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Abstract

With the scale and use of the Internet nowadays, it is crucial that we can
effectively test the correctness and security of systems that handle our per-
sonal data. In this thesis, we improve upon a previous work by Verleg.
Verleg used protocol state fuzzing to test several implementations of the
SSH protocol. By adapting a more formal methodology, we achieve higher
confidence in our results.

We improve upon Verleg’s methodology in three ways: First, we expand
the scope of our learned model, by learning a single model for the three
layers of SSH. Then, we achieve a degree of confidence in our model by
using a more advanced testing algorithm. Finally, we increase confidence
in the analysis of model by performing formal model checking instead of
manual inspection of results.
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Chapter 1

Introduction

Over the past few decades, the internet has grown to become an essential
part of western society. These days, the everyday person uses the internet for
banking and government matters. It is therefore crucial that communication
over the internet can be done in a secure way. To verify if a system is secure,
we use a variety of testing techniques. These techniques have to be well
defined and performed in order to produce correct results. In this thesis,
we improve upon a work by Verleg [18]. We apply a more systematic and
formal methodology in order to produce more convincing results.

Fuzz testing or fuzzing is a testing technique where specific kinds of
input data are sent to a software system. The behavior of the system is
then monitored for anomalies. Different kinds of input data can be sent to
the system under learning (SUL) in order to test for different properties.
For example, invalid input can be sent to provoke an exception in the SUT.
Another example is sending a longer input than expected to provoke buffer
overflow errors.

In this work, the fuzzing technique we focus on is protocol state fuzzing.
In protocol state fuzzing a state machine is inferred from a protocol im-
plementation. This state machine is then inspected for unwanted behavior.
Protocol state fuzzing is done as follows: First, we choose an implementation
of a certain protocol. Then, we send messages formatted correctly according
to the protocol. Note that these messages can contain wrong information
and can be sent during any phase of the protocol. All of the received output
is recorded. Based on the order of inputs and received outputs we generate
a state machine which should be representative of the SUL. This state ma-
chine is tested for compliance with the SUL. If the machine is incorrect, we
continue sending messages until a new machine has been learned. Otherwise,
learning is done. Finally, we can verify whether the machine is complaint
with the protocol the SUL is based on.

Secure Shell (SSH) is a network protocol used to connect and interact
with remote machines in a secure way. It is originally created as a secure
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replacement for telnet and unsecure remote login protocols like rlogin. The
second version of SSH, SSHv2 has been standardized by the IETF [22, 20,
23, 21]. It is one of the most frequently used security suites on the Internet
[18].

Recently, Verleg [18] has performed protocol state fuzzing on implemen-
tations of the Secure Shell protocol. Verleg learns three models for each
of the tested implementations; one for each of the layers defined in SSH.
These models are then evaluated by hand to find security related issues.
For this evaluation, Verleg has defined several security properties from the
RFCs of SSH. With this approach, Verleg has found a bug in the OpenSSH
implementation and security related issues in several other implementations.

Nevertheless, the work of Verleg can be improved upon. There are three
aspects where the work can be improved. First, it would be interesting
to learn a model for the entirety of the SSH protocol, which could show
additional security issues. Secondly, Verleg uses a method of testing that
can be improved upon. Finally, checking the generated models with security
properties can be done automatically, by using a model checker. In this
thesis, we repeat Verleg’s experiment, and improve upon all three of the
mentioned aspects.

Verleg split the SSH protocol into its constituent layers and learned each
layer separately. This was done due to the complexity of the system, which
meant that learning it as a whole would be infeasible. By utilizing caching
and a different testing technique, we have overcome this problem, and have
obtained a model of the entire system.

Verleg uses a relatively simple algorithm to test generated models. This
algorithm simply runs random tests on the model, and assumes the model is
correct after a certain number of tests are done. This does not provide a mea-
sure of confidence in the generated models. However, more advanced testing
methods exist that do give confidence in tested models. One such method
is developed by Smeenk et al. [14], based on the adaptive distinguishing
sequence algorithm by Yannakakis and Lee [12]. We replace Verleg’s testing
algorithm with this algorithm. And thus obtain this degree of confidence in
our generated model.

