does not produce usable
results out of the box when used across multiple Landsat releases. We expect that a translation
of sensor values between releases can be developed to make this approach viable.

Unfortunately, a component of the Landsat 7 satellite has failed in 2003 rendering the subse-
quent data sets unusable for this project [12]. The Scan Line Corrector (SLC) is responsible
for compensating the motion of the satellite so that the scan lines are properly aligned. After
SLC failure approximately 22% of the data in any scene is missing. In Figure 4.9 we see that
the image is crossed by lines containing no data. This data can not be recovered with post-
processing which makes the entirety of the Landsat 7 imagery from 2003 onwards unusable for
this application.

Quality assessment band

Another drawback of using imagery of older Landsat satellites is the absence of a quality assess-
ment band. The Landsat acquisition plan of Landsat 7 has not changed for Landsat 8 meaning
imagery is collected based on the same coordinates which implies we can use the quality assess-
ment band from Landsat 8 to construct the filler mask for the former satellite. However, no
cloud mask is present. We can substitute a mask generated by running a cloud detection sce-
nario trained on Landsat 8 data. If this approach is chosen, improvements to our cloud detection
scenario should be made so that it performs at least comparably to the built-in cloud detection
as discussed in Section 4.3.2.
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Figure 4.9: Landsat 7 SLC failure

This also poses the question on how to gather training data. Started in 2004, OpenStreetMap
coverage for the early years of the project is severely lacking compared to the present day coverage.
Historical dumps are available and can be used for older Landsat imagery. Training data can
also be gathered from specialised sources for training a model on a specific part of the globe or
for a specific purpose, but the absence of a worldwide, accurate set of training data makes for
difficult training for older Landsat releases.

4.3.3 Performance

We can use the same OpenStreetMap data set that has been used to train the model, to test it.
For this, the built-in method score for any sklearn classifier is used. For a scenario classifying
land, water, and buildings11 (Figure 4.10), the accuracy is 84%. This accuracy drops to 61% for
a scenario defining six different features12.

Confusion matrices

A confusion matrix is used to display which classes are most often misclassified, and what classes
they are mistaken with. It is used to identify problematic classes that lower the performance of

11Buildings and roads grouped together.
12Water, roads, buildings, grass, forest, farmland
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Figure 4.10: Results of classification for scenario defining land, water, and buildings

a classifier. For a scenario defining eight different features13 the confusion matrix is plotted in
Figure 4.11. From this matrix we can derive that:

• railways are almost never classified at all. This might be due to the same problem that
road classification suffers, namely the low resolution of the imagery.

• the classifier easily mistakes roads and railways for buildings. This can be attributed to
roads being close to, or flanked by, buildings, especially in cities. In the case of railways,
underground railways also contribute to rails being classified as buildings.

13Features: water, grass, forests, parks, buildings, roads, railways, farmland.
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Figure 4.11: Confusion matrix for ’all’ scenario

• due to the diversity of farmland, grass is often mistaked for it. Farmland includes a wide
variety of crops, some of which show comparable thermal signatures to grass. Meadows
are also often labeled under the more generic farmland -denominator in OpenStreetMap.
Farmland is the class that is most often classified correctly in this scenario, being the
darkest square in the matrix.

After looking at this confusion matrix, a decision was made to remove railways altogether. They
suffer even worse from the resolution problem as railways are often more narrow than highways14.
The grass and park classes were combined into one class. Resulting from those two changes is
the confusion matrix in Figure 4.12.

OpenStreetMap

The performance of our method is highly dependent on the accuracy of the OpenStreetMap
training data. As shown in [6], on average 88% of all highways defined in OpenStreetMap fall
within 5m of the actual position of the road. This figure drops to 77% for smaller roads and
motorways. The lower this figure, the more often the classifier will mistake the actual classes for
roads. This might be caused by parts of the OpenStreetMap dataset being drawn from aerial
imagery.

Problematic classes

Some classes are especially hard to classify. We will list some of the classes we found problematic
here. Some of the problems might be solved by manually labeling these classes.

