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Abstract

Our work implements the authenticated cipher MORUS, a submission for
the CAESAR competition, using ARM NEON. For the MORUS variant with
a state of 640 bits we were able to achieve an implementation that is twice
as fast as the reference implementation. For the MORUS variant with a
state of 1280 bits we were able to achieve equivalent speed to our 640-bit
implementation. Our implementation makes MORUS the fastest CAESAR

submission on ARM when NEON is available.
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Chapter 1

Introduction

Authenticated encryption schemes are schemes that provide confidentiality,
integrity, and authenticity simultaneously [3]. By using authenticated en-
cryption it is no longer necessary to combine a traditional scheme that only
provides confidentiality with a message authentication code (MAC) which
provides integrity and authenticity. This is important because historically
the combination has introduced problems [2, 10]. Additionally, some au-
thenticated encryption schemes work in a single pass which prevents a MAC
from being added afterwards [9, 18]. An extension of authenticated encryp-
tion is authenticated encryption with associated data. This extension allows
the addition of data over which there is integrity and authenticity but no
confidentiality.

The CAESAR (Competition for Authenticated Encryption: Security, Ap-
plicability, and Robustness) competition is a competition to select a set of
authenticated ciphers that have been reviewed by the cryptographic commu-
nity. The outcome is going to be a portfolio of ciphers so that an appropriate
cipher can be used for every use case.

In our research we have implemented MORUS [8], which is one of the
submissions, on an ARM Cortex-A8. MORUS has the property that it can
be implemented efficiently using SIMD instructions which is what we did
by using the “NEON” vector unit available on the ARM Cortex-A8. Our
objective was to answer the question: “How many cycles per byte does
MORUS take after vector optimizations using ARM NEON?”.

In Chapter 2 we will introduce our implementation setup, MORUS, and
the Cortex-A8. Chapter 3 is about other work done on MORUS and using
NEON for cryptography. In Chapter 4 we will be discussing our implemen-
tation of MORUS and what optimizations we have done. Chapter 5 shows
the results of our implementation. A short reflection of our work can be
found in Chapter 6.
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Chapter 2

Preliminaries

2.1 The qhasm programming language

Writing in pure assembly requires a lot of extra work such as manually
tracking which registers are available and which of those are callee-saved
registers (registers whose value must be preserved when returning from a
function call). To reduce the amount of extra work we used the qhasm
toolkit [4] to serve as a small abstraction layer above pure assembly. By
using qhasm we gain flexibility without sacrificing the potential to write
efficient software. When we write

4x s0_blk unsigned>>= 27

it becomes

vshr.u32 q1,q0,#27

after being processed by qhasm. Every time we reference s0 blk in qhasm
it will be replaced with the appropriate register and qhasm will keep track
of which registers are in use. Note that s0 blk is not always in the same
register. qhasm can use different source and destination registers but will
ensure s0 blk always points to the register that is currently holding the
data.

Besides the easier register allocation, qhasm will also ensure that callee-
saved registers are only used if the value in the register is guaranteed to be
the same at the end of the qhasm code. This means that registers such as
r4 must first be written to the stack and restored at the end before qhasm
will use it. If there are no free registers and the callee-saved registers are
not stored, qhasm will fail to compile the qhasm code. Which registers are
callee-saved registers can be found in the Procedure Call Standard for the
ARM Architecture [13].

3



2.2 MORUS

MORUS is a family of authenticated ciphers that provides confidentiality,
integrity and authenticity of data. Our research is based on version 2 of the
MORUS cipher as it is currently the most recent version. MORUS relies on
an internal state that is continuously updated using a state update function
for its security. There are two possible sizes for the internal state and two
possible key sizes. Any combination of those is allowed but the recommended
parameters are a 640-bit state with a 128-bit key or a 1280-bit state with
either a 128- or 256-bit key [8]. All of those parameter sets use a 128-bit
nonce/IV and a 128-bit tag. As a result all configurations provide 128 bits
of security against forgeries. The plaintext and associated data are allowed
to be of arbitrary length as long as the length stays below 264 bits.

For MORUS to encrypt and decrypt data it has to perform multiple
steps. Every step of this process will be described in the upcoming sections.

2.2.1 State and State Update

As mentioned before MORUS relies on its internal state for its security. The
state is either 640- or 1280-bit so it can be split into five blocks of 128 or 256
bits which corresponds to the typical register sizes for SIMD. These fives
blocks are typically denoted as S0 through S4.

The initial content of the state is decided by the IV and key. How it is
exactly set up can be seen in Section 2.2.2. Once the state is initialized it
can be updated by using a StateUpdate function. This function is essential
to MORUS as every step in MORUS uses it to change the state once it has
used the data. By using the StateUpdate function the chance of having
an internal state collision in normal operation is sufficiently small to never
be a problem. This is discussed in [8] under internal state collision. The
continuous updating of the state is also what ensures integrity and authen-
ticity. If any part is altered before the data is received, the receiver will get
a different state at some point. Due to StateUpdate being called continu-
ously this difference will cascade to all later states causing tag verification
to fail. Since a change cascades all the way to the end no matter where
this change happens, MORUS ensures that tag verification will fail. This
allows MORUS to give integrity and authenticity over the associated data,
ciphertext and tag.

