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Chapter 1

Introduction

Automata are in its most pure form an elegant mechanism for deciding whether a
word belongs to a specific language. When picturing a language through an automa-
ton, it makes it easier to understand what the language actually is. We can, after
all, pick a certain input and follow its path. It will either get accepted or rejected.
There are however a few problems when actually creating an automaton. One can
always simply create a language that one finds interesting. The real challenge lies
in creating an actual automaton that (optimally) represents the chosen language.

We have seen a few methods of simplifying this process. Among other options,
one can use a “Non-Deterministic Finite Automaton(NFA)” or a “NFA-λ”. All
these constructs are used so that we can better understand how some automata
work. When viewing certain Finite Automata that are not Deterministic Finite Au-
tomata, one may get the impression that when adding these options we can accept
more languages. However, this is not true. It has been shown that the class of
languages that NFAs or NFA-λs accept are not different from the class of languages
that simple DFAs can accept. There are algorithms for transforming a NFA to an
equivalent DFA, a NFA-λ to an equivalent NFA, which in turn can be transformed
into an equivalent DFA again.

All these variations help us to better understand the concept of Finite Automata.
An important issue is the number of states an automaton uses. For example, when
we have a NFA with few states we can obtain a DFA with relatively many states
by exercising the method for transforming one. When one sees the DFA, one could
have a harder time imagining which language it accepts.

In this thesis, we shall study another method which is used for optimizing DFA.
We will see the beauty of a Two-Way Finite Automaton, either Deterministic or Non-
deterministic. They were introduced by Rabin and Scott[1] and Shepherdson[2] in
1959. Once again, these two-way automata do not imply that these automata can
accept more or different classes of languages. You see, the classes of languages that
can be accepted by two-way finite automata, can also be accepted by one-way finite
automata. According to Shepherdson, transforming a two-way finite automaton to
a one-way deterministic finite automaton can be done in O((n+ 1)n+1) steps where
n is the number of states of the two-way finite automaton.
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DFAs and NFAs can only walk in one direction, while two-way automata can
walk multiple times through the word by going back and forth. DFAs and NFAs,
when accepting a difficult language, can have a number of states. This can be re-
duced this by allowing the automaton to walk back and forth through the word. By
doing this, you also have a better overview of the automaton, making them easier
to understand.

Even though there is a basic definition for a two-way deterministic finite automa-
ton, there have been slight adaptations made to this definition. These alterations
were used for understanding these automata better. Even though these changes
made the automata look different, they still accept the same classes of languages.

In this thesis we will see how to turn a two-way automaton, both deterministic as
non-deterministic, into a one-way deterministic automaton and what the costs are
of that process in number of states. As previously stated, a two-way automaton is
more likely to have less states. We will also see what other methods of converting a
two-way automaton into a one-way automaton are solely used for unary languages.
That is, languages over a one-symbol alphabet.
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Chapter 2

One way automata, deterministic
and non-deterministic

A finite automaton is a simple machine to recognize a pattern. More precisely, a
pattern of words over an alphabet.

Definition 2.1. An alphabet Σ is a finite set of symbols.

Definition 2.2. A word w ∈ Σ∗ is a concatenation of letters from the alphabet Σ
with any length.

Definition 2.3. We will denote the empty word as λ, it has length 0.

Definition 2.4. An language L is a set of words, L ⊆ Σ∗

Definition 2.5. A deterministic finite automaton is a quintuple M = (Q,Σ, δ, s, F )
where:

• Q is a finite set of states;

• Σ is a finite set that we call the input alphabet;

• δ : Q× Σ→ Q is the so called transition function;

• s ∈ Q is the start state;

• F ⊆ Q, the set of final states.

The automaton that is depicted below accepts the language where every word
needs to have an odd length. By alternating between the two states, it is effectively
counting the letters in the word. When the length of the word is even, it will end
in q0 and therefore not be accepted.

Remark 2.6. In an automaton the start-state is depicted with an arrow coming
from “start”. The final states in an automaton are depicted with a double ring
around the state.

q0start q1

a, b

a, b

Figure 2.1: A DFA
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When reading a word w ∈ Σ∗ in a certain DFA, we often would like to know in
which state we end up after n steps when beginning at the begin-state q0. For this
we will use the following definition:

Definition 2.7. Let M = {Q,Σ, δ, q0, F} be a DFA, w ∈ Σ∗, n ∈ N and q ∈ Q. We
define the relation q0

n−→
w
q inductively for n > 0:

• q0
1−→
w
q if δ(q0, k) = q with k being the first letter of w; and

• q0
n−→
w
q if ∃q′ ∈ Q : q0

n−1−−→
w′

q′ and q′
1−→
a
q with w = w′a.