14Especially single-car tracks in forested areas
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Figure 4.12: Confusion matrix for ’all’ scenario with railways and parks removed

Snow and ice While the QA band includes a snow and ice mask, accuracy does not exceed
80% like the cloud mask. Often areas where terrain features are obscured by snow or ice, this
cover is not present year-round. This makes classifying snow problematic since no good training
labels can be found. Not all Landsat imagery can be used when images taken at periods where
no snow is present have to be discarded. This greatly lowers the amount of training data we have
available. We also assume snow detection suffers from the same problems as cloud detection,
namely bright features are easily mistaken for it. Manually labeling instances of snow might be
the best solution in this case. We did not classify any imagery with snow present.

Mountains In areas containing mountain ranges, shadows in crevices pose another problem.
We found that shadows are most likely to be classified as roads. Moreover, bare stone is not
labeled that often in OpenStreetMap, making this an especially tough class.

Cloud shadows As discussed in Section 4.1 shadows of clouds darken the tones of underlying
pixels. Some cloud detection methods for Landsat include shadow detection algorithms [21], [2].
Our cloud detection scenario does not include such algorithms. The Landsat program is currently
working on including a cloud shadow indication in the quality assessment band. It is indicated to
be included with any Landsat 8 download from summer 2016 onwards [10]. We did not further
explore the implementation of any of the aforementioned shadow detection algorithms to improve
classification.

4.4 Comparison to other classification methods

We compare several common classification techniques to random forests.

Classifying Landsat Terrain Images via Random Forests 27



CHAPTER 4. APPROACH

4.4.1 K-nearest neighbor

The k-nearest neighbor (knn) implementation of scikit-learn15 can be run using the same training
maps as we have used for the random forest classifier. In this example we have used k = 10,
meaning 10 neighbors are considered. The use of a knn classifier is not constrained by the
amount of ram a machine has the way a random forest classifier is. The model can be fit using
all available training data even for pan sharpened images. For certain use cases this approach
is preferred as any outliers correctly marked in the training data are always considered whereas
while constructing random forests some might be skipped due to the random nature of the
selection algorithm. We have found knn classification for this application to be extremely slow
due to the size of the data sets. Lowering the number of neighbors considered increases the
runtime somewhat at the expense of accuracy.

4.4.2 Decision tree

Decision trees are the building blocks of random forests. Hence, training and classification times
for a single decision tree are lower compared to random forests with multiple trees. For this
comparison, the parameters equal the parameters of the random forest. What we found is that
a decision tree overclassifies roads. See Figure 4.13 for a visual comparison.

4.4.3 Visual comparison

In Figure 4.13 we compare the results of the aforementioned classification methods to the random
forest classifier. Both the decision tree classifier and the k-nearest neighbor classifier overclassify
roads, while the random forest performed better.

4.4.4 Runtime comparison

In Table 4.2 we have collected runtimes for our method using various classification algorithms.
These algorithms were run on the same Landsat imagery containing 264 million pixels using the
same training data on the same machine. Since we are using the same training data for every
run, the training image generation times are ignored16.

4.5 Statistics

Deriving statistics from classified images is a matter of counting pixels and their assigned labels.
However, as we have seen with a resolution of 15 by 15 meters, we cannot make accurate state-
ments about the surface area of every label. This goes especially for features where instances of
the feature do not cover entire pixels. A pixel classified as road does not necessarily mean there
is 225m2 of asphalt under it17, while for a pixel classified as sea this is much more likely. Hence,
we can only make an estimation of the amount of surface covered by a certain class.

