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Abstract

In this thesis, we present an implementation of two different neural network models for
phonetic classification in TensorFlow. TensorFlow is an open-source machine learning
library developed at Google. We used this library to create two different models: the
Deep Feedforward Neural Network (DFNN) and the Deep Long Short-Term Memory
(DLSTM) model. The advantage of using TensorFlow to create these models is that
they are highly customizable – a feature that many speech recognition libraries lack.
Therefore, the presented models are very suitable for further experimentation. We
compare the performance of our models for a number of different settings. We report
a frame error rate of 41.55% for the DFNN architecture, and 28.14% for the DLSTM
architecture. The estimated phone error rates are 22.02% and 23.67% respectively.
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Chapter 1

Introduction

Automatic Speech Recognition (ASR) is the process of translating spoken language
into text using automated computer systems. This process has been a subject of
research since the 1950s and has since seen many successful implementations such as
voice search, dictation, robotics, and automatic translation.

Speech recognition is a challenging task (for more details, see Forsberg, 2003).
Not all of the information that humans have is available to ASR systems. We
comprehend speech using not only spoken words but also body language and common
grammatical structures. Additionally, speech signals can vary in quality depending
on the microphone used and changes in environmental noise. This phenomenon is
called channel variability. Another problem is speaker variability: every speaker
has a different voice, depending on anatomical qualities such as the shape of vocal
tract, tongue and lips, gender and age. Furthermore, people tend to speak at
different speeds depending on the topic, setting and mood. Regional and social
dialects are other sources of speaker variability. Another challenge is posed by the
co-articulation problem. Speech is continuous: there are no clear boundaries between
sounds or words. Two sounds pronounced together sound different than when they
are pronounced separately.

These problems make it difficult to find a common structure in every speech signal.
We need to find such a structure in order to build a robust ASR system. Instead of
trying to model the structure of speech manually, we can generate models and train
them to find this structure and use it to predict what was spoken. One of the first
successful speech models was developed at IBM in the 1980s, using Hidden Markov
Models (HMMs) (Lee & Hon, 1989). These models have been used in conjunction
with Gaussian Mixture Models (GMMs) in many ASR systems ever since. In the
past decade, Deep Neural Networks (DNNs) gained popularity in ASR systems due
to advances in learning algorithms and hardware. They are an alternative to GMMs
and have been shown to outperform them (Hinton et al., 2012).

To create a speech recognition system, we first need to recognize the individual
sounds before we can detect words and sentences. This task, called phonetic classifi-
cation, is the process of determining for a small frame of speech which sound was
spoken. DNNs are often used for phonetic classification because they can model the
complex structures in speech data and thus recognize it.

There are several libraries specifically composed for ASR that implement DNNs,
such as Kaldi (Povey et al., 2011) and RWTH ASR (Lööf et al., 2007; Rybach et
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al., 2011). These packages contain predefined structures capable of performing ASR,
where the flexibility in choosing different types of networks or low level parameters
is limited. To gain new insights into creating models for speech recognition, we need
to use libraries that allow many different models and tuning of parameters. One
such library is TensorFlow, which was developed by researchers at Google and open
sourced in november 2015 (Abadi et al., 2015). TensorFlow can be used to build deep
learning systems for any task. Many types of networks can be created, thus allowing
for more options for experimentation. In this thesis we show that it is possible to
create a system for performing phonetic classification using TensorFlow. Specifically,
our contributions are:

• To provide software to create and train a neural network for phonetic classi-
fication using TensorFlow. These networks are the DFNN and the DLSTM
network, both of which may be several layers deep and have many hidden units
per layer. The purpose of this software is to create a basis for building models
for phonetic classification in TensorFlow.

• To test the performance of our networks on the TIMIT data set (Garofolo,
Lamel, Fisher, Fiscus, & Pallett, 1993). TIMIT can be used as a benchmark
data set for evaluating acoustic models. We provide a comparison of phone
and frame error rates between different models.

Phonetic classification using TensorFlow has currently not been studied. This
thesis therefore provides the first analysis of the performance of models created in
TensorFlow on the TIMIT data set. However, classification of the TIMIT set has
been a subject of research for several decades. In this thesis we implement modified
versions of a randomly initialized DNN (Mohamed, Dahl, & Hinton, 2012) and an
LSTM model (Graves, Mohamed, & Hinton, 2013; Sak, Senior, & Beaufays, 2014).
These models have very different structures and were chosen because they show the
flexibility and extensibility of TensorFlow.

In the next chapter, we further detail the task of phonetic classification. In chapter
3, we describe the data set TIMIT and how it was preprocessed. The architectures
that were used in this thesis are explained in chapter 4 before showing how they were
implemented in TensorFlow in chapter 5. Chapter 6 contains the description of our
experiments and the results. We conclude this thesis in chapter 7.
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Chapter 2

Phonetic Classification

The task of phonetic classification consists of determining for a segment of audio
which phones were spoken. A phone is the smallest unit corresponding to a distinctive
speech sound. They are independent of language, because they are distinguished
purely based on sound. There is an important distinction between phones and
phonemes. A phoneme is the smallest unit of sound which can be used to distinguish
two words. They are dependent on a language, unlike phones. If two phones are
realizations of the same phoneme, they are called allophones. It is not necessary for
a speech recognition system to be able to distinguish two allophones, because they
will never cause confusions between words.

Our goal was to create a system that can tell us which phones were spoken in a
segment of audio. Neural networks are excellent at automatically performing this
task. These neural networks start with no knowledge about the structure of audio.
Therefore, at first they can do no better than randomly guessing the phones. By
showing them examples of speech signals and the corresponding phones, they can be
taught to find the structure in the signal, leading to more informed guesses. It has
been shown previously that by showing a neural network enough examples, it can
eventually recognize phones from new speech data.