The StateUpdate consist of five rounds where every round alters two
out of five blocks. After these five rounds it should be impossible to tell
what the internal state was before the StateUpdate function was called
unless the message blocks are known. A schematic of how the StateUpdate

works can be found in Figure 2.1. In every round a so called Rotl xxx yy

is used. In MORUS-640 this is Rotl 128 32 while in MORUS-1280 this is
Rotl 256 64. This specifies that the block of size 128 or 256 should be split
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up in four chunks of 32 or 64 each. Each of these chunks is then rotated to
the left over a constant b. This b is different for every combination of size
and round. In every round a <<<wn is also present. This specifies that this
block is rotated to the left as a whole over a constant wn. All constants can
be found in [8]. mi is the current message block; the meaning of this message
block is dependent on the context of where the StateUpdate is called.

Figure 2.1: A schematic overview of the StateUpdate used in MORUS
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2.2.2 Initialization

MORUS starts with state initialization and what it does is using the pro-
vided IV and key to set up a state. This state is then mixed by calling the
StateUpdate function 16 times so that the initial state cannot be known
without having the public IV and private key. The initialization for MORUS-
640 and MORUS-1280 do the same except for what data is put initially in
the state before the mixing happens.

In MORUS-640 block S0 contains the 128-bit IV. Block S1 contains the
128-bit key. Block S2 contains a constant value which is 128 bits set to 1.
Block S3 and S4 also contain constant values but those are based on the first
32 Fibonacci numbers modulo 256. S3 contains the first 16 numbers while
S4 contains the other 16 numbers. The Fibonacci numbers were chosen to
show that there was no bias in the way these constants were chosen.

MORUS-1280 puts the 128-bit IV concatenated with 128 zeros in S0. In
block S1 the key is placed. However, MORUS-1280 allows both a 128-bit
or a 256-bit key. To accommodate for this, the 128-bit key is concatenated
with itself so that the 256-bit block can be filled. This characteristic is ex-
actly the reason why MORUS-1280-128 does not have a separate optimized
implementation in our research as this is the only difference from MORUS-
1280-256. Block S2 is filled with 256 bits set to 1. S3 is similar to S2 but
is filled with 256 bits set to 0 instead. This time block S4 is filled with the
first 32 Fibonacci numbers modulo 256 since all 32 of them fit in the same
block.

Once the initial data has been put into the state, the StateUpdate func-
tion is called 16 times with the message block set to 0 since there is no
message. This ensures all initial values are properly mixed. Once the state
updates are done, the initialization is finished by XORing block S0 with the
key. From here on the key is never needed again allowing it to be removed
from memory.

Function 1 Initialization in MORUS-640
1: procedure Initialization(IV,K, S) . S is 5 blocks of 128 bits
2: S0 ← IV
3: S1 ← K
4: S2 ← 1128

5: S3 ← 00||01||01||02||03||05||08||0d||15||22||37||59||90||e9||79||62
6: S4 ← db||3d||18||55||6d||c2||2f ||f1||20||11||31||42||73||b5||28||dd
7: for i in 0..15 do
8: StateUpdate(S, 0) . Message block set to 0
9: end for

10: S0 ← S0 ⊕K
11: end procedure
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2.2.3 Processing Associated Data

Processing the associated data is the first thing that is done after initial-
ization. While nothing is done to the associated data since there is no
confidentiality over it, it is processed so that the state is updated. Updating
the state gives integrity and authenticity over the associated data.

The StateUpdate is called for every 16 or 32 bytes of associated data,
depending on the size of the state. If the last part of the associated data is
not a full block, it is padded with 0 bits until it is its full size before going
through the StateUpdate. Note that while the associated data is padded
to update the state the associated data itself is not actually altered.

Function 2 Processing Associated Data in MORUS-640

1: procedure ProcessAD(ad, S) . Assumes ad is a multiple of 16 bytes
2: StateUpdate(S, ad)
3: end procedure . If ad was padded we continue without padding

2.2.4 Encryption and Decryption

After processing the associated data, the plaintext or ciphertext itself is
processed. This is the first difference between what the sender and receiver
do, albeit a small one.

Just like the associated data the plaintext or ciphertext is processed in
blocks of 16 or 32 bytes. If the last block is not a full block it is again padded
with 0 bits for only the duration of the encryption and decryption process
and the subsequent StateUpdate.

The encryption process is: Ci = Pi⊕S0⊕ (S1 <<< a)⊕ (S2&S3) where
a is 96 in the case of MORUS-640 and 192 in the case of MORUS-1280.
After encryption, StateUpdate is called with Pi (the padded plaintext) as
message block. The decryption process is exactly the same except that Ci

and Pi are swapped since we want to go back to the plaintext given the
ciphertext. The StateUpdate is still called with Pi as message block during
decryption otherwise the state would diverge from encryption.

Function 3 Encryption in MORUS-640

1: procedure Encryption(m, c, S). Assumes m is a multiple of 16 bytes
2: c← m⊕ S0 ⊕ (S1 <<< a)⊕ (S2&S3)
3: StateUpdate(S,m)
4: end procedure . If m was padded we only use the unpadded amount

of bytes from c
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Function 4 Decryption in MORUS-640

1: procedure Decryption(m, c, S) . Assumes tag is stripped from c
2: m← c⊕ S0 ⊕ (S1 <<< a)⊕ (S2&S3)
3: m′ ← m||016−len(m) . m′ is m padded
4: StateUpdate(S,m′) . m′ is only used for StateUpdate
5: end procedure

2.2.5 Finalization and Verification

The last step in MORUS is finalization which means generating the tag.
Tag generation is done in encryption as well as decryption.

