BACHELOR THESIS
COMPUTING SCIENCE

h

G.
%AQ Ny |
orrer

O’*IINe-‘?@

RADBOUD UNIVERSITY NIJMEGEN

Searching IPFS

Author: First supervisor/assessor:
Jasper Haasdijk prof. dr. ir. A.P. de Vries
jhaasdijk@protonmail.com a.devries@cs.ru.nl

Second assessor:
dr. ir. E. Poll

e.poll@cs.ru.nl

January 20, 2019

Abstract

This thesis describes the implementation of a prototype search engine based
on IPFS. This prototype relies on the existing PubSub implementation of
IPFS to create a shared channel on which nodes can publish queries and
corresponding queryhits.

To increase runtime performance and decrease communication overhead, we
introduce a summary file. This file contains a summary of the data that is
available in the cluster.

Using this prototype we are able to locate assets in an IPFS cluster.

Contents

1 Introduction
1.1 Motivation e

2 Preliminaries

2.1 IPFS . . . o
2.1.1 Content
2.1.2 Versioning
213 PubSub

2.2 Search Engine Lo o
221 Indexing
222 Crawling

3 Research

3.1 Designo Lo

3.2 Implementation L o oL
3.21 Listener
3.2.2 Publisher 0 L

3.3 Increasing efficiency L.

3.4 Experiments and Evaluation
341 Data
3.4.2 Cluster Setup Lo
3.4.3 Evaluation 0 0.

4 Related Work

4.1 YaCy. . . .o
4.2 Intelligent Search Mechanism (ISM)
4.3 Presearch Lo
4.4 PeARSearch
4.5 ipfs-search

5 Conclusions

6 Discussion and Future Work

11
11
13
14
16
16
21
26

29
29
29
30
30
31

32

33

6.1 Discussiono 33

6.1.1 Data 33

6.1.2 Prototype oL 34

6.2 Future Worko 34

A Appendix 37
A1 Data Cleaningo 37
A.1.1 WikiMedia Format 37

A.1.2 Redirect pages 38

A.1.3 Disambiguation pages 39

A2 Namespaces v v v e 40

Chapter 1

Introduction

Juan Benet describes the InterPlanetary File System (IPFS) as “a peer-to-
peer distributed file system that seeks to connect all computing devices with
the same set of files” [1]. It is a protocol designed to create a network of
peers which are all connected to the same (shared) filesystem. It is a digital
network which allows sharing of network resources. However, IPFS lacks one
key feature: search functionality. In this thesis we will address this absence
and propose a prototype search engine based on IPFS. To achieve this, we
define the following research question:

How to devise a search engine in a decentralized file system to
locate assets in an IPFS cluster?

1.1 Motivation

The Web today is moving more and more towards a centralized structure.
Large server farms are under the control of a select few companies, which
makes it possible to control the information flow, at least in principle. This
enables digital monopolies, and governments can even use this to block spe-
cific content which they deem not suitable for their residents. One example
of this can be seen in Turkey in 2017, when the Turkish government decided
that Wikipedia is a ”threat to national security” and subsequently restricted
all access to the site [2].

Incidents like this fuel the existing concerns regarding the Web’s evolu-
tion towards this centralized structure [3, 4, 5]. These incidents motivate
a more decentralized setup [3]. Examples of such projects are Diasporal,

Mastodon?, ZeroNet3 and IPFS.

"https://diasporafoundation.org/
“https://joinmastodon.org/
3https://zeronet.io/

https://diasporafoundation.org/
https://joinmastodon.org/
https://zeronet.io/

IPFS allows for a Peer-to-Peer, decentralized network on which content can
be served by anyone who possesses it. This makes the content incredibly
hard to attack and allows users to view and serve this content, even in more
restrictive areas. However, within IPFS there are no searching or indexing
tools. This makes it difficult to determine which information can be found,
and where. One solution is to share the hash of the content on publicly
available forums. Since data is content-addressable, sharing the hash enables
others to directly access the data. This is a rather cumbersome method and a
search engine would make it much easier to search what content is accessible
on the network.

The motivation to tackle this problem stems from the observation that
searching is a vital part of any network. The ability to share network and
computing resources is a key element of any network. If you are unable to
share such resources, there is no point in being connected. IPFS aims to
replace HT'TP but without the means to search through its contents it will
never live up to this goal. Therefore the addition of searching functionality
to IPFS is an essential aspect in the adoption and future of the protocol.

The following chapters of this paper will walk you through our implementa-
tion of a prototype search engine based on IPFS. We will walk you through
the design and creation using ample examples.

Chapter 2

Preliminaries

To set the scene we begin with a brief overview of the most important
concepts discussed in this thesis.

2.1 IPFS

“IPFS is a peer-to-peer distributed file system that seeks to connect all
computing devices with the same system of files” [1]. It is a protocol designed
to create a network of peers which are all connected to the same (shared)
filesystem.

While there is much to discover about IPFS, this Section focuses on the
specific techniques and properties used in this thesis.

2.1.1 Content

IPFS employs content addressed storage. What this means is that when ac-
cessing data through IPFS, instead of using location based addressing such
as an object’s link, we use the contents of the data, specifically the hash.
Adding a file x to the filesystem is done using the ipfs add x command.
This will also print the resulting IPFS hash of the file that was just added.
Getting a file from the filesystem is done using the ipfs get <hash> com-
mand, where <hash> is the IPFS hash of the file you want to fetch.

Data is stored using IPFS objects. Listing 2.1 shows the IPFS Object format

[1]:

Listing 2.1: The IPFS Object format

1 type IPFSObject struct {
2 links [] IPFSLink

3 // array of links

4

5 data [] byte

6 // opaque content data
7}

As we can see, an IPFS object contains a 1inks and a data field. A single
IPFS object can store up to 256 KB of data. When storing simple text files
this is enough. When storing files that are > 256 KB, the file is split up in
parts of < 256 KB. An empty parent object will then link all the pieces of
the file together. This is shown in Figure 2.1.

IPFS Object

\4

links: []
data: chunk#1

IPFS Object IPES Object

links: [1, 2, 3] > | links: []
data: data: chunk#2

IPFS Object

\4

links: []
data: chunk#3

Figure 2.1: An empty parent object links the file together

2.1.2 Versioning

An updated file is different from the original file, which will result in a
different IPF'S hash. To support versioning, IPFS uses commit objects. A
commit object contains a parent and an object field. When updating

an object, IPFS links the parent field to the IPFS object that has been
updated. This allows us to track updates over files without losing older
versions. Figure 2.2 shows how updating a file in IPF'S using commit objects
looks like. We have a text file with "Hello World!" and update this to
"Hello IPFS!".

Commit Commit

parent: none « parent: L

object: ? object: ?

IPFS Object IPFS Object

links: [] links: []

data: "Hello World!" data: "Hello IPFS!"

Figure 2.2: Updating an IPFS Object

2.1.3 PubSub

PubSub is short for the messaging pattern called Publish-Subscribe. IPFS
employs a topic-based system. Publishers can post messages to a particular
topic. Subscribers can subscribe to such a topic and using this approach
only receive messages they are interested in. Subscribers do not necessarily
know who is sending the messages. They simply express their interest in a
particular topic. This offers great network scalability and flexibility.