Verleg checks his generated models by hand. As shown in [8], models ob-
tained from fuzzing can be checked with a model checker. Testing properties
with a model checker is more thorough than checking a model by hand, es-
pecially for larger models. Model checking thus gives a higher confidence in
generated conclusions. We formalize the properties Verleg used, and verify
our learned model with these formal properties.

In this thesis we first provide an overview of protocol state fuzzing and
the Secure Shell algorithm in Section 3. A brief overview of related work is
given in Section 2. Then, in Section 4 we explain in detail what we altered
from Verleg’s work. Section 5 gives the results of our improved learning
setup. We further expand on some of the decisions made for this thesis in
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Section 6. Finally, we present our conclusions in Section 7.
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Chapter 2

State of the Art

The researh most related to this work is, naturally, Verleg’s thesis [18]. Aside
from that the related work can be split into two areas: work on SSH security
and work on protocol state fuzzing.

Various formal analysis has been performed on SSH. It has been proven
that, under some assumptions, the Diffie-Hellman ciphersuite in the SSH-
protocol is securely authenticated and confidential [5]. Formal analysis has
shown that the SSH key exchange protocol is secure [19]. A different analysis
has shown that plaintext recovery from SSH is possible if CBC mode is used
[3].

More practical work has also been done: An internet-wide scan has
shown weaknesses in duplicate SSH keys [9]. An open source implementa-
tion of SSH has been formally specified and verified [13]. Machine learning
has also been applied to SSH security: A detector for brute-force attacks
on SSH has shown successful results [11]. Timing analysis of keystrokes has
shown to speed up exhaustive search for SSH passwords [15].

By using regular inference, it is possible to construct a model from ob-
servations of behaviour, a process known as automata learning [4]. Active
automata learning, where an exploration phase and testing phase are alter-
nated, is an efficient method of automata learning [16].

Protocol state fuzzing has successfully been performed on electronic
passports[2]m, EMV bank cards [1] and printer software [14]. It has also
successfully been used on internet protocols: TLS [7] and TCP [8, 10]. In
the TLS case security issues were found for three implementations. Work
has also been done on protocol state fuzzing of SSH, where servers have been
found to not follow the RFC standard [17]. A continuation on this work has
shown unwanted behaviour in an implementation of SSH [18].
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Chapter 3

Preliminaries

In this section, we provide some background information for the rest of the
thesis. First, we explain Mealy machines in Section 3.1. Section 3.2 expands
on typical learning setups and the setup Verleg used. Finally, in Section 3.3
we provide a brief overview of the SSH-protocol.

3.1 Mealy Machines

We use a Mealy machine to represent the state machine of an SSH im-
plementation. A Mealy machine is a DFA represented by a 6-tuple M =
(Q, q0, I, O, δ, λ), where:

• Q is the set of states.

• q0 ∈ Q is the initial state.

• I is the input alphabet.

• O is the output alphabet.

• δ is the transition function Q× I → Q, which gives the resulting state
from sending a certain input when in a certain state.

• λ is the transition function Q×I → O, which gives the received output
when sending a certain input from a certain state.

Mealy machines can be graphically represented as a graph. States are
shown as nodes and state transitions as edges. Edges are labeled as “<
input > / < output >” corresponding to the transition functions: If δ(q0, A) =
q1 and λ(q0, A) = X then the label for the edge between q0 and q1 will be
“A/X”. An example visualization for a Mealy machine is shown in Figure
3.1.
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q0start q1 q2
X/A Y/B

Y/A

X/A
Y/B

X/B

Figure 3.1: Example Mealy machine

3.2 Learning state machines

In protocol state fuzzing, a state machine of the implementation is learned
by actively sending and receiving messages to and from the System Under
Learning (SUL). In Verleg’s work [18], a single message is called a query,
and a sequence of messages a trace, we keep the same convention. The state
machine is formed by sending consecutive traces to the SUL and analyzing
the output. In our case, the trace to be sent is determined by an adaptation
of the L* algorithm for learning Mealy machines. When a trace is completed
the SUL has to be reset to its initial state.