The reason we want to build a system that can correctly recognize phones is that
such a system lies at the core of many speech recognition systems. The output of a
phonetic classifier can be used as an input for a word recognizer, for example. If we
want to include a phonetic classifier in these systems – or whatever other applications
may arise in the future – it needs to be accurate. Therefore, much effort has been put
into improving the algorithms and neural network models for phonetic classification.
Hinton et al. (2012) have provided a good, though already slightly outdated overview
of the previous work in this field.

7





Chapter 3

Data

To train a neural network for recognizing phones, it needs to be shown many examples
of audio segments and the corresponding phonetic annotations. For each example,
it will predict the phonetic contents of the audio. The true phonetic annotations
will then be compared to these guesses in order to determine how well the network
performs. These examples form a training set, and the final evaluation of a system is
based on a held-out test set. In this chapter, we describe TIMIT: the data set from
which these examples were drawn. We also show how this data set was preprocessed
to serve as input for neural networks.

3.1 The TIMIT Corpus

TIMIT is a speech data set designed for developing speech recognition systems
(Garofolo et al., 1993). It is recorded by Texas Instruments (TI) and transcribed at
the Massachusetts Institute of Technology (MIT). The set contains English sentences
spoken by 630 speakers in eight dialects of American English. Additionally, time-
aligned word and phonetic transcriptions are provided. The phonetic transcriptions
are used in this thesis as the target labels for classification. TIMIT is split in a
suggested testing and training division. There are no speakers that occur in both the
testing and training set, with the motivation that if a model trained on the training
set performs well on new speakers, it generalizes well.

There are three collections of sentences: SA, SI and SX. The two SA sentences
were read by all speakers in order to expose their dialects. As is consistent with
other similar studies (Lee & Hon, 1989; Mohamed et al., 2012; Graves, Mohamed, &
Hinton, 2013), these were not included in our experiments to reduce bias towards
these sentences.

3.2 Data Preparation

3.2.1 Speech Data

The TIMIT set contains recorded wave audio files of many pronounced sentences,
called utterances. These are not directly suitable as input for a neural network because
they contain too much information, making it difficult for a speech recognition system
to capture the important information. In essence, a speech recognition system would
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be confused by the sheer amount of data, most of which is not relevant for recognizing
phones. The raw audio data is a waveform that is constantly changing. We can
simplify this representation by assuming that, for a small frame of audio, the signal
does not change significantly. A frame length of 10 ms is used in this thesis.

To extract the most relevant features from this framed waveform, it is usually
converted to a mel-frequency cepstrum. This cepstrum represents the features of a
speech spectrum that are the most relevant in human perception of speech. They
were introduced by Davis and Mermelstein (1980) and have been used in state-of-
the-art ASR systems ever since. We will not go into detail on how a mel-frequency
cepstrum is generated; for more information see the work of Davis and Mermelstein.
A mel-frequency cepstrum consists of a number of real-valued Mel-Frequency Cepstral
Coefficients (MFCCs). We have used 13 MFCCs as input features that are generated
using Kaldi’s ‘s5’ recipe, which is a standard recipe for converting TIMIT’s audio
files to MFCCs.

MFCCs are subject to noisiness. To reduce noisiness, it is common practice to
normalize the coefficients. Mean and variance MFCC normalization has been shown
to improve accuracy when classifying TIMIT (Shirali-Shahreza & Shirali-Shahreza,
2010). The MFCC data is represented by matrices of shape f × 13, where f is the
number of frames in the sentence. We normalized the coefficients using the formula

ĉi,j =
ci,j − c∗,j
σ(c∗,j)

. (3.1)

Here, i indexes over the frames and j indexes over the coefficients. The mean of one
coefficient computed over the utterance is denoted by c∗,j and σ(c∗,j) is its standard
deviation.

3.2.2 Phonetic Labels

0 9640 sil

9640 11240 sh

11240 12783 iy

12783 14078 hh

14078 16157 ae

16157 16880 dcl

16880 17103 d

17103 17587 y

17587 18760 er

18760 19720 dcl

Figure 3.1: Phonetic annotation for the beginning of dr1faks0sa1.phn (“She had
your d(ark...)”).

The target labels for classifying these MFCCs are phones. For each utterance
in TIMIT, a phonetic annotation is provided. As an example, the first ten phones
in the phonetic annotation file dr1faks0sa1.phn are shown in Figure 3.1. The two
numbers denote sample in the wave audio file where one phone starts and ends. The
wave audio files have a sample rate of 16000 samples per second.
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Lee and Hon (1989) give a number of modifications to the set of phones that
have since become standard. Therefore, these modifications have been applied. They
mention 64 different phonetic labels. To clarify, these 64 labels include the three
closure symbols that Lee and Hon use for folding silences into: cl, vcl and sil.
There were some complications that arose when we followed their research, in that
their phone table could not be used as-is (Lee & Hon, 1989, Table. 2-2). In this table
the ax-h phone is missing, which does in fact occur in TIMIT’s phonetic annotations.
This phone was folded into its allophone ah. Examples of these phones are the ‘u’ in
‘suspect’ and the ‘u’ in ‘but’ respectively. The #h phone which appears in the phone
table does not appear in any annotations in TIMIT, therefore it was not included in
our class labels. In line with Lee and Hon’s research, the glottal stops annotated with
q have been removed from the labels. The MFCCs for the frames that contained a
glottal stop have been removed as well.