The current implementation of PubSub in IPFS is called floodsub. This is
due to the fact that messages are sent to every peer in the network. This
is a very simple, easy to implement protocol. The problem however is that
this creates a rather large communication overhead as there is no limit on
the outbound degree when forwarding messages. This can sometimes lead to
the same message being received multiple times. Therefore the IPFS team is
working hard to improve this protocol [6]. This has lead to the specification
of the gossipsub protocol, and a proposal for the episub protocol.

2.2 Search Engine

A search engine is a system which allows a user to search for information on
a network. Before such a system can serve search queries, it needs to crawl
and index the available data. When transitioning into a P2P, decentralized
setup, these processes need to be adjusted to accommodate for the change
in setup. For example, in a truly decentralized solution, we cannot employ
a single, centralized index.

2.2.1 Indexing

Indexing is the term (related to search engines) used to describe the process
in which raw data is parsed into a searchable format, the index. This pro-
vides a more efficient way of searching through the complete data collection.

2.2.2 Crawling

The most common method used by search engines to gather the data for the
search index, is by employing a crawler. A Web crawler is a program that
systematically gathers and processes the content of a webpage. This content
is parsed and added into the search index. In a centralized environment this
is a viable strategy. The company behind the search engine has a vested
interest in gathering this data so it can serve its users relevant queryhits.
There is no need to create an incentivised structure as the company is willing
to do the work.

In a decentralized solution we cannot employ this method. There is no
single entity we can rely on to provide us this function. Employing a Web
crawler inevitably reduces the freshness of the search results [7]. Instead, we
have to move to a completely new approach. An approach where content
creators do the work for the data they want, so that there is no need to
create an incentivised structure since anyone who wants something has to
do it themselves. This is called the no-crawling approach.

Networks which do not employ the no-crawling approach are bound to create
an incentivised structure. This is why the company behind IPFS, Protocol
Labs, is working hard to create Filecoin [8]. Filecoin is a token that can be
used to hire miners to store or distribute data for you. This is an alternative
approach by paying nodes to do work they do not need themselves.

Chapter 3

Research

To define the scope of this thesis, we take a more concrete look at our prob-
lem definition. Our earlier stated research problem consists of the following
question: “How to devise a search engine in a decentralized file system to
locate assets in an IPFS cluster?”. This is a rather broad question and can
be interpreted in a variety of ways. Therefore we instead introduce a new,
much more concrete problem definition.

If we were to have a document dump consisting of Wikipedia
pages, how do we arrange this collection of pages in a distributed
IPFS cluster with 1, 2, ..., n clients so that we can support
searching on the contents?

In Section 3.1 we present the main idea of this thesis. This Section contains
the general approach behind our prototype search engine. Sections 3.2 and
3.3 explain the specific implementation of our prototype. This consists of two
parts: a Listener and a Publisher. In Section 3.4 we will collect and process
the document dump of Wikipedia pages, set up our cluster environment and
show that using our search engine we are able to support searching on the
contents of the cluster.

3.1 Design

The main idea presented in this thesis is a prototype search engine built on
top of IPFS. This prototype supports searching by listening to the queries
and answer messages that are published on the network. Whenever a node
in our network wants to search for something, it publishes a query. Other
nodes can then respond to this query by publishing an answer message.

When talking about nodes we refer to the individual peers in the network.
Every node has their own content. A collection of documents that they are

willing to share with the rest of the network. Nodes can come and go as
they please. Whenever a node decides to leave the network, so will their
content. This choice stems from the observation that this is simply how the
IPFS network works. If nobody wants to share specific content then that
content will disappear.

The current implementation is not the most efficient one. It relies on a
flooding approach as we simply publish every query we have to everyone
on the network. This provides us with a high recall rate, at the expense
of a lot of communication overhead. Many alternatives to this approach
have been proposed, including overlay networks which try to organize “peers
sharing common interest into clusters” with the goal to try and exploit this
information when submitting queries [9].

In this thesis we aim to increase the speed and efficiency of our implemen-
tation by introducing a summary file. A summary file is a local list of
{document, score} value pairs matched to a given query. This allows us
to know beforehand which data is available in the network. For example our
summary list could contain the following entry:

Listing 3.1: Summary file entry for "World Wide Web"

1 "World Wide Web": [

2 {"ref":"QmbQTdn3swA7fHZjcEmZiC13shMi4mhND4YxT4iMGVXpSA",
3 "score":1.812051130639889},

4 {"ref":"QmXEg8dpxsDJ3dW8ZHa2M4Xri75EpQFIm6ypww2fe53bW5" ,
5 "score":0.7558747218457033},

6 {"ref":"QmWDjcyBFNVvUGcyBmr7FbarQ7dPEa5x8p1XLcvqgAR92H",
7 "score":0.7469340688850746},

8 {"ref":"QmSpC17ew83jjXrpLLh3eNweKGkNnUUJwqsDyHBHGkxTcb",
9 "score":0.6883991979016595%},

10 {"ref":"QmZzMS5MdSU3anUWHa8sVthquAnyacaY3quR2FeeQ",
11 "score":0.4483595602046584%}
12]

Now if we search for “World Wide Web”, we can look into our local summary
file and resolve this search without publishing the query.

Data entries that are in the summary file can originate from other nodes
on the network that have responded to a query. You can compare this with
a cache of previously seen answer messages. Using this file we create a
summary of the data that is available to us in the network.

In the remaining part of this Chapter we will elaborate on this idea, and mo-
tivate how our solution solves the problem by providing a technical overview.

10

3.2 Implementation

This Section gives a technical overview of the implementation of our proto-
type. Our prototype uses the IPFS Javascript library! and consists of two
parts: a Listener and a Publisher.

To be able to send and receive messages on the network we create a shared
PubSub channel. This is done by letting every node in the network subscribe
to the same topic. Whenever a node decides to publish something, PubSub
will distribute this message to every other peer currently connected.

3.2.1 Listener

Our Listener is responsible for returning queryhits. The program flow can
be divided in three parts; starting the Listener, handling network events,
and shutting down the Listener.

Starting the Listener

When starting the Listener process, we check whether there exists a serial-
ized local index file we can use. If there exists such a file, we do not have to
rebuild the entire search index but can simply load it from disk. If this file
does not exist, we generate a new search index and add our local files to it.
Now that we have a local search index, we subscribe to the shared PubSub
channel and start listening for events.

Handling network events

When subscribing to the shared channel, we have to supply an event handler.
This event handler is used to parse received events. Two different types of
events exist, query events and answer events. Figure 3.1 shows the design
for these messages.

Event Query Payload

Figure 3.1: Pubsub message design

The Event field differentiates between a query and an answer event. The
Query field is used to track which query we are dealing with. In the case of
a query event this field indicates what we are querying for, in the case of an
answer event this field indicates for which query the message is returning
queryhits. The Payload field is used to transfer queryhits. In the case of
a query event this field simply returns the empty string. In the case of an

"https://github.com/ipfs/js-ipfs-http-client

11

https://github.com/ipfs/js-ipfs-http-client

answer event this field returns a list of {document, score} value pairs. A
document’s score is calculated based on a similarity measurement with the

query.

