
Bachelor thesis
Computer Science

Radboud University

Creating a secure virtual private
network using minimal code

Author:
Stan Derksen
s4386388

First supervisor/assessor:
Dr. Peter Schwabe

peter@cryptojedi.org

February 9, 2017

Abstract

This thesis introduces a new open-source VPN solution called NaClShuttle.
It explains what the importance is of a minimal program and describes how
NaClShuttle is designed to succeed in achieving its goals to be a minimal
and secure VPN solution. Furthermore it describes how NaClShuttle works
and how it compares to currently used popular VPN solutions. NaClShuttle
features a cryptographically secure tunnel while maintaining the potential
to be audited by third parties.

Contents

1 Introduction 3

2 Preliminaries 5
2.1 Computer networks . 5

2.1.1 Ethernet . 5
2.1.2 Internet Protocol and routing 6
2.1.3 Network address translation 8
2.1.4 Tunneling . 10
2.1.5 TUN/TAP devices . 10
2.1.6 Virtual private network 11

2.2 Cryptography . 12
2.2.1 Information security 12
2.2.2 Secret-key cryptography 13
2.2.3 Public-key cryptography 14
2.2.4 NaCl . 15

3 Related Work 17
3.1 Internet Protocol Security . 17

3.1.1 Encapsulating Security Payload 17
3.1.2 Authentication Header 18
3.1.3 Security Associations 18
3.1.4 IPsec implementations 20

3.2 OpenVPN . 21
3.3 Secure Shell . 21

3.3.1 Lines of code . 22

4 Our solution: NaClShuttle 24
4.1 NaClShuttle . 24

4.1.1 Requirements . 25
4.1.2 Installation . 25
4.1.3 Usage . 26
4.1.4 How it works . 26

4.2 TweetNaCl . 29

1

5 Conclusions and future work 31

A Source code 38
A.1 NaClShuttle . 38

A.1.1 naclshuttle . 38
A.1.2 setup.sh . 39
A.1.3 tunnel.py . 40

A.2 TweetNaCl (as tweeted) . 42

2

Chapter 1

Introduction

The importance of security in an online environment becomes larger each
day. As many new technologies develop, they bring many new threats to
security with them. An example of this is the introduction of JavaScript in
1995. JavaScript brought great dynamic possibilities to static web browsers,
making it possible to dynamically alter elements of a website without having
to reload it in its entirety. Even though this was a great and useful addition
for web developers and users, it also allowed malicious attackers to create
cross-site scripting attacks for example, which nowadays are still one of the
most used attacks against websites.

At the moment online security is largely improved, developers are more
aware of threats and secure their websites more, development frameworks
are introduced which have built-in security, more and more websites enforce
HyperText Transfer Protocol Secure (HTTPS), etc. However, you might
still end up in a situation where you are connected to an unsecured WiFi
network, for example in restaurants or at airports. If you still want to make
sure that your data is sent over a secure line you could make use of a Virtual
Private Network (VPN).

A VPN routes your traffic through a secure encrypted tunnel to a desti-
nation of your choice. An added benefit is that you will also have access to
files on the server you are connecting to, making it a great solution for large
companies with a protected private network. There exist many different
VPN solutions which all offer various packages including different add-ons,
platform support, usability, price, etc.

Most VPNs have a very complex and large source code. This means that
even though the main functionality of a VPN is to provide security, it is very
hard to verify that these services are actually secure because it is way too
time consuming and expensive to audit such huge codebases even though
just one line of code might lead to large security flaws. A famous example
of this problem is Apple’s SSL/TLS bug [28], which had the following lines
of code:

3

if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

goto fail;

goto fail;

As you can see, the developer accidentally duplicated the goto fail;

line, making it so that even if the if-condition is false, it will always hit the
second goto fail; line. The lines of code were from a signature verifica-
tion method, which resulted in the fact that the signature verification never
failed.

From Apple’s SSL/TLS bug we can see how easily flaws in very impor-
tant pieces of code are overlooked. Now imagine how many of these small
mistakes can be made by human error in a project that has around 500.000
lines of code. It is especially worrying if these errors are made in parts of
code that have to deal with security of information, which brings us to the
Trusted Code Base (TCB).

The first time a TCB was mentioned was by J. Rushby in 1981 [33], who
described it as the collection of the kernel and trusted processes that are
running. Later, in [27], TCB is described as “a small amount of software
and hardware that security depends on and that we distinguish from a much
larger amount that can misbehave without affecting security.”

The problem with VPN solutions that are available today is that they
all have a TCB which is way too large to check for security flaws. Some
of these will be discussed in the third chapter. Because people are trusting
these VPN applications to keep them secure and to send large amounts of
private information it is essential that there is an application that is assumed
to be secure. To do this we need to create a VPN solution with a TCB that
is as small as possible.

The main idea of a new solution is to create a program that is just a
basic tunnel between two entities and add cryptography on this tunnel using
an as small as possible cryptographic library. This will result in a program
that is minimal enough to be audited by a third party without depending
on too much other software. Finally, the idea is to make the TCB that runs
as root as small as possible.

Compared to other solutions that are currently available the code of the
program should be way smaller. In terms of lines of code the aim is to reduce
the size to less than 10% of the most popular VPN solutions currently in
use. Also the TCB should be so small that it is easy to pinpoint exactly
where the TCB is, in contrary to the current VPN solutions, where the TCB
is buried somewhere in the gigantic codebase.

4

Chapter 2

Preliminaries

To understand more about the problem at hand and how current solutions
work, it is assumed that the reader has basic knowledge about terms used
in computer networks and how computer networks work. Before we go into
further details about how VPNs work, we will describe a basic computer
network and the principles involved, that are used in this thesis.

2.1 Computer networks

2.1.1 Ethernet

The definition of a computer network is two or more computers that are con-
nected, so that information can be transmitted between them. Examples of
computer networks are your WiFi at home, the Internet, two laptops linked
with an Ethernet cable, etc. To make computer networks perform well, strict
standards must be agreed upon to send and receive data correctly. This is
where network protocols come in place, which are sets of rules and conven-
tions of how computers communicate in a certain network. Typical aspects
of network protocols are message format (in particular header format), data
encoding, allowed messages and expected answers, session initialisation and
termination and synchronisation of communication.

Figure 2.1: A simple Ethernet computer network

The easiest form of computer networking is Ethernet. A very basic
Ethernet setup is shown in Figure 2.1. The principle of Ethernet is placing

5

data on the cable, which can be seen by everyone connected to this cable.
Data packets that are sent on an Ethernet cable are sent in frames, with
each frame having the same layout, shown in Figure 2.2.

Figure 2.2: An Ethernet frame

The important parts, as marked in blue, are the destination and source
MAC address and the payload. A media access control (MAC) address
is a 48-bit address, denoted in the form of ff:ff:ff:ff:ff:ff, which is a unique
identifier for network interfaces. MAC addresses are usually fixed, which is
fine for the network in Figure 2.1, but in a larger network this might lead
to issues. For example, when a computer or even just a network card is
replaced, all other computers in the network must be updated with its new
MAC address.

2.1.2 Internet Protocol and routing

This is where Internet Protocol (IP) comes in. Currently there are two ver-
sions of IP, namely Internet Protocol version 4 (IPv4) and Internet Protocol
version 6 (IPv6). For this thesis we will look at IPv4. IP provides higher-
level 32-bit logical addresses, denoted in dotted decimal, such as 192.168.42.1.
IP addresses have a network part and a host part, addresses with the same
network part are directly reachable. In the beginning of IP, the first byte
was used for the network part and the last three parts were the host part.
Nowadays we use a variable length subnet mask (VLSM) to denote how
many bits are used for the network part. This means that a network with
a 255.255.255.0 netmask has the first three bytes as the network part. To-
gether with an IP address this is denoted as 192.168.42.1/24. Like Ethernet
has MAC frames, IP has IP packets with IP headers. In Figure 2.3 is shown
what an IP header looks like.

To make use of these IP addresses we need a protocol that maps IP
addresses to MAC addresses. This protocol is called Address Resolution
Protocol (ARP). In this protocol entity A with IP address 192.168.42.1 sends
an ARP message “Who has 192.168.42.2? Tell 192.168.42.1” to broadcast
address ff:ff:ff:ff:ff:ff. All computers on the network then check whether they
have IP address 192.168.42.2. Entity B with IP address 192.168.42.2 then
replies with “192.168.42.2 is at c0:ee:fb:21:cc:2d”, which entity A saves in
its ARP cache.

Apart from wired connections like Ethernet, wireless connections such
as IEEE 802.11 (WiFi) are widely used nowadays. Wireless connections are
designed to behave in the same way as wired connections. For example,

6

Figure 2.3: An IP packet

association with a network corresponds to plugging in an Ethernet cable.
Wireless networks nearby are identified by their service set identification
(SSID) and communication is physically split using different channels, which
are frequencies. In infrastructure mode, communication goes through access
points (AP). APs send beacon frames, by default 10 per second, containing
timestamp, beacon interval, SSID and frequency hopping parameters. To
connect to this AP, a client sends an authentication request including an
identifier, which is its MAC address, the SSID, etc., if the AP decides to
accept the request, it sends authentication OK back, then the client sends
an association request and the AP sends association OK back.

In order for IP to deliver packets from one host to another it needs to find
a path between these two hosts. Finding the path between the source and
destination is called routing. Routers are computers that forward packets in
a network. The simplest form of routing is static routing, where routes are
saved in routing tables. To view the routing table on Linux, running route

-n shows an routing table like the exampe in Figure 2.4.

Destination Gateway Genmask Flags Metric Ref Use Iface

0.0.0.0 145.116.144.1 0.0.0.0 UG 600 0 0 wlan0

131.174.117.20 145.116.144.1 255.255.255.255 UGH 600 0 0 wlan0

145.116.144.0 0.0.0.0 255.255.252.0 U 600 0 0 wlan0

169.254.0.0 0.0.0.0 255.255.0.0 U 1000 0 0 wlan0

Figure 2.4: An example of a routing table

Adding a new static route is done by executing the following command:

ip route add 192.168.42.0/24 via 192.168.42.254

This command routes all traffic with a destination that belongs to 192.168.42.0/24

7

via the 192.168.42.254 gateway. A special route command is the default
gateway route. This is added by running:

ip route add default via 192.168.42.254

Now all traffic that is not routed to a specific address by any other rule is
routed to 192.168.42.254 by default. Again, static routing works okay for
small networks, but is not feasible for large networks because it will become
way too complex and it is hard to react to changes in the network. To adapt
to a larger network dynamic routing should be used. In dynamic routing
routers communicate to their neighbours and create a dynamic routing table
for efficient routes.

2.1.3 Network address translation

IPv4 uses 32-bit addresses, which means that it has at most 4.294.967.296
different addresses. Some addresses are special addresses and because of
network seperation it is hard to use all addresses. This means that there is
a problem: We are running out of IP addresses. The long-term solution for
this problem is using IPv6, which uses 128-bit addresses, but implementing
and standardising this is difficult. That is why the short term solution
network address translation (NAT) is used.

NAT makes use of the fact that there are multiple hosts on a single
network and only one host, the gateway, has an IP address which is routed to
the Internet. Multiple hosts will then use this single gateway as IP address
by rewriting the source IP address for outgoing packets and saving this
translation as shown in Figure 2.5, in terms of IP address and port number,
to rewrite the destination address for incoming packets.