15Documentation at http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.
KNeighborsClassifier.html

16OpenStreetMap parsing and training map generation times are negligible at <1 minute.
17Especially for dirt roads or bike paths.
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(a) Random forest (150 trees) (b) Decision tree

(c) K-nearest neighbor (k = 10) (d) Actual scene

Figure 4.13: Classification results using different methods

Algorithm Training (minutes) Classifying (minutes) Total (minutes)
Random Forest (300 trees) 17 104 121
Random Forest (150 trees) 12 49 61
Random Forest (10 trees 4 11 15
Random Forest (2 trees) 2 9 11
Decision tree 6 6 12
K-Nearest Neighbor (k=10) 8 361 369

Table 4.2: Comparison of various classification algorithms
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Figure 4.14: Training map for structure classification

This information combined with the longevity of the Landsat program means we can monitor
the growth of cities in metropolitan areas. We propose a scenario that separates structures from
nature for this very purpose. The structures class includes a variety of man-made objects like
roads and buildings. The OpenStreetMap dataset can be used to plot the training map for this
scenario. A subset of the training map can be seen in Figure 4.14. This subset shows almost
complete OpenStreetMap coverage. Coverage of training data over the entire image was about
19%, leaving 81% of the image to be classified.

Because of the short period the Landsat 8 satellite has been online, we were not able to extract
any meaningful statistics from this approach. However, as we have seen in Figure 4.3.2 this
will become viable when the runtime of the Landsat program increases. Figure 4.10 shows the
resulting classification for this scenario.

As with the training maps, we can extract statistics in two ways. First, pixel counts for the
entirety of the classified image can be viewed (See Table A.2 for statistics on the entirety of
Figure A.1). The second way makes use of the OpenStreetMap data set. OpenStreetMap
dumps not only contain physical features, but also administrative boundaries of cities, states,
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Class Pixel count Percentage
Water 1120 1%
Grass 24675 13%
Forest 8517 5%
Building 87397 48%
Road 27276 15%
Farmland 30327 16%
Clouds 3800 2%

Table 4.3: Pixel counts for Cambridge

and countries. We plot the administrative boundaries to a separate image file to be used as input
for the statistics script. Figure 4.15 is an example of this method for the administrative boundary
of Cambridge overlaid on a satellite image. Statistics for every pixel inside this boundary are
now calculated. Again, using this approach ensures we can also manually draw boundaries or
areas. The results of this count are listed in Table 4.3. We see that most of the area is covered
by buildings which is expected for cities.

4.5.1 Limiting factors

The accuracy of statistics is dependent on several factors that influence the pixel count of any
given scene.

Clouds We include the number of cloud pixels in the final pixel count. The usefulness of the
statistics decrease as the number of cloud pixels increase as it is impossible to accurately predict
the actual class of the cloud pixels.

Classifier performance With decreasing performance, accuracy of pixel counts also decrease.
Confusion matrices can help to identify problematic classes. If a confusion matrix shows which
classes are mistaken for which other classes, their counts can be modified accordingly.
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Figure 4.15: Administrative city boundary of Cambridge
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In the field of satellite image classification, many papers have been written. We will list a few
methods used in the most interesting ones here.

5.1 Training samples generation

While some land cover mapping methods utilise OpenStreetMap for their training data [7] [18],
no automated approach for mapping training data to satellite images is used. This improve-
ment greatly reduces the time needed for creating training data, as drawing training maps from
OpenStreetMap dumps is done in under a minute.

5.2 Different wavelengths

Some methods focus on the red, green and blue channels of the images only. Using these three
bands, the number of features used for classification starts at three1. For older Landsat releases,
this is not an implementation limitation but rather a limitation of data. Our method differs in
that it uses all available bands, and in some cases might add more bands (i.e. an edge band)
which should improve performance of the model. Methods like this using only three bands can
be applied to images from any source meaning the spatial resolution of an image is not an issue
anymore.

Methods for differentiating between multiple agricultural land uses have been developed. We did
not implement such features as gathering training data would be too tedious and prone to change
over the years due to crop rotation. For most of the farmland mapped on OpenStreetMap, no
distinction between crop varieties or even farmland used for grazing is made. This reason was one
of the factors for deciding whether or not to create a scenario for classifying crop types.

1The number of features can be increased as we have seen in Section 6.1.2.
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In this section we will describe future work that we think can improve the accuracy of the
method.

6.1 Classification improvement

There are several ways we can improve our method with. Those methods fall outside the scope
of this thesis but we will discuss various ideas we think would result in better performance for
our method. Some of the methods mentioned here have been implemented before as we have
seen in Chapter 5.

