BACHELOR THESIS
COMPUTER SCIENCE

h

G.
%AQ Ny |
orrer

O’*IINe-‘?@

RADBOUD UNIVERSITY

Recognizing Text in the Wild

Author: First supervisor/assessor:
Twan Cuijpers dr. Twan van Laarhoven
s4378911 T.vanLaarhoven@cs.ru.nl

Second assessor:
prof. dr. Tom Heskes
tomh@cs.ru.nl

April 3, 2017

Abstract

Numerous applications are possible for system that is able to detect and
recognize text in natural scene images. Extracting text from scene images
is harder than document images because of varying fonts and backgrounds.
The system in this thesis is based on work described by Wang, Wu, Coates
and Ng in a paper and by Wu in a thesis. A convolutional neural network
was used by Wang et al. for both detection and recognition of characters in
an image.

Compared to Wang et al. a number of changes were made. The networks
for detection and recognition do not use unsupervised learning of features.
Also, batch normalization was added to both networks. An augmented
dataset was made for training the character recognition classifier. To sim-
plify the system, language model and lexicon were omitted. As experiment
the CNNs were replaced with residual networks. Using a residual network
for character recognition, a higher test accuracy was achieved than the ones
mentioned by Wu.

Contents

B Prelminarics

2.1 Shliding window detector|

2.2 Non-maximum suppression|

[B_Researchl

13.1.1 Shiding window detector|

3.1.2 Text detection CNN|

[3.1.3 Non-maximum suppression|

[3.2 Text recognition|

[3.2.1 Text recognition CNN|

[3.2.2 End-to-end system|

13.3.1 TCDAR 2003 Robust Character Recognition|

13.3.2 TCDAR 2003 Robust Reading and Text Locating| . . .

3.3.3 Street View Textl

3.4 Experiments|. .

5 Conclusions|

10
11
12
13
14
15
15
15
16
16
16

18
19

21
21
22

23

Chapter 1

Introduction

Scene text recognition is the task of recognizing text in scene images. Scene
images are images from the environment. A well known source of scene
images is the service Google Street View. Existing OCR (Optical Character
Recognition) solutions do not work well on scene images. OCR solutions
are typically focused on recognizing text from document images with black
characters in certain fonts on a white background. Natural scene images
can differ from document images in used fonts, text orientation, shadows,
backgrounds and other disturbing effects. Because of the different nature in
which the text occurs, text recognition solutions for document images like
Tesseractﬂ do not perform well on scene images [20].

Various applications are possible for a system that is able to read text
in scene images. In transportation such a system could be used to assist
drivers by reading text on traffic signs. The ability to read vehicle number
plates can be used by law enforcement or by the proprietors of parking areas.
An other application could help visually disabled persons by reading text
in their vicinity and passing it to a text-to-speech solution to help them
perceive the environment.

The goal of this thesis is to partially reproduce a system used for reading
scene text and try to improve it. The system described in this thesis is based
on a paper written by Wang, Wu, Coates and Ng [2I] and a thesis by Wu
[22]. The thesis by Wu provides a more detailed description of the system
that is also described in the paper. To solve the problem a sliding window
detector using multiple scales is used on an image in grayscale. A convo-
lutional neural network is used to determine whether a window contains
text or not. The locations of the windows containing text serve as input
for the non-maximum suppression. Non-maximum suppression reduces the
number of windows when the overlap is above a given threshold. For char-
acter recognition another convolutional neural network is used. The input
for this CNN is the set of bounding boxes after performing non-maximum

"https://github.com/tesseract-ocr

https://github.com/tesseract-ocr

suppression. This system is able to read ‘text in the wild’ because the clas-
sifiers are able to detect and recognize characters from images with different
fonts, backgrounds and lighting conditions. Since thirteen scales are used
for the detector, it is likely that the character locations in the image will
be considered. The system in this thesis differs from the one by Wang et
al. [2I] on some points. Some pre-processing steps and the language model
were left out in this thesis. This thesis adds the use of batch normalization
and experiments with deep residual networks.

For building and training both convolutional neural network classifiers
the Python library Lasagndﬂ was used. Lasagne is based on Theancﬂ a
Python library for efficient computations on large arrays. Training convo-
lutional neural networks requires a lot of computing power. Often graphics
processing units (GPUs) are used for this since they are faster than cen-
tral processing units (CPUs) at performing vector and matrix operations in
parallel.

The second chapter of this thesis discusses the background of the used
methods. Chapter 3 describes how the system performs both text detection
and text recognition using methods from the second chapter. Chapter 4
discusses the literature of text recognition in natural scene images. The
fifth chapter presents the conclusions of this thesis.

“https://github.com/Lasagne/Lasagne
3https://github.com/Theano/Theano

https://github.com/Lasagne/Lasagne
https://github.com/Theano/Theano

Chapter 2

Preliminaries

This chapter contains descriptions of methods that were used to read ‘text
in the wild’.

