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Abstract

The usage increase of the internet and in specific wireless networks has in-
troduced new difficulties in keeping reliable connections. TDLS creates a
direct link between two communicating clients improving reliability for all
other clients. This protocol is a part of the IEEE 802.11 specification [1]
and includes measures to secure the direct link. The specification is over
3000 pages long. This may introduce problems for software engineers cre-
ating a new implementation of TDLS. Writing such an implementation is
hard and bugs can be introduced in the process, weakening the security
of a direct link. We will introduce a method to automatically infer state
machines of TDLS implementations. This allows us to get insight in the
conformity of such implementations to the specification. We will utilise the
L* and the randomwords algorithms to execute the inferring process on the
wpa supplicant implementation of TDLS by utilising our own mapper. By
analysing the results of this process we will show that TDLS state machines
can be inferred successfully and that inferring such state machines can im-
prove our knowledge about the inner workings of protocols.
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Chapter 1

Introduction

A lot has changed since the introduction of personal computers. Networks
have been set-up everywhere and smartphones have been invented. The
past decades most internet networks have become wireless. The most used
wireless internet protocols are defined in the IEEE 802.11 specification [1]
and are more commonly known under the brand name ‘Wi-Fi’. Part of this
specification is a way to let clients (stations, STAs) communicate directly
without severing the connection to the shared access point (AP), this is
called a Tunneled Direct Link Set-up (TDLS). A TDLS connection reduces
the load on the access point improving the reliability of the connections
made by individual clients. This specific part of the specification introduces
a handshake protocol which is used to secure the link. We want to look
into this part of the specification, analyse the implementation to find out
if this handshake is properly executed. Since the protocol is intended for
public use, people should be able to rely on the handshake to be completely
secure. Analysing the implementation will make sure the public can use
the TDLS functionality without worrying about whether their connection
is secure. For the analysis we automatically infer the state machine of the
implementation of the TDLS handshake comparing the output to the official
specification.

This thesis is structured as follows: firstly we will discuss the 802.11
specification (2.1) and the TDLS protocol (2.2). Next we will take a look
at Mealy machines and how to infer that kind of state machines (2.3, 2.4).
Consequently we will explain how we implemented our mapper (3.1) and
how it works in our setup (3.2). Lastly we will compare our expectations
(4.1) based on the specification to the inferred state machine (4.2) and draw
our conclusions (6).

3



Chapter 2

Preliminaries

In this chapter we give an introduction to the protocol and method we are
using for our research.

2.1 IEEE 802.11 / Wi-Fi

Before we introduce Tunneled Direct-Link Setup we introduce the IEEE
802.11 specification [1] that it is a part of. The standard defined by the
802.11 specification is more commonly known under the Wi-Fi brand over-
seen by the Wi-Fi Alliance. It consists of multiple media access control and
physical layer protocols for the implementation of wireless local area net-
works (WLAN) including information about radio frequencies, modulation
techniques and packet formatting.

The original specification was published in 1997 and it is continuously
updated with amendments that add and modify the protocols to accommo-
date new developments. The latest publication of the standard with the
inclusion of all amendments was in 2016.

2.1.1 Wireless local area networks

The 802.11 specification is mostly used to setup wireless local area networks.
A setup of a WLAN consists of one or more stations (STAs). These stations
have the appropriate hardware to wirelessly send and receive data.

To provide a WLAN one of the stations will act as access point (AP) to
manage all the traffic over the network. Every client station will individually
connect to the access point which will provide it with access to all the other
clients on the network. An access point is usually connected to a wired
network that has access to the internet.

The combination of the AP and the connected STAs is called a basic
service set (BSS). The BSS can be identified by the unique basic service set
identifier (BSSID). This identifier is usually preset on the access point and
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unchangeable. The identifier used to create unique wireless networks is the
service set identifier (SSID) that is broadcast to announce the presence of a
network.

2.1.2 Security

The original specification provided a security solution to wireless networks
named Wired Equivalent Privacy (WEP) which was proved insufficiently
secure in 2001 due to the use of the RC4 stream cipher [8]. To solve this
problem the Wi-Fi Alliance introduced Wi-Fi Protected Access (WPA). This
solution was based on a draft of the 802.11i amendment and used the Tem-
poral Key Integrity Protocol (TKIP). This was an intermediate solution that
could be implemented on older hardware that supported WEP. The even-
tual 802.11i amendment was used to create WPA2. Replacing WPA this
new security mode uses the Counter Mode CBC-MAC Protocol (CCMP),
which is based on AES.

Both WPA and WPA2 use the 4-Way Handshake for the authentica-
tion to an access point. Implementations of this handshake were shown to
be vulnerable to key re-installations in 2017 [19]. The Wi-Fi Alliance an-
nounced WPA3 in January 2018. This new solution uses the Simultaneous
Authentication of Equals (SAE) handshake in combination with the 4-Way
Handshake for personal networks.

The 4-Way Handshake

802.11 specifies the 4-Way handshake as tool to authenticate stations and
provide session keys. Before the handshake takes place the stations will go
through two stages first: discovery and 802.11 authentication and associa-
tion. The discovery stage allows stations to find access points and determine
the supported cipher suites (TKIP/CCMP). The 802.11 authentication and
association is an exchange that the station can use to make itself known to
the AP and choose a cipher suite. Be aware that this phase does not do
any actual authentication yet. If the AP accepts the connection the real
authentication using the 4-Way Handshake will start. This handshake will
result in a Robust Secure Network Association (RSNA) of the STA with the
AP.

The 4-Way Handshake provides mutual authentication between the STA
and AP by using a Pre-Shared Key (PSK). This PSK is used in combina-
tion with two nonces (ANonce and SNonce) and the MAC addresses of the
stations to calculate the Pairwise Transient Key (PTK) as session key.

The handshake is started by the AP using the EAPOL-Key1 message
which communicates it’s nonce (ANonce) to the connecting station. This
station can respond with the EAPOL-Key2 message. This message consists
of the SNonce with a Message Integrity Code (MIC) and the chosen cipher
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suite (RSNE). The MIC is calculated using the PTK over the complete
message. The AP can use this MIC to verify the PTK that was calculated by
the STA by calculating the PTK and checking the validity of the MIC. The
third message in the handshake is EAPOL-Key3 that contains the previously
generated ANonce, a new MIC and an encrypted combination of the group
key (GTK) and the RSNE. This group key can be used to encrypt broadcast
data to all clients connected to the same AP. The encrypted RSNE can be
used to compare it with the RSNE in the EAPOL-Key2 message. The client
can confirm the verification by sending the EAPOL-Key4 message.

A visual representation can be found in figure 2.1.

Client AP

Discovery

EAPOL-Key1 (ANonce)

EAPOL-Key2 (SNonce, MIC, RSNE)

EAPOL-Key3 (ANonce, MIC, Enc{RSNE + GTK})

EAPOL-Key4 (MIC)

Data

Figure 2.1: The 4-Way Handshake

2.2 Tunneled Direct-Link Setup

2.2.1 General

The Tunneled Direct-Link Setup (TDLS) protocol allows two devices to
create a direct connection. The stations should be and will stay connected
to the same access point. The direct-link will reduce the amount of traffic
transferred via the access point and avoids congestion inside that access
point.

2.2.2 Establishing a direct-link

To establish a direct-link we need two stations connected to the same AP.
Both stations should have to capability to setup a direct-link. The initiating
station is called the initiator, the other station is the responder.
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Before a link can be established the initiator will try to discover the
capabilities of the responder station. For this a TDLS Discovery Request
will be send from the initiator to the responder. If the responder is capable
of setting up a TDLS connection it will respond with a TDLS Discovery
Response send directly, outside the AP, to the initiator.

The initiator can now send the first message in the exchange to establish
a new link. This message is send through the access point by the initiator
to the responder, who proposes a direct-link based on the cryptographic
capabilities of the two stations. The responder replies through the access
point with a status code indicating success or failure in the setup response.
The receival of this message is then confirmed by the last message in this
part of the exchange. If any of the two stations wants to sever the direct link
they can do this by sending a teardown message. This teardown message can
both be send through the access point or directly to the receiving station.
Figure 2.2 visualises this process.

Initiator AP Responder

Discovery Request

Setup Request

Setup Response

Setup Confirm

Teardown

Discovery Request

Setup Request

Setup Response

Setup Confirm

Teardown

Discovery Response

Data

Figure 2.2: The TDLS direct-link establishment

2.2.3 TDLS PeerKey

A direct link connection can be secured via the TDLS PeerKey (TPK). This
key is is used to provide a Robust Secure Network Associaton (RSNA) for
the direct-link. This provides data origin authenticity of the setup messages
and the confidentiality for data that will be send over the direct link.