Figure 3.2 shows an example query message:

query IITomato n nn

Figure 3.2: Query event for "Tomato"

This message indicates that we are querying for the string "Tomato". An
example answer message for this query is shown in Figure 3.3:

answer "Tomato" <payload>

Figure 3.3: Answer event for "Tomato"

Where <payload> refers to a list of value pairs, for example:

Listing 3.2: Answer payload for a query for "Tomato"

1 [{ ref: ’QmTH5q7s7skYHaUwiKm4CASGGnkDy6zBtE5qmtDKuP8xit’,
2 score: 0.7637125121768537 },

3 { ref: ’QmPm9ChQV4kJmV4vtPH3z6Nj2e7zZCn5AKjS9dkNbHArxp’,

4 score: 0.3677390649567145 },

5 { ref: ’QmPxXH9xNbXxWvsF6zAYP8YJozZUfP49keWrWTNA47NFT6’ ,

6 score: 0.35476848530507377 },

7 { ref: ’Qmc3UqTnabtAkE2gisyNyqxMt2c7mibaC168o0feT4kstj8’,

8 score: 0.32045582549361074 1,

9 { ref: ’QmTUCWEZTG2F6QcbMKNGNg3MhqcDg4tWoEswFPABPF4Sz7,
10 score: 0.2233432437517813 }]

On receiving a query message, our Listener searches its local index and
publishes the queryhits in a matching answer message.

Shutting down the Listener

When shutting down the Listener process we invoke its exitHandler. This
is a function that gets called upon closing the program. This function checks
if there already exists a serialized local index file. If there is no local index
file yet, before shutting down our Listener, we generate a new one from our
constructed search index. If there already exists an index file, we simply
exit the process.

Figure 3.4 shows the flow of the Listener process schematically:

12

{ Listener starts }

A4

Yes —‘ Is there a serialized local index on disk? }7 No

A 4 A4

[Load index from file} [Create and populate a new search index}

Subscribe to the channel

Handle answer event Handle query event

Y
{receivedAnswer()}—»{ Listener is ready }4—{receivedQuery()}

The Listener is shut down by user or system

!

[exitHandler ()}

A4

‘ Listener has stopped ’

Figure 3.4: The Listener process

3.2.2 Publisher

Our Publisher is responsible for submitting queries. Although much simpler
than our Listener, our Publisher’s program flow can also be divided in three
parts. Starting our Publisher, submitting queries, and shutting down the
Publisher.

Starting our Publisher process is as simple as subscribing to the shared Pub-
Sub channel. This enables us to submit queries to the network. Figures 3.2
and 3.3 illustrate how this can be done. On receiving an answer event, our
Publisher updates its local response list with the newly received queryhits.

We can shut down our Publisher by unsubscribing from the shared PubSub
channel.

13

Figure 3.5 shows the flow of the Publisher process schematically:

[Publisher starts }

Subscribe to the channel

i Handle answer event

[Publisher is ready }—{receivedAnswer()}

|

The Publisher is shut down by user or system

‘ Publisher has stopped ’

Figure 3.5: The Publisher process

3.3 Increasing efficiency

As mentioned in Section 3.1, we aim to increase the speed and efficiency of
our prototype by introducing a summary file. In order for our implemen-
tation to handle this summary file, we introduce two new types of events:
sumQuery and sumAnswer events. The design for these messages is the same
as our original query and answer events as described in Figure 3.1.

An example sumQuery message looks like this:

squuery "Tomato" nn

Figure 3.6: sumQuery event for "Tomato"

An example sumAnswer message looks like this:

sumAnswer "Tomato" <payload>

Figure 3.7: sumAnswer event for "Tomato"

Where <payload> refers to the returned list of value pairs, just as we have
seen in Listing 3.2.

14

Notice that our summary messages are nearly identical to our query and
answer messages. A sumQuery message indicates that we are looking to add
an entry to our summary file. sumAnswer messages subsequently return the
payload for our summary entry.

To be able to use this new feature, we need to adjust our Listener and
Publisher process.

Listener needs to be able to handle sumQuery events. This is a rather small
addition as it is similar to handling a query event. Only now we return a
sumAnswer message instead of an answer message.

Figure 3.8 shows the updated Listener process. The changes have been
highlighted.

[Listener starts }

A4

Yes —‘ Is there a serialized local index on disk? }7 No

A 4 A 4

[Load index from file} [Create and populate a new search index}

Subscribe to the channel

Handle answer event Handle query event

Y
N
receivedAnswer () < > Listener is ready Jd—»(receivedQuery()

Handle sumAnswer event }7—‘ Handle sumQuery event

The Listener is shut down by user or system

!

[exitHandler ()}

4

‘ Listener has stopped ’

Figure 3.8: The updated Listener process

15

Our Publisher on the other hand undergoes quite the change. Instead of
simply subscribing to the shared channel like we used to, we first need to
check if there exists a local serialized summary file we can use. If there exists
such a file, we don’t have to generate a new one and instead load it from
disk. If this file does not exist, we have to generate a new one.

We also need to update our search order. We now have 3 different sources
to query when we want to search for something. Our local search index,
our local summary file, and the cluster. If we are content with the scores
returned from our local search index and summary file, we don’t have to
submit the query to the network. This saves us both in time and communi-
cation overhead.

We also add an exitHandler to the Publisher process, which we invoke
when shutting down the process. This function checks if there already exists
a serialized local summary file. If there is no local summary file yet, before
shutting down our Publisher, we generate a new one from our constructed
summary. If there already exists a summary file, we simply exit the process.
Figure 3.9 shows the updated Publisher process.

3.4 Experiments and Evaluation

This Section provides a walk through and evaluation of how we use our
prototype to support searching on the contents of a document collection
consisting of Wikipedia pages.

3.4.1 Data

Searching for something only really makes sense once we have something to
search for. So before we are able to do anything with data, we first need
to obtain data. We will use a Wikipedia document dump, process this data
into individual .txt files, and add them to our search index.

Data Collection

Wikipedia explains how an interested user can obtain a free copy of their
available content on their “Wikipedia:Database download” page [10]. Fol-
lowing their instructions on where to get the data, we obtain and verify the
data collection shown in Figure 3.10.

This is a collection of (a subset of) pages in their current version, that does
not include metadata, category information, statistics, log events or edit
histories. We are only interested in the page titles with their corresponding
page text. Our desired end result is a list of Wikipedia articles where the
filename is the article’s title (using its <title> tag), and the file’s content
is the article’s text (using its <text> tag).

16

Publisher starts

|

Subscribe to the channel

Yes Is there a serialized local summary on disk? No

[Load summary from file} [Create and populate a new summary}

Handle answer event

Y

Handle sumAnswer event
[Publisher is ready }—»{receivedAnswer()}

|

The Publisher shut down by user or system

v

{exitHandler ()}

A4

‘ Publisher has stopped ’

Figure 3.9: The updated Publisher process

Data Cleansing

Looking into this data, we see there is pre-processing required before we can
actually do something with it. We received the article data in the form of an
.xml dump. This file includes unwanted data entries such as redirects and
disambiguation pages. We also notice that all the <text> fields are using
the MediaWiki [11] format and that we are going to have to parse this to its
plaintext equivalent. Some examples of unwanted data entries can be found
in Appendix A.1.

17

File:
from: https://dumps.wikimedia.org/enwiki/20181020/
file: enwiki-20181020-pages-meta-currentl.xml-p10p30303.bz2
Hash:
from: https://dumps.wikimedia.org/enwiki/20181020/enwiki-
20181020-md5sums . txt
hash: md5sum: c¢cb5b3336b0bfbb3414aab6lab4ecd40a

Figure 3.10: Wikipedia data collection

Python XML processing

To ease the job of data cleaners, we can create a little Python program. We
can break our task down into 2 subtasks.