2.1 Sliding window detector

A sliding window detector is a method used for the detection of objects in
images. The method uses a fixed size window and a classifier [22]. The
window slides over an image both horizontally and vertically. A classifier is
trained to detect a certain type of object. On each position of the window,
the classifier determines whether a object has been detected.

A sliding window detector can make use of multiple scales. The scales
are applied to the image over which the window moves and the size of the
window stays fixed. Using multiple scales is useful for detecting objects in
an image whose dimensions do not match with the fixed size window. In
the case of an object, that is larger than the window size, after rescaling the
image with a certain scale smaller than 1.0 the object fits into the window.
When the object is a lot smaller than the window size, rescaling the image
with a scale larger than 1.0 helps to make the object fit better into the
window. There is a possibility that when the object is too small or too large
for the window, that the classifier will not be able to detect the object inside
the window. For all selected scales the sliding window detector runs over the
image resized with that scale. To decrease the running time of the sliding
window the step size, at which the window slides over the image, can be
increased.

2.2 Non-maximum suppression

Non-maximum suppression (NMS) is a post-processing method used in com-
puter vision [I7]. The input for this post-processing method is the response
map of a classifier used for object detection. The classifier that is used
assigns a score to each window [22]. Reducing the number of overlapping
windows is the goal of applying non-maximum suppression. The result of
NMS is a smaller set of bounding boxes.

When a sliding window runs over an image, the same object can occur
in multiple windows. The same object can be in the window when it slides
a few pixels in all directions. Ideally there is only one bounding box per
object in the image.

A common version of NMS starts with the highest scoring window [17].
Windows that are very close to the highest scoring window, and that do
not have a maximal score, are suppressed. This ensures that a single object
that previously occurred in multiple windows, now can only occur in a single
bounding box. Whether a window is suppressed depends on the value of a
threshold. Until there are no windows left, the window with the highest
score is selected and its close neighbors are suppressed. Figure 2.1 shows an
example of non-maximum suppression.

Figure 2.1: Desired effect of applying non-maximum suppression. Left: im-
age with multiple boxes around the same object. Right: after applying NMS
a single bounding box is left.

2.3 Artificial neural networks

The concept of artificial neural networks (ANNs) is based on biological neu-
rons in brains [I§]. The mathematical model of a neuron was made by
McCulloch and Pitts in 1943. An artificial neural network is a network of
nodes and links between them. The links in an ANN have weights associated
with them. A node, also known as unit, has both incoming and outgoing
links. The input function of a node is the sum of the input values multiplied
with the weights. An activation function is a nonlinear function that de-
termines the output values given the sum of weighted inputs. Examples of
activation functions are step functions, sign functions and sigmoid functions.

A feed-forward neural network is a kind of artificial neural network where
the outputs of a previous layer are the inputs of the next layer. The links only
go in one direction; towards the next layer in the network. In a multilayer
network the input layer is the layer with input units and the output layer
consists of output units. If there are units between the input and output
units, these units are called hidden units [16]. These hidden units reside in
hidden layers. Since feed-forward networks do not contain cycles previous
outputs have no influence on the computations. Networks that do contain
cycles are so-called recurrent neural networks. The presence of cycles makes
performing calculations less straightforward.

A simple kind of ANN is the perceptron; it consists of a single layer and
is feed-forward [I8]. As action function it uses a step function. Because the
perceptron does not have hidden layers, the functions it can represent are
limited. An example of function, that cannot be represented by a perceptron,
is the XOR function [I6]. In order to be represented by a perceptron, a
function has to be linearly separable.

In order to train an artificial neural network, values for the weights of
links between units and other parameters have to be found. The goal is
finding values that minimize the error function on the training set. To
find the minimum of the error function gradient descent is used. Gradient
descent finds new weights and the step size at which this happens is called
the learning rate. In networks that are more complex than perceptrons, there
are multiple weights between input and output. Back-propagation learning
is a method that looks at the outputs and tries to minimize the error by
going backwards in the network to determine the weights that contributed
to the error [I8]. After determining the responsible weights, their values will
be updated.

2.4 Convolutional neural networks

Convolutional neural networks (CNNs or ConvNets) are a kind of multilayer
feed-forward neural network [22]. They are based on how the visual cortex
in certain animals works [I4]. The first uses of CNNs are from the early 90’s.
CNNSs are mainly used on images and are not affected by small transforma-
tions on the input images [2]. A CNN consists of a combination of certain
kinds of layers. A neuron in a layer of a CNN has an area with units from
the previous layer as input [I2]. A receptive field is the area in a layer that
serves as input for a neuron in the next layer. In a CNN these receptive fields
are local. This means that not all units in a layer serve as input for every
unit in the following layer. Features found in early layers will be combined
in later layers of the network. For training CNNs back-propagation can be
used [2].

Convolutional neural networks are composed of the convolutional layers,

sub-sampling layers and fully-connected layers. A convolutional layer has a
number of filters, also called kernels. Filters are sets of weights used to make
feature maps [13]. Those feature maps are areas that share the same set of
weights. The same operation will repeatedly be performed on different parts
of the input by the units of a feature map [12].