Figure 2.5: Network address translation

8

The concept above is also known as source NAT, because it rewrites the
source address of a packet. But say we run a server at a certain port, how
can we make sure that the packet arrives at the right process? Forwarding
connections to a server is called port forwarding, also known as destination
NAT. Port forwarding can be done with Linux’ iptables. The general
layout of the routing in iptables can be found in Figure 2.6.

Figure 2.6: General layout of iptables

Using iptables, packets that are meant for a certain IP address and port
combination are forwarded to a different address combination. This way
computers or services in the local area network (LAN) that are not directly
accessible can now become accessable for specific clients. Enabling NAT, also
known as IP masquerading, in iptables can be done through the following
commands:

iptables -t nat -A POSTROUTING -j MASQUERADE

echo 1 > /proc/sys/net/ipv4/ip_forward

Port forwarding can then, for example, be done by:

9

iptables -A PREROUTING -t nat -p tcp --dport 1337 -j DNAT --to 192.168.42.1:22

iptables -A FORWARD -p tcp -d 192.168.42.1 --dport 22 -j ACCEPT

Packets that are directed destination address 87.1.2.3:1337 are now for-
warded to 192.168.42.1:22.

2.1.4 Tunneling

A tunnel is a mechanism used to transport packets of a foreign protocol
across a network that normally does not accept those packets. Tunneling
is done by encapsulating packets, this means that an entire packet is trans-
ported in the payload of a different packet. An example is a tunnel over
Secure Shell (SSH).

SSH is a protocol that offers the possibility to securely log into a system
from a remote destination, along with other secure network services over
an insecure network. Clients can authenticate through either a password or
a private and public key pair. SSH typically runs over a reliable TCP/IP
connection.

Say we want to connect to an SMTPS mail server, running on port 465,
at mail.destination.com, but port 465 is blocked and 80 is open. Say you
have an SSH server running at source.com on port 80. You can then host
an SSH tunnel using the following command:

ssh -p 80 -L 12345:mail.destination.com:465 source.com

It is now possible to go to localhost:12345 in your web browser and con-
nect to the mail server. What happens is that SSH will forward the connec-
tion to mail.destination.com at port 465. To mail.destination.com it will
look like the connection is coming from source.com.

This concept is especially useful if we forward a port from our own com-
puter to a remote computer or server, effectively sending all your data over
the SSH connection, making it secure. This is because when a port is for-
warded in SSH it listens to a local socket for a connection. When this
connection is made, it will forward the entire connection on to the remote
host and port, making a secure tunnel on this port.

2.1.5 TUN/TAP devices

TUN/TAP devices are virtual network interfaces available on Linux and
most UNIX-based operating systems. The devices allow for user-space pro-
grams to do packet transmission and reception at either the Ethernet or IP
level, depending on which device is used. Unlike regular network interfaces,
TUN/TAP devices do not have a physical component.

TUN/TAP devices act like they are network interfaces, which means that
when data is supposed to be put “on the wire”, it is sent to the TUN/TAP

10

device instead. The data is then sent to an user-space program that is
attached to the device. This program can then utilise a special file descriptor
which can be written to and read from.

The difference between TUN and TAP devices is that a TAP device
outputs and must be given Ethernet frames while a TUN device outputs
and must be given raw IP packets. This means that TUN devices operate
at level three and TAP devices at level two of the network stack.

2.1.6 Virtual private network

A VPN allows you to create a direct connection to a different network over
a public network such as the Internet. Large corporations and educational
institutes use VPNs to enable remote access to their private network. VPNs
basically route all your traffic to the connected network, which has a lot of
benefits.

Figure 2.7: Basic overview of remote access using a VPN

One of the benefits is to access files on the remote network which can
normally not be accessed, because your computer will act like it is on the
same local network as the network that it is connected to. It is also pos-
sible to access a business network while travelling or even access your own
network.

Another use of a VPN is to hide your browsing activity from your local
network or Internet service provider (ISP). This is useful for when you are
connected to public WiFi networks that a lot of restaurants offer. If you
are using this network and you are browsing websites that do not enforce
HTTPS you are visible to everyone that is also connected to the network.
When you are connected to a VPN, the only thing they can see is a secured
connection, which all your traffic is routed through. While you can use this
to hide your browsing activity form your ISP, keep in mind that it is possible
that your VPN provider or the server that you are connected to logs your
activity.

There are countries that block a large portion of the Internet, examples
are The Great Firewall of China [14]. Other sites and software are geograph-
ically blocked, for example Netflix or certain games. To circumvent these

11

Figure 2.8: Hiding activity using a VPN

types of censorship a VPN is also a great solution. Say a website is only
available in the USA, just create a VPN connection to a server in the USA
and the website will think you are connecting from within the USA.

2.2 Cryptography

Cryptography is the practise of techniques that allow for secure communi-
cation in the presence of an adversary, which is a malicious entity with the
main goal of preventing the users of a cryptographic system to achieve their
goal. Entities in a cryptographic system are often denoted as Alice (en-
tity A, sender), Bob (entity B, receiver) and Eve (eavesdropper, adversary).
Cryptography also includes various terms of information security, which are
confidentiality, integrity, availability, and non-repudiation.

2.2.1 Information security

Confidentiality ensures that private information does not fall in the wrong
hands, while making sure that the right target can read it. This means that
access to the private information must be restricted to those who are allowed
to access it. In terms of cryptography this means that when Alice sends
a message to Bob, Bob should be able to read it while Eve has no way of
accessing it. Data encryption is a regular method of ensuring confidentiality.

Integrity involves that the data that is sent between two entities is consis-
tent, accurate and trustworthy. Data that is sent must remain unaltered by
unauthorised parties. In terms of cryptography this means that when Alice
sends a message to Bob, Eve can not alter this message without Bob know-
ing. Ways of ensuring integrity are message authentication codes (MAC)
and signatures.

In order for an information system to fulfil its goal, its information must
be available when it is required by entities. This covers the concept of avail-
ability. Availability ensures that when an entity sends data to another, this
data transfer will not be interrupted or stopped. In terms of cryptography
this means that when Alice sends a message to Bob, there is no way for Eve
to stop this from happening. In order to provide availability one must be

12

protected against denial-of-service (DoS) attacks by means of firewalls and
proxy servers, for example.

Finally there is non-repudiation. Non-repudiation is the fact that when
data is transmitted, neither party can deny the fact that it is both sent
and received towards anyone. In terms of cryptography this means that
when Alice sends a message to Bob, Alice cannot deny that she has sent
the message and Bob cannot deny that he has received the message. Non-
repudiation can be provided by cryptographically signing messages.

In this thesis we will only look at confidentiality and integrity. To get
a better understanding about these terms we will look at encryption of
data. Specifically secret-key (also known as symmetric-key or shared-key)
cryptography and public-key cryptography.

2.2.2 Secret-key cryptography

Secret-key cryptography is cryptography where two entities use the same
pre-shared key for encryption as well as decryption of data. The keys rep-
resent the shared secret between two entities used to provide them with a
private secured data link. Figure 2.9 shows how encryption and decryption
works in the protocol.

Figure 2.9: Secret-key cryptography

Secret-key encryption and decryption can either be done using stream
ciphers or block ciphers. Stream ciphers encrypt data per digit, usually per
bit, one at a time. Block ciphers however divide a message in data blocks,
where too short blocks are padded by adding extra data, and encrypts the
message per data block.

Currently the standard for secret-key cryptography is the Advanced En-
cryption Standard (AES), which has been approved by the National Institute
of Standards and Technology (NIST) in December 2001. An example of a
stream cipher is Salsa20 [6], which is recommended by eSTREAM, a project
was a intended to promote the design of efficient and compact stream ciphers
suitable for widespread adoption.

Using these ciphers, it is possible to create a Message Authentication
Code (MAC). A MAC is a cryptographic checksum that is generated using

13

a session key, which means it requires a key and an arbitrary-length message
in order to generate the MAC. The MAC is then sent with the message to
the receiver, which can then verify the authenticity of the message using the
MAC and the session key.

2.2.3 Public-key cryptography

Public-key cryptography (also known as asymmetric-key cryptography) is
based on the use of cryptographically generated keypairs. A keypair in-
cludes one public key, which is widely distributed and available publicly, and
one private key, which is secret. Like secret-key cryptography, public-key
cryptography also provides both confidentiality and integrity. In public-key
cryptography, if Alice wants to send a message to Bob securely, she encrypts
her message with Bob’s public key and sends the ciphertext to Alice. Alice
then decrypts the ciphertext using her own private key. This is shown in
Figure 2.10.

Figure 2.10: Public-key cryptography

When Alice encrypts her message with Bob’s public key she indicates
that the message is meant for Bob. Bob is then the only one that can
decrypt the message because he has the private key that pairs his public key.
Public key cryptography also aids symmetric-key cryptography by public-
key exchanges. One of the most notable public-key exchange algorithm is
the Diffie-Hellman algorithm. This algorithm works like shown in Figure
2.11.

Alice and Bob agree to two public prime numbers g and p. Then each
party uses its private key, a for Alice, b for Bob, and calculate ga mod p
and gb mod p. They exchange these calculated values. Then Alice uses
her private key on Bob’s calculated value and Bob uses his private key on
Alice’s calculated value, so Alice calculates (gb mod p)a mod p and Bob
calculates (ga mod p)b mod p.

Now they both get the same common secret key for future use because
(gb mod p)a mod p = (ga mod p)b mod p = gab mod p. The most im-
portant part about this is when the calculated value gets exchanged, because
it is impossible for Eve to derive the common secret key because it is com-

14

Figure 2.11: The Diffie-Hellman protocol

putationally difficult to calculate this because of the very large values that
are used, also known as the discrete logarithm problem.

2.2.4 NaCl

One of the most important aspects of NaClShuttle is its security, which
is based on NaCl (pronounced salt) [7]. NaCl stands for Networking and
Cryptography library, which is an easy-to-use high-speed software library for
network communication, encryption, decryption, signatures, etc., developed
by D. J. Bernstein, T. Lange, and P. Schwabe.

The library supports C and C++ and is planning to support Python in
the near future. It provides functionalities such as public-key cryptography
and signatures, secret-key cryptography and authentication and low-level
functions like hashing and string comparison.

For secret-key cryptography, NaCl uses Salsa20 [6], which created by
Bernstein. Salsa20, also known as Snuffle 2005, is a stream cipher that
maps a 256-bit (or 128-bit) key, 64-bit nonce and 64-bit stream position to
a 512-bit block of the key stream, giving it the advantage to efficiently seek to
any position in the key stream in constant time, making Salsa20 consistently
faster than AES. The 8-round Salsa20/8, 12-round Salsa20/12 and 20-round
Salsa20/20 are supported in NaCl, where fewer rounds mean faster speed.
Currently the best known attack [3] on Salsa20 breaks anything up to the
8-round variant of Salsa20.

For secret-key authentication NaCl uses Poly1305 [4], also created by
Bernstein. Poly1305 is a state-of-the-art cryptographic MAC used to verify
data integrity and the authenticity of a message. Poly1305 computes a 16-
byte authenticator of a variable-length message, using a 16-byte key, an
16-byte additional key, and a 16-byte nonce. Bernstein guarantees that
Poly1305 is secure as long as AES is secure. Poly1305 offers consistent high
speed on many different CPUs, not just a single one.