There are fifteen phones in the set of labels that have an allophone. These phones
have been folded into their allophones (again, in line with Lee and Hon (1989)).
This leaves 48 different phonetic labels that are used as class labels for training. For
evaluation, we have used a set further reduced to 39 labels. These reductions are
based on the within-group confusions given by Lee and Hon (1989, p. 4). See table
A.1 for the exact foldings that were used in this thesis.

The phonetic labels were first converted to scalar values and then to one-hot
vectors. These vectors consist of 48 elements where all elements are zero except for
the index of the label, which equals one. For example, the one-hot representation of
the phone ah is [0, 0, 1, 0, 0, . . . , 0].

3.2.3 Matching Data & Labels

As described in section 3.2.1, the input data is the MFCCs of the TIMIT speech data.
These files are matched by file name with the phonetic annotations (the .ph files) in
the TIMIT data set. The MFCCs are generated per frame, but the phonetic labels
are annotated based on the samples in the audio files, which have a sample rate of
16000 samples per second. Therefore, we converted the annotations to a list with
for each frame the annotated phone. Because the annotations do not always cover
the silence at the end of utterances, there are many utterances with more frames of
MFCCs than annotated frames. In these cases, we removed the MFCCs for which
there was no annotation provided.

11





Chapter 4

Neural Networks

After the data and labels are prepared, they are used to train a neural network for
phonetic classification. There are a wide variety of neural networks that have been
successfully applied for phonetic recognition. In this chapter, we give a short expla-
nation of artificial neural networks in general, before we describe the architectures
that were used in our experiments. These architectures are the Deep Feedforward
Neural Network (DFNN) and a deep Recurrent Neural Network (RNN) containing
Long Short-Term Memory cells (DLSTM).

4.1 Artificial Neural Networks

Artificial neural networks are models that can approximate complex problems whose
structure is often not known. The basic building block for creating them is a neuron.
A neuron is a unit which takes a number of real-valued inputs, and outputs an
activation value based on some function over the inputs. The simplest such function
is the linear activation function, found in linear neurons.

y = b+
∑
i

xiwi

x0w0 . . . xnwn

b

y

Figure 4.1: A simple linear neuron.

In Figure 4.1, xi is the ith input and wi its corresponding weight. The inputs
for a neuron can come from some given input features such as speech data, or from
the activation value of other neurons. The neurons receive an additional bias input
b. One layer of a neural network consists of many of these neurons in parallel. A
typical neural network consists of one input layer, a number of hidden layers, and an
output layer. An artificial neural network is considered deep when it has more than
one hidden layer.
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4.1.1 Training a neural network

The weights and biases of each neuron can be trained in order to find values such
that the whole network can capture patterns in the problem. The goal of training
for classification is to find weights and biases such that for any input in the task
domain, the outputs of the network are the probabilities for each class of the input
belonging to that class. In phonetic classification, the input to the network is speech
data, and the classes are the set of possible phones.

Training a neural network is done using the backpropagation algorithm (Rumelhart,
Hinton, & Williams, 1988). In each training step, the network is presented with input
features and the target or true output for those features. Using the difference between
the output of the network and the true output, a loss function is calculated. The
error derivatives are propagated backwards through the network. The weights and
biases are then updated using these error derivatives, which approximate gradients
of the weights. These updates are dependent on the learning rate, which controls the
speed at which weights are learned.

We can also control when the weights are updated. We can update the weights
after each training case, or after a number of training cases, called a mini-batch. The
advantages of using mini-batch training are that we need to do less weight updates,
and we can compute the gradients for different batches in parallel. By adapting the
weights cumulatively, we save computational time. Usually, these mini-batches are
picked randomly from the data set in order to have a balanced amount of examples
for every class in the mini-batch.

4.1.2 Dropout Regularization

A common challenge when training neural networks is the problem of overfitting.
The goal of training a neural network is to model the underlying relationship between
the data and the labels. However, the examples that the neural network sees during
training are only a small subset of the data that it would encounter in a real-world
application setting. When we train a neural network to recognize speech, we can
only feed it some utterances of which we hope that they are representative of all the
possible utterances that it might encounter. Instead of modeling the relationship
between the utterances and the phonetic contents, the neural network tries to fit the
data that is seen as well as possible. This leads to overfitting: the neural network
can accurately classify the utterances that it has seen during training, but does not
generalize well.

One solution to overfitting is to average the output probabilities of multiple models.
Since this is computationally expensive, an alternative method was introduced by
Srivastava, Hinton, Krizhevsky, Sutskever, and Salakhutdinov (2014) – dropout. The
core idea of dropout is to turn off random neurons and their connections during
every training cycle. During testing, all neurons are kept on to create an average
prediction over multiple thinned networks.

4.2 Deep Feedforward Neural Networks

A feedforward neural network is a type of artificial neural network with no cycles.
All connections between neurons are from one layer to the next. The most basic
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1st hidden layer

2nd hidden layer

input layer

output layer

Figure 4.2: A deep feedforward neural network with two hidden layers and linear
activations.

feedforward neural neural network consists of one layer of neurons. Deep feedforward
neural networks are feedforward neural networks with a number of hidden layers.
An example is given in Figure 4.2. They are better at modeling complex structures
than simple feedforward neural networks. However, they are difficult to train due to
their large number of parameters. Due to recent advances in training algorithms and
computer hardware, deep feedforward neural networks with many large layers have
become viable to use in many systems. We use deep feedforward networks in our
experiments because they have been shown to perform well for phonetic classification:
Mohamed et al. (2012) report a phone error rate of 20.7%.