1. Filter the unwanted data entries

We can filter any unwanted data entries using the xml.etree.ElementTree
Python module. Note that this module comes accompanied with a warning
that it is not secure against maliciously constructed data. Since we down-
loaded an ’official’ Wikipedia data dump and verified its integrity with its
hash, this should be fine for our use case. Our data parser processes the
data along the following steps:

1. It loads the xml data using the ElementTree.iterparse method into
a Python list of records. We construct a record for each data entry
using its <title>, <ns>, <rid> and <text> tags.

2. We then filter this list based on a few simple rules.

= We filter every data entry where the <ns> tag is not equal to 0.
The other namespace keys are used to distinguish between cate-
gories we do not want to include at this stage, such as “Media”
(key -2) or “Template” (keys 10 and 11) pages. The complete list
of namespace keys can be found in Appendix A.2.

= We filter out data entries consisting of disambiguation or redirect
pages. We consider these to be metadata, and are in this project
only interested in the default full-text retrieval use-case.

2. Parse the MediaWiki syntax

Now that we have eliminated the unwanted data entries, it is time to con-
struct our article’s text. This is something we can accomplish using the
mwparserfromhell Python module, a powerful and easy to use MediaWiki
parser. Using this module, we produce a clean version of the data collection
which we can start processing.

18

https://dumps.wikimedia.org/enwiki/20181020/
https://dumps.wikimedia.org/enwiki/20181020/enwiki-20181020-md5sums.txt
https://dumps.wikimedia.org/enwiki/20181020/enwiki-20181020-md5sums.txt

Listing 3.3: Easily convert wikicode into plaintext

1 plaintext = mwparserfromhell.parse(source)
2 return plaintext.strip_code()

File list

To improve the configurability and flexibility of our data set, let us split it
up a bit further and create a set of .txt files where we use the record’s title
as filename and the record’s text as the file’s contents.

Since our records hold all the necessary information, this is something we
can accomplish using Python’s open(), write() and close() methods.

Listing 3.4: Easily create .txt file

1 file = open(f"{record.title}.txt", "w")
2 file.write(f"{record.text}")
3 file.close()

Now that we have completed the preparation of our .txt files, it is time
to assess our finished data collection. As the figure below illustrates, we
started with 22299 entries and filtered this down to 14978 files, a reduction
of 32.83 %.

Unfiltered collection | 22.299
Filtered collection | 14.978
0 5 10 15 20 25

Number of entries in our collection (x1000)

Figure 3.11: Filtering our data collection

Data Indexing

The final step in the preprocessing phase of the data is creating the search
index and adding the files to it.

19

Creating our search index

Since we are using the Javascript client library for the IPFS HTTP API, we
have chosen to use the Javascript module elasticlunr? to provide us with
offline lightweight full-text search. This choice stems from the observation
that this module supports a scoring mechanism and the option to save a
serialized version of the index to disk. We use this module to create our
search index.

Listing 3.5: Create a search index

1 var index = elasticlunr(function() {
2 this.addField("file");

3 this.addField("data");

4 this.setRef ("hash");

5 this.saveDocument (false);

6

B

The option this.saveDocument (false) is used to configure the index not
to store the original JSON documents. This reduces the index size without
losing the option to return the original file. We can refer to the document
by its hash as IPFS is content addressed.

Adding documents to our index

We add documents to our search index by reading the file from our file
directory, adding the file to IPFS, and creating a Javascript object with the
IPFES hash, filename and file’s contents. This looks like this:

Listing 3.6: Add document to the search index

1 async function addToIndex(index, filepath, filename) {

2 var filedata = await readFilePromise(filepath, "utf8");
3 let content = ipfs.types.Buffer.from(filedata);

4 let results = await ipfs.add(content);

5 let hash = results[0] .hash;

6

7 var obj = new 0bj(hash, filename, filedata);

8 index.addDoc (obj);

9 }

Here readFilePromise(path, encoding) is a library function we use to
get the file’s contents located at path.

2http://elasticlunr.com/

20

http://elasticlunr.com/

After every new addition to the search index, we call
elasticlunr.clearStopWords() to remove default English stop words.

Now that we have created our search index and added the files from our file
directory to the index, our data is ready to be searched on.

3.4.2 Cluster Setup

Our data is processed and ready for use. It is time to move on to the
cluster setup. With our setup we are building an n node, internal IPFS
cluster. ‘Internal” has been emphasized as we are not interested in connecting
our cluster to the global IPFS network. We will simply emulate a cluster
environment, with a layout introduced next.

Alice Carol
Bob Dan

Figure 3.12: Cluster layout after completing docker setup

Prerequisites

Before we are able to launch a cluster, we need to be able to run and manage
cluster peers. For this, we install 2 additional tools: ipfs-cluster-
service and ipfs-cluster-ctl. Both binaries can be downloaded from
https://dist.ipfs.io/. ipfs-cluster-service is used to run a cluster
peer and ipfs-cluster-ctl is the command-line interface used to manage
a cluster peer.

In order to be able to store the configurations and states of our nodes per-

manently, our cluster expects a ‘compose’ subfolder. Its directory tree looks
like this:

compose/
|-- clusterO
|-- clusterl
|-- cluster2
|-- cluster3
|-- ipfsO
|-- ipfsl
|-- ipfs2
|-- ipfs3

21

https://dist.ipfs.io/

During the first start, default configurations are created for all peers.

The Cluster

We create our cluster environment using Docker3. The Docker documenta-
tion page on the IPFS cluster website [12] provides us with templates for
our Dockerfile and docker-compose.yml configuration files.

Dockerfile

A Dockerfile is a configuration file which can be used to tell Docker how to
build a specific image. It includes all the commands a user would otherwise
have to manually execute. We have modified the template to include the
required Javascript libraries, e.g., the client library for the IPFS HTTP API
and Elasticlunr, and execute the daemon subcommand to enable PubSub.
We use the Dockerfile to build a custom Docker image and we include the
resulting image ID in our docker-compose.yml to specify what image to
base our containers on.

Docker Compose

“Compose is a tool for defining and running multi-container Docker applica-
tions.”. We use this to define our cluster setup by specifying how our nodes
look like. The configuration for a single node looks like:

Listing 3.7: Node configuration

1 ipfsO:

2 container_name: ipfsO

3 image: 5537dbaf28d9

4 ports:

5 - "4001:4001" # ipfs swarm

6 volumes:

7 - ./compose/ipfs0:/data/ipfs

8

9 cluster0:

10 container_name: clusterO

11 image: ipfs/ipfs-cluster:latest

12 depends_on:

13 - ipfsO

14 environment:

15 CLUSTER_SECRET: ${CLUSTER_SECRET} # shell variable
16 IPFS_API: /dns4/ipfs0/tcp/5001
17 ports:

3Docker is a software tool which provides us with lightweight virtualization through
the use of containers. We can define what our containers look like using a Dockerfile
configuration file.

22

18 - "127.0.0.1:9094:9094" # api
19 volumes:
20 - ./compose/cluster0Q:/data/ipfs-cluster

Here 56537dbaf28d9 is the image ID of our custom Docker image. We extend
the provided template to a 4 node setup to run four peers (cluster0, ...,
cluster3) attached to four IPFS daemons (ipfs0, ..., ipfs3).