As core security features NaCl provides protection against timing at-

15

tacks. The library has no data flow from secrets to load addresses and branch
conditions to protect against timing and replay attacks and no patterns can
be deducted responses from sending millions of messages to the library. It
is also centralising randomness by reading bytes from the operating system
kernel’s cryptographic random-number generator. This randomness is only
used at places where it is actually necessary, avoiding unnecessary random-
ness. Instead, NaCl uses deterministic cryptographic operations as much as
possible, meaning that their outputs are determined entirely by their inputs.

Another cryptographic disaster is that even though some cryptographic
functions are perfectly secure, cryptographic performance issues might cause
users to reduce their cryptographic security levels or even turn them off.
To prevent disasters like this NaCl provides extremely fast speeds in com-
parison to other libraries like OpenSSL. NaCl is also capable of automatic
CPU-specific tuning that, instead of trying to recognise CPUs and select
implementations of certain functions based on that CPU, compiles all im-
plementations of a function and checks which one performs best on a certain
CPU.

NaCl also takes into account which cryptographic primitives are poten-
tially dangerous. This is done by paying attention to cryptanalysis. Re-
searching extensive cryptanalytic literature describing the limits of attacks
on cryptographic primitives results in higher confidence in NaCl’s crypto-
graphic primitives and pushes NaCl to extremely high speeds, which pre-
vents other disasters described above.

16

Chapter 3

Related Work

Different types of VPN systems are available. It is possible to classify a VPN
system by its protocols, tunnel termination point, connectivity (e.g. host-to-
network or network-to-network), level of security, the TCP/IP protocol stack
layer on which they operate and the number of simultaneous connections.

That said, it is no surprise that there are a lot of different VPN types
out there. In this section we will reduce the more general types, describing
on what protocols most VPNs are based on and giving examples of the most
popular implementations. These types also have many different implemen-
tations so some example will be given, but keep in mind that there are more
solutions available.

3.1 Internet Protocol Security

Internet Protocol Security (IPsec) [18] is a protocol suite that offers encryp-
tion and authentication of data packets, in this case IP packets. IPsec was
initially developed for Internet Protocol version 6 (IPv6) [15] and is now a
recommendation for both IPv6 and IPv4. IPsec can provide authentication,
integrity and confidentiality for a communication session, depending on how
it is configured. It specifies three protocols: Encapsulating Security Pay-
loads (ESP), Authentication Headers (AH) and Security Association (SA).

3.1.1 Encapsulating Security Payload

Say an original IP packet consists of the IP header, the transport protocol
(in this case Transmission Control Protocol) and the data of the packet. The
IP header includes important information about the packet like the source
and destination address. The basic structure of an IP packet is shown in
Figure 3.1.

ESP protects the contents of a message, providing confidentiality and
optionally protects against data tampering, providing authentication and

17

Figure 3.1: A normal IP packet

integrity. When ESP authentication is used, an ESP header is inserted
between the IP header and data of a packet, providing authentication. This
provides authentication for the original IP packet, however, only the original
data of the IP packet is encrypted. Figure 3.2 gives an overview of the new
packet that is created.

Figure 3.2: A IP packet with IPsec ESP in tunnel mode

3.1.2 Authentication Header

AH protects against data tampering, providing authentication and integrity.
It uses the same structure of ESP, however, it also protects against replay-
attacks. As confidentiality is not mentioned, AH does not protect the data
in a packet against sniffing. If a packet using only AH is captured, the
original message can be read. The packet that is created when AH is used
is shown in Figure 3.3.

Figure 3.3: A IP packet with IPsec AH in tunnel mode

3.1.3 Security Associations

SAs establish links between two entities using the protocols mentioned above.
An IPsec tunnel typically exists of two undirected SAs. IPsec can operate
in two modes, called transport mode and tunnel mode. Transport mode only
alters the payload of a packet while the IP header remains unchanged. The
packet then becomes the payload of another packet with the same IP header
as the original packet. In tunnel mode the entire packet is encrypted and
becomes the payload of a new packet with a new IP header containing the
addresses of the two IPsec gateways, as shown in Figure 3.4. As you might
have noticed, this is perfect for a VPN.

Typically a network structure has a range of private Local Area Network
(LAN) IP addresses connected to a gateway, this gateway is then connected

18

Figure 3.4: A IP packet with IPsec SA in tunnel mode

with the Internet using its public Wide Area Network (WAN) IP address,
shown in Figure 3.5.

Figure 3.5: Network interface addressing example

In case of an SA, two entities which can be networks, PCs, routers,
firewalls or in this case gateways, are configured to have information about
each other using IPsec’s Internet Key Exchange (IKE). This way the SAs
can be used to establish a secure tunnel. In Figure 3.6 is shown which part
of the network is replaced by the VPN tunnel.

Figure 3.6: Network interface addressing example with VPN tunnel

The VPN tunnel has all information necessary to traffic data securely
and encrypted from one entity to another, in the case of Figure 3.6 from
Gateway A to Gateway B. Because of this all the entities connected to
the gateway do not have to worry about entering all credentials needed to
make use of the VPN tunnel. For a gateway to obtain this information an
IKE must take place. Alternatively, all the IPsec values can be manually
configured on both gateways.

In an IKE session entity A initiates the process in an attempt to con-
nect to entity B. When entity B receives this initiation, the first phase,

19

authentication, of IKE starts. In this phase the two parties first negotiate
which encryption and authentication algorithms to use in the IKE. After
the algorithms are determined the parties authenticate each other using the
mechanism previously agreed upon. Finally, a master key is generated using
the Diffie-Hellman [17] public key algorithm.

In the second phase, negotiation, the parties negotiate which encryption
and authentication algorithms to use in the IPsec SAs. The master key that
was previously agreed upon is now used to generate the IPsec key for each
SA. Once these keys are created and each SA has received its corresponding
key, both SAs have all tools needed to protect data between the two VPN
gateways.

Once the two phases are completed the secure data transfer can take
place. During this time all data that travels between gateway A and gateway
B is properly encrypted using the keys agreed upon in the IKE phases. The
SAs are terminated when either one of the two gateways gives a termination
signal or the session is timed out.

3.1.4 IPsec implementations

IPsec has multiple implementations, aiding in making it easier to use in
practice. One of the most straightforward implementations is OpenSWAN
[13]. OpenSWAN is an open-source implementation of IPsec, usually found
by default on most Linux distributions. OpenSWAN is a code fork of
the FreeS/WAN [22] project. Once installed, OpenSWAN provides a file
/etc/ipsec.conf that can be configured according to the wishes of the
user, making it easy to connect two entities using IPsec.

Another implementation that is also widely used is StrongSWAN [34].
StrongSWAN was initially also based on FreeS/WAN, but since a new IKE
daemon was written in an object-oriented coding style the project does
not share code with its ancestor anymore. The main differences between
OpenSWAN and StrongSWAN is that StrongSWAN has a better and more
detailed documentation, has support for Extensible Authentication Proto-
col (EAP) authentication methods and is cross-platform while OpenSWAN
supports more hardware cryptography accelerators than StrongSWAN.

Figure 3.7: IPsec SA Internet Key Exchange

20

3.2 OpenVPN

OpenVPN [19] is an open-source application by James Yonan, developed by
OpenVPN Technologies Inc., that creates secure host-to-host or network-to-
network connections using VPN techniques like tunneling using a TUN (layer
three) or TAP (layer two) device. It is based on a security protocol that, even
though TLS is capable of tunneling the entire traffic of a network through
a tunnel, utilises TLS for key exchange only. It allows users to authenticate
using symmetric key cryptography, certificates or a username and password
combination. For encryption OpenVPN heavily relies on OpenSSL, allowing
it to use their ciphers.

OpenVPN multiplexes the SSL/TLS session used for authentication and
key exchange with the actual encrypted tunnel data stream [25]. Transport
Layer Security (TLS) [16] and its predecessor Secure Sockets Layer (SSL)
[11] are also cryptographic protocols that provide security for communica-
tions. A TLS communication is private as the connection is encrypted using
symmetric cryptography where each connection is secured by a shared secret
agreed upon with a TLS handshake [30]. The connection is authenticated
because public-key cryptography [17] used in the connection ensures that
the connection is only used by owners of the private keys and provides in-
tegrity because it checks the message with a Message Authentication Code
(MAC) to prevent loss or tampering.

Transportation of the traffic is then done over User Datagram Protocol
(UDP) or Transmission Control Protocol (TCP) using a TUN or TAP device
[26] for tunneling. OpenVPN can be run with either static encryption or
Public Key Infrastructure (PKI). Setting up OpenVPN with PKI requires
a Certificate Authority (CA). Both client and server will need a private key,
certificate and CA certificate, these are used for encryption.

It is then possible to use TLS authentication, where each packet sent
to OpenVPN will have a signature. OpenVPN then calculates a signature
and compares it with the one of the packet. If the signatures do not match
the packet is dropped. It is also possible to use username and password
authentication.

3.3 Secure Shell

Secure Shell (SSH) [37] is another cryptographic network protocol used for
executing network pursuits securely over unsecured networks. SSH is mainly
used to remotely log into a different computer or server by using a client-
server protocol. The connection is secured by public-key cryptography and
the connection can be used using the automatically generated public-private
key pairs or simply by password authentication.

An example of an application utilising SSH for a VPN connection is

21

sshuttle [32], also known as “the poor man’s VPN”. Sshuttle creates a VPN
connection, using SSH to connect the client to the server. In contrary to a
lot of other free VPN services, which can lead to a lot of risk and hassle by
for example advertisements or logging events, sshuttle is an free open-source
application which everyone using Linux or MacOS can use.

As long as a remote server has Python 2.3 [20] or higher installed and
a Secure Shell daemon running, sshuttle allows you to create a VPN con-
nection to that remote server using SSH. For this to work you need to have
root access on your own local machine but no root access is needed on the
server, except to start the Secure Shell daemon. It is possible to run sshuttle
multiple times to different servers to gain access to multiple servers at once.
Sshuttle can even be run on a router, forwarding the traffic of an entire
network to the VPN.

Sshuttles synopsis looks as follows:

sshuttle [options] [-r [username@]sshserver[:port]] <subnets>

Let’s say we want to route our entire traffic to a server with domain
name example.org where we have an user account called test. In this case
running following command will make that happen:

sshuttle -r test@example.org 0.0.0.0/0

If you would also like to have your DNS queries to be routed to the DNS
server of the server you are connecting to you can use the optional --dns
parameter like:

sshuttle --dns -r test@example.org 0.0.0.0/0

When run, sshuttle creates an ssh session to test@example.org, which
was specified after -r. If -r is omitted, both the client and server will start
locally, which is useful for testing. Sshuttle then uploads and executes its
source code to the remote server, meaning that the remote server does not
need to have sshuttle installed nor will version issues take place.

Because we specified 0.0.0.0/0, the traffic of the entire network will be
routed through the tunnel, essentially creating a VPN. It is also possible to
provide a subnet like 12.34.56.78 (a single IP address) or 12.34.56.78/24
(a subnet with a 225.225.225.0 submask), causing only the traffic of this
specific subnet to be routed through the tunnel.