The TPK is computed using fields from the messages in the TDLS estab-
lishment. Next, theses TPK can be used to calculate the Message Integrity
Code (MIC) of the messages sent in the establishment.
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The fields used in the calculation of the TPK are two nonces (SNonce
and ANonce) and the MAC addresses of the initiator, responder and access
point. These fields are secured by the existing RSNA of the STAs with the
AP preventing eavesdropping by stations other than those already connected
to the same AP. The handshake (figure 2.3) is started by the initiator who
sends a chosen cipher suite (RSNE) and the SNonce to the responder station.
The responder will use its own nonce to generate the TPK. This TPK is then
used to calculate the MIC with the whole message as input. The initiator,
who is now receiving both the nonces and a calculated MIC will derive the
TPK as well and confirm that the MIC is valid. The responder will then
send the 3rd message containing a new MIC to validate the direct link.

The TPK is calculated as follows:

Input = Hash(min(SNonce,ANonce)‖max(SNonce,ANonce)) (2.1)

MACS = min(MACI ,MACR)‖max(MACI ,MACR)‖BSSID (2.2)

TPK = KDF (Input, ”TDLSPMK”,MACS) (2.3)

• The SNonce and ANonce are the values generated by the Initiator
and Responder STA respectively.

• The MACI and MACR are the MAC addresses of the Initiator and
Responder STA respectively.

• The BSSID is the BSSID of the current BSS of the Initiator STA

• The KDF function is the ’KDF-Hash-Length’ key derivation function
defined in section 12.7.1.7.2 of the specification where Hash function
is the hash algorithm defined in the RSNE and Length is the specified
TK bits value from the specification + 128. In our case these values
are SHA256 and 256 bits respectively.

Only the first 16 bytes of the TPK are used to calculated the MIC.
This part of the TPK is called the Key Confirmation Key (TPK-KCK). It
provides data origin authenticity in the TDLS Setup Response and TDLS
Setup Confirm messages. The second 16 bytes are the Temporal Key (TPK-
TK) which will provide confidentiality for the direct-link between the two
stations. The MIC in the TDLS handshake is always calculated using the
AES-128-CMAC algorithm outputting 128 bits.

The MIC is calculated as follows:

TPK-KCK = TPK[0:16] (2.4)

MIC = AES-128-CMAC(TPK-KCK,message)[0:16] (2.5)
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Initiator AP Responder

TPK Message 1 (SNonce, RSNE) TPK Message 1 (SNonce, RSNE)

TPK Message 2 (SNonce, ANonce, RSNE, MIC) TPK Message 2 (SNonce, ANonce, RSNE, MIC)

TPK Message 3 (MIC) TPK Message 3 (MIC)

Figure 2.3: The TPK Handshake

Comparing the TPK and PTK

The resulting RSNA of the TDLS handshake is called a TDLS PeerKey
Security Association (TPKSA). The RSNA of a station and an access point
after the 4-way handshake is a Pairwise Transient Key Security Association
(PTKSA).

Both RSNAs are bidirectional and the TPK and PTK are calculated in
a similar way. The difference is in the length of the output. The TPK is
32 bytes, while the PTK is 64 bytes when the CCMP-128 cipher suite is
specified in the RSNE.

The TPK is smaller since it only exists of the KCK (16 bytes) and TK
(16 bytes). The PTK can be split as follows:

• A Key Confirmation Key (KCK, 16 bytes) to calculate a MIC

• A Key Encryption Key (KEK, 16 bytes) to encrypt data in the hand-
shake (the GTK)

• A Temporal Key (TK, 16 bytes) to encrypt direct traffic between a
client and the AP

• An Authenticator Transmission Key (8 bytes), only used for the TKIP
mode

• An Authenticator Receiver Key (8 bytes), only used for the TKIP
mode

A TPK will always use the CCMP-128 cipher suite and thus does not
need the Authenticator keys. Neither does the protocol send data during
the handshake, which explains why no KEK is required.

Figures 2.4 and 2.5 visualise the breakdown of the TPK and PTK re-
spectively.
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TPK

TPK-KCK TPK-TK

Figure 2.4: Breakdown of the TDLS PeerKey (TPK)

PTK

PTK-KCK PTK-TKPTK-KEK Auth Tx Auth Rx

Figure 2.5: Breakdown of the Pairwise Transient Key (PTK)

2.3 Model Learning

2.3.1 Mealy machines

To model the implementation of TDLS we are going to use a specific kind
of state machine, Mealy machines. This type of state machine is a kind of
deterministic finite state machine that has a transition and output for every
state and input [13].

A Mealy machine is formed by a set of finite states (Q) and the tran-
sitions between those states. One of these states is the initial state q0, the
state where the Mealy machine always starts. Transitions represent an input
received while the machine is one of itś states. The transitions are defined
as δ : Q×Σ→ Q. This function uses the input alphabet Σ, which is a finite
set of symbols that represent the input. Different from a normal finite state
machine is the output function λ = Q× Σ→ Λ where Λ is the finite set of
output symbols.

Since a Mealy machine is deterministic the state machine has only one
transition for each input. This is perfect for our research since TDLS should
reply the same every time the same message sequence is executed.

2.3.2 Learning state machines

Our goal is to learn a state machine of a TDLS implementation. We are
approaching this by using the L* algorithm [3]. The goal of this algorithm
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Figure 2.6: Example of a Mealy machine

is to learn a finite state machine from a so-called System Under Learning
(SUL). This SUL can be any type of computational system. The L* algo-
rithm is run by the learner, who tries to communicate with the SUL to infer
the state machine of that SUL. In our learning process the SUL will be an
implementation of TDLS.

Learning process

The first step in the learning process is sending arbitrary messages to the
SUL utilising the L* algorithm. The SUL will answer based on the message
sent by the learner. These answers can differ for each type of message sent
by the learner. In between messages the learner will reset the state of the
SUL by sending a special reset message. This allows the learner to build
a hypothetical state machine based on those messages, both the input and
output. Since the state machine of the learner is only hypothetical it needs
to check with the SUL if it matches the actual state machine.

Checking if the state machines match is done by using an equivalence
algorithm, in our case we choose to use randomwords. This algorithm will
send a random sequence of inputs of a predefined minimum and maximum
length to the SUL. If the output of the SUL based on this input matches
the inferred state machine the next sequence of inputs will be sent. After
a predefined number of tries the learner will draw the conclusion that the
inferred state machine is probably equal to the state machine of the SUL.
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The randomwords algorithm never gives you 100% certainty that the state
machine is correct. In the case that the learner will find a counter example
of the inferred state machine it will go back to the first step to update the
hypothesis.

To make this all possible we need a mapper to convert the arbitrary
messages from the learner to messages that the SUL can understand and
the other way around so that the learner can understand the response by
the SUL. This mapper is situated between the learner and the SUL.

2.4 Tooling

2.4.1 LearnLib

The first of the tools used to execute our research is LearnLib1. This is, as
they call it, ”an open framework for automata learning”. It is free and open
source under the Apache 2.0 License. The development is executed at the
Chair for Programming Systems of TU Dortmund University in Germany,
where it was introduced by Malte et al. [11]. LearnLib features both multiple
learning algorithms and multiple strategies to approximate equivalence, of
which L* and random words are used in this thesis. The version used in
this thesis, 0.12.0, was released in June 2015. The latest version (0.13.1)
was released in May 2018 since development was picked up again. However,
since we are not using LearnLib directly but via StateLearner we are not
able to use the latest version.

2.4.2 StateLearner

The second tool is called StateLearner2, developed by Joeri de Ruiter. This
tool is based on LearnLib and is tailored to automated model learning. It
connects to the SUL either directly or via a mapper. In our case a mapper
takes the symbols of the input alphabet that we provide StateLearner with
and maps those symbols to the appropriate messages. The responses are
then once again mapped to symbols that form the output alphabet. This
way we can use StateLearner to form hypotheses using LearnLib.

1https://learnlib.de/
2https://github.com/jderuiter/statelearner
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Chapter 3

Research

This chapter will explain the setup used to infer the state machine of a
TDLS implementation. We will take a look at the mapper, which is used to
convert input and output symbols used by StateLearner to the right TDLS
messages. Next we will focus on the assumptions made for this research,
plus the final setup used.

3.1 Mapper

As previously mentioned StateLearner requires a mapper to send and receive
messages to the TDLS implementation. First we will explore two tools used
in our mapper: Scapy and pycrypto. Then we will look how these tools are
used in our mapper.

3.1.1 Scapy

Scapy1 is a Python library that allows you to capture, manipulate and send
network packets. This open source library was used to create the 802.11
TDLS packets and wrap them inside Ethernet frames. Scapy itself has
support for basic 802.11 packets that are mentioned in the specification. It
does not implement the exact messages that are used for TDLS however.
This means that we needed to implement all messages used for TDLS from
scratch using the building blocks that Scapy provides. This includes the
Setup Request, Setup Response, Setup Confirm and Teardown messages
that we previously discussed in section 2.2.2.