4.3 Recurrent Neural Networks

Recurrent neural networks (RNNs) are neural networks that have cycles. These
recurrent networks can be used to model sequential data, and are most effective
when the output of one time step depends on the previous time steps. RNNs are
a sensible choice for phonetic classification, because for each frame of speech data,
the phonetic class probabilities depend on the previous frames. For example, if the
previous frame contained silence, it is very likely that the frame at the current time
step also contains silence. This dependency even extends beyond phone boundaries:
the phonetic class probabilities of the current frame depend on the previous phone.

A recurrent layer typically sends its output activations not only to the next layer,
but also to itself for the next time step. See Figure 4.3 for an example of an RNN. hlt
denotes the hidden state for layer l at time t. The initial hidden state hl0 of an RNN
is a vector of zeros, and is updated at each time step. The input to the recurrent
layer for time step t is xt. In this example, the unrolled network can be thought of
as multiple copies of one neural network that send information to the next copy. The
weights of the connections are therefore identical in all the copies. Recurrent layers
may be stacked on top of each other.
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h1t

xt

h1t

x0

h10

x1

h11

x2

h12

x3

h13

x4

h14

0
h10 h11 h12 h13

Time

Figure 4.3: An RNN and its unrolled version for five time steps. The nodes each
correspond to one layer with any number of neurons.

4.4 Long Short-Term Memory Networks

The backpropagated errors that flow through time in an RNN suffer from exponential
vanishing or blow-up (Bengio, Simard, & Frasconi, 1994). Therefore, it is difficult
to train RNNs on signals with long-term dependencies, such as speech. The long
short-term memory (LSTM) cell, developed by Hochreiter and Schmidhuber (1997),
is a recurrent cell that overcomes this problem. They introduced a complex cell with
a number of components that together act similar to a memory cell. Inside one cell,
multiple layers called gates are used. There are three gates: the input gate, the
forget gate and the output gate. These gates are layers that are trained to make
decisions on which values to update, which information should be forgotten, and
which information should be output to the next time step.

There are quite some variants on the LSTM cell, such as adding peepholes (Gers
& Schmidhuber, 2000), coupled input and forget gates, and the gated recurrent unit
(GRU) (Cho et al., 2014). Greff, Srivastava, Koutńık, Steunebrink, and Schmidhuber
(2015) give a comparison of nine different LSTM architectures, and conclude that
they perform roughly the same. Therefore, we use the basic LSTM cell whose
implementation in TensorFlow is based on the work of Zaremba et al. (2014). This
research also shows how dropout can be applied on RNNs with LSTM cells, namely
between all connections that are not recurrent. The LSTM cell used in their research
can be found in Figure 4.4. For the very first LSTM layer, hl−1

t is simply the output
of the layer below, which might not be recurrent.
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Cell

×
Input modulation

gate

Input gate Forget gate

×

Output gate

×hlt−1

hl−1
t

hlt

hlt

Figure 4.4: The LSTM cell. Diagram adapted from Zaremba et al., 2014. Dropout
may be applied on the dashed connections.
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Chapter 5

Implementation

We implemented the neural networks described in the previous chapter in TensorFlow.
TensorFlow is a library that includes many operations for creating various artificial
neural networks, training them and evaluating them (Abadi et al., 2015). These
operations can be used to specify much of the functionality of the neural networks
described in the previous chapter. However, creating an end-to-end neural network
system for a specific task requires many design choices. TensorFlow provides the
building blocks for creating neural networks and training them, but the actual
implementation can take many different forms, and depends on the task that we
want to accomplish. An overview of these building blocks and the implementation
details of our architectures are described in this chapter.

5.1 Concepts of TensorFlow

Many details of how TensorFlow works can be found in the white paper by Abadi et
al. (2015). We briefly highlight the most important concepts that TensorFlow uses.

A machine learning system can be represented in TensorFlow using the data
flow graph. This is a directed graph where the nodes contain computations and
the edges are the flow of tensors through this graph. Tensors are mathematical
objects that can be described using an n-dimensional array. They are the primary
data type in TensorFlow: they are used to store data which can be transformed by
operations. These operations describe the actual functionality of the computation,
and an instantiation of an operation corresponds to a node in the data flow graph.
The input and output of operations are zero or more tensors.

To create a machine learning system in TensorFlow, it needs to be expressed
as a data flow graph. This data flow graph can then be interacted with using a
session. The most important function of a session is to run the data flow graph.
When running a computation, a dictionary of inputs is fed to the graph. The graph
then executes the operations, and outputs the result of the final operation.

Neural networks can be specified in TensorFlow as a data flow graph. A neural
network layer is created by adding ops to the graph that multiply the weights with
the inputs, add the biases and perform some activation function over the result.
When we specify these operations, nothing has been computed yet. The computation
starts when the output tensor is evaluated (or the last operator is run) for a given
input.
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The weights can be trained in a loop which evaluates the output of the neural
network for a mini-batch, computes the loss for that batch and finally runs an
optimization algorithm which tries to minimize that loss. The state of the tensors is
not maintained across different evaluations. To maintain the state of the weights
and biases during training, they are stored in variables.

5.2 Architectures

Data flow graphs representing neural networks can be created and trained using
the operations included in TensorFlow. The architecture of the neural networks
that we used are a Deep Feedforward Neural Network (DFNN) and a deep LSTM
network (DLSTM). The data flow graphs for these architectures are created based
on a number of parameters which are passed to our software in the command line.
We provided default values for these parameters. These default values were found
through experimentation or stem from previous research. The exact parameters for
the networks are described in section 5.2.1 and 5.2.2.