Tag generation starts by doing some preparation. The first step is con-
catenating the length of the associated data with the length of the message
so that they make a 128-bit number. For MORUS-1280, 128 zeros are con-
catenated as well to obtain a 256-bit number. This number is stored tem-
porarily for later use. The second step is XORing block S4 with block S0

and storing the result in S4. The third and final preparation step is calling
the StateUpdate ten times with the previously stored value as the message
block. By using the length of the message and associated data in the tag
generation MORUS ensures that the message and associated data can not
be extended without generating a different tag.

Once the preparation is done, the actual tag is generated. The generation
is similar to encryption and is: T ′ = S0 ⊕ (S1 <<< a) ⊕ (S2&S3) with a
being 96 and 192 again. The actual tag is then the appropriate amount of
least significant bits of T ′. In the case of MORUS-640 this means all bits
but in the case of MORUS-1280 this means half of the bits since the tag is
128-bit while the blocks have 256 bits.

Verification of the tag is only done during decryption and simply means
checking that the given tag is the same as the generated tag. It is important
to mention that a MORUS implementation should not return the generated
tag as output if verification fails. If this is done MORUS is known to be
vulnerable [8]. Simply returning whether tag verification succeeds or fails is
sufficient.

Function 5 Tag Generation in MORUS-640

1: procedure TagGeneration(adlen,mlen, S)
2: tmp← adlen||msglen
3: S4 ← S4 ⊕ S0

4: for i in 0..9 do
5: StateUpdate(S, tmp)
6: end for
7: t← S0 ⊕ (S1 <<< a)⊕ (S2&S3)
8: end procedure . Tag is concatenated with the ciphertext afterwards
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2.3 ARM Cortex-A8

Optimization of MORUS will be done on an ARM Cortex-A8 processor. The
ARM architecture is a RISC (Reduced Instruction Set Computing) archi-
tecture. This architecture allows instructions to take fewer cycles versus a
CISC (Complex Instruction Set Computing) architecture. However, it does
mean that there are less instructions which in turn means more instructions
are required for the same set of computations. One such example is that
ARM uses separate load/store instructions to read from and write to mem-
ory whereas in a CISC architecture this may be included in an arithmetic
instruction.

The Cortex-A8 is a 32-bit ARMv7-A superscalar design [12] meaning
that it is capable of executing more than one instruction each cycle. It
has 16 32-bit registers of which only 14 are usable due to the stack pointer
and program counter being reserved. The processor makes use of pipelines
where an instruction can advance one stage every cycle. Most Cortex-A8
processors have a NEON unit included which provides SIMD instructions [7].
The NEON unit sits behind the ARM core pipelines; as a result if a pipeline
is stalled within the ARM core the instructions destined for the NEON
unit are also stalled. If a stall happens within the NEON unit it does not
typically stall the ARM core. One example of where the NEON unit can
stall the ARM core is when an ARM instruction is dependent on a NEON
store instruction. Other sources for stalling are memory system stalls (such
as L1 cache misses) and branch mispredict penalties. See Figure 2.2 for a
schematic overview of the ARM Cortex-A8 processor.

Figure 2.2: A schematic overview of the Cortex-A8 by Texas Instruments1

1http://processors.wiki.ti.com/index.php/File:Cortex-A8Pipeline.png
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2.3.1 NEON

The NEON unit is capable of performing SIMD instructions allowing a sin-
gle instruction to process multiple data elements. The ability to perform
SIMD instructions is essential to optimizing MORUS as it is built with the
availability of SIMD instructions in mind. For instance, the internal state
of MORUS can be either 640- or 1280-bit which is further divided into 128-
and 256-bit blocks during operation. NEON provides 128-bit registers and
the ability to operate on 128-bit blocks of data which allows us to implement
MORUS efficiently using NEON.

NEON provides 32 64-bit registers typically called d0 through d31. Pairs
of two adjacent 64-bit registers can be combined to form 128-bit registers
which are called q0 through q15. All NEON instructions allow you to oper-
ate on 64- and 128-bit registers, they can however take a different amount
of cycles.

As stated before, NEON instructions pass through the ARM pipeline
before reaching the NEON unit and thus have been fetched and decoded by
the ARM core. When these instructions enter the NEON unit they are de-
coded once again and then scheduled by the NEON unit. This process takes
multiple cycles and can stall the ARM core if the NEON unit is stalled. To
prevent this from happening frequently, a 16-entry-deep instruction queue
is provided. A similar stall can occur when the NEON unit requires data
from the ARM core to perform a vector load. Thus, the NEON unit also
contains a data queue to prevent this stall from happening frequently. This
data queue is between 8 and 12 entries deep depending on the processor
revision.