3.1.2 Cryptographic utilities

The construction of TDLS messages involves cryptographic operations. These
operations, hashing algorithm SHA256 and the AES encryption algorithm

1https://github.com/secdev/scapy
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are not natively implemented in Python itself, therefore we need an ex-
ternal implementation. The solution we are using for our research is the
Python Cryptography Toolkit2 or pycrypto for short. This toolkit, also open
source, implements multiple secure hash functions and various encryption
algorithms and it has been used in this type of research before [21, 22].

3.1.3 Implementation

The implementation of the mapper was written in Python to make use of
the previously mentioned tools. It exposes a socket connection to the learner
to enable communication between the mapper and the learner. The input
symbols determined by the learner are sent over the socket and transcribed
into the right TDLS messages. These messages are then send on the network
interface of the learner side in the network. The side of the SUL gets the
time to answer and the mapper will subsequently translate the answer to
the right output symbols. The output symbol will then be send back to
the learner and the mapper will be made ready for the next input symbol.
If the mapper receives a setup response message from the implementation
the contents of the message will be saved in the mapper. This message
contains the ANonce, SNonce, BSSID and MAC addresses needed to create
the right TPK for the connection. That TPK is used if the next message
by the learner is a setup confirm message. Any other symbol, except for
the connection check, from the learner will reset these values following the
specification. The mapper will always attempt to setup a secured direct-link
and thus will always include values for the ANonce, SNonce and RSNE fields
if possible.

Our input alphabet exists of the following symbols:

• SETUP REQUEST - Translates to a TDLS setup request message

• SETUP CONFIRM - Translation to a TDLS setup confirm message

• TEARDOWN - Translates to a TDLS teardown message

• CONNECTED - Translates to the internal mapper connection status

The output alphabet is defined as follows:

• SETUP RESPONSE - Translation from a successful TDLS setup re-
sponse message

• NO RESPONSE - Indicates that no response was received

• CONNECTED - Indicates that the mapper detected a completed setup

• NOT CONNECTED - Indicates that the mapper has not detect a
completed setup

2https://github.com/dlitz/pycrypto
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3.2 Setup

3.2.1 wpa supplicant

The implementation we analysed in our research is the wpa supplicant3 soft-
ware written by Jouni Malinen. This Linux user space 802.11 client is used in
all major Linux distributions and mobile operating system Android. Along
with wpa supplicant comes the access point software called hostapd. Since
the TDLS protocol requires an access point we will utilise this software in
our setup to create a virtual AP. However, our research could be conducted
with any type of access point implementation.

We will use version 2.7 of hostapd and wpa supplicant to conduct our
research. This version was released in December 2018.

3.2.2 Networking

Before we can run the mapper and learner to infer the state machine we will
have to setup a simulated network environment. Since the wpa supplicant
source code already includes automated tests that use such a simulated envi-
ronment we will be partially reusing this implementation. The environment
requires a special build of both wpa supplicant and hostapd which can be
constructed by following the instructions in the repository4. Our test will
use the mac80211 hwsim Linux kernel driver which is capable of simulating
802.11 hardware. We setup three interfaces: one WPA2 protected access
point and two stations. The access point is running hostapd, the stations
are both controlled by an instance of wpa supplicant. However, the instance
on the initiator end is only used for the virtual interface and does not re-
spond to messages during our research. Since we know the MAC addresses
of the access point and both stations we are able to craft messages and send
them via the AP to the receiving wpa supplicant instance. The response of
that instance can then be read by sniffing the interface of the interface we
simulated to be the sender. Figure 3.1 shows a simplified visual representa-
tion of our setup.

Learner (L*) Mapper
Network
Interface hostapd Network

Interface wpa_supplicant

Figure 3.1: A visual representation of our setup

3https://w1.fi/
4https://w1.fi/cgit/hostap/tree/tests/hwsim/README
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3.2.3 Learner settings

As we mentioned previously we will use the L* and randomwords algorithms
for the learning process. We will setup the equivalence algorithm to use a
minimum and maximum length of 5 and 10 respectively. We will require
5000 queries to prove that no counterexample can be found.
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Chapter 4

Results

In this chapter we state our expectations of the inferred model. Next we
evaluate the results of the learner by comparing them to our expectations
using a manual analysis.

4.1 Expectations

We expect that the TDLS state machine has three states:

1. No TDLS connection

2. Setup in progress

3. Active TLDS connection

If we follow the 802.11 specification we should have at least the following
edges:

• State 0 to 1: SETUP REQUEST / SETUP RESPONSE OK - TDLS
Setup Request resulting in a success TDLS Setup Response ([1, 11.23.4])

• State 1 to 1: SETUP REQUEST / SETUP RESPONSE OK - TDLS
Setup Request resulting in a success TDLS Setup Response ([1, 11.23.4]),
since any new Setup Request resets the process and initialises a new
handshake

• State 1 to 2: SETUP CONFIRM / NO RESPONSE - TDLS Setup
Confirm without response

• State 0, 1, 2 to 0: TEARDOWN / NO RESPONSE: TDLS Teardown
without response

• State 2 to 1: SETUP REQUEST / SETUP RESPONSE OK - TDLS
Setup Request resulting in a success TDLS Setup Response ([1, 11.23.4
sub e]), this is equivalent to a Teardown followed by a Setup Request

17



For any situation where the input symbol should not result in a state
change we should see a self loop. These situations are not described in the
specification and should thus do nothing.

In our mapper we have made assumptions on the establishment of a
TDLS connection since we could not find a way to test the established
connection. It assumes a successful connection and disconnection after a
correct handshake and a sent teardown respectively. The initialisation of a
new connection will also assume a disconnect, as per the specification. We
have tried to send pings over the TDLS connection to confirm a successful
setup, but the virtual interfaces did not seem to support this usage. Another
solution we tried was doing a TDLS channel switch, however the interface
does not offer this functionality either. This exhausted our options to test
the connection, so we settled on keeping an internal state.

Exposing the internal state to the learner means that we should also
expect the following state changes:

• State 0 to 0: CONNECTED / NOT CONNECTED - Indicates that
no successful setup was made

• State 1 to 1: CONNECTED / NOT CONNECTED - Indicates that
no successful setup was made

• State 2 to 2: CONNECTED / CONNECTED - Indicates that a suc-
cessful setup was made

Figure 4.1 gives a visual representation of our expectations.

0
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SETUP_REQUEST/SETUP_RESPONSE_OK

SETUP_CONFIRM/NO_RESPONSE

TEARDOWN/NO_RESPONSE

SETUP_REQUEST/SETUP_RESPONSE_OK SETUP_CONFIRM/NO_RESPONSE

TEARDOWN/TIMEOUT

SETUP_REQUEST/SETUP_RESPONSE_OK

CONNECTED/NOT_CONNECTED

SETUP_CONFIRM/NO_RESPONSE TEARDOWN/NO_RESPONSE

CONNECTED/NOT_CONNECTED CONNECTED/CONNECTED

Figure 4.1: Expected TDLS State Machine

4.2 Analysis

The state machine learned by the L* algorithm (4.2) does not deviate from
the previously mentioned requirements of the implementation. There are
no state changes that we did not expect. However, this behaviour may
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be caused by the internal state that the mapper holds to determine if a
successful connection was made.

The complete process of learning and checking for counter-examples took
a total of 8.6 hours. Of which the learning part is only 8 minutes. This seems
logical since the second hypothesis by the learner is the final result that
the statelearner outputs. Since the process has a total of 5010 equivalence
queries we can calculate that the first counter-example was found after 10
queries, since our settings require 5000 equivalence queries before the learner
decides that it is done.

The learning process is stable, running the process succeeds when the
computer running is prevented from going to sleep or shutting down. During
these processes we have kept watch by occasionally checking the network
traffic on the computer for problems. Since our mapper does not process
errors returned by the implementation and ignores re-transmissions it is
possible that messages were missed but this does not seem the case. The
mapper does not have to wait for response packets and is able to respond
well within any timeouts set by the IEEE 802.11 specification.

We did try to change our setup to include sending and processing mal-
formed messages but eventually decided to leave this out of the mapper since
the learning process could not be completed. We suspect that some kind of
non-determinism in the implementation could have caused this.

0
SETUP_CONFIRM / NO_RESPONSE
TEARDOWN / NO_RESPONSE

CONNECTED / NOT_CONNECTED

1

SETUP_REQUEST / SETUP_RESPONSE_OK

2

TEARDOWN / NO_RESPONSE

SETUP_CONFIRM / NO_RESPONSE
CONNECTED / CONNECTED

SETUP_REQUEST / SETUP_RESPONSE_OK

TEARDOWN / NO_RESPONSE

SETUP_CONFIRM / NO_RESPONSE

SETUP_REQUEST / SETUP_RESPONSE_OK
CONNECTED / NOT_CONNECTED

Figure 4.2: Learned TDLS State Machine

4.3 Interesting findings

Since our model exactly matched our expectations we investigated the tests
that come bundled with wpa supplicant.