Sub-sampling or pooling layers are layers that perform a sub-sampling
operation. The use of sub-sampling reduces the precision of where features
were detected because the resolution of the feature map is reduced [13].
Pooling layers are placed after convolutional layers [2]. In pooling layers the
output from the previous layer is taken and rectangular areas, ‘pools’, are
taken comparable to a sliding window. The stride defines what step size is
used to take the rectangular areas. The operation that is performed on the
units in the rectangular areas depends on the kind of pooling that is used.
When ‘max pooling’ is used the maximum of the units in the area is taken.
In the case of ‘average pooling’ the results are the averages of units in the
areas. Figure shows an example of pooling.

3
1
2
)

N | W N

1
1
)
6

IS G B OV

Figure 2.2: An example of ‘max pooling’. The left table is the output from
the previous layer. The two other tables are the result of performing ‘max
pooling’ with pool shape 2 by 2. The center table uses stride 1 and the right
table stride 2.

Fully-connected layers are used as final layer in convolutional neural
networks [2]. The number of outputs of the fully-connected layer is equal
to the number of classes. Since all units of this layer are connected with all
units from the previous layer, a large number of weights are involved.

The architecture of an CNN is description of what layers a network
consists and their parameters. This includes the number of convolutional
layers followed by pooling layers [2]. For convolutional layers the number of
filters is specified and for subsampling layer the type of pooling with pool
shape and stride can be specified. Figure shows an example ConvNet
architecture.

Batch normalization is a technique that can be used on deep neural
networks to reduce ‘internal covariate shift’, a problem which makes training
the network harder [9]. By applying normalizing on batches the initialization
becomes less important and training the classifier will take fewer iterations.
When batch normalization is applied to a network, higher learning rates can
be used.

Residual networks (ResNets) are a kind of convolutional neural network

C1: foat C3: f. maps 16@10x10
: feature maps S4: f. maps 16@5x5
INPUT 6@28x28 ps 16@5x
32x32 S2: f. maps

6@14x14

\
‘ Full conﬁection | Gaussian connections

Convolutions Subsampling Convolutions ~ Subsampling Full connection

Figure 2.3: The architecture of LeNet-5. LeNet-5 is a convolutional neural
network used for digit recognition [13].

with a large number of layers. In their work He et al. [7] added connections
from a layer to another layer skipping layers in between. These shortcut
connections add the output of a layer to the other layer. A residual block is
a block of two convolutional layers with filter sizes of 3 by 3 and a shortcut
connection skipping both convolutional layers. Batch normalization is used
after every convolution. The number of layers of a residual network depends
on how many times the residual blocks are repeated [4]. Problems usually
associated with training networks consisting of a large number of layers do
not occur when using the shortcut connections. In their paper He et al.
[7] describe image recognition experiments with networks ranging from 18
to over 1000 layers using ImageNet and CIFAR-10 datasets. In a follow-
up paper He et al. [§] describe improvements of their previous work about
residual networks.

Chapter 3

Research

This chapter describes the approach used for reading text from natural scene
images. The chapter is divided in sections about detection and recognition
of text, what datasets were used and the experiments that were conducted.

3.1 Text detection

For text detection a sliding window was used with a convolutional neural
network as classifier. The approach is based on the one described by Wang
et al. and Wu and differs from it on a few points. As experiments different
datasets and classifiers were used for the detection of text in images.

3.1.1 Sliding window detector

The sliding window detector used in this thesis uses a window of 32 by
32 pixels. The source image below the window is converted from color
to grayscale before the window slides over the image. This is because the
system in this thesis is based on that by Wang et al. [21], which makes use of
grayscale images. An advantage of using grayscale images over color images
is the smaller amount of data. A disadvantage is the loss of information
since the three color channels are converted into one grayscale channel.

A sliding window with multiple scales is used to detect characters of
varying size. Thirteen different scales are used for the image ranging from
0.1 to 1.5. Every step the detector moves one pixel, so all candidate windows
of 32 by 32 pixels are considered at each of the thirteen scales. Compared
to sliding the window one pixel per step moving a larger number of pixels
at a time is faster but yields less accurate response maps. Figure shows
an image at different scales with a window.

Figure 3.1: Part of an image from the Street View Text dataset [20] on the
left at scale 0.3 and on the right at 0.7. The red square in the top-left corner
is the window of 32 by 32 pixels. On the left, using scale 0.3, the individual
characters on the storefront fit into the window. At scale 0.7 the characters
do not fit into the window.