To optimize the MORUS cipher by using NEON it is essential to know
how many cycles each instruction takes. This information can be found in
Cortex-A8 Technical Reference Manual [12]. In the reference manual each
instruction states in which stage it requires its source to be available and in
which stage the result is available. While we use qhasm, for this step it is
necessary to look at the assembly generated by qhasm since the reference
manual lists assembly instructions. An example qhasm instruction such as

4x temp = s3_blk << 22

which shifts the four chunks of block S3 to the left needs its source to be
available in stage N1 and makes the result available in stage N3. However,
due to the convention ARM uses, the result will not be usable in stage N3 but
only in N4. When scheduling instructions this should be taken into account.
If two of those instructions would have to be scheduled without causing a
stall, the second instruction has to begin while the first instruction is in
stage N3 so that it reaches stage N1 while the previous instruction reaches
N4. If this were not taken into account one would try to begin the second
instruction in stage N2 but this would cause a one cycle stall.
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2.3.2 Dual Issue

As mentioned before the Cortex-A8 has a superscalar design allowing it
to execute more than one instruction per clock cycle. In the case of the
Cortex-A8 it is called dual issue due to the fact that it can execute up to two
instructions in one cycle. It should be noted that normal ARM instructions
can be paired with NEON instructions.

While the processor is able to execute two instructions at the same time
there are restrictions. The restrictions for the ARM core are fairly minimal
and not of much interest for the optimization of MORUS. For NEON there
is only one type of dual issuing allowed and that is pairing a NEON data-
processing instruction with an instruction that executes in the NEON load-
/store/permute pipeline. This holds true even if two NEON data-processing
instructions could theoretically be dual issued due to them being executed
in separate pipelines and there being no data hazards.

Even though these restrictions are fairly strict the dual issue capability
is useful because some instructions such as vector load and store are multi-
cycle instructions (requiring a source/result in multiple stages). For multi-
cycle instructions it is possible to dual issue for the first and last cycle.
Additionally, some instructions called byte permute instructions execute in
the load/store/permute pipeline allowing them to be dual issued.

2.3.3 Cycle Counter

To measure performance of an optimized implementation of MORUS it be-
comes necessary to know how many cycles a block of assembly takes. To
achieve this it is necessary to read the Cycle Counter Register. In qhasm
this can be done by using cyclecount(register) which translates to the
following instruction:

mrc p15, 0, r4, c9, c13, 0

It reads the value of the cycle counter by telling the internal coprocessor
CP15 to read the Cycle Counter Register into a register such as r4. Doing
this twice, once before a block of assembly and once after it, allows us to
know how many cycles have taken place within a block of assembly.

When measuring how many cycles a block of assembly takes the cycle
counting may be one cycle off because the mrc instruction also takes one
cycle. However, the instruction can be dual issued so it is also possible that
it does not take an extra cycle. When reading the cycle counter it is thus
important to take the context into account, especially if being one cycle off
is important.

Another problem that can arise is that instructions are still in the pipeline
while the cycle counter is being read. Reading the cycle counter takes only
a single instruction while a NEON instruction first has to pass through the
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13 stage ARM core and then go through the 10 stage NEON unit. For
short sequences of assembly this potential error in measuring may be too
large to get accurate readings. This is usually solved by repeating a code
fragment multiple times when measuring and getting an average such that
the measuring error becomes smaller.

One final problem that can occur when measuring is that a context
switch can happen. This becomes more likely if the block of assembly is
large. If a context switch happens the result is of very little use. As long
as context switches happen infrequently this can be mitigated by measuring
multiple times and taking an average.
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Chapter 3

Related Work

Little work has been done on implementations of MORUS besides the ref-
erence implementation. There is an SSE2 implementation and there is an
AVX2 implementation. Both SSE2 and AVX2 provide SIMD instructions
but are only available on x86 processors. In those implementations it was
shown that for longer messages they were able to reach 1.19 cycles per byte
for MORUS-640-128 and 0.69 cycles per byte for MORUS-1280-256 [8] which
was a significant improvement over the reference implementation. This lead
us to believe that similar performance gains could also be achieved by using
NEON.

There were no prior ARM implementations of MORUS. However, the
idea of using NEON to optimize cryptography is not new [17]. In the paper
“NEON crypto” by Bernstein and Schwabe a set of four cryptographic prim-
itives were implemented using NEON and all of them were found to have a
benefit from using NEON [6]. The idea of using byte permute instructions
for rotations so that we can dual issue these instructions comes from their
paper.

The CAESAR competition currently features 15 third-round candidates.
Without NEON enabled on the Cortex-A8, MORUS is already one of the
fastest submitted ciphers [1]. In terms of performance NORX [15],
Tiaoxin [16], and Keyak [19] are its closest competitors. When NEON is
enabled, NORX, which has a NEON implementation, becomes the fastest
submission.
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Chapter 4

Implementation

Submissions for the CAESAR competition are required to provide a refer-
ence implementation of their cipher. The reference implementation exists
to support the public understanding of the cipher and to provide a correct
implementation which other implementations can verify against. It is meant
to be as clear as possible and is thus not optimized [5]. Our implementations
of MORUS are based on this reference implementation and produce exactly
the same output.

We wrote two implementations, one of these implementations imple-
ments MORUS with a 640-bit state and a 128-bit key (MORUS-640-128)
and the other one implements MORUS with a 1280-bit state and a 256-bit
key (MORUS-1280-256). We do not provide an implementation for MORUS-
1280-128 as it is the same as MORUS-1280-256 except for the fact that the
key is concatenated with itself during initialization.