Definition 2.8. Let M = {Q,Σ, δ, q0, F} be a DFA, w ∈ Σ∗ and n the length of w.
If q0

n−→
w
q, it is said that w has a run on the DFA M starting in q0 and ending in q.

A run is accepting if q ∈ F .

Definition 2.9. Let M = {Q,Σ, δ, q0, F} be a DFA and w = a1a2 . . . an ∈ Σ∗.

1. w is accepted if it has an accepting run on M .

2. w is rejected if it doesn’t have an accepting run on M .

The set of words accepted by the DFA M is called L(M).

Definition 2.10. A non-deterministic finite automaton is a quintuple
M = (Q,Σ, δ, s, F ) where:

• Q is a finite set of states;

• Σ is a finite set that we call the input alphabet;

• δ : Q× Σ→ 2Q is the so called transition function;

• s ∈ Q is the start state;

• F ⊆ Q, the set of final states.

The automaton as seen below accepts only the language where the last letter
of a word is an ’a’. It walks through the word and when encountering an ’a’ the
automaton can choose whether it stays in the loop of q0 or goes to q1, but will only
accept it when the automaton is done reading the whole word.

q0start q1

a, b

a

Figure 2.2: Example of a NFA

Definition 2.11. Let M = {Q,Σ, δ, q0, F} be a NFA, w ∈ Σ∗ and n the length of
w. If q0

n−→
w
q, it is said that w has a run on the NFA M starting in q0 and ending in

q. A run is accepting if the end-state is a final state. Talking about a NFA, a word
can have multiple runs.
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The acceptance of a word w in a NFA is the same as the acceptance of a DFA:

Definition 2.12. Let M = {Q,Σ, δ, q0, F} be a DFA and w = a1a2 . . . an ∈ Σ∗.

1. w is accepted if it has an accepting run on M .

2. w is rejected if it doesn’t have an accepting run on M .

The set of words accepted by the NFA M is called L(M).

Definition 2.13. When we view letters as words of length 1, we can view δ̂ as an
extension of δ for words of arbitrary length. We will define δ̂(q, y) inductively with
y ∈ Σ∗ as follows:

δ̂(q, λ) = q

δ̂(q, ya) = δ(δ̂(q, y), a)
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Chapter 3

Overhead for converting NFA to
DFA

We now consider the costs when transforming a NFA to a DFA.

Definition 3.1. In = L((a+ b)∗a(a+ b)n−1) for n ∈ N.

For n ∈ N, In is the language of words where the n’th letter from the end is an ’a’.
The class of languages is extremely useful when giving an example of transforming
a NFA to a DFA. For (In)n∈N we have an elegant NFA, one that simply walks until
the wanted ’a’ is read, and then reads the next n letters. This automaton blows
up exponentially in number of states when it is transformed to a DFA. This class is
the prime example as to why the complexity of transforming a NFA to a DFA is in
O(2n).

Lemma 3.2. Let A be a DFA that accepts In. If v, w ∈ Σn, q0
n−→
w
q and q0

n−→
v
q,

then v = w.

Proof. Let A = (Q,Σ, δ, q0, F ). Assume v 6= w, q0
n−→
v
q and q0

n−→
w
q. Assume the

(n − k + 1)th letter of w and v is ’a’ and ’b’ respectively. Define v′ = vbn−k and

w′ = wbn−k. We see that there is a unique q′ ∈ Q such that q
n−k−−→
v′

q′ and q
n−k−−→
w′

q′.

Now we see that there are two possibilities:

1. q′ ∈ F . This means that both w′ and v′ are accepted. However w′ /∈ L(A),
because w′ must not be accepted by this machine. This is because the nth

letter from the end of w′ is a ’b’ and not a ’a’.E

2. q′ ∈ Q\F . This signifies that both v′ and w′ are not accepted. However
v′ ∈ L(A), because v′ must be accepted by this machine. This is because the
nth letter from the end for v′ is a ’a’. E

Therefore v = w.

Theorem 3.3. Let A be a DFA that accepts In, then |Q| ≥ 2n.