3.1.2 Text detection CNIN

The convolutional neural network used for text detection has two classes;
text and no-text. The architecture of this network is identical to the network
used by Wang et al. [2I]. As input the CNN receives grayscale images of
32 by 32 pixels, which is the size of the window. The first convolutional
layer with 96 filters has an output of 25 by 25 by 96. Batch normalization is
applied on this layer. A pooling layer comes after the first convolutional layer
and performs average pooling. This results in a 5 by 5 by 96 output which
serves as input for the next convolutional layer. This second convolutional
layer, with 256 filters, also has batch normalization applied to it. Its output
is of shape 4 by 4 by 256 and serves as input for an average pooling layer.
At the end a fully-connected layer is located for this binary classification.
Figure [3.2] shows the architecture of the convolutional neural network that
was used.

32x32 25%25%96 5x5x96 4x4x256 2x2x256

[Non-Text]
B B U B &@m
- .

L [Text]

Convolution Convolution Classification
Average Pooling Average Pooling

Figure 3.2: The CNN used for text detection by Wang et al. [21I]. Image
taken from their paper.

While the architecture of the network is identical, the method for learn-

10

ing the classifier in this thesis differs from Wang et al. in their paper. For
both convolutional neural networks Wang et al. make use unsupervised pre-
training [22], something that is absent in this thesis. They use an algorithm
to extract features from the training dataset and use them as filters in the
first convolutional layer of the networks. This thesis adds batch normaliza-
tion to the classifiers for detection and recognition.

The detector classifier by Wang et al. was trained on a combination of
multiple datasets. This combination included images from the ICDAR 2003
Robust Character Recognition dataset, the part of the Chars74K dataset
E|With characters from the Latin alphabet and images they generated them-
selves.

The network in this thesis was trained on a different combination of
datasets with images of centered characters and images without centered
characters. More about this combination of datasets can be found in sub-
section [3.4.1] Figure [3.3] shows the response map generated by the CNN
trained on this dataset.

Figure 3.3: An image from Street View Text dataset at scale 0.6 and the cor-
responding detector response map at scale 0.6. White parts in the response
map indicate the presence of text.

3.1.3 Non-maximum suppression

To retrieve boxes from the detector response maps the method and imple-
mentation by Wang et al. [2I] were used. The result of the sliding window
detector with the text detection network from subsection B.1.2] is thirteen
response maps. Each of these thirteen response maps, one for each scale
of the sliding window detector, contains the scores from the text detection
CNN classifier. In the response map a high score indicates the presence of
a centered character. Because most lines of text are horizontally oriented,
for all rows in a response map the peak scores will be identified. Depend-
ing on the number of peaks, how high the peak scores are and the distance

"http://www.ee.surrey.ac.uk/CVSSP/demos/chars74k/

11

http://www.ee.surrey.ac.uk/CVSSP/demos/chars74k/

between them, a line will be identified as containing text when the average
height of the peaks in close proximity to each other exceed a threshold. To
determine the width of a text area, the outermost peaks are used. In words
the distances between two characters are roughly the same. When the sepa-
rations between peaks vary, there probably is space between the characters
and the two text segments receive separate bounding boxes. All bounding
boxes have a score attached to them that is determined by averaging the
scores of the peaks inside that box.

When the bounding boxes for all thirteen scales have be found, non-
maximum suppression is applied to the set of all boxes. When the over-
lap between two bounding boxes in NMS is above a certain threshold, the
bounding box with the lowest score will be suppressed. The bounding boxes
that remain are the local maximums in the sets of boxes. Ideally a text
segment that appears in multiple boxes only appears in a single box after
non-maximum suppression has been applied to the set of bounding boxes.
This to prevent that one text segment in the input image of the system
ends up as multiple text segments in the output of the system. Figure [3.4]
shows boxes that were found. Changes in the methodology for finding boxes
and additional post-processing steps could help improve the quality of found
boxes.

R
 ENTRAL

]

Figure 3.4: Boxes found in an image from the Street View Text dataset. A
number of boxes do not surround text. Boxes on the storefront contain indi-
vidual characters instead of the desired words ‘GRAND’ and ‘CENTRAL’.

3.2 Text recognition

Like Wang et al. a CNN was used in this thesis for recognizing text. The end-
to-end system combines the sliding window, the character detector classifier,
non-maximum suppression and the network for character recognition.

12

3.2.1 Text recognition CNN

For recognizing characters a 62 class convolutional neural network is used.
The 62 classes are the ten digits and the characters of the Latin alphabet in
both lowercase and uppercase. The architecture of this classifier is similar
to the architecture of the network used for determining whether a window
does contain text, that is shown in figure Just like the other network
the input is a grayscale image of 32 by 32 pixels. This network for text
recognition differs from the network for text detection in a few ways. On
both convolutional layers of the network the number of filters is different.
The first layer has 115 filters compared to 96 on the first convolutional
layer of the detection CNN. On the second convolutional layer there are 720
filters instead of 256 filters. Wang et al. gave the network for recognition a
higher number of filters than the network for detection because of the higher
number of classes [22]. Like in the previous CNN batch normalization was
used on both convolutional layers and the unsupervised pretraining was
omitted.