Although the goal was to implement an optimized implementation we
have not micro-optimized code which already takes a small amount of pro-
cessor time compared to other parts of the code. Examples of this are the
initialization, tag generation, tag verification, and partial block encryption
and decryption. All of them incorporate the state update which is opti-
mized. The state update costs the majority of processor time even after
optimization so optimizing the rest of the code in those sections will have
an insignificant effect on the total processor time. The only exception to this
was specifying memory alignment. Specifying memory alignment allows us
to improve performance of functions that do have an impact by lowering the
amount of cycles loads and stores cost. However, to benefit from this we
have to do this consistently, even in places where the benefit is small.

The implementation does everything in constant time except processing
the associated data and encryption/decryption since they have a variable
length. This means that initialization, tag generation, and tag verification
takes the same amount of cycles regardless of the input data. This helps
against timing attacks.
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Since the amount of time required for processing the associated data
and encryption/decryption is large, they were good targets for optimization
since they are likely to become the dominant factor on longer inputs. As a
result we have optimized these functions by implementing them entirely in
qhasm. As mentioned before the state update was also optimized since it is
the core function in every step of MORUS. How these functions have been
optimized in MORUS-640-128 and MORUS-1280-256 can be found in the
upcoming sections.

4.1 State Update

The StateUpdate function consists of three distinct part. These parts are
loading from memory to NEON registers, processing the five rounds, and
storing data from NEON registers to memory. This is the case for both
MORUS-640-128 and MORUS-1280-256.

The StateUpdate functions receives two pointers to memory where the
first pointer called input 0 points to the message block and the second
pointer called input 1 points to an array with the state. Our initial imple-
mentation using NEON can be seen in Listing 4.1. This code is not minimal
as NEON supports loads up to 256 bits at once. However, qhasm does not
support this by default and the performance difference is only two cycles
due to needing one more cycle for the second instruction and an extra ad-
dition. Additionally other optimizations that will be discussed later can no
longer be applied resulting in worse performance than if we were to load 256
bits at once. An important optimization we did do in the loading stage was
specifying alignment as can be seen in Listing 4.2. By doing this every load
takes one cycle instead of two. Since the StateUpdate is used in every step
of MORUS the total amount of cycles saved is significant.

Listing 4.1: Normal loading

msg_blk = mem128[input_0]

s0_blk = mem128[input_1]

input_1 += 16

s1_blk = mem128[input_1]

input_1 += 16

s2_blk = mem128[input_1]

input_1 += 16

s3_blk = mem128[input_1]

input_1 += 16

s4_blk = mem128[input_1]

Listing 4.2: Loading with alignment

msg_blk aligned= mem128[input_0]

s0_blk aligned= mem128[input_1]

input_1 += 16

s1_blk aligned= mem128[input_1]

input_1 += 16

s2_blk aligned= mem128[input_1]

input_1 += 16

s3_blk aligned= mem128[input_1]

input_1 += 16

s4_blk aligned= mem128[input_1]

The loading code seen so far is for MORUS-640-128, in MORUS-1280-256
we need to load twice the amount. This results in two problems. The first
problem is that NEON registers are only 128-bit and the second problem
is the we do not have enough caller-saved registers. The first problem was
solved by putting every 256-bit block into two 128-bit registers. The code
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is similar to Listing 4.2 except that we need two mem128 for one block.
Solving the first problem causes the second problem as there are no longer
any caller-saved registers left. We need two more registers which we use
as temporary registers during calculations. The most efficient way to solve
this is by using callee-saved registers. The use of callee-saved registers costs
extra cycles since we first have to store the values of those registers in the
memory before we can use them. The code we used to do this can be seen
in Listing 4.3. What this does is store q4 and q5 on the stack so that we
can use them later.

Listing 4.3: Storing callee-saved registers on the stack

q4_stack = q4_stack [0] caller_q4 [1]

q4_stack = caller_q4 [0] q4_stack [1]

q5_stack = q5_stack [0] caller_q5 [1]

q5_stack = caller_q5 [0] q5_stack [1]

After loading is complete the five rounds are next. Since every round
is virtually the same except for what registers and constants are used we
will be discussing only one round here. The round we will be discussing is
round 2 since round 1 is the only round to differ in that it does not use
the message block (thus making it a strict subset of the other rounds). The
MORUS-640-128 code for round 2 can be seen in Listing 4.4.

Listing 4.4: Round 2 of the state update

s1_blk ^= s4_blk

s1_blk ^= msg_blk

temp = s2_blk & s3_blk

s1_blk ^= temp

4x temp = s1_blk << 31

4x s1_blk unsigned >>= 1

s1_blk ^= temp

s4_blk = s4_blk [2,3] s4_blk [0,1]

The first 4 lines are simply all the necessary operations in round 2 before
we can break up the 128-bit block into 32-bit chunks to rotate. In round
1 the XOR with msg blk would not be present. Once these operations are
done we want to rotate every chunk of the 128-bit register. NEON does not
have a rotate operation and the rotate is thus rewritten using two shifts and
one XOR. It works by first getting all the correct top bits in a temporary
register; note that we shift per chunk. Then the original register is used
to obtain all the bottom bits; again note that we shift per chunk. Since
shifts introduce zeros we can afterwards XOR the temporary register with
the original register to combine the top and bottom bits of every chunk
to get a rotated original register. We consider the processing of the S1
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block to be optimal in our implementation since every operation takes one
instruction except for the rotate. We also do not see any opportunity for dual
issuing since all of them are NEON data-processing instructions which can
not be dual issued. Reordering the instructions to avoid latencies because
of register and pipeline availability is also not possible due to instructions
having dependencies on previous instructions.