Now that both files are complete, to bootstrap our cluster we simply execute
docker-compose up. This launches the appropriate docker containers and
realizes the cluster setup as sketched in Figure 3.12.

We can verify that this cluster has been set up correctly using the com-
mand ipfs-cluster-ctl peers 1s, a command to check which nodes are
participating in the IPFS Cluster. The output of this command looks as
follows. (We have truncated the hash length to 10 characters to improve
readability):

Listing 3.8: Output of ipfs-cluster-ctl peers 1ls label

1 QmP1bWtmYN | 8d38dbcbbSeba | Sees 3 other peers

2 > Addresses:

3 - /ip4/127.0.0.1/tcp/9096/ipfs/QmP1bWtmYN
4 - /ip4/172.22.0.8/tcp/9096/ipfs/QuP1bWtmYN
5 - /p2p-circuit/ipfs/QmP1bWtmYN

6 > IPFS: (mZBgfQS3q

7 - /ip4/127.0.0.1/tcp/4001/ipfs/QnZBgfQS3q
8 - /ip4/172.22.0.2/tcp/4001/ipfs/QnZBgfQS3q
9 QmSdS2dWcv | 4935a2cb54ad | Sees 3 other peers

10 > Addresses:

11 - /ip4/127.0.0.1/tcp/9096/ipfs/QmSdS2dWcy

12 - /ip4/172.22.0.6/tcp/9096/ipfs/QmSdS2dWcv
13 - /p2p-circuit/ipfs/QmSdS2dWcv

14 > IPFS: QmYnECUVMw

15 - /ip4/127.0.0.1/tcp/4001/ipfs/QmYnECUVMw

16 - /ip4/172.22.0.4/tcp/4001/ipfs/QmYnECUVMw
17 QmVSAiDDaB | d3c0d2906dc6 | Sees 3 other peers

18 > Addresses:

19 - /ip4/127.0.0.1/tcp/9096/ipfs/QuVSAiDDaB

20 - /ip4/172.22.0.9/tcp/9096/ipfs/QmVSAiDDaB
21 - /p2p-circuit/ipfs/QmVSAiDDaB

22 > IPFS: QmRcnWHaVc

23 - /ip4/127.0.0.1/tcp/4001/ipfs/QmRcnWHaVc

24 - /ip4/172.22.0.5/tcp/4001/ipfs/QmRcnWHaVc
25 QmbZ8AaKFZ | 2e941bbfe324 | Sees 3 other peers

26 > Addresses:

27 - /ip4/127.0.0.1/tcp/9096/ipfs/QmbZ8AaKFZ

28 - /ip4/172.22.0.7/tcp/9096/ipfs/QmbZ8AaKFZ
29 - /p2p-circuit/ipfs/QmbZ8AaKFZ

30 > IPFS: Qmbs6GDGKK

31 - /ip4/127.0.0.1/tcp/4001/ipfs/Qmbs6GDGKK

23

32 - /ip4/172.22.0.3/tcp/4001/ipfs/Qubs6GDGKK

Summary

When generating a new summary file, the main question we have to ask
ourselves is:

How do we decide which entries are included in the summary
file?

How do we share what we have, without sharing all that we have? This is
called Resource selection: “the goal of resource selection is to select a small
set of resources that contain a lot of relevant documents.” [13]. We are
looking to extract a small set of documents to share our most relevant data.

Since we generate this summary file when starting up the Publisher, we
have no idea of knowing what the nodes in the cluster will be querying for.
For this reason we have decided to use the statistics provided by stats.
wikimedia.org on ‘Top viewed articles’. This gives us a list of the top
1000 most viewed articles of the last month. We filter this list (e.g. by
removing Help: pages) and submit sumQuery messages for the remaining
entries in the list. We use the returned sumAnswer messages to update our
local summary file.

Please take a look at what happens when we publish the following two search
queries. The first search query searches for "Ant-Man and the Wasp". The
second search query searches for "Potatoes". Both queries are looking to
retrieve documents with a score of at least 2.0.

Listing 3.9: Searching IPFS

done loading summary

Starting search for ’Ant-Man and the Wasp’
Local results scored too low
Published a query for ’Ant-Man and the Wasp’ on the network

Starting search for ’Potatoes’

Local results were sufficient

[{ ref: ’QmebnrkgqvlLisAwhgeFC9aGFx1FU25tGx8hUpKesTn9KXW’,
score: 6.754024083362458 },
{ ref: ’QmPxXH9xNbXxWvsF6zAYP8YJozZUfP49keWrWINA47NFT6’ ,
score: 0.5051386479740516 },
{ ref: ’QmcPK5u2iiXn3YPHRGVuGj2GY4vnAhnmt2iyffZpCWs99R’,
score: 0.389280527600815 },
{ ref: ’QmSEtTcxsbCoa91xjKCGaBuwNgyz9w3XYzVuxaXrCMCnVD’,
score: 0.31295709261084725 1,
{ ref: ’QmZcgTzafnTZd1FM7mf2v9wc8sQ5tbPcPHKfvB3cP9Mowz’ ,

© 0 N s W N

e e e e e e
N g R W N = O

24

stats.wikimedia.org
stats.wikimedia.org

18 score: 0.2249596581756685 }]

20 I received answer for: ’Ant-Man and the Wasp’

21 Updating my response list ...

22 Our response list for ’Ant-Man and the Wasp’ now looks like:
23 [{ ref: ’QmPZrjeZrSBcofPWUDL8sPkJod4CCTJ7NYe92a4U7JLszf’,

24 score: 1.6673388780404585 1},
25 { ref: ’QmeFJRGoK6YeYg4T84jzFAM8kJImAouKU7VdxnXC1YSfggS’,
26 score: 0.2597188628938538 },
27 { ref: ’QmUiRfbulw8ayxyghGnixYoqZsY4D1GDDyHciwHb7EWLtB’,
28 score: 0.2490572926268008 1},
29 { ref: ’QmRT1Jyb3CGHmQUgepq3vQDt6VME6LEAe8ZCRbkMiHyU3m’ ,
30 score: 0.22425568575833124 1},
31 { ref: ’QmUPzRgcqFQLi4U5y2Md8PmqCvYtmwEFNPQtgOmDqfrfwp’,
32 score: 0.2218710340306346 }]

We see that our local results for "Ant-Man and the Wasp" scored too low.
Only after we observe this, do we publish the query on the network. On
the other hand we are able to retrieve a document with a very high score
for "Potatoes" locally. This saves us the overhead of publishing the query
on the network. Also notice that after a while we receive an answer for
"Ant-Man and the Wasp" with which we immediately update our response
list. We log the output of this to stdout so the user can see what is hap-
pening.

Getting a file

Now that we are able to generate queryhits for our queries, we might also
be interested in actually getting a file, instead of only seeing its rank. Since
all the files that have been added to the search index have also been added
to IPF'S, and queryhits are referenced by the hash of the document, getting
a file is a rather easy process. All we need to do is issue a get operation on
the hash of the document we want to retrieve. This looks like this:

Listing 3.10: Retrieve a file over IPFS

1 ipfs get Qm...

This saves the data contained in the IPFS object referenced by the hash to
our local disk.

Or if we want to implement something like this in our Javascript process:

25

Listing 3.11: Retrieve a file over IPFS, using Javascript

1 ipfs.get("Qm...", function(err, files) {

2 files.forEach(file => {

3 console.log(file.path);

4 console.log(file.content.toString("utf8"));
5 b;

6 1);

This logs the file’s path and its contents to stdout.
Where Qm. .. is the hash of the document you are looking to retrieve.