The classifier was trained on an augmented version of the ICDAR 2003
Robust Character Recognition dataset. More about the augmented set can
be found in subsection Like the classifier for character detection,
Wang et al. trained their classifier for character recognition on the ICDAR
2003 dataset but also on the Chars74K dataset and a synthetic dataset they
made. For training both classifier they used around 100.000 images [22].
Table shows a comparison of accuracies for character recognition.

Model Accuracy
Wang et al. [19)] 64%
Coates et al. [3] 81.7%

Wu [22] 83.9%
Alsharif et al. [1] | 86.0%

This work 78.6%

Table 3.1: Accuracies on ICDAR 2003 Robust Character Recognition test
set.

The test accuracy of this work in table[3.T]is lower than Wu, on which it is
based. A possible explanation for this difference is the data used for training
the classifiers. The classifier in this work was trained on an augmented
version of the ICDAR 2003 Robust Character Recognition dataset. Wu
trained his CNN classifier on the ordinary version of that dataset and two
other datasets. Because the augmented set is based on a small set of images
with a number of slight changes made to them, the variation in the character
images is not much larger than in the original set. Possibly the combination
of datasets used by Wu to train the classifier results in a better classification

13

because of the more varied training material.

The CNN in this work does not use the unsupervised pretraining steps
that Wu implemented to simplify the method. Therefore no pretraining
results are used in the first convolutional layer of the network. Further
small differences in the implementation may have contributed to the lower
accuracy on the test set.

Section [3.4]features descriptions of experiments regarding character recog-
nition. This includes training the CNN classifier on augmented datasets and
using residual networks instead of a convolutional neural network.

3.2.2 End-to-end system

The end-to-end system combines the previously discussed sliding window
detector with both convolutional neural networks. The input of the end-to-
end system is an image file depicting a natural scene. Running the sliding
window detector with the character detection classifier results in detector
response maps for all thirteen scales. This part of the end-to-end pipeline
was implemented in Python using the Lasagne library for the CNNs. For
training the character detector a GPU was used.

The second part of the system receives detector response maps as input
and tries to identify text lines. Boxes of text segment are generated from the
response maps for all scales. Non-maximum suppression is applied to the set
of bounding boxes for all scales to get rid of largely overlapping bounding
boxes. For this part the MATLAB implementation made and published by
Wang et al. [2I] is used.

The third and last part of the end-to-end system receives the bounding
boxes coordinates of the text segments as input. Separate images are made
from these bounding boxes and resized to a height of 32 pixel while main-
taining aspect ratio. A window of 32 by 32 pixels slides of these images
and the character recognition classifier is used. Like the first part of the
end-to-end system, the implementation was made in Python using Lasagne
and a GPU was used for training.

As opposed to the system Wang et al. and Wu no language model
or lexicon was used. The end-to-end output is determined solely by the
sliding window in the third part. No post-processing techniques were used
to restrict the output to a certain list of strings.

14

3.3 Datasets

This section contains descriptions of datasets that were used in this thesis.
These datasets or parts of these datasets were used for training the classifiers
for detecting and recognizing characters.

3.3.1 ICDAR 2003 Robust Character Recognition

ICDAR 2003 Robust Character Recognition is a one of the three ICDAR
2003 Robust Reading competitions ﬂ The other categories being ‘Robust
Reading and Text Locating’ and ‘Robust Word Recognition’. The Robust
Character Recognition dataset is divided in a test set and training set with
both above 5000 images of characters. Images in the set are in color and
have varying fonts, text colors, backgrounds and orientation.

The dataset used for character detection, from subsection [3.4.1], con-
tains training data from this dataset. An augmented version of the training
set was used for learning the text recognition classifier. Subsection de-
scribes an experiment involving this dataset. The test set of this dataset was
used to evaluate the performance of character recognition. Table shows
a comparison of test accuracies from this dataset and figure [3.5| contains
examples of images from the ICDAR 2003 Robust Character Recognition

aET =G0

Figure 3.5: Characters from the ICDAR 2003 Robust Character Recognition
dataset.

3.3.2 ICDAR 2003 Robust Reading and Text Locating

This dataset is also from the ICDAR 2003 Robust Reading competitions.
The dataset consists of color images from objects with text on them. It is
divided in a test set with 251 images and a training set with 258 images. All
images come with coordinates to indicate what areas of the image contain
text. The images in this dataset mostly of small objects and signs. Parts of
this set were used to produce the dataset for character detection described
as an experiment in section Figure [3.6| contains some image from the
Robust Reading and Text Locating dataset.

Zhttp://www.iapr-tcil.org/mediawiki/index.php/ICDAR_2003_Robust_Reading_
Competitions

15

http://www.iapr-tc11.org/mediawiki/index.php/ICDAR_2003_Robust_Reading_Competitions
http://www.iapr-tc11.org/mediawiki/index.php/ICDAR_2003_Robust_Reading_Competitions

SPRINKLER
VALVE
CHAMBER

Figure 3.6: Images from the ICDAR 2003 Robust Reading and Text Locat-
ing dataset.