First we found that the tests that are executed to validate the imple-
mentation of TDLS do not actually check the connection that is established.
The principle used in this research is the same as the principle used in the
tests: a happy flow is a successful connection. The tests will detect if er-
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rors are encountered and fail, however the connection itself is no more than
checking if a setup confirm message is sent.

Our second finding is related to the entire TDLS implementation. There
are tests written to verify the workings of the TDLS channel switch, however
the drivers used to execute these tests do no support this functionality. This
means the test is not useful. After further inspection it seems the test is not
enabled to prevent it from failing. This could mean that the implementation
is not completely tested and may still include bugs.
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Chapter 5

Related Work

In this chapter we give an overview of previous work related to the security
of Wi-Fi and/or the use of models to test or infer state machines.

5.1 Wi-Fi

The authentication of clients with access points within the 802.11 specifica-
tion, Wi-Fi, is facilitated by the so-called 4-way handshake. Closely related
to this thesis is the research into both the manual [21] and automated [12]
state learning of that handshake.

The 4-Way Handshake has also been subject of numerous formal analyses
[9, 6, 23, 10]. Other parts of 802.11, but related to the 4-way handshake, that
have been the subject of research are the WEP and WPA2 TKIP security
mechanisms [8, 17].

More in-depth research into the handshake discovered a vulnerability
in the transmission of the group-key [18]. This research by Vanhoef et al.
forced RC4 encryption of the group key, which is insecure [8]. Following
this discovery Vanhoef et al. introduced an attack that re-installs the key
used by the 4-way handshake making replaying, decryption and forging of
packets possible [19].

In October 2018 Vanhoef et al. presented a new paper [20] based on their
previous work on the 4-way handshake including an attack on the TPK with
a possibility of re-installation of the key as well.

5.2 Learning state machines

Past work relying on state machine learning has already been mentioned in
the previous section. We have seen examples of both manual and automated
modeling of the 4-way handshake [21, 12]. However, there is other research
that analyses protocols by inferring the state machines. Aarts et al. [2]
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used model-based learning to infer to state machines of EMV cards. Addi-
tionally, hand-held readers use for internet banking were subject of research
[4] along with the TLS protocol [5, 16]. These analyses discovered several
security flaws in different implementations of TLS. Other implementations
of protocols analysed via this technique are SSH [14, 15] and IPSec [22].

Furthermore, the technique was also used for a non-security related sub-
ject by learning the TCP network protocol [7]. This revealed ways to fin-
gerprint remote operating systems.
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Chapter 6

Conclusions

In this research we have shown that this method of inferring the TDLS
state machine works to a certain point. Our approach has shown that the
basic TDLS handshake protocol can be inferred as long as assumptions are
introduced. We have shown that by sending correct TDLS messages no
error responses will be triggered by wpa supplicant. This could mean that
the implementation is working as expected.

Our work can be used as a basis for future investigation. We have suc-
cessfully implemented the messages used by TDLS to communicate by only
using Scapy and cryptographic tools. This means that using a learner and
Python tools is a suitable approach to this kind of research for other proto-
cols in the 802.11 specification.

Lastly, this research has shown that automatically inferring state ma-
chines can improve our knowledge about the inner workings of protocols, in
our case TDLS.
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Chapter 7

Future work

Our research can be used a basis for future investigation into this topic. We
will point out several possibilities.

In our research we have not taken error messages or timeouts into ac-
count. This was to simplify our research. Better results may be found when
these factors are introduced. One of the ways to do this would be to use an
improved version of the StateLearner1 software that we used.

Another improvement would be adding a malformed message to the input
symbols. We believe that adding this type of message would improve the
resulting state machine. Error messages can reveal useful information about
the implementation and the way it is implemented. During our testing of
the setup request message we noticed that the time to respond from the
wpa supplicant TDLS handshake implementation took significant less time
in the case of a malformed message. Thus it is possible that our research
missed mistakes in the implementation, even though we always sent correctly
formatted messages.

Using fuzzing the messages could also be modified to find states that
we did not find in our research. Fuzzing could introduce more kinds of
error messages. The learner will thus learn about the different variations of
responses.

One more enhancement would be to execute this research on real hard-
ware instead of using a simulated environment. This would introduce more
new factors: packet loss and interference. It might however enable us to use
the TDLS channel switch to confirm a successful connection. We think this
would greatly improve the resulting model.

Lastly we think that adding a ping to confirm a successful connection
would improve the results by removing the assumptions we had to make.

1https://github.com/ChrisMcMStone/statelearner
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Appendix A

Mapper implementation

Listing A.1: requirements.txt
adns−python ==1.2.1
anyjson ==0.3.3
argcomplete ==1.8.1
asn1crypto ==0.24.0
a t t r s ==17.4.0
Automat==0.6.0
backdoor−f a c t o r y ==0.0.0
backports−abc==0.5
backports . f unc too l s−l ru−cache==1.4
backports . s h u t i l−get−terminal−s i z e ==1.0.0
backports . s s l−match−hostname ==3.5.0.1
BBQSQL==1.0
bcrypt ==3.1.4
bdfproxy ==0.0.0
Beaut i fu lSoup ==3.2.1
beaut i f u l s oup4 ==4.6.0
BlindElephant==1.0
b l i n k e r ==1.4
capstone ==3.0.4
c e r t i f i ==2018.1.18
chardet ==3.0.4
CherryTree ==0.38.4
## FIXME: could not f i n d svn URL in dependency l inks f o r t h i s

package :
ch i rp===dai ly −20170714
c l i c k ==6.7
colorama ==0.3.7
ConfigArgParse ==0.11.0
c o n f i g o b j ==5.0.6
c o n f i g p a r s e r ==3.5.0
cons tant ly ==15.1.0
cons t ruc t ==2.8.16
couchdbkit ==0.6.5
cryptography ==2.1.4
c y c l e r ==0.10.0
decorato r ==4.1.2
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dict toxml ==1.7.4
distorm3 ==3.3.4
d n s l i b ==0.9.7
dnspython ==1.15.0
d o c u t i l s ==0.14
easygu i ==0.96
EditorConf ig ==0.12.1
E l i x i r ==0.7.1
enum34==1.1.6
et−x m l f i l e ==1.0.1
f e e d p a r s e r ==5.2.1
Flask ==0.12.2
f u n c s i g s ==1.0.2
f u n c t o o l s 3 2 ==3.2.3. post2
fuse−python ==0.3.0
fu tu r e ==0.15.2
f u t u r e s ==3.2.0
GDAL==2.2.4
GeoIP==1.3.2
gevent ==1.2.2
g r e e n l e t ==0.4.12
h2==3.0.1
hpack ==3.0.0
html2text ==2018.1.9
html5 l ib ==0.999999999
http−par s e r ==0.8.3
h t t p l i b 2 ==0.9.2
h t tp r e t ty ==0.8.14
hyperframe ==5.1.0
hyper l ink ==17.3.1
idna==2.6
impacket ==0.9.15
incrementa l ==16.10.1
ipaddre s s ==1.0.17
IPy==0.83
ipython ==5.5.0
ipython−g e n u t i l s ==0.2.0
i t sdange rous ==0.24
j d c a l ==1.0
J in j a2 ==2.10
j s b e a u t i f i e r ==1.6.4
j s o n p i c k l e ==0.9.5
j s o n r p c l i b ==0.1.7
keepnote ==0.7.8
keyr ing ==10.6.0
keyr ing s . a l t ==3.0
k i l l e r b e e ==1.0
lxml ==4.2.1
M2Crypto==0.27.0
Mako==1.0.7
MarkupSafe==1.0
matp lo t l i b ==2.1.1
mechanize ==0.2.5
mercur ia l ==4.5.3
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metaconf ig ==0.1.4 a1
mockito ==0.5.2
msgpack==0.5.6
mysq l c l i en t ==1.3.10
n a s s l ==0.12
netaddr ==0.7.19
NfSpy==1.0
numpy==1.13.3
o l e f i l e ==0.45.1
openpyxl ==2.4.9
OWSLib==0.16.0
PAM==0.4.2
paramiko ==2.4.0
p a s s l i b ==1.7.1
path l ib2 ==2.3.2
pcapy ==0.10.8
peepdf ==0.4.1
p e f i l e ==2017.11.5
pexpect ==4.2.1
p i c k l e s h a r e ==0.7.4
Pi l l ow ==4.3.0
pluggy ==0.6.0
ply ==3.11
p r e t t y t a b l e ==0.7.2
prompt−t o o l k i t ==1.0.15
psycopg2 ==2.7.4
py==1.5.3
pyasn1 ==0.4.2
pyasn1−modules ==0.2.1
pyca i ro ==1.16.2
pycrypto==https : // github . com/ d l i t z / pycrypto / arch ive /v2 . 7 a1 . z ip
pycryptodomex ==3.4.7
pycur l ==7.43.0.1
pydns ==2.3.6
pyenchant ==2.0.0
Pygments==2.2.0
pygobject ==3.28.2
pygtk spe l l check ==4.0.5
p y i n o t i f y ==0.9.6
PyJWT==1.5.3
pymongo==3.6.1
pymssql ==2.1.3
PyNaCl==1.2.1
pyOpenSSL==17.5.0
pypars ing ==2.2.0
PyPDF2==1.26.0
pype r c l i p ==1.6.0
pyproj ==1.9.5.1
p y r i t ==0.5.1
pyscard ==1.9.6
p y s e r i a l ==3.4
pysmi ==0.2.2
pysnmp==4.4.3
pysnmp−apps ==0.3.2
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pysnmp−mibs ==0.1.3
PySocks ==1.6.5
p y s p a t i a l i t e ==3.0.1
p y s q l i t e ==2.7.0
pyte s t ==3.3.2
python−d a t e u t i l ==2.6.1
python−Levenshte in ==0.12.0
python−magic ==0.4.16
pythonaes==1.0
pytz ==2018.4
pyusb ==1.0.0b2
PyX==0.12.1
pyxdg==0.25
PyYAML==3.12
qrcode==5.3
r e q u e s t s ==2.18.4
r e s t k i t ==4.2.2
r f i d i o t ==1.0
roman==2.0.0
s cand i r ==1.7
scapy ==2.3.3
Sec r e tS to rage ==2.3.1
s e r v i c e−i d e n t i t y ==16.0.0
Shapely ==1.6.4
s i m p l e g e n e r i c ==0.8.1
s imp l e j s on ==3.13.2
s i n g l e d i s p a t c h ==3.4.0.3
s i x ==1.11.0
s lowaes ==0.1a1
socke tpoo l ==0.5.3
SQLAlchemy==1.2.5
subprocess32 ==3.2.7
tcpwatch ==1.3.1
tornado ==5.0.2
t r a i t l e t s ==4.3.2
Twisted ==17.9.0
typing ==3.6.4
unicodecsv ==0.14.1
u r l l i b 3 ==1.22
urwid ==2.0.1
uTidyl ib ==0.3
v i n e t t o ==0.7b0
v o l a t i l i t y ==2.6
wap i t i ==2.3.0
wcwidth ==0.1.7
webencodings==0.5
webunit ==1.3.10
Werkzeug==0.14.1
wfuzz ==2.2.9
Whoosh==2.7.4
wxPython ==3.0.2.0
wxPython−common==3.0.2.0
XlsxWriter ==0.9.6
xmlbui lder ==1.0
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yara−python ==3.7.0
zenmap==7.70
zim==0.68
zope . i n t e r f a c e ==4.3.2