Some of the implementation details and parameters were the same for both
architectures. Both the DFNN and the DLSTM have multiple hidden layers. These
hidden layers are fully connected to the next layer. Dropout can be applied on these
connections.

To convert the outputs of the last layer to class probabilities, the softmax function
is applied:

pi =
exi∑
j e

xj
.

This function converts the output values such that they add up to one, where pi is
the class probability of class i, xi is the output of the ith neuron in the output layer,
and j iterates over the outputs in this layer.

We used the cross-entropy loss function

C = −
∑
i

di log pj ,

where C is the cross-entropy loss and di is the target probability for the ith class
given by the true label. The true labels are, as described in section 3.2.2, represented
by one-hot vectors. These vectors represent the ideal class probability distribution.
Therefore, the target probability for the true class is 1, and 0 for the other classes.
The cross entropy loss is a standard way of measuring the quality of a network in
phonetic classification when using the softmax output function (Hinton et al., 2012).

The objective for an optimization function is to minimize the loss. We used two
different optimization functions: gradient descent and the more sophisticated Adam
optimizer (Kingma & Ba, 2014). We used gradient descent because it is commonly
used in phonetic classification (Mohamed et al., 2012; Graves, Mohamed, & Hinton,
2013; Sak et al., 2014). Adam optimization was chosen as an alternative because,
according to Kingma and Ba (2014), it performs well on many optimization problems.
A default learning rate of 0.02 was used for gradient descent (Mohamed et al., 2012),
and 0.001 for Adam optimization (Kingma & Ba, 2014). We trained the networks
with 15 epochs. After every epoch, the data set was shuffled.
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5.2.1 Deep Feedforward Neural Network

The first architecture that we created is a Deep Feedforward Neural Network (DFNN),
as was described in Section 4.2. The inputs for the DFNN are the MFCCs of one
frame and the context of that frame – a number of frames before and after the frame.
For the very start and end of an utterance, the context extends beyond the frames
that are available. This is remedied by filling the missing context with the first or
last frame for the start and the end of the utterance respectively.

The MFCCs for the context of the frame are used as additional input features.
Early experiments showed that using context as additional features improved the
accuracy of the network. The number of frames of the context was therefore kept
constant for all further experiments; 11 frames of context (5 before, 5 after) were
used because more frames do not yield a significantly better result according to the
research of Mohamed et al. (2012).

Following their research, we set the number of neurons in each hidden layer to be
equal. In this research, randomly initialized networks are compared with generatively
pretrained networks. The weights of the pretrained networks are initialized by first
training a multilayer Restricted Boltzmann Machine (RBM). This unsupervised
learning phase is not necessary when we use Rectified Linear Units (ReLUs). These
output a linear activation if the sum of the inputs is more than 0, and otherwise
output 0. According to the experiences of Zeiler et al. (2013), ReLU activations
combined with random weight initialization perform well enough to eliminate the
need for generative pretraining. Therefore, to simplify the training of the DFNNs,
we used random activations for the ReLU units instead of generative pretraining.

The weights are initialized by drawing random values from a truncated normal
distribution with mean 0 and standard deviation 0.1. One run with a higher standard
deviation for the weight initialization resulted in a much poorer performance. The
biases are initially set to 0.1 instead of 0 to avoid dead neurons at the start of
training.

If dropout regularization is applied to the network, the probability of keeping
units during training is 0.5 for the hidden layers. This probability is close to optimal
according to Srivastava et al. (2014). No dropout is applied to the inputs. During
testing, the probability of keeping units is set to 1 to ensure that the entire network
is used for evaluation.

The mini-batch size during training was 128, in line with Mohamed et al. (2012).
We tried much smaller and much larger mini-batches, which did not lead to improved
accuracy.

Thus, the parameters of the DFNN are

• the mini-batch size (default: 128),

• the context size (default: 11),

• whether to apply dropout regularization (default: yes),

• the number of training epochs (default: 15),

• the number of layers (default: 3),

• the number of units in the hidden layers (default: 1024),
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• the optimization algorithm (default: Adam).

If the default values are used, a data flow graph describing a network with rectified
linear activations is created with 143 input features (13 MFCCs times 11 frames of
context), three fully connected layers with 1024 units on which dropout is applied,
and a final layer with size 48 corresponding to the phonetic classes.

5.2.2 Deep Long Short-Term Memory Network

The DLSTM network was implemented as an alternative structure to the DFNN.
The DLSTM network is a multilayer RNN with LSTM cells. For an explanation of
RNNs and LSTM cells, we refer to Sections 4.3 and 4.4. The LSTM cells have two
inputs: the hidden state of this layer at the previous time step (hlt−1) and the hidden

state of the layer below at this time step (hl−1
t ). The hidden states are maintained

by TensorFlow throughout the time steps by a single tensor of size 2 × nh × l where
nh is the number of units in the gate layers and l is the number of LSTM layers.
The initial hidden state hl0 is specified as a parameter when creating an RNN. We
initialize the hidden states with a tensor containing zeros.

The inputs to the DLSTM network are, as for any RNN, sequences. In many
implementations of RNNs, these sequences can be of any length. Then, the neural
network is trained by dynamically unrolling the RNN and backpropagating the
gradients through time. Unfortunately, TensorFlow currently does not support
dynamic unrolling of recurrent layers. RNNs can only be trained for a fixed sequence
length, which is problematic because the utterances have many different lengths
(between roughly 3 to 8 seconds).

s5

s4

s3

s2

s1

s0
s6

s7
s8

s9

mini-batch

t = 0 20 40 60 80 100 120 140

Figure 5.1: Method of mini-batching using padded sub-sequences.