3.3.3 Street View Text

The Street View Text (SVT) datasetﬂ by Kai Wang et al. [20] is a dataset
containing images taken from Google Street View. It contains 350 color
images with annotations. For each image there is a lexicon of words and a
coordinates of bounding boxes in which some of the words from the lexicon
occur. The text in images is mostly on storefronts, house numbers and
banners. Like the previous dataset, parts of this dataset were used to learn
a classifier for character detection in subsection Figure shows a
few examples of images from the Street View Text dataset.

Figure 3.7: Images from the Street View Text dataset.

3.4 Experiments

This section describes the experiments that have been conducted. The focus
of first two experiments is on different datasets for both character detection
and character recognition. Residual networks, mentioned in the end of sec-
tion [2.4] were used for both detection and recognition in the other two
experiments.

3.4.1 Dataset for character detection

For character detection a dataset was made from the three datasets described
in section The text instances in the dataset are from the augmented
version of the ICDAR 2003 Robust Character Recognition dataset described

3http://vision.ucsd.edu/~kai/svt/

16

http://vision.ucsd.edu/~kai/svt/

in No-text instances in the dataset are patches of 32 by 32 pixels, the
size of the sliding window, taken from both the ICDAR 2003 Robust Reading
and Text Locating and the Street View Text dataset. Both datasets come
with coordinates describing rectangles with text in them. A sliding window
was used on the images of these datasets and the patches, that did not
intersect with the rectangles containing text, were used as no-text instances.
Using this method both training set and test set were generated.

A toy training dataset for character detection was provided by Wang et
al. and Wu in a package with parts of source code for their system. This
toy dataset contains 15000 32 by 32 grayscale images. Figure [3.8| shows a
response map using the toy dataset and the dataset made from three sets
mentioned in section B.3

‘e ifth Ave | '
=~ LENSCRAFTERS

Figure 3.8: An image taken from the Street View Text dataset at scale 0.6,
the response map using the small dataset by Wang et al. and Wu for training
and the response map using the dataset from this subsection. White parts
in the response map indicate the presence of text. The first and third image
were taken from figure [3.1

17

The first response map, using the dataset by Wang et al. and Wu,
contains more white areas than the second response map and the white
areas are less concentrated. The convolutional neural network trained on
the combination of datasets achieved a test accuracy of 83.5% compared to
79.8% by the CNN trained on the toy dataset.

3.4.2 Augmented dataset for character recognition

Data augmentation was used to create a larger training dataset for the
character recognition classifier from subsection [3.2.1] This dataset is based
on the ICDAR 2003 Robust Character Recognition dataset described in
subsection The ICDAR 2003 Robust Character Recognition training
set consists of 5980 color images of characters. The goal of the augmented
dataset is to train a better performing classifier by using a larger training
set. All images from the ordinary training set are also in the augmented
training dataset. Three different operations were performed on images of
the original set; rotations, shifts and inverting the grayscale values. Images
were shifted a few pixels up, down, left or right. Rotations performed on the
images are one, two or three degrees either clockwise or counterclockwise.
With 95680 images the augmented training set is sixteen times the size of
the original training dataset.

The test accuracy of the CNN when trained on the original ICDAR
2003 Robust Character Recognition dataset is 69.0%. Using the augmented
version resulted in a test accuracy of 78.6%, the value mentioned earlier
in table The larger amount of training data resulted in an increased
accuracy by almost ten percent.

3.4.3 Text detection with residual networks

Instead of using the detector CNN architecture from subsection [3.1.2] a
residual network was used in this experiment. The reason for this is that
ResNets, mentioned in section about CNNs, were successfully used by
He et al. [7] for object recognition on the CIFAR-10 and ImageNet datasets.
For both training and testing the detection dataset from subsection3.4.1|was
used. The ResNet implementation was based a replication of the work by
He et al. on the CIFAR-10 dataset from the Lasagne Recipesﬂ a collection
of examples for the Lasagne library in Python. Residual networks with 3, 5,
7 and 9 residual blocks with respectively 20, 32, 44 and 56 layers were used.
The CNN originally used for detection had 83.2% accuracy on the test set.
All four residual networks achieved test accuracies of around 83.6%. The use
of ResNets for character detection appears to be only a minor improvement
over the convolutional neural network.

“https://github.com/Lasagne/Recipes

18

https://github.com/Lasagne/Recipes

Figure [3.9] shows that character on the storefront were detected both by
the convolutional neural network and the residual network. The response
map of the residual network has a smaller number of white spots, places
classified as text, than the other response map.

Figure 3.9: An image from the Street View Text dataset, the response map
using a CNN and using ResNet-20 (20 layers; 3 residual blocks) at scale 0.4.

3.4.4 Text recognition with residual networks

As an alternative to the CNN architecture from subsection a residual
network was used for text recognition. Like the previous experiment with
ResNets, the implementation was based on an example from the Lasagne
Recipes. Table contains the achieved testing accuracies with the CNN
and the four residual variants.