Listing A.2: packets.py

from scapy . a l l import ∗
import b i n a s c i i
from u t i l import ∗

class Dot11TDLSAction ( Packet ) :
name = ” 802.11 TDLS Action Frame”
f i e l d s d e s c =[

ByteFie ld ( ” payload type ” , 2) ,
ByteFie ld ( ” category code ” , 12) ,
ByteEnumField ( ” ac t i on ” , 1 , { 0 : ” setup reques t ” , 1 : ”

setup response ” , 2 : ” setup conf i rm ” , 3 : ” teardown” ,
10 : ” d i s cove ry reques t ” } ) ,

Cond i t i ona lF i e ld ( Shor tF ie ld ( ” s t a t u s c o d e ” , 0) , lambda
pkt : pkt . act ion>=1 and pkt . act ion <=3) ,

Cond i t i ona lF i e ld ( ByteFie ld ( ” d i a l o g t o k e n ” , 1) , lambda
pkt : pkt . a c t i on !=3) ,

]

class Dot11Cap ( Packet ) :
””” Our own d e f i n i t i o n f o r the suppor ted r a t e s f i e l d ”””
name = ” 802.11 C a p a b i l i t i e s In format ion Element”
f i e l d s d e s c = [

B i tF i e ld ( ” channe lAg i l i t y ” , 0 , 1) ,
B i tF i e ld ( ”pbcc” , 0 , 1) ,
B i tF i e ld ( ” short preamble ” , 1 , 1) ,
B i tF i e ld ( ” pr ivacy ” , 0 , 1) ,
B i tF i e ld ( ” c fPo l lReques t ” , 0 , 1) ,
B i tF i e ld ( ” c f P o l l a b l e ” , 0 , 1) ,
B i tF i e ld ( ” i b s s ” , 0 , 1) ,
B i tF i e ld ( ” e s s ” , 0 , 1) ,
B i tF i e ld ( ” iba ” , 0 , 1) ,
B i tF i e ld ( ”dba” , 0 , 1) ,
B i tF i e ld ( ” dsss ofdm ” , 0 , 1) ,
B i tF i e ld ( ”rm” , 0 , 1) ,
B i tF i e ld ( ”apsd” , 0 , 1) ,
B i tF i e ld ( ” s s t ” , 1 , 1) ,
B i tF i e ld ( ” cfpReserved ” , 0 , 1) ,
B i tF i e ld ( ” spectrum” , 0 , 1) ,

]

class Dot11EltRates ( Packet ) :
””” Our own d e f i n i t i o n f o r the suppor ted r a t e s f i e l d ”””
name = ” 802.11 Rates In format ion Element”
# We suppor t a l l t he r a t e s
suppor t ed ra t e s = [ 0 x02 , 0x04 , 0x0b , 0x16 , 0x0c , 0x12 , 0x18 ]
f i e l d s d e s c = [ ByteFie ld ( ”ID” , 1) , ByteFie ld ( ” l en ” , len (

suppor t ed ra t e s ) ) ]
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for index , r a t e in enumerate( suppor t ed ra t e s ) :
f i e l d s d e s c . append ( ByteFie ld ( ” suppor t ed ra t e {0}” . format (

index + 1) ,
r a t e ) )

class Dot11EltExtRates ( Packet ) :
””” Our own d e f i n i t i o n f o r the suppor ted r a t e s f i e l d ”””
name = ” 802.11 Extended Rates In format ion Element”
# We suppor t a l l t he r a t e s
suppor t ed ra t e s = [ 0 x24 , 0x30 , 0x48 , 0x60 , 0x6c ]
f i e l d s d e s c = [ ByteFie ld ( ”ID” , 50) , ByteFie ld ( ” l en ” , len (

suppor t ed ra t e s ) ) ]
for index , r a t e in enumerate( suppor t ed ra t e s ) :

f i e l d s d e s c . append ( ByteFie ld ( ” extended suppor ted rate {0}
” . format ( index + 1) ,

r a t e ) )

class Dot11EltChannels ( Packet ) :
name = ” 802.11 Channels In format ion Element”
f i e l d s d e s c = [

ByteFie ld ( ”ID” , 36) ,
ByteFie ld ( ” l en ” , 2) ,
ByteFie ld ( ” channel ” , 1) ,
ByteFie ld ( ” range ” , 11) ,

]

class D o t 1 1 E l t L i n k I d e n t i f i e r ( Packet ) :
name = ” 802.11 Link I d e n t i f i e r Element”
f i e l d s d e s c = [

ByteFie ld ( ”ID” , 101) ,
ByteFie ld ( ” l en ” , 18) ,
Dot11AddrMACField ( ” b s s i d ” , ETHER ANY) ,
Dot11AddrMACField ( ” i n i t S t a ” , ETHER ANY) ,
Dot11AddrMACField ( ” respSta ” , ETHER ANY)

]

class Dot11EltCustom ( Packet ) :
name = ” 802.11 Informat ion Element”
f i e l d s d e s c = [ ByteFie ld ( ”ID” , 0) ,

F i e ldLenFie ld ( ” l en ” , None , ” i n f o ” , ”B” ) ,
StrLenFie ld ( ” i n f o ” , ”” , l ength f rom=lambda x

: x . len ) ]

b i n d l a y e r s ( Ether , Dot11TDLSAction , { ’ type ’ : 0 x890d} )
b i n d l a y e r s ( Dot11TDLSAction , Dot11Cap )
b i n d l a y e r s ( Dot11Cap , Dot11EltCustom )
b i n d l a y e r s ( Dot11EltCustom , Dot11EltCustom )

def c r e a t e r s n ( gdcsType=4, c i p h e r S u i t e s =[4 ] , akmSuites =[7 ] ) :
i n f o = ’ \x01\x00 ’ #RSN Version 1
i n f o += ’ \x00\ x0f \xac ’ + chr (7 ) #Group Cipher Su i t e : 00−0f−

ac TKIP
i n f o += chr ( len ( c i p h e r S u i t e s ) ) + ’ \x00 ’ #2 Pairwise Cipher