As we can see, using our implementation we are able to support searching on
the contents of a document dump consisting of Wikipedia pages, arranged
in a distributed IPFS cluster. This concludes the implementation of our
prototype search engine built on top of IPFS.

3.4.3 Evaluation

To be able to evaluate how our prototype performs, we constructed a list
of requirements on which we have focused our implementation. We have
sorted this list in descending order of importance:

= Recall rate
If a document is available we want to be able to retrieve it. A recall rate
of 100 % means that we are able to retrieve every available document.

= Scalability
Since one of the goals of the IPFS project is to replace HT'TP [14], the
network needs to be able to scale. For this reason, our implementation
also needs to be able to scale. We don’t want to be waiting 5 minutes
for a query-hit.

= Communication overhead
We want to minimize the load on the network.

» Disk size
Since it is a P2P network we want everyone to be able to join. We
don’t want our implementation to be too big for the available disk
space on some devices.

» Ideology
We want to keep close to the idealogy of P2P systems. We want to
avoid centralization, master-slave relations and single point of failures.
We also want to keep close to the idealogy of IPFS. This means that
popular searches are cached and non-searched items will disappear.

26

Recall rate

By default, our implementation adds every file we add to our search index,
to IPFS as well. We do this so we can use its hash as a reference in our
queryhits. This in turn makes it easier to retrieve a file as we have discussed
in Chapter 3.4.2. Since every file is made available through IPFS, as long
as a node stays connected to the network, its documents are available.

Scalability

Unfortunately our cluster setup does not include scalability testing. This
is something that should be included in future research. We do however
employ a similar technique to ISM [15] which shows very promising results.
More on this in Section 6.2.

Communication overhead
Using our summary file we try to resolve queries locally as much as we can.
This saves the overhead of having to publish to the network for every query.

Disk size

Looking at our current cluster nodes, the average file size for our index file
is 206.25 MB. The average file size for our summary file is 244.825 KB. This
is small enough such that this should not be a limiting factor.

Note however that the size of the index file heavily correlates with the size
of the data you are sharing with the network. On devices with a smaller
data source the index will naturally be smaller as well.

ipfsO | 200.9
ipfsl | 202.9
ipfs2 | 214.0
ipfs3 | 207.2

0 50 100 150 200 250

Index file size (in MB)

Figure 3.13: Measuring the file size of the local index
A future improvement to be able to limit the size of the summary file could

be made by implementing a check in our exitHandler to only write as many
entries to disk as allowed.

27

ipfsO | 211.1
ipfsl |323.3

ipfs2 | 2445

ipfs3 | 200.4

T

0 50 100 150 200 250 300 350
Summary file size (in KB)

Figure 3.14: Measuring the file size of the local summary

This should allow devices with limited hardware to participate in searching
over the contents of the cluster.

Ideology

In the current version of our implementation every node has equal rights.
We have employed a true decentralized solution without introducing single
point of failures, centralization or master-slave relations.

A future addition that would move even closer to the idealogy of IPFS would
be to incorporate a resource selection algorithm that uses the published
query and answer messages as input, as proposed in Section 6.1.2. As
a result of this, popular searches will be cached in the summary file and
non-searched items will disappear from the network.

28

Chapter 4

Related Work

This Chapter elaborates on a few similar projects to demonstrate where
our research fits into the bigger picture. Instead of providing an exhaustive
list we try to focus on the more interesting projects or projects that are
otherwise worth mentioning.

4.1 YaCy

YaCy' is a free, open and decentralized search engine. The software is
developed by the YaCy community on Github. They employ a crawling
based method where peers parse, index and store a local search index. This
local search index is merged with other peers’ indices on the same network
to provide search results. Index fragments are exchanged using a distributed
hash table. This project is probably the most advanced decentralized search
project at the moment.

The main differences compared to our approach, is that instead of swapping
index fragments, we swap query results. We also allow for a higher peer
autonomy. Since we do not employ a crawling method, peers are free to join
and leave the network whenever they want.

4.2 Intelligent Search Mechanism (ISM)

ISM [15] is a P2P information retrieval technique which aims to improve
speed and efficiency by constructing a profile mechanism and a relevance
rank. A profile mechanism is a list which “maintains T most recent queries
and the corresponding QueryHits, along with the number of results.”. The
relevance rank uses this profile to determine which neighbouring node to

"https://yacy.net/

29

https://yacy.net/

forward a query to. It shows to be a very promising technique addressing
scaling issues which flooding techniques have to deal with. The biggest
disadvantage of this technique is that it has quite a long startup time before
it is able to attain a high recall rate [15].

This is something our implementation tries to address by supplying an initial
summary file before the first query has even been published on the network.
After incorporating a resource selection algorithm as proposed in Section
6.2 it would be very interesting to see how our implementation compares to
ISM as both techniques are quite similar. Unfortunately no public imple-
mentation is available.

4.3 Presearch

Presearch? is a decentralized search engine currently in early access, pro-
viding curious users the option to join the beta program. It is a promising
project with ambitious goals. Apart from their whitepaper, technical details
are unfortunately scarce. They seem to be using a browser based crawling
method based on the user’s history. To incentivize and reward participation
they have created the PRE (Presearch Token). These tokens are issued to
members as they search, and can be used by sponsors to place advertise-
ments. For further reading, take a look at the presearch whitepaper>.

4.4 PeARSearch

PeARSearch* is the decentralized version of PeARS®. It is a prototype de-
centralized Web search system under construction. It is a search engine
that you can query without ever publishing your query on the network. The
main idea is that users collect their favorite web pages and create a local
‘pod’, a collection of indexed web pages that share a topic. Pods can then be
exported and shared through any medium. Users can import pods and add
them to their local search index collection. When searching for something,
results from a user’s local pods are merged and returned. This way your
actual search query never leaves your computer.

This is a fantastic idea. It however requires an active community collecting
webpages and sharing and maintaining pods. Unfortunately this project
has not yet gained any traction. Currently there are only a select few pods
available which makes it not something someone would use.

“https://wuw.presearch.io/
3https://www.presearch.io/uploads/WhitePaper.pdf
‘https://github.com/PeARSearch/PeARS-orchard
Shttp://pearsearch.org/

30

https://www.presearch.io/
https://www.presearch.io/uploads/WhitePaper.pdf
https://github.com/PeARSearch/PeARS-orchard
http://pearsearch.org/

4.5 ipfs-search

ipfs-search®7 is a project which aims to provide a search engine for IPFS by
sniffing the DHT gossip and indexing the file and directory hashes. When
listening to the DHT gossip, discovered hashes are added to a queue. A
crawler uses this queue to list the type of the IPFS object. If it is a file,
its metadata is extracted and added to the index. If it is a directory, its
referred items will be added to the queue. Searching is implemented using
Elasticsearch®.

Since it is listening to the DHT gossip between its own node, and is using
the crawling approach, this project will have to face a significant challenge
as IPFS grows. It is not a decentralized solution nor is it scalable.