The solution was to split the utterances into sub-sequences of the same length.
This strategy was found by Sak et al. (2014), who use a sub-sequence length s of 20
frames. Each utterance is padded by repeating the last frame such that the number of
frames is a multiple of the sub-sequence size. Mini-batches are created by iteratively
retrieving sub-sequences for b utterances, where b is the mini-batch size. See Figure
5.1 for a schematic overview of this process. The padded frames are highlighted in
red.

The utterances might not have the same amount of sub-sequences. Whenever the
end of an utterance is reached, it is replaced in the next iteration by a new utterance.
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At the end of each mini-batch, the state is preserved for the utterances that contain
more sub-sequences and the state is reset to zeros for the utterances that are replaced
in the next mini-batch. We used a mini-batch size b of six sub-sequences with 20
frames to roughly match the batch size in the DFNN experiments: the total amount
of frames in one batch is 6 · 20 = 120 for the DLSTM and 128 for the DFNN.

This results in a three-dimensional input tensor of shape b × s × ni, where ni
is the number of input features. The input features are the 13 MFCCs for one
frame without context. The first layer of our DLSTM network is a fully connected
feedforward layer with nh ReLU units. To prepare the input tensor for this layer, it
is reshaped into a two-dimensional tensor of shape bs× ni. The time-dimension is
removed because this layer is not recurrent. The output of the fully connected layer
is a tensor of bs× nh. This tensor is converted into a list with s elements containing
tensors of shape b× nh: a list of inputs to the LSTM layers for each time step.

Dropout is applied to each LSTM layer by dropping the non-recurrent connections
with a probability of 0.8 during training (Zaremba et al., 2014). Again, the probability
of keeping nodes during testing was set to 1 during testing. The LSTM layers were
stacked to create multiple layers. The output of each layer becomes the input of
the next: they are not fully connected. For simplicity, there is an equal number of
hidden units in each LSTM layer.

The parameters of the DLSTM are

• the mini-batch size (default: 6),

• the sub-sequence length (default: 20),

• whether to apply dropout regularization (default: yes),

• the number of LSTM layers (default: 3),

• the number of units in the LSTM layers (default: 250),

• the optimization algorithm (default: Adam).
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Chapter 6

Experiments

In this chapter, we present the experimental setup and results for the Deep Feed-
forward Neural Network (DFNN) and Deep LSTM (DLSTM) architectures. We
describe the evaluation method first because it is identical for both architectures.

6.1 Evaluation Method

In many speech recognition systems, a DNN is used to output probabilities for Hidden
Markov Model states (Hinton et al., 2012). The HMMs are used to compute where
one phone ends and the next phone starts. These alignments are used to convert the
framewise classifications to phonetic classifications. The standard evaluation metric
for phonetic classification is the phone error rate, which is the percentage of phones
that were guessed incorrectly.

HMMs are currently not implemented in TensorFlow, which is why we did not
include these in our research. This means that our systems are not capable of
performing phone-level classification, but only frame-level classification. To compare
our results with other research, we give an estimate of how well our networks would
perform using the phone error rate. This estimate is found by using the true
alignments as annotated in TIMIT’s phonetic annotation files. For each phone, we
compute the mean of the class probabilities of the frames between the phone’s start
and end time. Then, the class with the highest average probability is picked as
the prediction for that phone. The phone error rate is computed between these
predictions and the true phone labels.

This phone error rate is slightly lower than a system including an HMM would
achieve. Essentially, our phone error rates are computed as if we would have a perfect
HMM, which finds the alignments perfectly every time. We caution the reader not
to compare our phone error rates with other research as conclusive results. Instead,
these error rates are meant as an estimate of the performance of our networks, and
as an comparison of performance between the experiments that are presented in
this thesis. We include the frame error rate for each experiment as a fair metric for
performance.
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6.2 Deep Feedforward Neural Network

The parameters for the baseline experiment using DFNNs followed from the research
of Mohamed et al. (2012). For the following experiments, we modified one parameter
from this baseline per run, such that we could isolate which parameters led to
improvement. If a modification led to a significant improvement, we kept it in the
following tests.

6.2.1 Experiments

Baseline experiment

Frame error rate
(Training set)

Frame error rate
(Test set)

Phone error rate
(Test set)

39.16% 47.68% 31.02%

Table 6.1: Performance of the DFNN using the baseline settings – gradient descent
with learning rate 0.02, 3 layers with 1024 units and dropout regularization with 0.5
probability of keeping units.

Mohamed et al. (2012) concluded that a context size of 11, 17 or 27 frames
was optimal. They found that a layer size of 1024 performed well enough – adding
more units did not improve the accuracy significantly. We used three layers in the
baseline experiment. Gradient descent with a learning rate of 0.02 was used as the
optimization algorithm. In line with Mohamed et al., a mini-batch size of 128 was
used. We deviated from their research by including dropout regularization and ReLU
units with random weight initialization to replace the generative pretraining. See
Table 6.1 for the results of this experiment.

Adam optimization

Learning rate
Frame error rate
(Training set)

Frame error rate
(Test set)

Phone error rate
(Test set)

0.001 36.55% 45.58% 29.13%

0.0001 33.83% 43.51% 25.80%

Table 6.2: Performance of the DFNN using Adam optimization.