After sending a sufficient amount of traces, a hypothesis is formed. The
hypothesis is checked for correctness by an equivalence oracle. Said oracle
sends traces to the SUL, then predicts an output through the hypothesis,
and compares this output to the actual output received from the SUL. Since
the SUL can is a black box, it is impossible to guarantee that the oracle will
find any existing counterexample in finite time. However, measures can be
taken such that the testing oracle provides a certain degree of confidence in
the model.

In our case, sending messages to the SUL means sending packets that
contain information like the packet length, a sequence number or a list of
supported encryptions. This information can be represented as parame-
ters of packets. However, parameterized messages cannot be adequately
expressed by Mealy machines. Therefore we abstract this information away,
leaving us with an abstract representation of messages. To convert these
abstract messages to correct packets and back, a mapper is used. This map-
per has to keep track of state variables, and has to perform actions such
as encryption and compression. This means that the mapper itself contains
a state machine, which is based on existing knowledge about the protocol
used in the SUL.

Figure 3.2 shows the setup Verleg used, and serves as an example for
a typical learning setup. Here “Learner” is the program that uses the L*-
based algorithm to generate traces of abstract messages to send to the SUL.
The learner sends these messages to the mapper, which translates them to
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Figure 3.2: A learning setup

concrete packages, these packages are then sent to the SUL. The response
of the SUL is converted to an abstract message by the mapper and sent to
the learner.

3.3 Secure Shell

The SSH-protocol uses a client-server structure consisting of three com-
ponents. These components are referred to as layers, note however that
messages generated in outer layers do not encapsulate those generated by
inner layers, instead they are separate, and are distinguished by a message
number. The three components are as follows:

• The transport layer protocol creates the basis for communication be-
tween server and client, providing a key exchange protocol and server
authentication. The key exchange protocol is performed over three
roundtrips. During the first, both client and server send a KEXINIT
message. Then, the client sends a KEX30 message, the server responds
with a KEX31 message. Finally, both parties send a NEWKEYS mes-
sage, which indicates that the keys sent in the second step can be
used.

• The user authentication protocol is used to authenticate a client to the
server, for example, through a username and password combination,
or through SSH-keys.

• The connection protocol provides various services to the connected
client. It multiplexes the encrypted connection into different channels
over which services are provided. Example services are file transfer or
access to a remote terminal. Typical messages are requests for opening
or closing channels, or requests for the earlier named services.
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Chapter 4

Method

Since we improve the methodology of Verleg’s work [18] in three ways, we
will expand on the three categories of changes separately. In Section 4.1, we
explain our changes to Verleg’s setup to enable learning of all three SSH-
Layers. Then, in Section 4.2, we provide a brief explanation of the testing
algorithm we used. Finally, in Section 4.3, we explain how we have used
model checking to verify the security properties Verleg defined.

4.1 Building a complete model

As said previously, Verleg split the model construction of SSH into the three
layers defined in the SSH-specification. The first reason for this is practical;
it takes a very long time to infer a model of the entire protocol. Combining
this with the problems of non-determinism Verleg experienced, and lack of
handling this non-determinism, meant that inferring the full model would
often fail partway through. The second reason is the interaction between
layers that SSH allows. For example, in any state of the connection layer, it
is possible to perform a rekey sequence. In a rekey sequence, the transport
layer messages for the key exchange procedure are transmitted again. A
rekey procedure should not interfere with any higher layer; in a state model,
this means that the state before and after the rekey should be the same
state. Verleg experienced problems with these sequences, which caused er-
rors in his models. We assume that more advanced testing methods will find
counterexamples for these errors, and therefore we can train a model of the
entire protocol.

We investigated the methods of caching Verleg used in his setup. The
result of queries are saved during the learning process, however, the saved
queries are only used to detect non-determinism. Verleg had implemented
a way to resume an old learning run with the saved queries, but this imple-
mentation contained errors. We have expanded on Verleg’s implementation
for resuming old learning processes. We have not expanded further on han-
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dling non-determinism and caching, we explain why in Section 6.1. In order
to reduce the amount of non-determinism, we have to fine-tune timing pa-
rameters in the mapper, which is done mostly on a trial-and-error basis. As
a result, running a long query takes a large amount of time, and therefore
the entire fuzzing process is quite time consuming.