Model Accuracy
CNN 78.6%
ResNet-20 85.0%
ResNet-32 86.4%
ResNet-44 | 86.4%
ResNet-56 | 86.4%

Table 3.2: Accuracies on ICDAR 2003 Robust Character Recognition test
set. Accuracy for CNN model was taken from table

19

All residual networks perform better on the test set than the convolu-
tional neural network. The accuracies on the ICDAR 2003 Robust Character
Recognition set for the ResNets with 32, 44 and 56 layers are higher than
all other entries listed table 3.1l

20

Chapter 4

Related Work

The task of recognizing text in natural scene images can be split in two
parts; detection and recognition. In this chapter different approaches to
text detection and text recognition from the literature are discussed.

4.1 Text detection

The goal of text detection is to find areas in an image in which text occurs.
Three commonly used methods for detecting text in images are described
below.

One method for detecting objects in general is the sliding window detec-
tor. It uses a fixed size window that slides over the entire image making
small steps and a classifier to determine whether the window contains an
objects. The image over which the fixed size window moves can be resized
using multiple scales to detect objects with a size different from the window
size. Different kinds of classifiers were used with a sliding window for text
detection. Both Jaderberg et al. [1I] and Wang et al. [21] used a CNN
with two classes, text and no-text, to determine whether the current win-
dow contains a centered character. Instead of applying the sliding window
on the source image, like Jaderberg et al. and Wang et al. did [21], HOG
features can be used. HOG features, Histogram of Oriented Gradients, are
used to describe the shape of objects in images. Mishra et al. [15] and Wang
et al. [19] respectively trained a SVM classifier and random ferns on HOG
features.

Another method used for text detection is Maximally Stable Extremal
Regions (MSER). Extremal regions in images are areas that differ from other
areas in intensity [I]. An advantage of this method is the fast computation
of these extremal regions compared to a multiscale sliding window. Alsharif
et al. used MSER to retrieve possible locations of text in the image and
cluster them to find candidate lines of text.

21

Stroke Width Transform (SWT) is text detection method that tries to
find parts that contain text based on stroke width [5]. Unlike the sliding
window detector and MSER, SWT is a text specific detection method. SWT
tries to determine for each pixel in an image what the width of the stroke
containing that pixel is. These stroke widths are used to derive what areas
contain text since characters usually have a constant stroke width opposed
to other elements in the image. Jaderberg et al. make use of SWT for text
detection [I1] in a system for making annotations of images on Flickr.

4.2 Text recognition

The goal of text recognition is to identify characters and to form words and
sentences. In this section various approaches found in the literature are dis-
cussed.

The output of the text detection phase usually is a set of bounding boxes
around parts of text. Non-maximum suppression (NMS) was used to lower
the number of boxes before recognition by Alsharif et al. [I], Jaderberg et
al. [I1I] and Wang et al. [21].

Different classifiers were used to recognize characters in the literature.
Most classifiers take an image of a character as input. For a comparable
task, recognizing numbers in images from Google Street View, Goodfellow
et al. [6] made use of convolutional neural networks for both localization
and recognition of numbers. Both Wang et al. [21I] Alsharif et al. [I] use a
CNN classifier with character images as input for character recognition.

In their paper Jaderberg et al. [I0] take word images as input for a
CNN instead of character images. They trained the CNN on a synthetic
dataset with images of around 90000 different English words from Hunspel]ﬂ
Other systems, that take character images as input, form words out of the
detected characters. To form these words models are used in conjunction
with lexicons. A statistical model was used by Mishra et al. [15] to form
words. Wang et al. [21] used beam search to obtain the words from a given
lexicon.

"nttp://hunspell.github.io/

22

http://hunspell.github.io/

Chapter 5

Conclusions

The aim of this thesis was to locate and recognize ‘text in the wild’. This
problem is more complex than Optical Character Recognition because of less
predictable fonts, image backgrounds and character orientation. For this a
partial reproduction of the system described by Wang et al. [2I] and Wu [22]
was made. This work differs from the work by Wang et al. and Wu in several
ways. Both the CNN for character detection and for character recognition
in this thesis do not make use of unsupervised prelearning and were not
trained on the datasets used by Wang et al. and Wu. Batch normalization,
a method that should make learning networks easier, was added to both
CNNs in this work. And in this work no beam search and lexicon are used
to retrieve the end-to-end results.

For character detection a dataset was made that is based on three other
datasets. The accuracies of CNNs and ResNets trained on this dataset are
around 83%. The performance of the CNN used for detection could not be
compared to Wang et al. because their test dataset and test accuracy were
not published.

For finding bounding boxes with text the approach and implementation
by Wang et al. and Wu was used. This approach, that assumes a horizontal
orientation of the text, works reasonably with method for text detection.