We modified the baseline experiment to use Adam optimization (Kingma & Ba,
2014) instead of gradient descent. The other parameters were left the same. The
default learning rate for Adam optimization is 0.001. Using this learning rate, we
achieved only slightly lower frame and phone error rates than the baseline experiment.
In another run, we lowered the learning rate to 0.0001, which led to an even lower
frame and phone error rate on the TIMIT core test set. Table 6.2 show the results of
these experiments. For the following experiments, we used a learning rate of 0.0001.
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Dropout

Probability of
keeping units

Frame error rate
(Training set)

Frame error rate
(Test set)

Phone error rate
(Test set)

1 (no dropout) 6.93% 47.30% 25.11%

0.8 23.99% 41.55% 22.02%

0.5 (see Table 6.2) 33.83% 43.51% 25.80%

Table 6.3: Performance of the DFNN with respect to the dropout probability using
Adam optimization.

We modified the probability that a unit is kept in the network during dropout
regularization in these experiments. The suggested probability is 0.5 (Srivastava
et al., 2014). Intuitively, if this probability is raised, the amount of overfitting will
increase, meaning that the frame error rates on the test and training set will be
further apart. This is supported by the results in Table 6.3: the difference between
frame error rates is 9.68% when the probability is 0.5, 17.56% when it is 0.8 and
40.37% when no dropout is applied.

It is however notable that when we applied dropout with probability 0.5, the frame
and phone error rates on the test set are higher than when we used a probability of
0.8. Usually, when more regularization is applied, it is expected that the performance
on unseen data should rise because the network should be able to generalize better.
The reason why our tests did not reflect this, might lie in the fact that too much
dropout causes the network to be too thin. It is possible that not enough units are
retained in the test with 0.5 probability to properly fit the speech data. Because a
probability of 0.8 led to the best results on the test set, we used this probability in
further runs.

More layers

Number of layers
Frame error rate
(Training set)

Frame error rate
(Test set)

Phone error rate
(Test set)

3 (see Table 6.3) 23.99% 41.55% 22.02%

5 27.34% 41.52% 22.70%

Table 6.4: Performance of the DFNN with respect to the number of layers. All layers
had 1024 units.

We increased the number of layers in this experiment from three to five layers
with 1024 units. We used a probability of keeping nodes during dropout of 0.8 and
Adam optimization with learning rate 0.0001. These last two settings lead to a better
performance in previous experiments.

Mohamed et al. (2012) point out that adding more layers leads to a better
performance. In their research, the phone error rate increased by roughly 0.2% when
increasing the number of layers from three to five. The results in Table 6.4 did not
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show the same behavior. The frame error rate decreases very slightly, while the
phone error rate increases. According to Mohamed et al., generative pretraining
is necessary to benefit from having many hidden layers. Replacing the generative
pretraining by ReLU units and random weight initialization could be the reason why
adding more layers does not decrease the phone error rate.

Larger layers

Number of units
per layer

Frame error rate
(Training set)

Frame error rate
(Test set)

Phone error rate
(Test set)

1024 (see Table
6.3)

23.99% 41.55% 22.02%

2048 21.86% 41.57% 21.79%

Table 6.5: Performance of the DFNN with respect to the layer size.

We increased the number of units per layer from 1024 to 2048 for all three layers.
This led to a very small improvement for the phone error rate, and an insignificant
improvement for the frame error rate. The results from Table 6.5 are in line with the
conclusion of Mohamed et al. (2012): adding more than 1024 units has little effect
on the performance.

6.3 Deep LSTM Network

In the experiments of Graves, Mohamed, and Hinton (2013), a three layer LSTM
network with 250 units per cell resulted in the lowest error rate. Their setup is
different from ours in a number of ways. The LSTM network is bi-directional,
meaning that it is not only trained forwards through time, but also backwards.
Creating a bi-directional LSTM network is beyond the scope of this paper: we only
use a forwards LSTM layers. Furthermore, Graves, Mohamed, and Hinton initialized
their best performing network with the weights of another network. Instead, we use
TensorFlow’s default initialization, which stems from the research of Zaremba et al.
(2014).

We used a mini-batch size of 6 sub-sequences of 20 frames, as described in section
5.2.2. We applied dropout regularization in every experiment. The non-recurrent
hidden layer has 1024 ReLU units.

6.3.1 Experiments

Baseline experiment

In the baseline experiment, we used three LSTM layers with 250 units per cell.
We used Adam optimization with learning rate 0.001 as an optimization algorithm
because the DFNN experiments had shown that it performed better than gradient
descent. Dropout regularization was applied using a probability of 0.8 to keep nodes
for every training step. See Table 6.6 for the results.
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Frame error rate
(Training set)

Frame error rate
(Test set)

Phone error rate
(Test set)

25.32% 29.43% 25.36%

Table 6.6: Performance of the DLSTM using the baseline settings – Adam opti-
mization with learning rate 0.001, three LSTM layers with 250 units and dropout
regularization with 0.5 probability of keeping units.

Gradient descent

Frame error rate
(Training set)

Frame error rate
(Test set)

Phone error rate
(Test set)

26.06% 28.14% 23.67%

Table 6.7: Performance of the DLSTM using gradient descent.

We replaced the Adam optimization algorithm with gradient descent. In this
experiment, we used a learning rate of 0.02, which is the same as in the DFNN
experiments. The results are shown in Table 6.7.

More units

Frame error rate
(Training set)

Frame error rate
(Test set)

Phone error rate
(Test set)

22.52% 29.76% 24.89%

Table 6.8: Performance of the DLSTM with twice as much units per layer and Adam
optimization.

In this experiment, we used 500 units for each of the three LSTM layers. As can
be seen in Table 6.8, the frame error rate on the test set and the phone error rate
were very close to the baseline experiment. Therefore, adding more hidden units
does not significantly improve the accuracy of the DLSTM model.