Since we want to improve the process of state fuzzing used by Verleg,
rather than add upon the size of his research, we only map a single SSH
implementation. The implementation we have used is OpenSSH, version
6.6p1.

4.2 Improving Testing

We improve upon the testing procedure Verleg used by using a different
equivalence oracle. Verleg has used a random-walk oracle, this oracle ran-
domly chooses a path through the model, sends the required inputs to the
SUL, and checks if the output of the SUL corresponds with the expected
output in the model. This is repeated for some time, until the model is
assumed to be correct. We instead use an implementation of an algorithm
specified by Smeenk et al. [14] based on an algorithm by Lee & Yannakakis
[12] to find adaptive distinguishing sequences. This algorithm enables us to
find additional counterexamples and gives a degree of confidence in the final
model.

The algorithm uses distinguishing sequences for every state of the hy-
pothesis, a distinguishing sequence is a set of in- and outputs that provides
a unique result for a certain state. It allows to check the identity of a state,
by sending the distinguishing sequence and checking if the output of the
SUL corresponds with the predicted output. If the outputs are equal, the
initial state is the state for the distinguishing sequence.

A single test of the algorithm has the following structure: First, a ran-
dom walk to a certain state in the model is performed. Then, a walk of
a specific path-length is done. Finally, the distinguishing sequence for the
resulting state is performed. The algorithm can perform runs like these ex-
haustively for an incrementing path-length. If the algorithm does not find
a counterexample up to a specific path-length, we can say that the tested
model is correct, unless the actual model is larger than the checked hypoth-
esis by a number of states larger than the tested path-length. The algorithm
can be run either exhaustively or randomly. Running it randomly is quicker
to find counter-examples, but does not provide the confidence that running
it exhaustively does.
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4.3 Model Checking

Verleg has analysed his models using security definitions in natural language.
This analysis was done by hand. In order to increase the confidence in
security analysis performed on learned models, we use model checking to
check formal security properties on our model.

We use the NuSMV [6] model checker to formally state and verify the
properties defined by Verleg. NuSMV is a model checker where a state of a
model is specified as a set of finite variables, a transition-function can then
be defined to change these variables. Specifications in temporal logic, such
as CTL and LTL, can be checked for truth on specified models. NuSMV
will provide a counterexample if a certain specification is not true.

The NuSMV model is generated from our learned model. The learned
model is a Mealy machine, generating the NuSMV model from this is straight-
forward. The states in the model directly translate to states in NuSMV. The
NuSMV model contains two variables, one for the input alphabet, and one
for the output alphabet. The NuSMV transitions are generated by taking a
combination of a state and an input-word, and defining an output and next
value for state for said combination. Figure 4.2 shows a transition function
for the Mealy machine in Figure 4.1. Note that, as a side-effect of using a
simple way to generate the NuSMV-code, we use the input or output as a
whole, rather than a collection, in the case where we send or recieve multiple
packets.

q0start q1

X/A

Y/B

Figure 4.1: Example Mealy machine

next ( s t a t e ) := case
s t a t e = q0 & input = X: q1 ;
s t a t e = q1 & input = Y: q0 ;

e sac ;
output := case

s t a t e = q0 & input = X: A;
s t a t e = q1 & input = Y: B;

esac ;

Figure 4.2: NuSMV transition functions for Figure 4.1

The properties we have verified are LTL-representations of the security
properties Verleg has defined for each layer of SSH. Verleg has defined three
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properties. The property of the connection layer, however, is very open
ended. It is: “We will ... look at unexpected state machine transitions that
can point towards potential implementation flaws”, we can not properly rep-
resent this in LTL. The properties for the transport- and user authentication
layers, however, can be represented in LTL.
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Chapter 5

Results

In this section, we present our results for the three improvements we made
to Verleg’s [18] work. In Section 5.1 we show the state machine we inferred
from the OpenSSH implementation. Then, in Section 5.2 we give some
testing statistics and results, and explain some properties we found in the
generated model. Finally, in Section 5.3 we show the LTL properties we
checked with the model.