3.3.1 Lines of code

We have now described various implementations of VPN solutions using
multiple protocols like IPsec, SSL/TLS and SSH. To give a very global
overview of the complexity of these projects we will compare the lines of code
used in the project. We use the statistics of Open Hub [12] to determine

22

the lines of code as of June 2016, provided on GitHub [23]. The results can
be found in Figure 3.8.

OpenSWAN StrongSWAN OpenVPN sshuttle

0

1

2

3

4

·105

2.17 · 105

3.81 · 105

3.4 · 105

1.19 · 105

2.17 · 105

3.81 · 105

3.4 · 105

4,547

L
in

es
of

co
d
e

Figure 3.8: A bar graph of the lines of code of various VPN implementations

Open-source solutions of big companies involve many lines of code which
makes the project very complex. As we can see, sshuttle, which is developed
by several individuals, is massively smaller than the other projects. However,
approximately 4500 lines of code is small, maybe even small enough to verify
the code for security, but the lines of code is not the only aspect that can
cause security issues because it also relies on SSH, which is shown by the
white bar.

23

Chapter 4

Our solution: NaClShuttle

From all the VPN systems and applications that are available, the ones
mentioned in the previous chapter are among the most popular ones. They
all work exactly as they are supposed to, so one might wonder why we need
yet another program that tunnels our traffic to a remote location.

The problem with IPsec is that it is incredibly difficult to set up correctly,
leading to security risks as a result of wrongful implementations or minor
mistakes. In addition to this problem there is also the fact that IPsec quickly
runs into trouble when it has to deal with Network Address Translation
(NAT) or firewall rules [1].

Luckily, OpenVPN uses TLS which does not have problems with NAT
or firewalls. However, as mentioned in the previous chapter, OpenVPN
heavily relies on OpenSSL for its cryptographic procedures, which is bad
because OpenSSL currently still has had a lot of security vulnerabilities (for
example [36] [2] and [35]), making OpenVPN insecure in its entirety as long
as these vulnerabilities are not fixed.

Then there is sshuttle, which does a pretty good job so far. The only
problem is that it still relies on SSH for connections to remote servers. This
means that the user still relies on a very large complex structure for its
connection. While SSH a better security track record than SSL, it is still
suspicious after the files Edward Snowden leaked [31], that revealed that
organisations like the National Security Agency (NSA) might be able to
decrypt SSH traffic.

Because of these reasons it is clear that there is still a need for a secure
open-source VPN application that is minimal and independent that it can be
audited and verified by third parties without having to compromise security.

4.1 NaClShuttle

The problems mentioned in the introduction of this chapter led to the cre-
ation of NaClShuttle (pronounced salt shuttle). NaClShuttle is designed

24

with security and a minimal trusted code base (TCB) as number one prior-
ity. The goal of the project is a very lightweight program which is as small
as possible that can deliver a fully functional VPN tunnel to route traffic
from one entity to another. Its source code can be found in appendix A.

The total package of NaClShuttle consists of just 1,013 lines of code
while a proper code standard is respected. This includes all cryptographic
libraries that are used by the tunnel to securely route traffic and the setup
script. The package is about 183 KB in total, making the program very
lightweight.

NaClShuttle is based on OTPTunnel [24], mainly using its tunnel mech-
anism to traffic data through the tunnel correctly. All one time pad en-
cryption is stripped and replaced by TweetNaCl, which will be discussed
later.

4.1.1 Requirements

NaClShuttle is designed to require as little requirements as possible. To
use NaClShuttle, one must have a Unix-based system with root access and
Python 2.7 or above installed.

4.1.2 Installation

Installing NaClShuttle is fast an easy. To install NaClShuttle, first clone the
repository to your system by running the following command:

git clone git@sandor.cs.ru.nl:naclshuttle.git

After the repository is cloned you will have four files on your system:
naclshuttle, tunnel.py, setup.sh and tweetnacl.so. The files nacl-

shuttle and tunnel.py are the actual program while tweetnacl.so in-
cludes the cryptographic library used to make NaClShuttle secure. To set
up the program on your system simply run

sudo ./setup.sh <parameter>

with either -C or -S as parameter for client or server mode, respectively.
NaClShuttle is built in a way only requires root access once for the program,
for an easy one-time setup. After this is done the tunnel is ready to be used
in user space for as many times as the user desires. In server mode the
setup.sh file does the following:

• Enable port forwarding: This enables packets with a certain ad-
dress to be forwarded to that address if they are directly connected or
available in the routing table.

25

• Configure iptables: By setting POSTROUTING chain of the NAT
table to MASQUERADE it allows to send responses of incoming re-
quests back to the correct address. This is also described in Section
2.1.3.

• Create a TAP device: This device is later used by the program to
route traffic through.

• Configure the TAP device: This assigns correct addresses to the
TAP device so that it can be used properly.

In client mode the setup.sh file does the following:

• Create a TAP device: This device is later used by the program to
route traffic through.

• Configure the TAP device: This assigns correct addresses to the
TAP device so that it can be used properly.

• Adjust the routing table: This way the TAP device is set as default
gateway so that all traffic routes through the TAP device.

4.1.3 Usage

After NaClShuttle is installed and set up on the client and server side, both
parties need a keyfile in order to encrypt the data sent over the tunnel. This
keyfile is a pre-shared key which is owned by both the server and client side.
After this is completed the program can be run. This is done on the server
side by running

./naclshuttle -S -K <keyfile>

where keyfile is the path to the keyfile. The client can then connect to the
server by running

./naclshuttle -A <address> -K <keyfile>

where address is the (IP) address of the server that is running NaClShuttle
in server mode and keyfile is the path to the keyfile. If everything runs
correctly the server side will show a message stating which IP address is
connected to the program. All data is now routed through the TAP device
from the client to the server and responses are routed back to the client
through the TAP device.

4.1.4 How it works

When running NaClShuttle, the naclshuttle file handles all arguments
given to the program. Mandatory arguments are -A or -S for client or server

26

mode, respectively and -K for the keyfile. If no other arguments are given,
all other arguments will be given the default value. The other arguments
and their default values are as follows:

• Set the remote port (-P), default: 12000

• Set TAP device local address (--tap-addr), default: 10.8.0.1 (server
mode), 10.8.0.2 (client mode)

• Set TAP device netmask (--tap-netmask), default: 24

• Set TAP device maximum transmission unit (MTU) (--tap-mtu), de-
fault: 32768

• Set the address to which the socket will bind (--local-addr), default:
0.0.0.0

• Set the port to which the socket will bind (--local-port), default:
12000

The program then collects all arguments and checks whether the server
argument, -S, is set. If the argument is not set it will set the value of the
TAP device address to 10.8.0.2. After that the program runs the Python
file tunnel.py with the given arguments.

The tunnel.py file starts with the constructor that initialises variables
with the arguments given. The constructor also connects to the TAP device
and if the program runs in server mode it will listen to the socket for any
new message from the TAP device. If a message is received, the address
of the sender is saved and set as return address for response traffic. If the
program is in client mode it will create a new socket, different from the one
that is bound to 0.0.0.0:12000 by default, to send an initialisation packet to
the server side, handled as described above.

When NaClShuttle is properly initialised, it continues to the main loop
of the program. Before entering the loop, it creates a variable called files

containing the TAP device (self. tap) and the socket (self. sock). This
variable is used by Python’s select module [21], which waits for input and
output completion, in the following line of code:

r, w, x = select.select(files, files, [])

Every iteration of the main loop this line of code is executed. The
select() method takes as arguments three lists. The method waits until
these lists are ready to be read, written to and until an exceptional condition
occurs, respectively. The return value of the method is a triple that contains
lists of objects that are ready, subsets of the three arguments. Since we
don’t need the exceptional condition argument we pass an empty list to this
argument.

27

Using the returned lists the case distinction will take place, which forms
the most important part of the program. The code case distinction looks
like the following:

if self._tap in r:

to_sock = os.read(self._tap, mtu)

if self._sock in r:

to_tap, addr = self._sock.recvfrom(65535)

key = ’ThisKeyIsNotSoSecretThisKeyIsNot’

nonce = ’NonceNonceNonceNonceNonc’

to_tap_decrypted = nacl.crypto_secretbox_open(to_tap,

nonce, key)

to_tap = to_tap_decrypted

if to_tap and self._tap in w:

os.write(self._tap, to_tap)

to_tap = None

if to_sock and self._sock in w:

key = ’ThisKeyIsNotSoSecretThisKeyIsNot’

nonce = ’NonceNonceNonceNonceNonc’

to_sock_encrypted = nacl.crypto_secretbox(to_sock, nonce,

key)

to_sock = to_sock_encrypted

self._sock.sendto(

to_sock, (self._remote_address, self._remote_port))

to_sock = None

There are four different cases in the loop. The first case checks if the TAP
device is ready to be read from. If this is true the data from the device is
stored for later use in a variable called to sock.

The second case checks if the socket is ready to be read from. If this
is true the data and address are saved in the to tap and addr variables,
respectively. The message on the TAP device is encrypted using Tweet-
NaCl’s crypto secretbox open() method, which will be described later in
this chapter, and must therefore be decrypted using the keyfile and nonce
which the client and server agreed upon. The decrypted data is then stored
for later use in a variable called to tap.

The third case checks if the to tap variable is not empty and if the TAP
device is ready to be written to. If this is true then the to tap data is
written to the TAP device. The to tap variable is emptied afterwards.

The last case checks if the to sock is set and the socket is ready to be
written to. If this is true the to sock data will be encrypted using Tweet-

28

NaCl’s crypto secretbox() method using the keyfile and nonce which the
client and server agreed upon. The encrypted packet will then be sent to
the socket, which sends it to the remote address. The to sock variable is
emptied afterwards.

The main loop also checks for errors using Python’s try and except

functionality. If an error occurs of the type interrupted system call the
program will skip the iteration and continue. Any other error will stop the
program. Keyboard interruptions like Ctrl + C also end the program.

To summarize this, what NaCl basically does is first setting up routing
as a root user using the setup.sh script and setting up parameters and
addresses so the program knows where to route its traffic to. Then it starts
running, which is basically the main loop. The client sends all its traffic to
the TAP device. When NaClShuttle detects that there is a packet ready
to be read on the TAP device, it takes this packet, reads the destination,
encrypts it using NaCl and then sends it to the socket. On the server side
the program waits for messages to arrive on the socket and, when a packet
is available, receives packets, decrypts them and sends them to the TAP
device. When there is a response available it will be directed to the TAP
device because of the settings in iptables, and then the whole process goes
in the other direction. An overview of these steps can be found in Figure
4.1.

Figure 4.1: An overview of how NaClShuttle works

4.2 TweetNaCl

Even though NaCl is great in its own form, the purpose of NaClShuttle
is to have an as small as possible TCB to provide minimal room for er-
ror and maximal transparency. While we are importing an entire library,
NaCl is not qualified for this case. Luckily there is a variant of NaCl called
TweetNaCl (again, pronounced tweet salt) [10]. According to their own
website [8]: “TweetNaCl is the world’s first auditable high-security crypto-
graphic library.” Meaning that TweetNaCl is not only easily readable, but
also ready to be audited against a mathematical description of the function-

29

ality in NaCl. This makes it possible to audit the complete cryptographic
part of the trusted code base of NaClShuttle.