Su i t e s ( next two l i n e s )
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for s u i t e in c i p h e r S u i t e s :
i n f o += ’ \x00\ x0f \xac ’ + chr ( s u i t e )

i n f o += chr ( len ( akmSuites ) ) + ’ \x00 ’ #1 Authen t i ca t i on Key
Managment Su i t e ( l i n e be low )

for s u i t e in akmSuites :
i n f o += ’ \x00\ x0f \xac ’ + chr ( s u i t e )

i n f o += ’ \x0c\x02 ’

return Dot11Elt ( ID=’ RSNinfo ’ , i n f o=i n f o ) #RSN Cap a b i l i t i e s (
no ex t ra c a p a b i l i t i e s )

def c r e a t e f t e ( SNonce=None , ANonce=None , mic=None ) :
i n f o = ’ \x00\x00 ’ # MIC Contro l and element count
i n f o += b i t 12 8 to he x (0 ) i f mic i s None else mic

i f SNonce i s None :
ANonce = b i t 2 56 to he x (0 )

e l i f ANonce i s None :
ANonce = b i t 2 56 to he x ( random . randint (0 , 2∗∗256 − 1) )

i n f o += ANonce

i f SNonce i s None :
SNonce = b i t 256 to he x ( random . randint (0 , 2∗∗256 − 1) )

i n f o += SNonce

return Dot11EltCustom (ID=55, i n f o=i n f o )

def c r e a t e t i ( i n t e r v a l ) :
i n f o = ’ \x02 ’
i n f o += s t r u c t . pack ( ’L ’ , i n t e r v a l )
return Dot11EltCustom (ID=56, i n f o=i n f o )

Listing A.3: tdls.py

from scapy . a l l import ∗
from packets import ∗
from u t i l import ∗
import b i n a s c i i
import hash l i b
import hmac
from Crypto . Cipher import AES
from Crypto . Hash import CMAC

def r e a d f t e v a l u e s ( i n f o ) :
m i c cont ro l = i n f o [ 0 : 2 ]
ANonce = i n f o [ 1 8 : 5 0 ]
SNonce = i n f o [ 5 0 : 8 2 ]

return ANonce , SNonce

def r e a d l i n k i d v a l u e s ( i n f o ) :
BSSID = i n f o [ 0 : 6 ]
InitiatorMAC = i n f o [ 6 : 1 2 ]
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ResponderMAC = i n f o [ 1 2 : 1 8 ]

return BSSID , InitiatorMAC , ResponderMAC

def r e a d t d l s s e t u p p a c k e t ( packet ) :
e l t s = packet [ Dot11EltCustom ]
index = 0

ANonce = None
SNonce = None
BSSID = None
InitiatorMAC = None
ResponderMAC = None

while index > −1:
try :

e l t i n f o = e l t s [ index ] . i n f o
i f e l t s [ index ] . ID == 55 :

ANonce , SNonce = r e a d f t e v a l u e s ( e l t i n f o )
i f e l t s [ index ] . ID == 101 :

BSSID , InitiatorMAC , ResponderMAC =
r e a d l i n k i d v a l u e s ( e l t i n f o )

index += 1
except IndexError :

index = −1

return ANonce , SNonce , BSSID , InitiatorMAC , ResponderMAC

def c r e a t e t d l s d i s c o v e r y ( b s s i d=” 0 2 : 0 0 : 0 0 : 0 0 : 0 3 : 0 0 ” ,
i n i t S t a=” 0 2 : 0 0 : 0 0 : 0 0 : 0 1 : 0 0 ” , respSta=” 0 2 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 ” ) :
return ( Ether ( s r c=i n i t S t a , dst=respSta , type=0x890d ) /

Dot11TDLSAction ( ac t i on =10) /
D o t 1 1 E l t L i n k I d e n t i f i e r ( b s s i d=bss id , i n i t S t a=i n i t S t a ,

respSta=respSta ) )

def c r e a t e t d l s s e t u p r e q u e s t ( b s s i d=” 0 2 : 0 0 : 0 0 : 0 0 : 0 3 : 0 0 ” ,
i n i t S t a=” 0 2 : 0 0 : 0 0 : 0 0 : 0 1 : 0 0 ” , respSta=” 0 2 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 ” ,
gdcs=None , malformed=False ) :

raw = Raw( load=’ \ x7f \x08\x00\x00\x00\x00\x20\x00\x00\x00 ’ )
i f malformed :

raw = Raw( load=’ \ x7f \x02\x10\x00\x00\x70\x20\x01\x01\x00
’ )

packet = ( Ether ( s r c=i n i t S t a , dst=respSta , type=0x890d ) /
Dot11TDLSAction ( ac t i on =0) /

Dot11Cap ( ) /
Dot11EltRates ( ) /
Dot11EltExtRates ( ) /
raw /
Dot11EltChannels ( channel =2, range=12) /
D o t 1 1 E l t L i n k I d e n t i f i e r ( b s s i d=bss id , i n i t S t a=i n i t S t a ,

respSta=respSta ) )
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i f gdcs :
packet /= c r e a t e r s n ( gdcsType=gdcs )
packet /= c r e a t e f t e ( )
packet /= c r e a t e t i ( i n t e r v a l =43200)

return packet

def c r e a t e t d l s s e t u p r e s p o n s e ( b s s i d=” 0 2 : 0 0 : 0 0 : 0 0 : 0 3 : 0 0 ” ,
i n i t S t a=” 0 2 : 0 0 : 0 0 : 0 0 : 0 1 : 0 0 ” , respSta=” 0 2 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 ” ,
gdcs=None , s u c c e s s=True , requestPacket=None ) :
s t a t u s = 0 i f s u c c e s s else 1
packet = Ether ( s r c=i n i t S t a , dst=respSta , type=0x890d ) /

Dot11TDLSAction ( ac t i on =1, s t a t u s c o d e=s t a t u s )
i f s u c c e s s :

packet /= Dot11Cap ( )
packet /= Dot11EltRates ( )
packet /= Dot11EltExtRates ( )
packet /= Dot11EltChannels ( channel =2, range=12)

LinkIdEl = D o t 1 1 E l t L i n k I d e n t i f i e r ( b s s i d=bss id , i n i t S t a=
i n i t S t a , re spSta=respSta )

packet /= LinkIdEl

i f gdcs and requestPacket :
RSNEEl = c r e a t e r s n ( gdcsType=gdcs )
ANonce , SNonce , BSSID , InitiatorMAC , ResponderMAC =

r e a d t d l s s e t u p p a c k e t ( requestPacket )

print ( ’ANonce : {}\nSNonce : {} ’ . format ( b i n a s c i i .
h e x l i f y (ANonce) , b i n a s c i i . h e x l i f y ( SNonce ) ) )

tpk = c a l c u l a t e t p k (ANonce , SNonce , BSSID ,
InitiatorMAC , ResponderMAC)

FTEl = c r e a t e f t e ( SNonce=SNonce , ANonce=ANonce , mic=
None )

TimeoutEl = c r e a t e t i ( i n t e r v a l =43200)
mic = c a l c u l a t e m i c ( tpk , InitiatorMAC , ResponderMAC ,

3 , LinkIdEl , RSNEEl , TimeoutEl , FTEl)
packet /= RSNEEl
packet /= c r e a t e f t e ( SNonce=SNonce , ANonce=ANonce ,

mic=mic )
packet /= TimeoutEl

return packet

def ge t tpk f r om se tup packe t ( packet ) :
ANonce , SNonce , BSSID , InitiatorMAC , ResponderMAC =

r e a d t d l s s e t u p p a c k e t ( packet )
return c a l c u l a t e t p k (ANonce , SNonce , BSSID , InitiatorMAC ,

ResponderMAC)

def c a l c u l a t e t p k (ANonce , SNonce , BSSID , InitiatorMAC ,
ResponderMAC) :
# TPK−Key−Input = SHA−256(min(SNonce , ANonce) | | max(SNonce ,

ANonce) )
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tpkKeyInput = hash l i b . sha256 (min(ANonce , SNonce ) + max(
ANonce , SNonce ) ) . d i g e s t ( )

print ( ”TDLS TPK−Key−Input : {}” . format ( b i n a s c i i . h e x l i f y (
tpkKeyInput ) ) ) #CORRECT!