5.1 Trained Model

The result of learning OpenSSH is a model with 26 states and 619 transitions.
An edited version can be seen in Figure 5.1. The happy path, as defined by
Verleg, is indicated in green and dashed edges. The more complete version
contains nine states that can be reached by attempting to open a channel
before performing user authentication. These states make make the model
less readable while not containing any interesting behaviour; Although they
can perform a successful authentication, no channels can be opened, and
all possible paths from these states eventually lead to a disconnect-state.
Therefore we have removed them from Figure 5.1.
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Figure 5.1: Inferred state machine, edited for readability
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5.2 Testing

We used the Yannakakis-tool on the generated hypotheses. For the final
model, we completed an exhaustive test up to a path length of two. This
implies that if our model is faulty, a correct model must have at least 28
states, two modre than the 26 states of the model we learned. During the
entire learning process, only two hypotheses were constructed, the counter
example to the first hypothesis was found after 865 test sequences. Verifying
the second hypothesis took 32.728 test sequences.

On comparing our model with Verleg’s model, we can find some signif-
icant differences. To illustrate them, we isolated the connection layer from
Figure 5.1, and emphasized the differences. The result is shown in Figure
5.2. Verleg’s state machine of the connection layer of OpenSSH showed a
fault, where closing a channel from the “has commands pty” would result
in connection termination. Our model does not show this behavior, closing
a channel from the “has commands pty” state leads to a new state, from
which other actions are still allowed.

Figure 5.2: Connection layer of the inferred state machine. Dotted transi-
tions in red are unique to Verleg’s models, the state and dashed transitions
in green are unique to our work.

A few days before the deadline of this thesis, a counterexample was found
for the learned model. As predicted (see 4.1 and 6.2) a rekey sequence in the
connection layer is not preserving the state of the model. We have supplied
the counterexample to the learning setup, and a new hypothesis has been
learned. However, we have not been able to finish testing the new model in
time. We have been able to test about 12.000 random test sequences on the
hypothesis, but exhaustive testing has not been completed. Additionally
we have attempted to learn a model with a limited input alphabet, this
should limit the number of necessary queries and allows us to fine-tune
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the timing parameters further. This setup has also produced a number of
hypotheses. We have run about 16.000 random test sequences on the latest
hypothesis, however, we have not been able to finish exhaustive testing. We
have been able to run a significant amount of random test sequences on the
new hypothesis, which gives us some confidence in the hypothesis.

5.3 Model Checking

We have converted two security properties of the three defined by Verleg
[18] into LTL specifications and used the NuSMV model checker [6] to check
the properties for truthfulness with the state machine we have inferred. We
expand on each property individually, in the context of the layer it applies
for.

5.3.1 Transport Layer

Verleg’s security property for the Transport layer is defined as follows: “We
consider a transport layer state machine secure if there is no path from the
initial state to the point where the authentication service is invoked without
exchanging and employing cryptographic keys.” We consider this path to
be a path where a key exchange is performed successfully, and then followed
by a successful service authentication request. Note that the key exchange
does not have to be performed in consecutive steps, it can temporarily be
interrupted by other actions.

In natural languange, we can say the property should be something like:
“If the authentication service is invoked successfully, then the final step of
the key exchange must have been done, the second step must have been done
earlier, and the first step even earlier.” The key exchange consists of three
specific steps which have to be performed in order. The LTL in Figure 5.3
is the result. The O-operator used here is the Once-operator, a past time
LTL operator, which is true if its argument is true in a past time instant.

G(authentication request successful→
O(NEWKEYS successful &

O(KEX 30 successful &

O( KEXINIT successful))))

Figure 5.3: LTL for Transport layer with natural language

Translating this LTL to NuSMV syntax means that the remaining natu-
ral language has to be replaced with equality checks for the variables in the
NuSMV state. These variables are equal to the in- and output of a transition
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in the Mealy machine generated by the mapper. A successful invocation of
the authentication service is translated as a request for the authentication
service being done, and the request being accepted by the server. The third
step of the key exchange, the client sending a newkeys-packet, is success-
ful if the server sends no response. Conveniently, no server response is an
indication that the newkeys was received correctly, in our tests, the server
would return a packet if the newkeys was performed incorrectly. The second
step, sending the kex30 packet, is very much like the third step. Finally, the
first step of the protocol is translated a bit differently, since we found that
sending any packet to the server from the initial state was recognized as the
first step of the key exchange protocol. Therefore, sending the first step, a
kexinit-packet, can be replaced by almost any packet. The mapper contains
a shorthand which performs the complete key exchange, called rekey, this
is also added to the LTL specification. The resulting LTL-specification is
shown in Figure 5.4.