To illustrate how small TweetNaCl is, the developers have tweeted [9]
the entire source code of the program in just 100 tweets, while maintaining
support for all 25 C NaCl functions used by applications. The tweeted code
can also be found in Appendix A. The tweeted file, tweetnacl.c, originally
has 809 lines of code. To put this into perspective, OpenSSL, a different well-
known open-source cryptographic library, contains around 460.000 lines of
code.

Additionally, since NaClShuttle is a Python program, TweetNaCl is used
in Python form by means of a Python wrapper around the C implementa-
tions of TweetNaCl. The specific wrapper used is Python-TweetNaCl [29],
created by Mojž́ı̌s. Since NaClShuttle uses secret-key cryptography, the
NaCl function used for encryption, as shown in Section 4.1.4, is

c = crypto_secretbox(m,n,k)

where c is the ciphertext, m is the message, n is the 24-byte nonce and k is
the 32-byte secret key agreed upon by the two entities using the function.
On the receiving side, the function that is used for decryption is

m = crypto_secretbox_open(c,n,k)

where m is the original message, c is the received ciphertext, n is the nonce
and k is the secret key. To make things easier, the naming convention of these
two functions are consistend in both TweetNaCl and Python-TweetNaCl.
The functions are designed to meet current standards for privacy and au-
thenticity. The cryptographic primitive used for this function is a combina-
tion of Salsa20 for secret-key encryption and Poly1305 for authentication.

30

Chapter 5

Conclusions and future work

NaClShuttle is a program that perfectly fills the gap in currently available
VPN solutions. A gap created by many complicated VPN solutions. Prob-
lems include: Hard to use, too many lines of code, slow performance or
reliant on too many libraries. To illustrate why NaClShuttle perfectly fills
this gap we will quickly summarise the strong aspects of the tool.

First of all there’s the simplicity of the NaClShuttle. Out if the box it
is very easy to install and use: If the files are on your device and that of
the server all you have to do is run four simple commands to route all your
traffic through an encrypted tunnel. Unlike other solutions like IPsec there
is no need for any configuration or setup. Everything that is essential is
done by NaClShuttle itself, therefore leaving no room for the user to make
mistakes.

Then there is the fact of how minimal NaClShuttle is in terms of size.
With just 1,013 lines of code and 183 KB in size, including the crypto-
graphic library used to securely encrypt all traffic, NaClShuttle is probably
the smallest secure VPN solutions available today. If we add NaClShuttle,
including TweetNaCl, in the bar graph of Section 3.3.1, the bar of the com-
plete NaClShuttle package would be so small that it looks like a line on the
null coordinate. To give a better illustration, we compared NaClShuttle to
sshuttle without SSH. This bar graph can be found in Figure 5.1. Being
small also makes it easier for third parties to audit the software to confirm
its security.

Finally, NaClShuttle is secure. NaClShuttle uses TweetNaCl, which is
a minimal version of NaCl. NaCl uses state-of-the-art protocols of cryp-
tographic primitives that are considered secure at the moment. Like Na-
ClShuttle, NaCl also comes with the desired features of simplicity, speed
and security.

That said, NaClShuttle does have room for improvement. NaClShuttle
is a minimal VPN solution that is well suited for the job, however, in its
current form it is still quite unpredictable from time to time. It is for example

31

sshuttle NaClShuttle

0

2,000

4,000

6,000

4,547

1,038

4,547

229L
in

es
o
f

co
d

e

Figure 5.1: NaClShuttle incl. TweetNaCl compared to sshuttle excl. SSH

possible to disconnect from the server while the server keeps running, how
the server handles new connection attempts is unsure and must be improved.

Currently root access is required for NaClShuttle to run, which is not an
ideal situation. Generally one would want to separate the user and root logic
of a program as much as possible. Running software in user-space is safer
in general because it denies access to critical and sensitive information of a
device. This might be improved in the future by replacing lines of code that
require root-access with alternatives and putting all root-required lines in a
separate file for an easier overview of the part of NaClShuttle that requires
root.

Another improvement is that currently NaClShuttle uses only a few func-
tions of TweetNaCl, while TweetNaCl is imported in its entirety. To improve
this it is possible to remove the functions that NaClShuttle does not need
from the library so it runs with even less lines of code. As the TweetNaCl
library is 80% of the lines of code and 95% of the size of NaClShuttle, this
would make a great impact.

The current form of encryption works fine and the only way to decrypt
messages is if the pre-shared key is obtained. To improve the encryption
further it is possible to implement Perfect Forward Secrecy (PFS). If an
attacker managed to get hold of a key he is able to decrypt all previous
messages sent with this key. This involves creating a session key each time
a new session is started.

Implementing PFS is possible because TweetNaCl supports public-key
cryptography using Curve25519 [5] in addition to Salsa20 and Poly1305.
Curve25519 is a high-security elliptic-curve-Diffie-Hellmann function, achiev-
ing extremely fast speeds. It has benefits like free key compression and
validation, and state-of-the-art timing-attack protection.

To summarise, if it comes to a secure VPN solution that has minimal

32

code and a TCB that is as small as possible, is fast enough for daily use and
is usable by the common user, NaClShuttle beats most other solutions in
multiple aspects, making it a go-to application for daily use as secure VPN.

33

Bibliography

[1] Bernard Aboba and William Dixon. IPsec-Network Address Trans-
lation (NAT) compatibility requirements. https://tools.ietf.org/

html/rfc3715, 2004. Accessed 07-02-2017.

[2] Onur Acıiçmez, Shay Gueron, and Jean-Pierre Seifert. New branch pre-
diction vulnerabilities in OpenSSL and necessary software countermea-
sures. In IMA International Conference on Cryptography and Coding,
pages 185–203. Springer, 2007.

[3] Jean-Philippe Aumasson, Simon Fischer, Shahram Khazaei, Willi
Meier, and Christian Rechberger. New features of Latin dances: anal-
ysis of Salsa, ChaCha, and Rumba. In International Workshop on Fast
Software Encryption, pages 470–488. Springer, 2008.

[4] Daniel J Bernstein. The Poly1305-AES message-authentication code. In
Fast Software Encryption, volume 3557 of LNCS, pages 32–49. Springer,
2005.

[5] Daniel J Bernstein. Curve25519: new Diffie-Hellman speed records -
pkc 2006. In Public Key Cryptography, volume 3958 of LNCS, pages
207–228. Springer, 2006.

[6] Daniel J Bernstein. The Salsa20 family of stream ciphers. In New
stream cipher designs, volume 4986 of LNCS, pages 84–97. Springer,
2008.

[7] Daniel J Bernstein, Tanja Lange, and Peter Schwabe. The security
impact of a new cryptographic library. In Progress in Cryptology –
LATINCRYPT 2012, volume 7533 of LNCS, pages 159–176. Springer,
2012.

[8] Daniel J Bernstein, Bernard Van Gastel, Wesley Janssen, Tanja Lange,
Peter Schwabe, and Sjaak Smetsers. TweetNaCl. http://tweetnacl.
cr.yp.to/. Accessed 07-02-2017.

[9] Daniel J Bernstein, Bernard Van Gastel, Wesley Janssen, Tanja Lange,
Peter Schwabe, and Sjaak Smetsers. TweetNaCl on Twitter. https:

//twitter.com/tweetnacl. Accessed 07-02-2017.

34

[10] Daniel J Bernstein, Bernard Van Gastel, Wesley Janssen, Tanja Lange,
Peter Schwabe, and Sjaak Smetsers. TweetNaCl: A crypto library in
100 tweets. In International Conference on Cryptology and Information
Security in Latin America, pages 64–83. Springer, 2014.

[11] Mittal S Bhiogade. Secure socket layer. In Computer Science and
Information Technology Education Conference, volume 2, pages 85–90.
InSITE, 2002.

[12] Inc. Black Duck Software. Open hub. https://www.openhub.net/.
Accessed 07-02-2017.

[13] Xelerance Corp. OpenSWAN. https://www.openswan.org/. Accessed
07-02-2017.

[14] Orlando Crowcroft. Behind the Great Firewall, China is winning
its war against internet freedom. http://www.ibtimes.co.uk/

behind-great-firewall-china-winning-its-war-against-intern

et-freedom-1558550. Accessed 07-02-2017.

[15] Stephen E Deering. Internet protocol, version 6 (IPv6) specification.
https://tools.ietf.org/html/rfc2460, 1998. Accessed 07-02-2017.

[16] Tim Dierks. The transport layer security (TLS) protocol version 1.2.
2008.

[17] Whitfield Diffie and Martin Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, 22(6):644–654, 1976.

[18] Naganand Doraswamy and Dan Harkins. IPsec: the new security stan-
dard for the Internet, intranets, and virtual private networks. Prentice
Hall Professional, 2003.

[19] Markus Feilner. OpenVPN: Building and integrating virtual private
networks. Packt Publishing Ltd, 2006.

[20] Python Software Foundation. Python. https://www.python.org/.
Accessed 07-02-2017.

[21] Python Software Foundation. Python select module. https://docs.

python.org/2/library/select.html. Accessed 07-02-2017.

[22] John Gilmore. FreeS/WAN. http://freeswan.org/. Accessed 07-02-
2017.

[23] Inc. GitHub. Github. https://github.com/. Accessed 07-02-2017.

[24] Robert Graham. OTPTunnel. https://github.com/rpgraham84/

otptunnel. Accessed 07-02-2017.

35

[25] OpenVPN Technologies Inc. OpenVPN: Security overview.
https://openvpn.net/index.php/open-source/documentation/

security-overview.html. Accessed 07-02-2017.

[26] Maxim Krasnyansky and Maksim Yevmenkin. Universal TUN/-
TAP device driver. https://www.kernel.org/doc/Documentation/

networking/tuntap.txt, 2002. Accessed 07-02-2017.

[27] Butler Lampson, Martin Abadi, Michael Burrows, and Edward Wobber.
Authentication in distributed systems: Theory and practice. In ACM
SIGOPS Operating Systems Review, volume 25, pages 165–182. ACM,
1991.

[28] Adam Langley. Apple’s SSL/TLS bug. https://www.

imperialviolet.org/2014/02/22/applebug.html, 2014. Accessed
07-02-2017.

[29] Jan Mojž́ı̌s. Python-TweetNaCl. https://mojzis.com/software/

python-tweetnacl/. Accessed 07-02-2017.

[30] Paul Morrissey, Nigel P Smart, and Bogdan Warinschi. A modular
security analysis of the TLS handshake protocol. In International Con-
ference on the Theory and Application of Cryptology and Information
Security, pages 55–73. Springer, 2008.

[31] Spiegel Online. Inside the NSA’s War on Internet Se-
curity. http://www.spiegel.de/international/germany/

inside-the-nsa-s-war-on-internet-security-a-1010361.html,
2014. Accessed 07-02-2017.

[32] Avery Pennarun. Sshuttle. https://github.com/apenwarr/

sshuttle, 2010. Accessed 07-02-2017.

[33] John M Rushby. Design and verification of secure systems, volume 15.
ACM, 1981.

[34] Andreas Steffen. StrongSWAN. https://www.strongswan.org/. Ac-
cessed 07-02-2017.

[35] Yuval Yarom and Naomi Benger. Recovering OpenSSL ECDSA nonces
using the FLUSH+ RELOAD cache side-channel attack. IACR Cryp-
tology ePrint Archive, 2014:140, 2014.