6.1.1 Surrounding pixels

We can take into account surrounding pixels when training our model. For 8 surrounding pixels
this would increase the number of features from the original 10 bands to 10 bands of the center
pixel plus 8 times 10 bands for the surrounding pixels. Improved random forest algorithms may
be required for this approach to be viable on any modern pc. We can assume this method will
increase the accuracy of classes with large surface areas such as bodies of water since for any
pixel surrounded by all water pixels, it is very likely this pixel is also water.

6.1.2 Edge detection

Edge detection is a method to pinpoint pixels where brightness changes sharply. One application
of edge detection in our method is road detection. For a number of bands the brightness for
roads and neighboring farm fields or grass lands changes sharply. This might also be the case
for buildings and their surroundings. We can store the edges of certain bands in a separate band
to use as training data for our classifier. When implementing edge detection, we can choose any
number of bands to apply edge detection to, resulting in as many edge detected bands as original
bands. Figure 6.1 is an example of the average edge over bands 2, 3, and 4.

6.1.3 Label noise

Wrongly labeled pixels in the training data result in misclassified pixels in the satellite image. We
currently have no way of detecting OpenStreetMap label noise except manual verification since
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Figure 6.1: Edge detection applied to Figure 4.3b

no other open datasets with comparable coverage exist. Because of the crowdsourcing nature
of the project, users might not be entirely accurate when labeling terrain features. Figure 4.1
is an example of misaligned roads. On the other hand, riverbanks can shift over time, making
OpenStreetMap misalign the riverbank with the actual position of the river. Such errors are
likely not caused by human mistake. Some work has been done on improving the performance
of models trained with noisy data [14]. Implementing those methods in our model would likely
result in better performance. We might also improve the performance of our model by rejecting
any OpenStreetMap data that has not been updated or reviewed recently. Currently, no data
on time of entry or modification is supported by the OpenStreetMap data dumps.

6.2 Multi-image classification

6.2.1 Mosaicing images

Our approach works for single Landsat dumps only. Since we have some information on the
location of where the image was taken, we can stitch together Landsat dumps to train and classify
multiple images as if they were one. Different weather conditions should be taken into account
whenever two images taken on different dates are used as the cloud cover and brightness may
vary. This approach can be automated as the USGS provides an API [4]1 to programmatically
search and download large quantities of Landsat imagery. OpenStreetMap also provides such an
API [16]. This approach, combined with the administrative borders OpenStreetMap provides,
can be used to obtain statistics for large countries in one pass.

1Login required for bulk downloads.
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6.2.2 Merging images

For any image with a percentage of cloud covered pixels, we can find a Landsat image of the
same scene taken on a different date with different cloud coverage. For two (or more) images
with varying degrees of cloud cover, this means we can select pixels from either image to obtain
an image where no cloud cover is obscuring parts of the scene. We can then use this image to
train and classify with our model. We have to keep in mind the shadows cast by the clouds as
they might have to be removed also. We also have to keep in mind the conditions the images are
taken under as changing weather can influence sensor values. This approach can be especially
useful for extracting statistics since cloud pixels cannot be classified and counted.

6.3 Improving statistics

Increasing resolution We can attempt to improve the statistics by increasing the resolution
of the scenario training image independent of the corresponding Landsat imagery. This is es-
pecially useful for classifying features smaller than a certain threshold since features can seem
to blend together when the resolution is not high enough. Take for example a highway, where
overhanging trees might obscure part of the highway and thus label their leaf color as highway
in the resulting model. When a higher resolution training image is used, we can choose to ignore
the outer shell of pixels for wide roads eliminating this problem. This increased resolution of the
training map comes at no significant computation cost since the number of pixels that a model
is trained on does not increase. An algorithm to select suitable pixels from the training map has
to be developed for this to work.
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7 | Conclusions

We have presented a way to classify terrain data using Landsat 8 imagery and OpenStreetMap.
Our approach shows flexibility in choosing which labels to classify, based on OpenStreetMap
data. This method can be applied to any Landsat release, as long as suitable training maps can
be created.