G (
( input=SERVICE REQUEST AUTH & output=SERVICE ACCEPT)

−>
(O ( ( input=NEWKEYS & output= NO RESP) &

O ( ( input=KEX30 & output=KEX31 NEWKEYS) &
O ( output=KEXINIT)

) )
|

(O ( input=REKEY & output=KEXINIT KEX31 NEWKEYS NO RESP) )
)

)

Figure 5.4: Transport layer LTL in NuSMV syntax.

5.3.2 User Authentication Layer

The security property is as follows: “We consider a user authentication layer
state machine secure if there is no path from the unauthenticated state to
the authenticated state without providing the correct credentials.” Since we
have no method to directly determine if the model is in an authenticated
state, we consider the authenticated state to be a state where opening a
channel can be done successfully. Since opening a channel should only be
possible after user authentication, this should show if we are in an authenti-
cated state. The specification then is rather simple: Always, if a channel is
opened succesfully, then there has not been a failure in user authentication
since a successful user authentication. Opening a channel successfully in the
model is straightforward, a request to open a channel is sent to the server,
and a success message is received back. Checking whether there has been
a success or failure in user authentication is done by checking if the server
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ever sends the UA FAILURE or UA SUCCESS packets. Additional checks
if the user actually made a user authenication request could potentially be
added. The resulting LTL is shown in Figure 5.5. This LTL uses another
past time operator: The S- (or Since-) operator is true if its first argument
holds for every state since its second argument holds, note that the second
argument has to hold somewhere in the path for the since-operator to hold.

G ( ( input= CH OPEN & output= CH OPEN SUCCESS)
−> ( ! ( output=UA FAILURE) S output= UA SUCCESS) )

Figure 5.5: User Authentication layer LTL in NuSMV syntax.

The learned model satisfies both LTL specifications, according to NuSMV.
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Chapter 6

Discussion

In this Section we discuss and motivate some of the choices we made in this
thesis. In Section 6.1 we expand on the caching method we use. Then, in
Section 6.2 we give our consideration for the testing parameters used. In
Section 6.3 we provide explanation for some faults in the generated model.
Finally, in Section 6.4 we expand on the security properties used.

6.1 Caching

In our setup, we improve upon the caching methods Verleg [18] used. This
allows us to resume an old, possibly crashed, run of the setup. Because of
this, we are able to build a state machine of the entire SSH protocol. How-
ever, it is possible to implement much more extensive methods of caching
and detection of non-determinism. For instance, we have not implemented
any way of checking a trace which results in non-determinism. This can
be done by, for example, sending a trace which results in non-determinism
again, and comparing the output of both traces. If the second output does
not result in non-determinism, we might assume that something went wrong
during the first run of the trace (a packet was lost, for example), and can
continue learning with the second output. We decided the caching we used
was adequate, and thus have not implemented more advanced methods

6.2 Chosen Confidence

For our equivalence oracle, we use the Yannakakis-Lee-based algorithm [14]
in order to build a measure of confidence for the generated state machine.
The confidence increases by running the algorithm with a longer path-length.
As explained, we run up to a path length of two. We do this due to time
considerations; for our generated model, testing up to a path length of two
requires 32.728 test sequences, A path length of up to three would take
353.835 sequences, four would take 7.276.082. These tests are often long
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traces of inputs, and running them can take up to a couple of minutes per
trace. Testing three hundred thousand traces with our setup is not feasi-
ble. However, one of Verleg’s concerns for training all three layers of SSH
simultaneously is the rekey procedure. The concern that the model will not
implement the rekey procedure in higher layers correctly. The procedure
contains three steps before returning to the state before the rekey. A con-
fidence with a path length up to four should correctly implement the rekey
procedure for all the states in the SSH-specification where rekey is possible.
To remedy this problem, we have used the same solution Verleg has used.
We use a separate command which performs an entire rekey procedure in
the setup. Because of this, the model should still handle the entire proce-
dure correctly. However, as we later have experienced, this does not provide
confidence in performing only parts of the rekey procedure, or performing
the procedure differently, for example. This has lead to a counterexample
in our current model (see 5.2).