Shttp://ipfs-search.com/
"https://github.com/ipfs-search
Shttps://www.elastic.co/products/elasticsearch

31

http://ipfs-search.com/
https://github.com/ipfs-search
https://www.elastic.co/products/elasticsearch

Chapter 5

Conclusions

IPFS is a P2P hypermedia network protocol with very ambitious goals. It
aims to replace HT'TP and make the Web faster, safer and more open. Before
it can realize any of these goals, it will need to be adopted and used. We
observe that the addition of searching functionality to IPFS is an essential
aspect in the project’s adoption and future. Therefore, the goal of this
thesis has been to present a prototype search engine built on top of IPFS
and provide an answer to the question:

If we were to have a document dump consisting of Wikipedia
pages, how do we arrange this collection of pages in a distributed
IPFS cluster with 1, 2, ..., n clients so that we can support
searching on the contents?

Our prototype relies on the existing PubSub implementation to create a
shared channel on which nodes can publish events to talk to each other. Us-
ing these events, queries and their corresponding queryhits can be exchanged
over the network.

We also propose the use of a summary. This file contains a summary of the
data that is available in the cluster. Using a summary file we can increase
the speed, and decrease the communication overhead with which queries can
be resolved.

As explained in Chapter 3, using our implementation we are able to support
searching on the contents of a document dump consisting of Wikipedia pages,
and locate assets arranged in a distributed IPFS cluster. This concludes the
implementation of our prototype.

32

Chapter 6

Discussion and Future Work

This Chapter discusses our assumptions and the strengths and weaknesses
of the current implementation.

6.1 Discussion

In this Section we will talk about some of our remarks with regards to our
data, our cluster and our prototype.

6.1.1 Data

When adding documents to our search index, the plaintext files are processed
using Elasticlunr’s tokenizer. This tokenizer splits strings into tokens. By
default this is configured to split strings on whitespace and hyphens. When
observing our cleaned text files we see that there is still some WikiMedia
syntax appearing here and there. This could skew the inverted index po-
sitions of certain words a little. Fortunately most (almost all) of our files
are processed properly and therefore the effect this will have on the overall
search quality will be minimal.

In the current version of our implementation we assume that our corpus is
static. We do not check for updates in our text nor do we check to see if
there are new files. We could however enable having dynamically changing
data by checking if files have been updated, and adding the new versions
to our search index. Since IPFS supports versioning using commit objects,
whenever we have a new version of a file, we can simply add it to IPFS and
the network will take care of the rest.

33

6.1.2 Prototype

The current version of our summary file only uses sumAnswer and sumQuery
events to kickstart the summary file. This has to do with how we generate
‘interesting’ queries to populate this file. Remember our resource selection
question:

How do we share what we have, without sharing all that we
have?

How do we know which of our documents are relevant without knowing what
the nodes in the cluster are searching for? Resource selection algorithms
need to have this knowledge to determine what the most relevant documents
are. As a future improvement we could use the published query and answer
messages as input for a resource selection algorithm to determine a node’s
most relevant local set of documents. Using this knowledge we could use the
sumAnswer and sumQuery events to push summary updates to the network.
This could possibly increase the efficiency of using a summary file.

6.2 Future Work

As mentioned in Section 3.3, using our summary file we try to save as much
of the overhead of publishing to the network when trying to resolve a query.
However the decrease in communication overhead is only as much as the
quality of the summary file. Therefore it would be a very interesting research
topic to incorporate different resource selection algorithms in our prototype
to try and increase the relevance of the documents in the summary file, such
that we can resolve as much locally as possible.

34

Bibliography

[1]

2]

Benet J. IPFS-content addressed, versioned, P2P file system. arXiv
preprint arXiv:14073561. 2014;.

Reuters in Ankara. Turkey blocks Wikipedia under law designed to pro-
tect national security; 2018. ”[Online; accessed 23-November-2018]”.
https://www.theguardian.com/world/2017/apr/29/turkey-
blocks-wikipedia-under-law-designed-to-protect-national-
security.

Verborgh R. Decentralizing the Semantic Web through incentivized
collaboration. In: van Erp M, Atre M, Lopez V, Srinivas K, Fortuna
C, editors. Proceedings of the 17th International Semantic Web Con-
ference: Blue Sky Track. vol. 2189 of CEUR Workshop Proceedings;
2018. [Online; accessed 8-October-2018].

Berners-Lee ST. Three challenges for the web, according to its inventor;
2017. [Online; accessed 5-October-2018]. https://webfoundation.
org/2017/03/web-turns-28-letter/.

Simonite T. The decentralized internet is here, with some glitches; 2018.
”[Online; accessed 5-October-2018]”. https://www.wired.com/story/
the-decentralized-internet-is-here-with-some-glitches/.

libp2p. gossipsub: An extensible baseline PubSub protocol;. Available
from: https://github.com/libp2p/specs/tree/master/pubsub/
gossipsub#controlling-the-flood.

Lai Z, Liu C, Lo E, Kao B, Yiu SM. Decentralized Search on Decen-
tralized Web. arXiv preprint arXiv:180900939. 2018;.

Protocol Labs. Filecoin: A Decentralized Storage Network; 2018. [On-
line; accessed 18-October-2018]. https://filecoin.io/filecoin.
pdf.

Raftopoulou P, Petrakis EGM. iCluster: A Self-organizing Overlay
Network for P2P Information Retrieval. In: Macdonald C, Ounis I,
Plachouras V, Ruthven I, White RW, editors. Advances in Information

35

https://www.theguardian.com/world/2017/apr/29/turkey-blocks-wikipedia-under-law-designed-to-protect-national-security
https://www.theguardian.com/world/2017/apr/29/turkey-blocks-wikipedia-under-law-designed-to-protect-national-security
https://www.theguardian.com/world/2017/apr/29/turkey-blocks-wikipedia-under-law-designed-to-protect-national-security
https://webfoundation.org/2017/03/web-turns-28-letter/
https://webfoundation.org/2017/03/web-turns-28-letter/
https://www.wired.com/story/the-decentralized-internet-is-here-with-some-glitches/
https://www.wired.com/story/the-decentralized-internet-is-here-with-some-glitches/
https://github.com/libp2p/specs/tree/master/pubsub/gossipsub#controlling-the-flood
https://github.com/libp2p/specs/tree/master/pubsub/gossipsub#controlling-the-flood
https://filecoin.io/filecoin.pdf
https://filecoin.io/filecoin.pdf

Retrieval. Berlin, Heidelberg: Springer Berlin Heidelberg; 2008. p. 65—
76.

Wikipedia, Wikimedia Foundation. Database Download;. Avail-
able from: https://en.wikipedia.org/wiki/Wikipedia:Database_
download.

Wikipedia, Wikimedia Foundation. Help:Wikitext;. Available from:
https://en.wikipedia.org/wiki/Help:Wikitext.

IPFS Cluster. Docker;. Available from: https://cluster.ipfs.io/
documentation/deployment/docker/.

Si L, Callan J. The Effect of Database Size Distribution on Resource
Selection Algorithms. In: Callan J, Crestani F, Sanderson M, edi-

tors. Distributed Multimedia Information Retrieval. Berlin, Heidelberg;:
Springer Berlin Heidelberg; 2004. p. 31-42.

Protocol Labs. IPFS is the Distributed Web;. Available from: https:
//ipfs.io/.

Zeinalipour-Yazti D, Kalogeraki V, Gunopulos D. Information retrieval
techniques for peer-to-peer networks. Computing in Science & Engi-
neering. 2004;6(4):20-26.