6.4 Results

We briefly summarize the results from the experiments using the DFNN and DLSTM
architectures. Training the DFNN with Adam optimization yielded a better perfor-
mance than training with gradient descent. In contrast, gradient descent performed
better for the DLSTM networks. Increasing the dropout probability from the sug-
gested value of 0.5 (Srivastava et al., 2014) to 0.8 led to improved performance for
the DFNN. Adding more units per layer did not decrease the error rates significantly
for both architectures. Adding more layers hurt performance of the DFNN slightly.
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The best performance for the DFNN model was found using three layers with
1024 units, Adam optimization and a dropout probability of 0.8. The frame error rate
for this run is 41.55% and the phone error rate is 22.02%. One run with 2048 units
in the hidden layers achieved a phone error rate of 21.79%, which is slightly lower.
However, since the phone error rate is an estimate, we consider the network with
the lowest frame error rate to have the best overall performance. A state-of-the-art
phone error rate of 20.7% is given by Mohamed et al. (2012).

The DLSTM model that performed best had three LSTM layers of 250 units and
was trained using gradient descent. The frame error rate is 28.14% and the estimated
phone error rate is 23.67%. The frame error rate is roughly equal to the reported
28.2% for the bi-directional deep LSTM network by Graves, Jaitly, and Mohamed
(2013). The phone error rate is 6% higher than the error rate of 17.7% found by a
similar bi-directional LSTM network interfaced with an HMM (Graves, Mohamed,
& Hinton, 2013).
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Chapter 7

Conclusions and Future Work

In this thesis we have shown that it is possible to create systems for phonetic
classification in TensorFlow. We created two different systems: a deep feedforward
neural network and a recurrent neural network with LSTM cells. The best framewise
performance on the TIMIT core test set was achieved by a deep LSTM network
with three LSTM layers with 250 hidden units, trained using gradient descent. This
network had a frame error rate of 28.14% and an estimated phone error rate of
23.67%. We therefore believe that the DLSTM network is the most promising of the
two networks. However, using the trained DFNN network for phonetic classification
costs less computation time than the DLSTM network. The main issue is that the
unrolled DLSTM networks take sub-sequences of 20 frames as input. Therefore, the
sequences first need to be split in sub-sequences before they can be classified. The
input for the DFNN (11 frames of MFCCs) can be prepared faster than the input
for the DLSTM.

The DLSTM experiments took roughly seven days to complete using a single
Intel CPU E7-4870 v2 processor. We trained the networks for 15 epochs. Due to
a lack of computational power and time, we could not include many experiments.
Therefore, it is possible that different settings could improve accuracy. The main
purpose of this thesis is however to provide a basis for further customization and
experimentation, wherein our preliminary experiments suggest a number of settings
that lead to a good performance.

Even though we implemented many features for training DFNN networks or
DLSTM networks, there are indeed still many more extensions possible. The most
obvious next step is to interface our networks with an HMM to create an actual end-to-
end phonetic classification system. Another possible extension is adding a backwards
layer in the DLSTM, making it a bi-directional LSTM network (Graves, Mohamed, &
Hinton, 2013). Due to the scope of this thesis and computational limitations, many
combinations of parameters could not be tested. This was especially problematic
when training the DLSTM networks: these experiments often took several days to
complete.

Another topic of further research is to create a Convolutional Neural Network
(CNN) for phonetic classification. CNNs are included in TensorFlow, and have
been shown to be applicable for phonetic classification (Abdel-Hamid, Mohamed,
Jiang, & Penn, 2012). This recent development is an interesting one, since these
networks are actually mostly used for tasks related to computer vision. Implementing
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these networks in TensorFlow for phonetic recognition should offer a new basis for
experimentation – one that has not been explored as much as DFNNs and RNNs yet.

The source code for this project can be found at https://github.com/TimovNiedek/
timit tf.
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Appendix A

List of phones

Phone Example Training Evaluation Phone Example Training Evalutaion

aa b o tt aa aa m m o m m m

ae b a t ae ae n n oo n n n

ah b u t ah ah ng si ng ng ng

ao b ou ght ao aa nx wi nn er n n

aw b ou t aw aw ow b oa t ow ow

ax a bout ax ah oy b oy oy oy

ax-h s u spect ah ah p p ea p p

axr butt er er er r r ed r r

ay b i te ay ay s s ea s s

b b ee b b sh sh e sh sh

ch ch oke ch ch t t ea t t

d d ay d d th th in th th

dh th en dh dh uh b oo k uh uh

dx mu dd y, dir t y dx dx uw b oo t uw uw

eh b e t eh eh ux t oo t ux uw

el bott le el l v v an v v

em bott om m m w w ay w w

en butt on en n y y acht y y

eng wash ing ton ng ng z z one z z

er b ir d er er zh a z ure zh sh

ey b ai t ey ey bcl (b-closure) vcl sil

f f in f f dcl (d-closure) vcl sil

g g ay g g gcl (g-closure) vcl sil

hh h ay hh hh kcl (k-closure) cl sil

hv a h ead hh hh pcl (p-closure) cl sil

ih b i t ih ih qcl (q-closure) cl sil

ix deb i t ix ih tcl (t-closure) cl sil

iy b ee t iy iy q (glottal stop)

jh j oke jh jh epi (epenthetic silence) epi sil

k k ey k k pau (pause) sil sil

l l ay l l h# (begin/end marker) sil sil

Table A.1: List of used phones. Underlined phones are folded.
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