[36] Scott Yilek, Eric Rescorla, Hovav Shacham, Brandon Enright, and Ste-
fan Savage. When private keys are public: results from the 2008 Debian
OpenSSL vulnerability. In Proceedings of the 9th ACM SIGCOMM con-
ference on Internet measurement conference, pages 15–27. ACM, 2009.

36

[37] Tatu Ylonen and Chris Lonvick. The secure shell (SSH) protocol ar-
chitecture. https://tools.ietf.org/html/rfc4251.html, 2006. Ac-
cessed 07-02-2017.

37

Appendix A

Source code

A.1 NaClShuttle

A.1.1 naclshuttle

#!/ usr/bin/env python

import argparse

import textwrap

import socket

import sys

from tunnel import Tunnel

def main():

parser = argparse.ArgumentParser(

formatter_class=argparse.RawDescriptionHelpFormatter ,

description=textwrap.dedent(’’’\

A VPN -like server/client that utilizes a user specified

one time pad for the XOR ’ing of network traffic over a TAP

interface.

’’’),

epilog=textwrap.dedent(’’’\

Examples:

To start a server listening on default settings ,

naclshuttle -S -K ~/ random.bin

If that server ’s IP is 192.168.1.1 , and you have the same

keyfile

in your home directory , you can connect to it using ,

naclshuttle -K ~/ random.bin -A 192.168.1.1 --tap -addr 10.8.0.2

’’’))

parser.add_argument(’-S’, ’--server ’, action =" store_true", dest=’

server ’,

help="set server mode (default: client mode)")

parser.add_argument(’-A’, dest=’remote_address ’,

help=’set remote server address ’)

parser.add_argument(’-P’, type=int , dest=’remote_port ’, default

=’12000’,

38

help=’set remote server port ’)

parser.add_argument(’--tap -addr ’, type=str , dest=’taddr ’, default

=’10.8.0.1’,

help=’set tunnel local address (default:

10.8.0.1 for ’

’server , 10.8.0.2 for client) ’)

parser.add_argument(’--tap -netmask ’, default=’24’, dest=’tmask ’,

help=’set tunnel netmask (default: 24) ’)

parser.add_argument(’--tap -mtu ’, type=int , default =32768 , dest=’

tmtu ’,

help=’set tunnel MTU (default: 32768) ’)

parser.add_argument(’--local -addr ’, default =’0.0.0.0’, dest=’laddr

’,

help=’address to which OTPTunnel will bind (

default: 0.0.0.0) ’)

parser.add_argument(’--local -port ’, type=int , default =12000 , dest

=’lport ’,

help=’set local port (default: 12000) ’)

args = parser.parse_args ()

if not args.server:

if args.taddr == ’10.8.0.1 ’:

args.taddr = ’10.8.0.2 ’

if not args.remote_address:

parser.print_help ()

return 1

try:

client = Tunnel(

args.taddr , args.tmask , args.tmtu ,

args.laddr , args.lport , args.remote_address ,

args.remote_port)

except socket.error as e:

print >> sys.stderr , str(e)

return 1

print ’NaClShuttle: Running in client mode , press Ctrl + C to

cancel.’

client.run()

return 0

else:

server = Tunnel(

args.taddr , args.tmask , args.tmtu ,

args.laddr , args.lport , args.remote_address ,

args.remote_port)

print ’NaClShuttle: Running in server mode , press Ctrl + C to

cancel.’

server.run()

return 0

if __name__ == ’__main__ ’:

sys.exit(main())

A.1.2 setup.sh

#!/ bin/bash

declare error

if [[$EUID -ne 0]]; then

echo ’NaClShuttle: [ERROR] This script must be run as root.’

exit 1

fi

function echo_error

{

39

echo -n ’NaClShuttle: [ERROR] ’

echo $1

error=true

}

function ip_forward

{

echo 1 > /proc/sys/net/ipv4/ip_forward

}

if [[$1]]; then

if [$1 = ’-S’]; then

echo ’NaClShuttle: Server mode.’

echo ’NaClShuttle: Setting up network settings ...’

{ echo 1 > /proc/sys/net/ipv4/ip_forward; } 2>/dev/null ||

echo_error ’Failed to enable IP forwarding.’

iptables -t nat -A POSTROUTING -j MASQUERADE >/dev/null 2>&1

|| echo_error ’Failed to setup iptables.’

echo ’NaClShuttle: Creating TAP device ... ’

ip tuntap add tap0 mode tap > /dev/null 2>&1 || echo_error ’

Failed to create TAP device. Does it already exist?’

ifconfig tap0 10.8.0.1/24 > /dev/null 2>&1 || echo_error ’

Failed to configure TAP device. Does the TAP device exist

?’

echo -n ’NaClShuttle: NaClShuttle setup completed ’

if ["$error" = true]; then

echo ’ with errors , check output above.’

else

echo ’.’

fi

elif [$1 = ’-C’]; then

echo ’NaClShuttle: Client mode.’

echo ’NaClShuttle: Creating TAP device ... ’

ip tuntap add tap0 mode tap > /dev/null 2>&1 || echo_error ’

Failed to create TAP device. Does it already exist?’

ifconfig tap0 10.8.0.2/24 > /dev/null 2>&1 || echo_error ’

Failed to configure TAP device. Does the TAP device exist

?’

echo ’NaClShuttle: Adjusting IP routing table...’

echo -n ’NaClShuttle: NaClShuttle setup completed ’

if ["$error" = true]; then

echo ’ with errors , check output above.’

else

echo ’.’

fi

fi

else

echo ’NaClShuttle: [ERROR] No parameter given. Use -S for server

mode , -C for client mode.’

fi

A.1.3 tunnel.py

import errno

import fcntl

import os

import select

import socket

import sys

import struct

import threading

import tweetnacl as nacl

40

class Tunnel(threading.Thread):

def __init__(self , taddr , tmask , tmtu , laddr , lport ,

remote_address , remote_port):

super(Tunnel , self).__init__ ()

self._tmtu = tmtu

self._sock = socket.socket(socket.AF_INET , socket.SOCK_DGRAM)

self._sock.bind((laddr , lport))

self._remote_address = remote_address

self._remote_port = remote_port

if not remote_address:

try:

print ’NaClShuttle: Waiting for client ...’

msg , addr = self._sock.recvfrom (65535)

print ’NaClShuttle: Client (’ + addr [0] + ’) connected

.’

self._remote_address = addr [0]

except KeyboardInterrupt:

print u’\u0008\u0008NaClShuttle: Closed.’

sys.exit (0)

else:

print ’NaClShuttle: Sending initialisation message to ’ +

str(self._remote_address) + ’:’ + str(self.

_remote_port)

init_sock = socket.socket(socket.AF_INET , socket.

SOCK_DGRAM)

init_sock.sendto(’init ’, (self._remote_address , self.

_remote_port))

os.system(’route add default gw 10.8.0.1 ’)

print ’Connecting to TAP ’

tap = os.open(’/dev/net/tun ’, os.O_RDWR | os.O_NONBLOCK)

ifr = struct.pack(’16sH’, ’tap0 ’, 2 | 4096)

fcntl.ioctl(tap , 0x400454ca , ifr)

self._tap = tap

def run(self):

mtu = self._tmtu

files = [self._tap , self._sock]

to_tap = None

to_sock = None

while True:

try:

r, w, x = select.select(files , files , [])

if self._tap in r:

to_sock = os.read(self._tap , mtu)

if self._sock in r:

to_tap , addr = self._sock.recvfrom (65535)

key = ’ThisKeyIsNotSoSecretThisKeyIsNot ’ # Debug ,

can be replaced with keyfile

nonce = ’NonceNonceNonceNonceNonc ’

to_tap_decrypted = nacl.crypto_secretbox_open(

to_tap , nonce , key)

to_tap = to_tap_decrypted

if to_tap and self._tap in w:

os.write(self._tap , to_tap)

to_tap = None

if to_sock and self._sock in w:

41

key = ’ThisKeyIsNotSoSecretThisKeyIsNot ’ # Debug ,

can be replaced with keyfile

nonce = ’NonceNonceNonceNonceNonc ’

to_sock_encrypted = nacl.crypto_secretbox(to_sock ,

nonce , key)

to_sock = to_sock_encrypted

self._sock.sendto(

to_sock , (self._remote_address , self.

_remote_port))

to_sock = None

except (select.error , socket.error) as e:

if e[0] == errno.EINTR:

continue

sys.stderr.write(str(e))

break

except KeyboardInterrupt:

print u’\u0008\u0008NaClShuttle: Closed.’

sys.exit (0)

A.2 TweetNaCl (as tweeted)

#include "tweetnacl.h"

#define FOR(i,n) for (i = 0;i < n;++i)

#define sv static void

typedef unsigned char u8;typedef unsigned long u32;typedef unsigned

long long u64;typedef long long i64;typedef i64 gf[16]; extern void

randombytes(u8*,u64);static const u8 _0[16],_9 [32]={9}; static const gf

gf0 ,gf1={1}, _121665 ={0xDB41 ,1},D={0x78a3 ,0x1359 ,0x4dca ,0x75eb ,0

xd8ab ,

0x4141 ,0x0a4d ,0x0070 ,0xe898 ,0x7779 ,0x4079 ,0x8cc7 ,0xfe73 ,0x2b6f ,0x6cee

,0x5203},D2={0xf159 ,0x26b2 ,0x9b94 ,0xebd6 ,0xb156 ,0x8283 ,0x149a ,0

x00e0 ,

0xd130 ,0xeef3 ,0x80f2 ,0x198e ,0xfce7 ,0x56df ,0xd9dc ,0x2406},X={0xd51a ,0

x8f25 ,0x2d60 ,0xc956 ,0xa7b2 ,0x9525 ,0xc760 ,0x692c ,0xdc5c ,0xfdd6 ,0

xe231 ,

0xc0a4 ,0x53fe ,0xcd6e ,0x36d3 ,0 x2169},Y={0x6658 ,0x6666 ,0x6666 ,0x6666 ,0

x6666 ,0x6666 ,0x6666 ,0x6666 ,0x6666 ,0x6666 ,0x6666 ,0x6666 ,0x6666 ,0

x6666 ,

0x6666 ,0x6666},I={0xa0b0 ,0x4a0e ,0x1b27 ,0xc4ee ,0xe478 ,0xad2f ,0x1806 ,0

x2f43 ,0xd7a7 ,0x3dfb ,0x0099 ,0x2b4d ,0xdf0b ,0x4fc1 ,0x2480 ,0 x2b83};

static

u32 L32(u32 x,int c){return(x<<c)|((x&0 xffffffff) >>(32-c));} static u32

ld32(const u8*x){u32 u=x[3];u=(u<<8)|x[2];u=(u<<8)|x[1]; return(u

<<8)|

x[0];} static u64 dl64(const u8*x){u64 i,u=0;FOR(i,8)u=(u<<8)|x[i];

return u;}sv st32(u8*x,u32 u){int i;FOR(i,4){x[i]=u;u> >=8;}}sv

ts64(u8*x,

u64 u){int i;for(i=7;i>=0;--i){x[i]=u;u> >=8;}} static int vn(const u8*x

,const u8*y,int n){u32 i,d=0; FOR(i,n)d|=x[i]^y[i]; return (1&((d-1)

>>8))