The character recognition CNN classifier achieves 78.6% accuracy on
the ICDAR 2003 Robust Character Recognition test set, which is lower
than the 83.9% achieved by Wu [22]. This lower score can be explained by
different datasets for training, lack of unsupervised pretraining and possible
implementation differences. In the last experiment, using residual networks
for character recognition, the highest accuracy was 86.4%. This exceeds the
accuracy of 86.0% by Alsharif et al. [I] mentioned in table[3.1] For character
recognition residual networks are a good alternative to the CNN classifier.

A possible area for improvement is in the retrieving text segment bound-
ing boxes from response maps. Adding a language model and lexicon to
restrict the output would make comparing end-to-end results possible.

23

Bibliography

1]

Ouais Alsharif and Joelle Pineau. End-to-End Text Recognition with
Hybrid HMM Maxout Models. arXiv preprint arXiv:1810.1811, 2013.

Christopher M Bishop. Pattern Recognition and Machine Learning.
Springer, 2006.

Adam Coates, Blake Carpenter, Carl Case, Sanjeev Satheesh, Bipin
Suresh, Tao Wang, David J Wu, and Andrew Y Ng. Text Detection
and Character Recognition in Scene Images with Unsupervised Feature
Learning. In 2011 International Conference on Document Analysis and
Recognition, pages 440-445. ITEEE, 2011.

Mohammad Sadegh Ebrahimi and Hossein Karkeh Abadi. Study of
Residual Networks for Image Recognition.

Boris Epshtein, Eyal Ofek, and Yonatan Wexler. Detecting text in
natural scenes with stroke width transform. In 2010 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 2963—
2970. IEEE, 2010.

Ian J Goodfellow, Yaroslav Bulatov, Julian Ibarz, Sacha Arnoud, and
Vinay Shet. Multi-digit Number Recognition from Street View Im-
agery using Deep Convolutional Neural Networks. arXiv preprint
arXi:1312.6082, 2013.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Resid-
ual Learning for Image Recognition. arXiv preprint arXiv:1512.03385,
2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity
Mappings in Deep Residual Networks. In Furopean Conference on Com-
puter Vision, pages 630—-645. Springer, 2016.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerat-
ing deep network training by reducing internal covariate shift. arXiv
preprint arXiv:1502.03167, 2015.

24

[10]

[11]

[12]

Max Jaderberg, Karen Simonyan, Andrea Vedaldi, and Andrew Zisser-
man. Reading Text in the Wild with Convolutional Neural Networks.
CoRR, abs/1412.1842, 2014.

Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Deep Fea-
tures for Text Spotting. In Furopean Conference on Computer Vision,
pages 512-528. Springer, 2014.

Yann LeCun and Yoshua Bengio. Convolutional Networks for Images,
Speech, and Time-Series. In The Handbook of Brain Theory and Neural
Networks. MIT Press, 1995.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278-2324, 1998.

Yann LeCun, Koray Kavukcuoglu, and Clément Farabet. Convolutional
networks and applications in vision. In Circuits and Systems (ISCAS),
Proceedings of 2010 IEEFE International Symposium on, pages 253—256.
IEEE, 2010.

Anand Mishra, Karteek Alahari, and CV Jawahar. Scene text recog-
nition using higher order language priors. In BMVC 2012-23rd British
Machine Vision Conference. BMVA, 2012.

David L Poole and Alan K Mackworth. Artificial Intelligence: founda-
tions of computational agents. Cambridge University Press, 2010.

Rasmus Rothe, Matthieu Guillaumin, and Luc Van Gool. Non-
maximum suppression for object detection by passing messages between
windows. In Asian Conference on Computer Vision, pages 290-306.
Springer, 2014.

Stuart J Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach. Pearson Education, 2 edition, 2003.

Kai Wang, Boris Babenko, and Serge Belongie. End-to-end scene text
recognition. In 2011 International Conference on Computer Vision,
pages 1457-1464. IEEE, 2011.

Kai Wang and Serge Belongie. Word spotting in the wild. In Furopean
Conference on Computer Vision, pages 591-604. Springer, 2010.

Tao Wang, David J Wu, Adam Coates, and Andrew Y Ng. End-to-end
text recognition with convolutional neural networks. In Pattern Recog-
nition (ICPR), 2012 21st International Conference on, pages 3304—
3308. IEEE, 2012.

25

[22] David J Wu. End-to-End Text Recognition with Convolutional Neural
Networks. Undergraduate honors thesis, Stanford University School of
Engineering, 2012.

26

	Introduction
	Preliminaries
	Sliding window detector
	Non-maximum suppression
	Artificial neural networks
	Convolutional neural networks

	Research
	Text detection
	Sliding window detector
	Text detection CNN
	Non-maximum suppression

	Text recognition
	Text recognition CNN
	End-to-end system

	Datasets
	ICDAR 2003 Robust Character Recognition
	ICDAR 2003 Robust Reading and Text Locating
	Street View Text

	Experiments
	Dataset for character detection
	Augmented dataset for character recognition
	Text detection with residual networks
	Text recognition with residual networks

	Related Work
	Text detection
	Text recognition

	Conclusions