Besides the processing of block S1, round 2 also processes a second block;
in this case block S4. This is again a rotate which NEON does not have.
However, rotates that operate on 128-bit blocks by a distance of 8 can always
be done in NEON using a byte-permute instruction [14]. In the case of
round 1, 3, and 5 it is a vector extract and in the case of round 2 and 4 it
is a vector swap. Since they are byte-permute instructions they happen in
the load/store/permute pipeline. As a result they can be dual issued and,
due to the way the rounds are set up, do not cause any latencies for the
next round. In practice this means that processing the second block has
no negative effect on the amount of cycles per byte due to the NEON unit
already being occupied with other instructions.

For MORUS-1280-256 the implementation is similar since every instruc-
tion except the rotation of the second block does not cross into the other
128-bit register. As a result these instructions can simply be done once for
the top 128-bit register and once for the bottom 128-bit register. This does
mean that every round costs at least twice as many cycles in MORUS-1280-
256. The rotation of the second block in every round can still be done by
a byte-permute instruction but is no longer free because in round 1, 3, and
5 we need two subsequent vector extractions instead of one thus causing a
delay.

Storing data from NEON registers in memory is very similar to loading
it. One notable difference, as can be seen in Listing 4.5, is that msg blk

is not written back to memory. This is because the message block is never
changed and it is thus not necessary to write back to memory. Storing to
memory is also done with alignment since it decreases the amount of cycles
needed from two cycles to one cycle.

Listing 4.5: Storing with alignment

input_1 -= 64

mem128[input_1] aligned= s0_blk

input_1 += 16

mem128[input_1] aligned= s1_blk

input_1 += 16

mem128[input_1] aligned= s2_blk

input_1 += 16

mem128[input_1] aligned= s3_blk

input_1 += 16

mem128[input_1] aligned= s4_blk
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Storing in MORUS-1280-256 is, again, similar to loading in MORUS-
1280-256. Twice as much data needs to be stored back to memory. During
loading the values of registers q4 and q5 were put on the stack. During
storing we need to retrieve the memory to put the data back in the registers.
The code to do this can be seen in Listing 4.6.

Listing 4.6: Loading callee-saved registers from the stack

caller_q4 = caller_q4 [0] q4_stack [1]

caller_q4 = q4_stack [0] caller_q4 [1]

caller_q5 = caller_q5 [0] q5_stack [1]

caller_q5 = q5_stack [0] caller_q5 [1]

One important aspect we have neglected to mention so far is the tran-
sitions between the distinct parts. Between loading and the first round it
is actually possible to have some overlap since both the message block and
block S4 are not used in round 1. This allows us to dual issue those two
instructions saving on the total amount of cycles used by the StateUpdate.
The way we have implemented this can be found in Listing 4.7. The same
optimization is also used in the MORUS-1280-256 implementation.

Listing 4.7: Overlapping loading and round 1

s0_blk ^= s3_blk

msg_blk aligned= mem128[input_0]

temp = s1_blk & s2_blk

s4_blk aligned= mem128[input_1]

s0_blk ^= temp

4x temp = s0_blk << 5

4x s0_blk unsigned >>= 27

s0_blk ^= temp

s3_blk = s3_blk [3] s3_blk [0,1,2]

A natural thought would be to do the same between round 5 and the
storing. Unfortunately this does not work well due to the load/store/per-
mute pipeline already being occupied by the second block at the end of the
round.

4.2 Processing Associated Data

Since our implementation is based on the reference implementation we ini-
tially processed our associated data in exactly the same way as the reference
implementation. The reference implementation has a loop in C code that for
every 16 or 32 bytes, depending on the MORUS variant, calls the encryption
function which does its encryption routine and then calls the StateUpdate

function to update the state.
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This way of handling the associated data quickly proved to be a bottle-
neck because it meant that we had the overhead of two function calls and
an encryption routine of which the result is unused for every 16 or 32 bytes.
Removing the encryption routine for associated data was the first step we
took. However, the overhead of two function calls per 16 or 32 bytes was
still too much. As a result we implemented processing the associated data
in qhasm; including the loop so that we always have at most one function
call for the associated data.

Implementing a loop in qhasm is typically not difficult but we did have
one problem. MORUS allows the associated data to have a length of up to
264 bits. Combined with the fact that we need to have a counter to know
how often the loop needs to be executed we need space for at least 59 bits
(since we can store how many blocks of 32 bytes we have). As a result
we need to either combine two 32-bit registers or use one 64-bit NEON
register. Unfortunately using a NEON register is not an option as NEON
does not allow for instructions to set flags (except for instructions shared
with the VFP) thus making it infeasible to do conditional execution without
constantly having NEON instructions wait on normal instructions causing
large delays. We have thus implemented the loop counter using two 32-bit
registers. See Listing 4.8 for the implementation. What it does is read the
loop counter, which is computed in C code, to r4 and r5. Then it checks if
both of them are 0, if that is the case we are done and execution jumps to the
storing stage. Otherwise we load the message block, which is the associated
data, to msg blk and perform the five rounds of the StateUpdate. After
the five rounds 1 is subtracted with borrowing from both r4 and r5 if r5 is
0. Otherwise only r5 is subtracted from. This has the effect of subtracting
1 from the total number of loops left. After that we jump back to the start
which checks if we are done or not thus completing our loop. The loop is
implemented exactly the same in MORUS-1280-256.
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Listing 4.8: Loop implemented in qhasm

assign r4 r5 to loop_counter_right loop_counter_left =

mem64[input_2 + 0]

loop:

=? loop_counter_right - 0

goto start if !=

=? loop_counter_left - 0

goto end if =

start:

msg_blk aligned= mem128[input_0]

input_0 += 16

... # five rounds of StateUpdate

=? loop_counter_right - 0

goto decrement_left if =

loop_counter_right -= 1

goto loop

decrement_left:

loop_counter_left -= 1

loop_counter_right -= 1

goto loop

end:

... # storing data to memory
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4.3 Encryption and Decryption

Encryption and decryption had the same function call overhead as process-
ing the associated data. As a result both encryption and decryption were
implemented in qhasm.

Since processing the associated data is exactly same except that there
is no encryption routine it was used as the basis for the encryption. See
Listing 4.9 for the implementation. The optimization that was in the generic
StateUpdate function that allowed msg blk to be loaded later had to be
undone since the message block, which is the plaintext here, is necessary to
compute the ciphertext. The ciphertext block is also immediately written
back to memory as the register needs to be reused for the next ciphertext
block. Once the encryption routine is over the five rounds of the state update
are executed and then the loop continues to the next iteration. Decryption is
equivalent to encryption except that msg blk and cipher blk are swapped.
The implementation for MORUS-1280-256 is similar except that we need
twice as many instructions.

Listing 4.9: Encryption routine

start:

msg_blk aligned= mem128[input_0]

input_0 += 16

temp = s2_blk & s3_blk

temp2 = s1_blk [1,2,3] s1_blk [0]

temp ^= temp2

temp ^= s0_blk

cipher_blk = msg_blk ^ temp

mem128[input_1] aligned= cipher_blk

input_1 += 16

... # five rounds of StateUpdate

4.4 Lower Bound Analysis

When optimizing we want to know how well the current implementation
performs in comparison to the best possible implementation. To do this
we made an approximation of the lower bound for MORUS-640 by initially
assuming perfect instruction scheduling.

The natural place to start is the five rounds in the StateUpdate since
every byte processed by MORUS goes through these five rounds. Note
that we excluded the loading and storing from memory since they can be
(partially) avoided in certain cases such as processing the associated data
and will thus skew the calculation of the lower bound.
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The five rounds contain the following instructions: 19 XORs, 5 ANDs,
5 left shifts, 5 right shifts, 3 vector extracts, and 2 vector swaps. Assuming
perfect instruction scheduling we can leave out the vector extracts and vector
swaps since they can always happen while doing other operations. The
XORs and bitwise ANDs are one cycle each whereas the shifts are two
cycles each. This gives us a minimum of 44 cycles for the five rounds.
This is 44

16 = 2.75 cycles per byte. We can make this number slightly more
accurate because we know that the shifts always happen as the last change
to a block and must thus wait on an XOR or AND to finish. There are no
other instructions left that could be scheduled in between. By using that
fact we can state that for every round there is a one cycle wait that has
to occur. This adds five cycles to the total making the new approximation
49
16 = 3.06 cycles per byte.

We expected that in practice we would not reach this minimum as there
are quite a few situations within the five rounds where perfect instruction
scheduling is extremely difficulty, if not impossible. Additionally the esti-
mate does not take overheads into account that always exist such as loading
and storing, cache misses, function call overhead, and loop overhead. Also,
this lower bound approximation is only taking the StateUpdate into ac-
count whereas in practice we need to use the data from the state to encrypt,
decrypt, and generate a tag.
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Chapter 5

Results

Benchmarking was done on a BeagleBone Black. The model used features
a 1GHz AM3358 ARM Cortex-A8 processor by Texas Instruments. To ob-
tain our results we used the SUPERCOP benchmarking toolkit. It is part
of eBACS [11] which is a project for benchmarking cryptographic systems.
SUPERCOP contains all submissions for the CAESAR competition and allows
us to compare our results against other implementations; especially because
SUPERCOP also includes results for the BeagleBone Black. The cycle counter
used is the cycle counter integrated in SUPERCOP which reads the Cycle
Counter Register on ARM. The SUPERCOP version used was the 2017-02-28
release which is the most recent version.

Benchmark results can be found in Table 5.1. gcc 4.9.2 was used for
compilation. The compiler flags are chosen by SUPERCOP. For MORUS-640-
128 they were -funroll-loops, -fno-schedule-insns, -O3, and -fomit-

frame-pointer while for MORUS-1280-256 they were -mfloat-abi=hard,
-mfpu=neon, -O3, and -fomit-frame-pointer. The benchmarking results
are directly compared to the results of the reference implementation. Every
benchmark entry consists of a left side, a + sign, and a right side. The
left side is the size of the plaintext while the right side is the size of the
associated data. The term “long” means 2048 bytes. We chose for this
notation to match the notation used in the eBACS project. All values were
computed by taking the median cycle count and then dividing it by the
amount of bytes processed.

Our implementations have been submitted to the eBACS project. While
we submitted a MORUS-1280-128 implementation for completeness we do
not benchmark it here as the implementation is equivalent to MORUS-1280-
256. Our submission is currently pending approval and is thus available
elsewhere1.