# TPK−Key−Data = KDF−N KEY(TPK−Key−Input , ”TDLS PMK” , min(
MAC I, MAC R) | | max(MAC I, MAC R) | | BSSID)

context = min( InitiatorMAC , ResponderMAC) + max(
InitiatorMAC , ResponderMAC) + BSSID

print ( ”TDLS KDF Context : {}” . format ( b i n a s c i i . h e x l i f y ( context
) ) )

# TPK = KDFHashLength ( keyInput , ”TDLS PMK” , con t ex t )
tpk = KDFSHA256( tpkKeyInput , b”TDLS PMK” , context )
tpkkck = tpk [ 0 : 1 6 ]
tpktk = tpk [ 1 6 : ]

print ( ’TDLS TPK−KCK: {}\nTDLS TPK−TK: {} ’ . format ( b i n a s c i i .
h e x l i f y ( tpkkck ) , b i n a s c i i . h e x l i f y ( tpktk ) ) )

return tpk

def c a l c u l a t e m i c (TPK, InitiatorMAC , ResponderMAC , TransSeqNr ,
LinkIdEl , RSNEEl , TimeoutEl , FTEl) :
frame = InitiatorMAC + ResponderMAC + s t r u c t . pack ( ’<B ’ ,

TransSeqNr ) + str ( LinkIdEl ) + str (RSNEEl) + str ( TimeoutEl
) + str (FTEl)

mic = CMAC. new(TPK[ 0 : 1 6 ] , ciphermod=AES)
mic . update ( frame )
mi c d i g e s t = mic . d i g e s t ( ) [ 0 : 1 6 ]
print ( ”TDLS MIC: {}” . format ( b i n a s c i i . h e x l i f y ( m i c d i g e s t ) ) )
return mi c d i g e s t

def c r e a t e t d l s s e t u p c o n f i r m ( bs s i d=” 0 2 : 0 0 : 0 0 : 0 0 : 0 3 : 0 0 ” ,
i n i t S t a=” 0 2 : 0 0 : 0 0 : 0 0 : 0 1 : 0 0 ” , respSta=” 0 2 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 ” ,
gdcs=None , responsePacket=None ) :
s t a t u s = 0
packet = Ether ( s r c=i n i t S t a , dst=respSta , type=0x890d ) /

Dot11TDLSAction ( ac t i on =2, s t a t u s c o d e=s t a t u s )
LinkIdEl = D o t 1 1 E l t L i n k I d e n t i f i e r ( b s s i d=bss id , i n i t S t a=

i n i t S t a , re spSta=respSta )
packet /= LinkIdEl

i f gdcs and responsePacket :
RSNEEl = c r e a t e r s n ( gdcsType=gdcs )
ANonce , SNonce , BSSID , InitiatorMAC , ResponderMAC =

r e a d t d l s s e t u p p a c k e t ( responsePacket )

print ( ’ANonce : {}\nSNonce : {} ’ . format ( b i n a s c i i . h e x l i f y (
ANonce) , b i n a s c i i . h e x l i f y ( SNonce ) ) )

tpk = c a l c u l a t e t p k (ANonce , SNonce , BSSID , InitiatorMAC ,
ResponderMAC)

FTEl = c r e a t e f t e ( SNonce=SNonce , ANonce=ANonce , mic=None
)
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TimeoutEl = c r e a t e t i ( i n t e r v a l =43200)
mic = c a l c u l a t e m i c ( tpk , InitiatorMAC , ResponderMAC , 3 ,

LinkIdEl , RSNEEl , TimeoutEl , FTEl)
packet /= RSNEEl
packet /= c r e a t e f t e ( SNonce=SNonce , ANonce=ANonce , mic=

mic )
packet /= TimeoutEl

return packet

def c r e a t e t d l s t e a r d o w n ( bs s i d=” 0 2 : 0 0 : 0 0 : 0 0 : 0 3 : 0 0 ” ,
i n i t S t a=” 0 2 : 0 0 : 0 0 : 0 0 : 0 1 : 0 0 ” , respSta=” 0 2 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 ” ) :
return Ether ( s r c=i n i t S t a , dst=respSta , type=0x890d ) /

Dot11TDLSAction ( ac t i on =3) / D o t 1 1 E l t L i n k I d e n t i f i e r ( b s s i d=
bss id , i n i t S t a=i n i t S t a , re spSta=respSta )

def c r ea t e p ing mes sage ( re sponse=False ) :
bss id , addr0 , addr1 = ” 2 0 : 0 0 : 0 0 : 0 0 : 0 3 : 0 0 ” , ”

2 0 : 0 0 : 0 0 : 0 0 : 0 1 : 0 0 ” , ” f 0 : 1 8 : 9 8 : 4 6 : e5 : 9 a”
packet = Ether ( s r c=addr0 , dst=addr1 , type=0x0006 ) / Raw( load

=”HELLO RESP” )
i f re sponse :

packet = Ether ( s r c=addr1 , dst=addr0 , type=0x0006 ) / Raw(
load=”HELLO INIT” )

return packet

Listing A.4: runmapper.py

#!/ usr / b in /env python2 .7

from mul t i p ro c e s s i ng . pool import ThreadPool

import socke t

from scapy . a l l import ∗
import time
import l o gg ing
import time
l o g g e r = logg ing . getLogger ( )
import subproces s

import sys
sys . path . i n s e r t (0 , ” . . / hostap / t e s t s /hwsim” )
sys . path . i n s e r t (0 , ” . . / hostap /wpaspy” )

from packets import ∗
from t d l s import ∗

def d o s n i f f ( ) :
return s n i f f ( i f a c e=’ wlan1 ’ , t imeout =1, l f i l t e r = lambda x :

Dot11TDLSAction in x )

def main ( ) :
verbose = False
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s = socket . socke t ( socke t . AF INET , socket .SOCK STREAM)
s . s e t sockopt ( socke t .SOL SOCKET, socket .SO REUSEADDR, 1)
s . bind ( ( ” 0 . 0 . 0 . 0 ” , 8888) )
s . l i s t e n (1 )

( c l i e n t , address ) = s . accept ( )

pool = ThreadPool ( p r o c e s s e s =1)

s e tup r e spons e packe t = None
tpk = None
connected = False

bss id , addr0 , addr1 = ” 2 0 : 0 0 : 0 0 : 0 0 : 0 3 : 0 0 ” , ”
2 0 : 0 0 : 0 0 : 0 0 : 0 1 : 0 0 ” , ” 2 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 ”

while True :
cmd = c l i e n t . recv (1024) . s t r i p ( )
print ( ” Received command : {}” . format (cmd) )

a s y n c s n i f f = pool . apply async ( d o s n i f f )

t imeout re sponse = ”NO RESPONSE”

i f cmd == ”SETUP CONFIRM” :
pkt = se tup r e spons e packe t
i f s e tup r e spons e packe t and s e tup r e spons e packe t [

Dot11TDLSAction ] . s t a t u s c o d e == 0 :
connected = True

else :
pkt = None

sendp ( c r e a t e t d l s s e t u p c o n f i r m ( gdcs =4,
responsePacket=pkt ) , i f a c e=’ wlan1 ’ , verbose=
verbose )

s e tup r e spons e packe t = None
e l i f cmd == ”SETUP REQUEST OPEN CORRECT” :

s e tup r e spons e packe t = None
connected = False
sendp ( c r e a t e t d l s s e t u p r e q u e s t ( gdcs=None ) , i f a c e=’

wlan1 ’ , verbose=verbose )
e l i f cmd == ”SETUP REQUEST AES CORRECT” :

s e tup r e spons e packe t = None
connected = False
sendp ( c r e a t e t d l s s e t u p r e q u e s t ( gdcs=4) , i f a c e=’

wlan1 ’ , verbose=verbose )
e l i f cmd == ”SETUP REQUEST OPEN MALFORMED” :

s e tup r e spons e packe t = None
connected = False
sendp ( c r e a t e t d l s s e t u p r e q u e s t ( gdcs=None , malformed

=True ) , i f a c e=’ wlan1 ’ , verbose=verbose )
e l i f cmd == ”SETUP REQUEST AES MALFORMED” :

s e tup r e spons e packe t = None
connected = False
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sendp ( c r e a t e t d l s s e t u p r e q u e s t ( gdcs =4, malformed=
True ) , i f a c e=’ wlan1 ’ , verbose=verbose )

e l i f cmd == ”TEARDOWN” :
s e tup r e spons e packe t = None
connected = False
sendp ( c r e a t e t d l s t e a r d o w n ( ) , i f a c e=’ wlan1 ’ , verbose

=verbose )
e l i f cmd == ”RESET” :

s e tup r e spons e packe t = None
connected = False
tpk = None
c l i e n t . s e n d a l l ( ”{}\n” . format ( ”NO RESPONSE” ) )
continue

e l i f cmd == ”CONNECTED” :
t imeout re sponse = ”CONNECTED” i f connected else ”

NOT CONNECTED”

response msg = t imeout re sponse
i f not cmd == ”CONNECTED” :

packets = a s y n c s n i f f . get ( )

i f len ( packets ) > 1 :
packets = packets [ 1 : ]
print ( ’ r e sponse packet l ength l onge r 0 ’ )
i f packets [ 0 ] . a c t i on == 2 :

response msg = ”SETUP CONFIRM”
e l i f packets [ 0 ] . a c t i on == 1 :

s e tup r e spons e packe t = packets [ 0 ]
s t a t u s = se tup r e spons e packe t [

Dot11TDLSAction ] . s t a t u s c o d e
response msg = ”SETUP RESPONSE FAIL {}” .