We have also seen that road detection proves difficult. This is partly due to the resolution of
the Landsat imagery. Even after applying pan sharpening, which improves results somewhat,
we found that road is often confused for buildings. Comparing Figure 4.6b to Figure A.1, it is
obvious that roads (in black) are not classified as often in the pan sharpened result. No other
parameters were changed.

Either of the two methods for generating training data can be selected, based on the application.
Especially for cloud detection, we require the manual method as OpenStreetMap does not label
clouds. With this method, we have shown that cloud detection is possible. While it did not
directly improve over the built-in cloud detection with the training data we generated, with
more detailed labeling comes better performance.

Classifying Landsat Terrain Images via Random Forests 37



Bibliography

[1] Ilham Alimuddin, Josaphat Tetuko Sri Sumantyo, Hiroaki Kuze, et al. Assessment of pan-
sharpening methods applied to image fusion of remotely sensed multi-band data. Interna-
tional Journal of Applied Earth Observation and Geoinformation, 18:165–175, 2012.

[2] Hyeungu Choi and Robert Bindschadler. Cloud detection in landsat imagery of ice sheets
using shadow matching technique and automatic normalized difference snow index threshold
value decision. Remote Sensing of Environment, 91(2):237–242, 2004.

[3] Satellite imagery power tools. https://developmentseed.org/projects/landsat-util/.
Accessed: 10-07-2016.

[4] Earthexplorer. http://wiki.openstreetmap.org/wiki/API_v0.6. Accessed: 21-05-2016.

[5] Epsg geodetic parameter registry. https://www.epsg-registry.org/. Accessed: 12-05-
2016.

[6] Mordechai Haklay. How good is volunteered geographical information? a comparative study
of openstreetmap and ordnance survey datasets. Environment and planning B: Planning
and design, 37(4):682–703, 2010.

[7] Brian A Johnson and Kotaro Iizuka. Integrating openstreetmap crowdsourced data and
landsat time-series imagery for rapid land use/land cover (lulc) mapping: Case study of the
laguna de bay area of the philippines. Applied Geography, 67:140–149, 2016.

[8] Landsat applications. http://landsat.gsfc.nasa.gov/?p=3501. Accessed: 16-07-2016.

[9] What are the band designations for the landsat satellites? http://landsat.usgs.gov/
band_designations_landsat_satellites.php. Accessed: 08-03-2016.

[10] Landsat quality assessment band. http://landsat.usgs.gov/collectionqualityband.
php. Accessed: 02-08-2016.

[11] Landsat quality assessment band. http://landsat.usgs.gov/qualityband.php. Accessed:
08-03-2016.

[12] Slc-off products: Background. https://landsat.usgs.gov/products_slcoffbackground.
php. Accessed: 29-07-2016.

[13] What are the best spectral bands to use for my study? http://landsat.usgs.gov/best_
spectral_bands_to_use.php. Accessed: 08-03-2016.

Classifying Landsat Terrain Images via Random Forests 38

https://developmentseed.org/projects/landsat-util/
http://wiki.openstreetmap.org/wiki/API_v0.6
https://www.epsg-registry.org/
http://landsat.gsfc.nasa.gov/?p=3501
http://landsat.usgs.gov/band_designations_landsat_satellites.php
http://landsat.usgs.gov/band_designations_landsat_satellites.php
http://landsat.usgs.gov/collectionqualityband.php
http://landsat.usgs.gov/collectionqualityband.php
http://landsat.usgs.gov/qualityband.php
https://landsat.usgs.gov/products_slcoffbackground.php
https://landsat.usgs.gov/products_slcoffbackground.php
http://landsat.usgs.gov/best_spectral_bands_to_use.php
http://landsat.usgs.gov/best_spectral_bands_to_use.php


BIBLIOGRAPHY

[14] Volodymyr Mnih and Geoffrey E Hinton. Learning to label aerial images from noisy data.
In Proceedings of the 29th International Conference on Machine Learning (ICML-12), pages
567–574, 2012.

[15] Doug R Oetter, Warren B Cohen, Mercedes Berterretche, Thomas K Maiersperger, and
Robert E Kennedy. Land cover mapping in an agricultural setting using multiseasonal
thematic mapper data. Remote Sensing of Environment, 76(2):139–155, 2001.