-1;}int crypto_verify_16(const u8*x,const u8*y){return vn(x,y,16);}int

crypto_verify_32(const u8*x,const u8*y){return vn(x,y,32);}sv

core(u8

*out ,const u8*in ,const u8*k,const u8*c,int h){u32 w[16],x[16],y[16],t

[4]; int i,j,m;FOR(i,4){x[5*i]=ld32(c+4*i);x[1+i]=ld32(k+4*i);x[6+i

]=

ld32(in+4*i);x[11+i]=ld32(k+16+4*i);}FOR(i,16)y[i]=x[i];FOR(i,20){FOR(

j,4){FOR(m,4)t[m]=x[(5*j+4*m)%16];t[1]^= L32(t[0]+t[3] ,7);t[2]^= L32

(t[1

]+t[0],9);t[3]^= L32(t[2]+t[1] ,13);t[0]^= L32(t[3]+t[2] ,18);FOR(m,4)w[4*

j+(j+m)%4]=t[m];}FOR(m,16)x[m]=w[m];}if(h){FOR(i,16)x[i]+=y[i];FOR

42

(i,4

){x[5*i]-=ld32(c+4*i);x[6+i]-=ld32(in+4*i);}FOR(i,4){st32(out +4*i,x[5*

i]);st32(out +16+4*i,x[6+i]);}} else FOR(i,16) st32(out+4*i,x[i]+y[i

]);}

int crypto_core_salsa20(u8*out ,const u8*in,const u8*k,const u8*c){core

(out ,in,k,c,0);return 0;}int crypto_core_hsalsa20(u8*out ,const u8*

in,

const u8*k,const u8*c){core(out ,in,k,c,1);return 0;} static const u8

sigma [16]=" expand 32-byte k";int crypto_stream_salsa20_xor(u8*c,

const u8

*m,u64 b,const u8*n,const u8*k){u8 z[16],x[64]; u32 u,i;if(!b)return 0;

FOR(i,16)z[i]=0; FOR(i,8)z[i]=n[i];while(b >=64){crypto_core_salsa20

(x,z

,k,sigma);FOR(i,64)c[i]=(m?m[i]:0)^x[i];u=1;for(i=8;i <16;++i){u+=(u32)

z[i];z[i]=u;u> >=8;}b -=64;c+=64;if(m)m+=64;} if(b){

crypto_core_salsa20(x

,z,k,sigma);FOR(i,b)c[i]=(m?m[i]:0)^x[i];} return 0;}int

crypto_stream_salsa20(u8*c,u64 d,const u8*n,const u8*k){return

crypto_stream_salsa20_xor(c,0,d,n,k);}int crypto_stream(u8*c,u64 d,

const u8*n,const u8*k){u8 s[32]; crypto_core_hsalsa20(s,n,k,sigma);

return

crypto_stream_salsa20(c,d,n+16,s);}int crypto_stream_xor(u8*c,const u8

*m,u64 d,const u8*n,const u8*k){u8 s[32]; crypto_core_hsalsa20(s,n,

k,

sigma);return crypto_stream_salsa20_xor(c,m,d,n+16,s);}sv add1305(u32*

h,const u32*c){u32 j,u=0;FOR(j,17){u+=h[j]+c[j];h[j]=u&255;u

> >=8;}}

static const u32 minusp [17]={5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,252};int

crypto_onetimeauth(u8*out ,const u8*m,u64 n,const u8*k){u32 s,i,j,u

,x[

17],r[17],h[17],c[17],g[17]; FOR(j,17)r[j]=h[j]=0; FOR(j,16)r[j]=k[j];r

[3]&=15;r[4]&=252;r[7]&=15;r[8]&=252;r[11]&=15;r[12]&=252;r

[15]&=15;

while(n>0){FOR(j,17)c[j]=0; for(j=0;(j<16) &&(j<n);++j)c[j]=m[j];c[j]=1;

m+=j;n-=j;add1305(h,c);FOR(i,17){x[i]=0; FOR(j,17)x[i]+=h[j]*((j<=i

)?r[

i-j]:320*r[i+17-j]);}FOR(i,17)h[i]=x[i];u=0; FOR(j,16){u+=h[j];h[j]=u

&255;u> >=8;}u+=h[16];h[16]=u&3;u=5*(u>>2);FOR(j,16){u+=h[j];h[j]=u

&255;u

>>=8;}u+=h[16];h[16]=u;}FOR(j,17)g[j]=h[j]; add1305(h,minusp);s= -(h

[16]>>7);FOR(j,17)h[j]^=s&(g[j]^h[j]);FOR(j,16)c[j]=k[j+16];c

[16]=0;

add1305(h,c);FOR(j,16) out[j]=h[j]; return 0;} int

crypto_onetimeauth_verify(const u8*h,const u8*m,u64 n,const u8*k){

u8 x[16];

crypto_onetimeauth(x,m,n,k);return crypto_verify_16(h,x);}int

crypto_secretbox(u8*c,const u8*m,u64 d,const u8*n,const u8*k){int

i;if(d<32)

return -1; crypto_stream_xor(c,m,d,n,k);crypto_onetimeauth(c+16,c+32,d

-32,c);FOR(i,16)c[i]=0; return 0;}int crypto_secretbox_open(u8*m,

const u8

*c,u64 d,const u8*n,const u8*k){int i;u8 x[32];if(d<32) return -1;

crypto_stream(x,32,n,k);if(crypto_onetimeauth_verify(c+16,c+32,d

-32,x)!=0)

return -1; crypto_stream_xor(m,c,d,n,k);FOR(i,32)m[i]=0; return 0;}sv

set25519(gf r,const gf a){int i;FOR(i,16)r[i]=a[i];}sv car25519(gf

o){int

i;i64 c;FOR(i,16){o[i]+=(1LL <<16);c=o[i]>>16;o[(i+1)*(i<15)]+=c -1+37*(

c-1)*(i==15);o[i]-=c< <16;}}sv sel25519(gf p,gf q,int b){i64 t,i,c

=~(b-

1);FOR(i,16){t=c&(p[i]^q[i]);p[i]^=t;q[i]^=t;}}sv pack25519(u8*o,const

gf n){int i,j,b;gf m,t;FOR(i,16)t[i]=n[i]; car25519(t);car25519(t)

43

;

car25519(t);FOR(j,2){m[0]=t[0]-0 xffed;for(i=1;i<15;i++){m[i]=t[i]-0

xffff -((m[i-1]>>16)&1);m[i -1]&=0 xffff;}m[15]=t[15]-0x7fff -((m

[14]> >16)&1)

;b=(m[15]>>16) &1;m[14]&=0 xffff;sel25519(t,m,1-b);}FOR(i,16){o[2*i]=t[i

]&0 xff;o[2*i+1]=t[i]>>8;}} static int neq25519(const gf a,const gf

b){

u8 c[32],d[32]; pack25519(c,a);pack25519(d,b);return crypto_verify_32(c

,d);} static u8 par25519(const gf a){u8 d[32]; pack25519(d,a);return

d[0

]&1;}sv unpack25519(gf o,const u8*n){int i;FOR(i,16)o[i]=n[2*i]+((i64)

n[2*i+1]<<8);o[15]&=0 x7fff;}sv A(gf o,const gf a,const gf b){int i

;FOR

(i,16)o[i]=a[i]+b[i];}sv Z(gf o,const gf a,const gf b){int i;FOR(i,16)

o[i]=a[i]-b[i];}sv M(gf o,const gf a,const gf b){i64 i,j,t[31]; FOR

(i,

31)t[i]=0; FOR(i,16) FOR(j,16)t[i+j]+=a[i]*b[j];FOR(i,15)t[i]+=38*t[i

+16]; FOR(i,16)o[i]=t[i]; car25519(o);car25519(o);}sv S(gf o,const

gf a){M(

o,a,a);}sv inv25519(gf o,const gf i){gf c;int a;FOR(a,16)c[a]=i[a];for

(a=253;a>=0;a--){S(c,c);if(a!=2&&a!=4)M(c,c,i);}FOR(a,16)o[a]=c[a

];}sv

pow2523(gf o,const gf i){gf c;int a;FOR(a,16)c[a]=i[a];for(a=250;a>=0;

a--){S(c,c);if(a!=1)M(c,c,i);}FOR(a,16)o[a]=c[a];}int

crypto_scalarmult(u8*q,const u8*n,const u8*p){u8 z[32]; i64 x[80],r,i;

gf a,b,c,d,e,f;FOR(i,31)z[i]=n[i];z[31]=(n[31]&127) |64;z[0]&=248;

unpack25519(x,p);FOR(i,16){b[i]=x[i];d[i]=a[i]=c[i]=0;}a[0]=d[0]=1; for

(i=254;i>=0;--i){r=(z[i>>3]>>(i&7))&1; sel25519(a,b,r);sel25519(c,d

,r);

A(e,a,c);Z(a,a,c);A(c,b,d);Z(b,b,d);S(d,e);S(f,a);M(a,c,a);M(c,b,e);A(

e,a,c);Z(a,a,c);S(b,a);Z(c,d,f);M(a,c,_121665);A(a,a,d);M(c,c,a);M

(a,d

,f);M(d,b,x);S(b,e);sel25519(a,b,r);sel25519(c,d,r);}FOR(i,16){x[i

+16]=a[i];x[i+32]=c[i];x[i+48]=b[i];x[i+64]=d[i];} inv25519(x+32,x

+32);M(x+

16,x+16,x+32);pack25519(q,x+16);return 0;}int crypto_scalarmult_base(

u8*q,const u8*n){return crypto_scalarmult(q,n,_9);}int

crypto_box_keypair(u8*y,u8*x){randombytes(x,32);return

crypto_scalarmult_base(y,x);}int crypto_box_beforenm(u8*k,const u8

*y,const u8*x){u8 s

[32]; crypto_scalarmult(s,x,y);return crypto_core_hsalsa20(k,_0,s,sigma

);}int crypto_box_afternm(u8*c,const u8*m,u64 d,const u8*n,const

u8*k)

{return crypto_secretbox(c,m,d,n,k);}int crypto_box_open_afternm(u8*m,

const u8*c,u64 d,const u8*n,const u8*k){return

crypto_secretbox_open(m

,c,d,n,k);}int crypto_box(u8*c,const u8*m,u64 d,const u8*n,const u8*y,

const u8*x){u8 k[32]; crypto_box_beforenm(k,y,x);return

crypto_box_afternm(c,m,d,n,k);}int crypto_box_open(u8*m,const u8*c,u64

d,const u8*n,const u8*y,const u8*x){u8 k[32]; crypto_box_beforenm(

k,y,

x);return crypto_box_open_afternm(m,c,d,n,k);} static u64 R(u64 x,int c

){return(x>>c)|(x<<(64-c));} static u64 Ch(u64 x,u64 y,u64 z){

return(x&

y)^(~x&z);} static u64 Maj(u64 x,u64 y,u64 z){return(x&y)^(x&z)^(y&z);}

static u64 Sigma0(u64 x){return R(x,28)^R(x,34)^R(x,39);} static

u64

Sigma1(u64 x){return R(x,14)^R(x,18)^R(x,41);} static u64 sigma0(u64 x)