format ( s t a t u s )
i f s t a t u s == 0 :

response msg = ”SETUP REPONSE SUCCESS”
e l i f packets [ 0 ] . a c t i on == 3 :

response msg = ”TEARDOWN”
else :

response msg = ” ac t i on : {}” . format ( packets
[ 0 ] . a c t i on )

c l i e n t . s e n d a l l ( ”{}\n” . format ( response msg ) )
print ( ” Sending to l e a r n e r : ‘{} ‘ ” . format ( response msg ) )

i f name ==’ ma in ’ : main ( )

Listing A.5: startwpa.py

#!/ usr / b in /env python2 .7

from scapy . a l l import ∗
import time
import l o gg ing
l o g g e r = logg ing . getLogger ( )

41



import subproces s

import sys
sys . path . i n s e r t (0 , ” . . / hostap / t e s t s /hwsim” )
sys . path . i n s e r t (0 , ” . . / hostap /wpaspy” )

from wpasuppl icant import WpaSupplicant
import hws im ut i l s
from hostapd import HostapdGlobal
from hostapd import Hostapd
import hostapd
from u t i l s import HwsimSkip , s k i p w i t h f i p s
from wlantes t import Wlantest

def i n i t s t a s ( ) :
s tdout hand l e r = logg ing . StreamHandler ( )
s tdout hand l e r . s e t L e v e l ( l ogg ing .DEBUG)
l o g g e r . addHandler ( s tdout hand l e r )

dev0 = WpaSupplicant ( ’ wlan0 ’ , ’ /tmp/wpas−wlan0 ’ )
dev1 = WpaSupplicant ( ’ wlan1 ’ , ’ /tmp/wpas−wlan1 ’ )
dev2 = WpaSupplicant ( ’ wlan2 ’ , ’ /tmp/wpas−wlan2 ’ )
dev = [ dev0 , dev1 , dev2 ]

for d in dev :
i f not d . ping ( ) :

l o g g e r . i n f o (d . i fname + ” : No response from
wpa suppl icant ” )

return
l o g g e r . i n f o ( ”DEV: ” + d . ifname + ” : ” + d . p2p dev addr ( )

)

params = hostapd . wpa2 params ( s s i d=” te s t−wpa2−psk” ,
passphrase=” 12345678” )

hapd = hostapd . add ap ({ ” ifname ” : ’ wlan3 ’ , ” b s s i d ” : ”
0 2 : 0 0 : 0 0 : 0 0 : 0 3 : 0 0 ” } , params )

Wlantest . setup ( hapd )
wt = Wlantest ( )
wt . w l a n t e s t c l i = ’ . . / hostap / wlantes t / w l a n t e s t c l i ’
wt . f l u s h ( )
wt . add passphrase ( ” 12345678” )
wt . add wepkey ( ”68656 c6c6 f ” )

dev [ 0 ] . connect ( ” t e s t−wpa2−psk” , psk=” 12345678 ” , s c a n f r e q=”
2412” )

dev [ 1 ] . connect ( ” t e s t−wpa2−psk” , psk=” 12345678 ” , s c a n f r e q=”
2412” )

def main ( ) :
subproces s . c a l l ( ’ s e r v i c e NetworkManager stop ’ , s h e l l=True )
subproces s . c a l l ( ’ bash s t a r t . sh ’ , s h e l l=True , cwd=” . . / hostap /

t e s t s /hwsim/” )
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i n i t s t a s ( )

i f name ==’ ma in ’ : main ( )

Listing A.6: stop.py

#!/ usr / b in /env python2 .7

from scapy . a l l import ∗
import time
import l o gg ing
l o g g e r = logg ing . getLogger ( )
import subproces s

import sys
sys . path . i n s e r t (0 , ” . . / hostap / t e s t s /hwsim” )
sys . path . i n s e r t (0 , ” . . / hostap /wpaspy” )

import hws im ut i l s
from wpasuppl icant import WpaSupplicant
from hostapd import HostapdGlobal
from hostapd import Hostapd
import hostapd
from u t i l s import HwsimSkip , s k i p w i t h f i p s
from wlantes t import Wlantest

def main ( ) :
subproces s . c a l l ( ’ bash stop . sh ’ , s h e l l=True , cwd=” . . / hostap /

t e s t s /hwsim/” )
subproces s . c a l l ( ’ s e r v i c e NetworkManager s t a r t ’ , s h e l l=True )

i f name ==’ ma in ’ : main ( )

Listing A.7: util.py

import s t r u c t
import hash l i b
import hmac
import b i n a s c i i
from rad io tap import r a d i o t a p p a r s e

mask = 0xFFFFFFFFFFFFFFFF

def b i t 2 56 t o he x ( v ) :
return s t r u c t . pack ( ’<QQQQ’ , v&mask , (v>>64)&mask , (v>>128)&

mask , (v>>192)&mask)

def he x to b i t 2 56 (hex) :
va lue = s t r u c t . unpack ( ’<QQQQ’ , hex)
return value [ 0 ] + ( value [ 1 ] << 64) + ( value [ 2 ] << 128) + (

value [ 3 ] << 192)

def b i t 1 28 t o he x ( v ) :
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return s t r u c t . pack ( ’<QQ’ , v&mask , (v>>64)&mask)

def he x to b i t 1 28 (hex , b i g end ian=False ) :
va lue = s t r u c t . unpack ( ’<QQ’ , hex)
return value [ 0 ] + ( value [ 1 ] << 64)

def KDFSHA256( key , l abe l , context ) :
counter = 1
buffer = ’ ’

print ( ”KDF Label : {}” . format ( l a b e l ) )
print ( ”KDF Context : {}” . format ( b i n a s c i i . h e x l i f y ( context ) ) )

pos = 0
while pos < ( (256 + 7) / 8) :

print ( ”HMAC Input : {}” . format ( b i n a s c i i . h e x l i f y ( s t r u c t .
pack ( ’<H ’ , counter ) + l a b e l + context + s t r u c t . pack ( ’
<H ’ , 256) ) ) )

tmp = hmac . new( key , s t r u c t . pack ( ’<H ’ , counter ) + l a b e l +
context + s t r u c t . pack ( ’<H ’ , 256) , ha sh l i b . sha256 )

buffer = buffer + tmp . d i g e s t ( )
pos += 32
counter += 1

print ( ”KDF Counter : {}” . format ( counter ) )

return buffer [ : 3 2 ]

def s e t B i t ( va lue , index ) :
””” Set the index ’ th b i t o f va lue to 1 .
”””
mask = 1 << index
value &= ˜mask
value |= mask
return value

def getBi t ( va lue , index ) :
””” Get the index ’ th b i t o f va lue .
”””
return ( va lue >> index ) & 1

def hasFCS( packet ) :
””” Check i f the Frame Check Sequence (FCS) f l a g i s s e t in

the Radiotap header .
”””
a s s e r t ( packet . ha s l aye r ( RadioTap ) ) , \

’The packet does not have a Radiotap header . ’
, rad io tap = r a d i o t a p p a r s e ( str ( packet ) )

radiotapFCSFlag = False
i f getBi t ( rad io tap [ ’ f l a g s ’ ] , 4 ) == 1 :

radiotapFCSFlag = True
return radiotapFCSFlag

def assertDot11FCS ( packet , expectedFCS = None ) :
””” Va l i da t e s the Frame Check Sequence (FCS) over a Dot11
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l a y e r . I t i s p o s s i b l e to
pass an expec ted FCS; t h i s i s necessary when the r e i s no

padding l a y e r a v a i l a b l e ,
u s u a l l y in the case o f encrypted packe t s .

”””
i f expectedFCS i s None :

fcsDot11 = str ( packet . g e t l a y e r ( Padding ) )
else :

f csDot11 = ’ {0:0{1}x} ’ . format ( expectedFCS , 8 ) #
Padding f o r l e ad in g zero .

fcsDot11 = fcsDot11 . decode ( ’ hex ’ )
dataDot11 = str ( packet . g e t l a y e r ( Dot11 ) ) [ : −4 ]
# Ca l cu l a t e the ICV over the Dot11 data , parse i t from

s igned to unsigned , and
# change the endianness .
f c sDot11Calcu lated = s t r u c t . pack ( ’<L ’ , c rc32 ( dataDot11 )

% (1<<32) )

# Asser t t h a t we have r e c e i v ed a v a l i d FCS by comparing the
ICV ’ s .

a s s e r t ( fcsDot11 == fcsDot11Calcu lated ) , \
’The r e c e i v e d FCS ”0x%s ” does not match the c a l c u l a t e d

FCS ”0x%s ” . ’ \
% ( fcsDot11 . encode ( ’ hex ’ ) , f c sDot11Calcu lated . encode ( ’

hex ’ ) )

Listing A.8: learner.properties

type = socket

hostname = l o c a l h o s t
port = 8888
alphabet = SETUP REQUEST AES CORRECT

SETUP REQUEST AES MALFORMED SETUP CONFIRM TEARDOWN CONNECTED

output d i r = output

l e a r n i n g a l g o r i t h m = l s t a r

e q t e s t = randomwords
min length = 5
max length = 10
n r q u e r i e s = 10
seed = 1
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