6.3 Faulty rekeys in State Machine

As explained in Section 5.2, our model does not show the disconnecting
behavior Verleg experienced. However, it still contains some strange be-
havior. In SSH, performing a rekey procedure in the “higher” connection
layer should not influence actions in that layer. Therefore, in the generated
state model, performing a rekey from a certain state in a higher layer should
always return to that state upon finishing the procedure. In our model, per-
forming a rekey from the “authed”, “has channel” and “has pty” states ends
in the “authed rekeyed”, “has commands” and “has commands pty” states
respectively.

6.4 Security property coverage

As explained in Section 4.3, we have not formalized a security property for
the connection layer. This however, means that the section of the state ma-
chine where some interesting behavior happens (see Section 5.2 and Section
6.3) is not covered by a security definition. From observing the problems
we have found we have not found any significant security related problem,
however, observing by eye for mistakes goes against the goal of this work,
and therefore leaves us with a weakness in our models.
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Chapter 7

Conclusion

In this thesis we improved upon Verleg’s [18] thesis by using a more sys-
tematic methodology. By doing this, we have shown that the already useful
protocol state fuzzing can also produce results with a measure of confidence.
The improvements we have made have not substantially lengthened learn-
ing time and haven’t substantially complicated the process of protocol state
fuzzing. We therefore conclude that, as a whole, we have improved upon
the work by Verleg, and have made an attempt to create more formal and
trustworthy testing methods.

We have trained a model of the entire SSH-protocol, whereas Verleg could
only learn its three contituent layers separately due to timing concerns. The
model contains the desired behavior of SSH. Therefore, we have been able
to successfully train all three layers of SSH simultaneously. Our model uses
the entire training alphabet for all three layers, rather than a specialized
alphabet per layer. Because of this, our model can contain information not
present in Verleg’s models. Therefore, we have improved upon Verleg’s work
by learning the three layers of SSH in a single model.

By using a more advanced testing method, we have gained a measure of
confidence in our generated model. Either our model is representative of the
SSH implementation, or the real model is at least two states larger. Using a
random walk algorithm does not give this measure of confidence. We have
therefore improved upon Verleg’s work by using this testing algorithm.

We have checked two LTL properties with our model. These proper-
ties are formalized from the security definitions for SSH defined by Verleg.
According to NuSMV, both properties hold for our generated model. We
have shown an application of using model checking to verify properties of
a model generated through protocol state fuzzing. Through model check-
ing we have gained a measure of confidence for the conclusions made about
our model. This confidence is not present in models, when they are purely
checked by hand. Therefore, we have improved upon Verleg’s work by using
model checking for the generated model.

21



Possible future work is extending our setup with different implementa-
tions of SSH, similar to Verleg’s original work. It is also possible to extend
the tested properties and test different aspects than security.

Some parameter abstractions are included in our setup, these can be
removed, and used in learning. This would require us to use more advanced
learners, which can infer state machines with parameters, since Mealy ma-
chines cannot do so. For example, various parameters are negotiated in the
key exchange protocol, these could be extracted. SSH also uses a sequence
number which could be extracted.

Verleg’s thesis contains additional suggestions for further work that re-
main relevant: Extending the alphabet, using different SSH settings or im-
plementing additional SSH behavior. Some of the suggestions Verleg makes
are related to decisions they took to keep learning times shorter, applying
the suggestions would extend learning time. A different direction would be
to attempt to shorten learning time, this makes it feasible to run the testing
algorithm with higher parameters, resulting in more confidence in learned
models. An example for this is to create two models, one with the full alpha-
bet, and one with a limited alphabet. The model with the limited alphabet
can be tested more thoroughly. It is then possible to find counterexamples
for the full model by removing all transitions that contain words not present
in the limited alphabet, and checking whether the result and the limited
model are equal.
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