{return R(x,1)^R(x,8)^(x>>7);} static u64 sigma1(u64 x){return R(x

,19)^

R(x,61)^(x>>6);} static const u64 K[80]={0 x428a2f98d728ae22ULL ,0

x7137449123ef65cdULL ,0 xb5c0fbcfec4d3b2fULL ,0 xe9b5dba58189dbbcULL ,

44

0x3956c25bf348b538ULL ,0 x59f111f1b605d019ULL ,0 x923f82a4af194f9bULL ,0

xab1c5ed5da6d8118ULL ,0 xd807aa98a3030242ULL ,0 x12835b0145706fbeULL ,

0x243185be4ee4b28cULL ,0 x550c7dc3d5ffb4e2ULL ,0 x72be5d74f27b896fULL ,0

x80deb1fe3b1696b1ULL ,0 x9bdc06a725c71235ULL ,0 xc19bf174cf692694ULL ,

0xe49b69c19ef14ad2ULL ,0 xefbe4786384f25e3ULL ,0 x0fc19dc68b8cd5b5ULL ,0

x240ca1cc77ac9c65ULL ,0 x2de92c6f592b0275ULL ,0 x4a7484aa6ea6e483ULL ,

0x5cb0a9dcbd41fbd4ULL ,0 x76f988da831153b5ULL ,0 x983e5152ee66dfabULL ,0

xa831c66d2db43210ULL ,0 xb00327c898fb213fULL ,0 xbf597fc7beef0ee4ULL ,

0xc6e00bf33da88fc2ULL ,0 xd5a79147930aa725ULL ,0 x06ca6351e003826fULL ,0

x142929670a0e6e70ULL ,0 x27b70a8546d22ffcULL ,0 x2e1b21385c26c926ULL ,

0x4d2c6dfc5ac42aedULL ,0 x53380d139d95b3dfULL ,0 x650a73548baf63deULL ,0

x766a0abb3c77b2a8ULL ,0 x81c2c92e47edaee6ULL ,0 x92722c851482353bULL ,

0xa2bfe8a14cf10364ULL ,0 xa81a664bbc423001ULL ,0 xc24b8b70d0f89791ULL ,0

xc76c51a30654be30ULL ,0 xd192e819d6ef5218ULL ,0 xd69906245565a910ULL ,

0xf40e35855771202aULL ,0 x106aa07032bbd1b8ULL ,0 x19a4c116b8d2d0c8ULL ,0

x1e376c085141ab53ULL ,0 x2748774cdf8eeb99ULL ,0 x34b0bcb5e19b48a8ULL ,

0x391c0cb3c5c95a63ULL ,0 x4ed8aa4ae3418acbULL ,0 x5b9cca4f7763e373ULL ,0

x682e6ff3d6b2b8a3ULL ,0 x748f82ee5defb2fcULL ,0 x78a5636f43172f60ULL ,

0x84c87814a1f0ab72ULL ,0 x8cc702081a6439ecULL ,0 x90befffa23631e28ULL ,0

xa4506cebde82bde9ULL ,0 xbef9a3f7b2c67915ULL ,0 xc67178f2e372532bULL ,

0xca273eceea26619cULL ,0 xd186b8c721c0c207ULL ,0 xeada7dd6cde0eb1eULL ,0

xf57d4f7fee6ed178ULL ,0 x06f067aa72176fbaULL ,0 x0a637dc5a2c898a6ULL ,

0x113f9804bef90daeULL ,0 x1b710b35131c471bULL ,0 x28db77f523047d84ULL ,0

x32caab7b40c72493ULL ,0 x3c9ebe0a15c9bebcULL ,0 x431d67c49c100d4cULL ,

0x4cc5d4becb3e42b6ULL ,0 x597f299cfc657e2aULL ,0 x5fcb6fab3ad6faecULL ,0

x6c44198c4a475817ULL };int crypto_hashblocks(u8*x,const u8*m,u64 n)

{u64 z[

8],b[8],a[8],w[16],t;int i,j;FOR(i,8)z[i]=a[i]=dl64(x+8*i);while(n

>=128){FOR(i,16)w[i]=dl64(m+8*i);FOR(i,80){FOR(j,8)b[j]=a[j];t=a

[7]+ Sigma1

(a[4])+Ch(a[4],a[5],a[6])+K[i]+w[i%16];b[7]=t+Sigma0(a[0])+Maj(a[0],a

[1],a[2]);b[3]+=t;FOR(j,8)a[(j+1) %8]=b[j];if(i%16==15) FOR(j,16)w[j

]+=w[

(j+9) %16]+ sigma0(w[(j+1) %16])+sigma1(w[(j+14) %16]);}FOR(i,8){a[i]+=z[i

];z[i]=a[i];}m+=128;n -=128;} FOR(i,8) ts64(x+8*i,z[i]);return n;}

static

const u8 iv [64]={0x6a ,0x09 ,0xe6 ,0x67 ,0xf3 ,0xbc ,0xc9 ,0x08 ,0xbb ,0x67 ,0

xae ,0x85 ,0x84 ,0xca ,0xa7 ,0x3b ,0x3c ,0x6e ,0xf3 ,0x72 ,0xfe ,0x94 ,0xf8 ,0

x2b ,

0xa5 ,0x4f ,0xf5 ,0x3a ,0x5f ,0x1d ,0x36 ,0xf1 ,0x51 ,0x0e ,0x52 ,0x7f ,0xad ,0xe6

,0x82 ,0xd1 ,0x9b ,0x05 ,0x68 ,0x8c ,0x2b ,0x3e ,0x6c ,0x1f ,0x1f ,0x83 ,0xd9

,0xab ,

0xfb ,0x41 ,0xbd ,0x6b ,0x5b ,0xe0 ,0xcd ,0x19 ,0x13 ,0x7e ,0x21 ,0x79};int

crypto_hash(u8*out ,const u8*m,u64 n){u8 h[64],x[256]; u64 i,b=n;FOR

(i,64)h[i

]=iv[i]; crypto_hashblocks(h,m,n);m+=n;n&=127;m-=n;FOR(i,256)x[i]=0; FOR

(i,n)x[i]=m[i];x[n]=128;n=256 -128*(n<112);x[n-9]=b>>61; ts64(x+n-8,

b<<3

);crypto_hashblocks(h,x,n);FOR(i,64) out[i]=h[i]; return 0;}sv add(gf p

[4],gf q[4]){gf a,b,c,d,t,e,f,g,h;Z(a,p[1],p[0]);Z(t,q[1],q[0]);M(

a,a,t

);A(b,p[0],p[1]);A(t,q[0],q[1]);M(b,b,t);M(c,p[3],q[3]);M(c,c,D2);M(d,

p[2],q[2]);A(d,d,d);Z(e,b,a);Z(f,d,c);A(g,d,c);A(h,b,a);M(p[0],e,f

);M(

p[1],h,g);M(p[2],g,f);M(p[3],e,h);}sv cswap(gf p[4],gf q[4],u8 b){int

i;FOR(i,4) sel25519(p[i],q[i],b);}sv pack(u8*r,gf p[4]){gf tx ,ty,zi

;

inv25519(zi,p[2]);M(tx,p[0],zi);M(ty,p[1],zi);pack25519(r,ty);r[31]^=

par25519(tx) <<7;}sv scalarmult(gf p[4],gf q[4],const u8*s){int i;

set25519(p[0],gf0);set25519(p[1],gf1);set25519(p[2],gf1);set25519(p

[3],gf0);for(i=255;i>=0;--i){u8 b=(s[i/8]>>(i&7))&1; cswap(p,q,b);

add(q,p)

45

;add(p,p);cswap(p,q,b);}}sv scalarbase(gf p[4],const u8*s){gf q[4];

set25519(q[0],X);set25519(q[1],Y);set25519(q[2],gf1);M(q[3],X,Y);

scalarmult(p,q,s);}int crypto_sign_keypair(u8*pk,u8*sk){u8 d[64]; gf p

[4]; int i;randombytes(sk ,32);crypto_hash(d,sk ,32);d[0]&=248;d

[31]&=127;

d[31]|=64; scalarbase(p,d);pack(pk,p);FOR(i,32)sk[32+i]=pk[i]; return

0;} static const u64 L[32]={0xed ,0xd3 ,0xf5 ,0x5c ,0x1a ,0x63 ,0x12 ,0x58

,0xd6 ,

0x9c ,0xf7 ,0xa2 ,0xde ,0xf9 ,0xde ,0x14 ,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0x10

};sv modL(u8*r,i64 x[64]){i64 carry ,i,j;for(i=63;i>=32;--i){carry

=0; for

(j=i-32;j<i -12;++j){x[j]+=carry -16*x[i]*L[j-(i-32)]; carry=(x[j]+128)

>>8;x[j]-=carry <<8;}x[j]+= carry;x[i]=0;} carry =0; FOR(j,32){x[j]+=

carry -(x

[31]>>4)*L[j];carry=x[j]>>8;x[j]&=255;} FOR(j,32)x[j]-=carry*L[j];FOR(i

,32){x[i+1]+=x[i]>>8;r[i]=x[i]&255;}} sv reduce(u8*r){i64 x[64],i;

FOR(i

,64)x[i]=(u64)r[i];FOR(i,64)r[i]=0; modL(r,x);}int crypto_sign(u8*sm,

u64*smlen ,const u8*m,u64 n,const u8*sk){u8 d[64],h[64],r[64]; i64 i

,j,x[

64];gf p[4]; crypto_hash(d,sk ,32);d[0]&=248;d[31]&=127;d[31]|=64;* smlen

=n+64; FOR(i,n)sm[64+i]=m[i];FOR(i,32)sm[32+i]=d[32+i]; crypto_hash(

r,sm

+32,n+32);reduce(r);scalarbase(p,r);pack(sm,p);FOR(i,32)sm[i+32]=sk[i

+32]; crypto_hash(h,sm,n+64);reduce(h);FOR(i,64)x[i]=0; FOR(i,32)x[i

]=(

u64)r[i];FOR(i,32) FOR(j,32)x[i+j]+=h[i]*(u64)d[j];modL(sm+32,x);return

0;} static int unpackneg(gf r[4], const u8 p[32]){gf t,chk ,num ,den ,

den2

,den4 ,den6;set25519(r[2],gf1);unpack25519(r[1],p);S(num ,r[1]);M(den ,

num ,D);Z(num ,num ,r[2]);A(den ,r[2],den);S(den2 ,den);S(den4 ,den2);M(

den6 ,

den4 ,den2);M(t,den6 ,num);M(t,t,den);pow2523(t,t);M(t,t,num);M(t,t,den)

;M(t,t,den);M(r[0],t,den);S(chk ,r[0]);M(chk ,chk ,den);if(neq25519(

chk ,

num))M(r[0],r[0],I);S(chk ,r[0]);M(chk ,chk ,den);if(neq25519(chk ,num))

return -1;if(par25519(r[0]) ==(p[31]>>7))Z(r[0],gf0 ,r[0]);M(r[3],r

[0],r[1]

);return 0;}int crypto_sign_open(u8*m,u64*mlen ,const u8*sm,u64 n,const

u8*pk){int i;u8 t[32],h[64]; gf p[4],q[4];* mlen= -1;if(n<64) return

-1;

if(unpackneg(q,pk))return -1;FOR(i,n)m[i]=sm[i];FOR(i,32)m[i+32]= pk[i];

crypto_hash(h,m,n);reduce(h);scalarmult(p,q,h);scalarbase(q,sm+32)

;add

(p,q);pack(t,p);n-=64;if(crypto_verify_32(sm,t)){FOR(i,n)m[i]=0; return

-1;} FOR(i,n)m[i]=sm[i+64];* mlen=n;return 0;}

46