36

https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Help:Wikitext
https://cluster.ipfs.io/documentation/deployment/docker/
https://cluster.ipfs.io/documentation/deployment/docker/
https://ipfs.io/
https://ipfs.io/

Appendix A

Appendix

A.1 Data Cleaning

Here are some common examples of data entries we have removed from the
data set or which we have filtered into a cleaned version.

A.1.1 WikiMedia Format

These are examples of the WikiMedia format which we have tranformed to
its plaintext equivalent.

=See also==
2 <!-- Please keep entries in alphabetical order &
add a short description [[WP:SEEALS0]] -->
{{Div collcolwidth=20em|small=yes}}
[[Cool roof]]
[[Daisyworld]]
[[Emissivity]]
[[Exitance]]
[[Global dimming]]
[[Irradiance]]
[[Kirchhoff’s law of thermal radiation]]
[[Opposition surge]]
[[Polar see-saw]]
13 * [[Solar radiation management]]
14 {{div col end}}
15 <!-- please keep entries in alphabetical order -->

© 0w 9 O g s W

11

* X X X X X X ¥ %

12

37

=References==

2 {{Reflist|refs=

3 <ref name="Goode">{{Cite journal
|last=Goode |first=P. R. |date=2001 |title=Earthshine
Observations of the Earth’s Reflectance
| journal=[[Geophysical Research Letters]] |volume=28
|issue=9 |pages=1671-1674
|url=http://www.agu.org/journals/ABS/2001/2000GLO1

4 2580.shtml |doi=10.1029/2000GL012580 |bibcode =
2001GeoRL. .28.1671G |display-authors=etal}}</ref>

A.1.2 Redirect pages

These pages include nothing but a redirect to another wikipedia article.

Listing 1: Redirect page for "Computer accessibility"

1 <page>

2 <title>AccessibleComputing</title>

3 <ns>0</ns>

4 <id>10</id>

5 <redirect title="Computer accessibility" />

6 <revision>

7 <id>854851586</id>

8 <parentid>834079434</parentid>

9 <timestamp>2018-08-14T06:47:24Z</timestamp>

10 <contributor>

11 <username>Godsy</username>

12 <id>23257138</id>

13 </contributor>

14 <comment>remove from category for seeking
instructions on rcats</comment>

15 <model>wikitext</model>

16 <format>text/x-wiki</format>

17 <text xml:space="preserve">#REDIRECT [[Computer

accessibility]]
18
19 {{R from movel}}
20 {{R from CamelCase}}
21 {{R unprintworthy}}</text>

22 <shal>4210cvblwtb4nnupxmbwo000d27t6kf</shal>
23 </revision>
24 </page>

38

A.1.3 Disambiguation pages

These pages include a definitions list. They do not contain actual text
regarding the page title and therefore have been excluded in the filtered
collection.

Listing 2: Disambiguation page for "Austin"

1 <page>

2 <title>Austin (disambiguation)</title>

3 <ns>0</ns>

4 <id>590</id>

5 <revision>

6 <id>842727923</id>

7 <parentid>841549643</parentid>

8 <timestamp>2018-05-24T08:36:07Z</timestamp>

9 <contributor>

10 <username>Crouch, Swale</username>

11 <id>11009441</id>

12 </contributor>

13 <minor />

14 <comment>per [[MOS:DABPRIMARY]]</comment>

15 <model>wikitext</model>

16 <format>text/x-wiki</format>

17 <text xml:space="preserve">{{wiktionary|Austin}}

18 ’??[[Austin]]’’’ is the capital of Texas in the United
States.

19

20 ’’’Austin’’’ may also refer to:

21
22 {{TOC rightl}}
23

24 ==People names ==
25 * [[Austin (name)]] - a short form of Augustin, or
Augustine

26 ** [[Augustin (disambiguation)]]
27 ** [[Augustine (disambiguation)]]
28 ** [[August (disambiguation)]]

29

30 ==Geographical locations==

31

32 ===Australia===

33 * [[Austin, Western Australiall
34

35

39

A.2 Namespaces

The following list dictates which namespace key corresponds to which cate-
gory. It consists of the <siteinfo> data from the enwiki-20181020-pages-
meta-currentl.xml-p10p30303.bz2 file.

Listing 1: Namespace key list

1 <siteinfo>

2 <sitename>Wikipedia</sitename>

3 <dbname>enwiki</dbname>

4 <base>https://en.wikipedia.org/wiki/Main_Page</base>

5 <generator>MediaWiki 1.32.0-wnf.26</generator>

6 <case>first-letter</case>

7 <namespaces>

8 <namespace key="-2" case="first-letter">Media</namespace>

9 <namespace key="-1" case="first-letter">Special</namespace>

10 <namespace key="0" case="first-letter" />

11 <namespace key="1" case="first-letter">Talk</namespace>

12 <namespace key="2" case="first-letter">User</namespace>

13 <namespace key="3" case="first-letter">User talk</namespace>

14 <namespace key="4" case="first-letter">Wikipedia</namespace>

15 <namespace key="5" case="first-letter">Wikipedia talk</namespace>
16 <namespace key="6" case="first-letter">File</namespace>

17 <namespace key="7" case="first-letter">File talk</namespace>

18 <namespace key="8" case="first-letter">MediaWiki</namespace>

19 <namespace key="9" case="first-letter">MediaWiki talk</namespace>
20 <namespace key="10" case="first-letter">Template</namespace>

21 <namespace key="11" case="first-letter">Template talk</namespace>
22 <namespace key="12" case="first-letter">Help</namespace>

23 <namespace key="13" case="first-letter">Help talk</namespace>

24 <namespace key="14" case="first-letter">Category</namespace>

25 <namespace key="15" case="first-letter">Category talk</namespace>
26 <namespace key="100" case="first-letter">Portal</namespace>

27 <namespace key="101" case="first-letter">Portal talk</namespace>
28 <namespace key="108" case="first-letter">Book</namespace>

29 <namespace key="109" case="first-letter">Book talk</namespace>

30 <namespace key="118" case="first-letter">Draft</namespace>

31 <namespace key="119" case="first-letter">Draft talk</namespace>
32 <namespace key="710" case="first-letter">TimedText</namespace>

33 <namespace key="711" case="first-letter">TimedText talk</namespace>
34 <namespace key="828" case="first-letter">Module</namespace>

35 <namespace key="829" case="first-letter">Module talk</namespace>
36 <namespace key="2300" case="first-letter">Gadget</namespace>

37 <namespace key="2301" case="first-letter">Gadget talk</namespace>
38 <namespace key="2302" case="case-sensitive">Gadget definition</namespace>
39 <namespace key="2303" case="case-sensitive">Gadget definition talk</namespace>
40 </namespaces>

41 </siteinfo>

40

	Introduction
	Motivation

	Preliminaries
	IPFS
	Content
	Versioning
	PubSub

	Search Engine
	Indexing
	Crawling

	Research
	Design
	Implementation
	Listener
	Publisher

	Increasing efficiency
	Experiments and Evaluation
	Data
	Cluster Setup
	Evaluation

	Related Work
	YaCy
	Intelligent Search Mechanism (ISM)
	Presearch
	PeARSearch
	ipfs-search

	Conclusions
	Discussion and Future Work
	Discussion
	Data
	Prototype

	Future Work

	Appendix
	Data Cleaning
	WikiMedia Format
	Redirect pages
	Disambiguation pages

	Namespaces