From our benchmarking results we can see that our MORUS-640-128
implementation is typically around twice as fast as the reference imple-

1https://github.com/OussamaDanba/MORUS_on_NEON
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Table 5.1: Benchmarking results

REF-640 MORUS-640 REF-1280 MORUS-1280

long+0

encrypt 9.89 5.26 15.64 5.42

decrypt 10.39 5.29 16.10 5.39

forgery 10.40 5.28 16.11 5.41

long+long

encrypt 10.41 4.72 15.77 4.41

decrypt 10.30 4.75 16.09 4.39

forgery 10.29 4.74 16.09 4.40

0+long

encrypt 10.95 5.85 15.92 6.04

decrypt 10.20 5.86 16.07 6.02

forgery 10.20 5.85 16.07 6.03

1536+0

encrypt 12.37 5.81 22.76 6.12

decrypt 12.92 5.84 23.32 6.22

forgery 12.92 5.83 23.31 6.26

1536+1536

encrypt 11.68 5.03 19.41 4.83

decrypt 11.58 5.03 19.77 4.84

forgery 11.58 5.03 19.76 4.85

0+1536

encrypt 13.45 6.40 23.06 6.94

decrypt 12.73 6.42 23.29 6.91

forgery 12.73 6.40 23.29 6.93

64+0

encrypt 69.30 87.45 186.39 108.55

decrypt 70.61 89.27 189.11 111.09

forgery 70.59 89.23 189.08 111.66

64+64

encrypt 40.73 29.66 102.84 44.60

decrypt 40.97 29.92 104.20 45.69

forgery 40.96 29.82 104.23 46.53

0+64

encrypt 70.69 55.55 187.06 84.84

decrypt 70.62 56.03 189.16 87.53

forgery 70.69 55.85 189.16 88.08
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mentation. Our MORUS-1280-256 implementation shows even more perfor-
mance gain. Perhaps surprisingly, the difference between MORUS-640-128
and MORUS-1280-256 is little even though NEON has no 256-bit registers
or instructions. We believe that this is the case because despite taking at
least twice as much instructions we operate on twice the amount of data (32
versus 16 bytes). This also has the benefit of avoiding the overhead the loop
introduces by having to loop less often.

As far as we are aware this is the first time MORUS has been imple-
mented on ARM besides the reference implementation so we are not able
to compare against other implementations. However, we can compare it
against other submissions. We mentioned before that MORUS is the fastest
submission when NEON in not used; when NEON is used NORX became
the fastest. The online SUPERCOP results only benchmark the Cortex-A9
with NEON [1], which is a slightly faster processor than the Cortex-A8 due
to the having a shorter pipeline and allowing out-of-order execution. Nev-
ertheless, we are still able to say our MORUS-640-128 implementation is
faster than the fastest NORX implementation. This is because our cycles
per byte count on the Cortex-A8 is lower than the NORX implementation on
the Cortex-A9. Our MORUS-1280-256 implementation also outperforms the
fastest NORX implementation except when short messages are processed.
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Chapter 6

Conclusions

Our work has resulted in two optimized implementations of MORUS using
NEON. By doing this we have shown that MORUS can be implemented
efficiently using NEON.

We do not claim our implementation is the most optimized implementa-
tion possible, but we do believe that on the Cortex-A8 not much more can
be done.

Future work that can be done is porting our implementations to other
ARM processors which have NEON capabilities. Since NEON itself does not
change significantly on other processors we believe that this would not be
extremely difficult. One such processor would be the Cortex-A9 so that we
can more accurately compare other submission for the CAESAR competition
against MORUS.
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Appendix A

qhasm Extensions

During our research we stumbled upon a few instructions that the Cortex-
A8 supported but were not present in the qhasm syntax. Since qhasm is
easily extendable we have added these ourselves.

The first instruction we missed was the ability to do a vector swap op-
eration on two 128-bit registers instead of two 64-bit registers. In MORUS-
1280-256 this is used to rotate 128 to the left. While it is possible to do
this in two vector swap operations it costs one more cycle due to having to
fetch two instructions. When trying to dual issue it is easier to only have
to use one instruction. The syntax we introduced to do this was >=< and is
implemented as:

r >=< s:<r=reg128:<s=reg128:asm/vswp <r,<s:

The second extension of qhasm we ended up not using. It gives qhasm
the ability to load and store 256 bits of aligned memory to and from two
128-bit registers. This was supposed to be used in MORUS-1280-256 to do
our loading and storing since it saves two cycles. Loading was implemented
as

mem256[t] aligned= r s:<r=reg128:<s=reg128:<t=int32:asm/vst1 .64

{<r%bot -<r%top ,<s%bot -<s%top},[<t,! colon 256]

while storing was implemented as

r s aligned= mem256[t]:>r=reg128:>s=reg128:<t=int32:asm/vld1 .64

{>r%bot ->r%top ,>s%bot ->s%top},[<t,! colon 256]

This implementation is functional but poses problems when qhasm de-
cides that these registers are not adjacent. Normally, registers not being
adjacent would not be a problem but since the assembly generated contains
a list of registers there is a restriction on the so called register stride. The
list of registers must not have a space of more than 2. This means that
{d0-d1,d2-d3} is valid but {d0-d1,d6-d7} is not. qhasm does not support
a way to enforce the adjacency of registers so we left this small optimization
out.
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