[16] Elements - openstreetmap wiki. http://wiki.openstreetmap.org/wiki/Elements. Ac-
cessed: 13-05-2016.

[17] Arya Krishnan P.S and Chithira Rakshmi G. Comparative study on pansharpening methods
for satellite images. International Research Journal of Engineering and Technology, 2, 2015.

[18] Quick land cover estimates from satellite imagery and openstreetmap. http:
//rexdouglass.com/quick-and-dirty-land-cover-estimates-from-landsat-
satellite-imagery-and-openstreetmap/. Accessed: 05-12-2015.

[19] Yuliya Tarabalka, Mathieu Fauvel, Jocelyn Chanussot, and Jón Atli Benediktsson. Svm-and
mrf-based method for accurate classification of hyperspectral images. IEEE Geoscience and
Remote Sensing Letters, 7(4):736–740, 2010.

[20] Billie Turner, David Skole, Steven Sanderson, Günther Fischer, Louise Fresco, and Rik Lee-
mans. Land-use and land-cover change. In International Geosphere-Biosphere Programme,
Stockholm; Report, 35, 1995.

[21] Zhe Zhu and Curtis E Woodcock. Object-based cloud and cloud shadow detection in landsat
imagery. Remote Sensing of Environment, 118:83–94, 2012.

Classifying Landsat Terrain Images via Random Forests 39

http://wiki.openstreetmap.org/wiki/Elements
http://rexdouglass.com/quick-and-dirty-land-cover-estimates-from-landsat-satellite-imagery-and-openstreetmap/
http://rexdouglass.com/quick-and-dirty-land-cover-estimates-from-landsat-satellite-imagery-and-openstreetmap/
http://rexdouglass.com/quick-and-dirty-land-cover-estimates-from-landsat-satellite-imagery-and-openstreetmap/


A | Appendix

A.1 Classification results

A.1.1 London

Figure A.1 is the classification result for the Landsat imagery with identifier LC82010242016047LGN00
taken on the 16th of February, 2016.

A.1.2 New York

Figure A.2 is the classification result for the Landsat imagery with identifier LC80130322016106LGN00
taken on the 29th of April, 2016.

A.2 Landsat miscellaneous

Table A.1 contains the Landsat 7 band designations. Comparing to Table 3.1 shows that our im-
plementation does not work when the training and classifying data set are sourced from different
Landsat releases.

Bands Wavelength (µm) Resolution (meters)
Band 1 - Blue 0.45 - 0.52 30
Band 2 - Green 0.52 - 0.60 30
Band 3 - Red 0.63 - 0.69 30
Band 4 - Near Infrared 0.77 - 0.90 30
Band 5 - SWIR 1 1.55 - 1.75 30
Band 6 - Thermal Infrared 10.40 - 12.50 30
Band 7 - SWIR 2 2.09 - 2.35 30
Band 8 - Panchromatic 0.52 - 0.90 15

Table A.1: Landsat 7 band designations
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A.2. LANDSAT MISCELLANEOUS

Figure A.1: Result of classification for London

Class Pixel count Percentage
Water 34616462 21%
Grass 19480650 12%
Forest 20880638 12%
Building 20128139 12%
Road 10648960 6%
Farmland 50929270 31%
Clouds 10199353 6%

Table A.2: Full statistics for image Figure A.1
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Figure A.2: Result of classification for New York

A.3 Data sources

A.3.1 Landsat

All Landsat imagery has been downloaded using the online portal EarthExplorer hosted by the
USGS accessible at http://earthexplorer.usgs.gov/. Note that an account is required for
full access to every available Landsat download. For browsing the website an account is not
needed.
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A.3. DATA SOURCES

A.3.2 OpenStreetMap

While OpenStreetMap hosts downloads for their data set on the official OpenStreetMap website,
the data is not split into multiple files unless their API is used. For smaller subsets of the
OpenStreetMap data set, Geofabrik hosts an excellent tool to browse and download regions.
Their website is accessible at http://download.geofabrik.de/. No account is required.
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