Proof. For Σ = {a, b} there are 2n different words of length n. After reading a word
of length n, A is in a unique state.
Assume you have less than 2n states, then there are two words that will end in the
same state according to the Pigeonhole Principle. According to the Lemma 3.2.
these two words are the same. E
Hence at least 2n states are necessary.
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Chapter 4

Two way automata, deterministic
and non-deterministic

Two-Way Finite Automata are used for efficiently accepting a language. There are
multiple ways to denote the exact definition of a two-way deterministic finite au-
tomaton.

First is the variant Kozen uses in his lecture notes[3]. This variant is interesting,
because it uses endmarkers, whereas Rabin and Scott[1] did not. The reason why
is because it gives us a better representation about what we actually would like to
accomplish. For example, take the following language.

I3 = {w ∈ Σ∗| the third letter from the back is ’a’}

When an automaton accepts this language, we want to know if the third letter from
the end is an ’a’ or not. One can simply achieve this by going to the end of the word
and then walk back. To do this, we would need to know when a word is finished.
For this Kozen introduces endmarkers.

Definition 4.1 (Kozen[3]). A Kozen-2DFA is an octuple M = (Q,Σ,`,a, δ, s, t, r)
where:

• Q is a finite set of states;

• Σ is a finite set that we call the input alphabet;

• ` is the left endmarker, `/∈ Σ;

• a is the right endmarker, a/∈ Σ;

• δ : Q× (Σ∪ {`,a})→ (Q×{L,R}) is the transition function (L,R stand for
left and right, respectively);

• s ∈ Q is the initial state;

• t ∈ Q is the accept state;

• r ∈ Q is the reject state, r 6= t;
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such that for all states q,

δ(q,`) = (u,R) for some u ∈ Q
δ(q,a) = (v, L) for some v ∈ Q,

and for all symbols b ∈ Σ ∪ {`},

δ(t, b) = (t, R), δ(r, b) = (r, R),

δ(t,a) = (t, L), δ(r,a) = (r, L).

When reading a word w ∈ Σ∗ in a Kozen-2DFA, we often would like to know in
which state we end up after n steps when beginning at the initial state q0. For this
we will use the following definitions:

Definition 4.2. LetM = (Q,Σ,`,a, δ, s, t, r) be a Kozen-2DFA and w = a1a2 . . . an.

The relation (q, i)
1−→
w

(q′, i) with q, q′ ∈ Q and i, j ∈ N is defined on a 2DFA M as

follows:

δ(p, ai) = (q, L)⇒ (p, i)
1−→
w

(q, i− 1)

δ(p, ai) = (q, R)⇒ (p, i)
1−→
w

(q, i+ 1)

Here ai is the ith letter of the word w ∈ Σ∗, p, q ∈ Q.

Definition 4.3. We define the relation
n−→
w

inductively on n ≥ 1 as follows:

• (p, i)
0−→
w

(p, i); and

• (p, i)
n−→
w

(u, k), if ∃q ∈ Q : (p, i)
n−1−−→
w

(q, j) and (q, j)
1−→
w

(u, k) for some p ∈ Q
and j ∈ N.

Definition 4.4. We define
∗−→
w

as follows:

(p, i)
∗−→
w

(q, j)
def⇔ ∃n ≥ 0 : (p, i)

n−→
w

(q, j)

Definition 4.5. There are three possibilities:

1. A word w ∈ Σ∗ is said to be accepted if (s, 0)
∗−→
w

(t, i) for some i ∈ N.

2. A word w is said to be rejected when (s, 0)
∗−→
w

(r, i) for some i ∈ N

3. A word w it also said to be rejected when none of (1) or (2) holds.

L(M) ⊆ Σ∗ is the set of words that are accepted by a Kozen-2DFA M .

Note that w cannot be both accepted and rejected at the same time, because
of the construction of Kozen. When a word enters r or t, it can never leave that state.

The example below accepts only words where the number of ’a’s in w is a multiple
of three and the number of ’b’ is a multiple of two. It first checks if the number
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of ’a’s is correct when walking through the word by going repeatedly right. Only
when the automaton ends in q0 while being at the end of the word, it will read the
end-marker and go left through the word while checking if the number of ’b’s is a
multiple of 2. Only when that is the case, the automaton will end in p0 and will
read the end-marker. Then it will go to t, the “terminating state”. Let’s say the
word we want to check does not have the correct amount of ’a’s, it will either end
in q1 or q2. Then the automaton will read a and go to r, the “rejecting state”.

Example 4.6. The 2DFA as seen below represents the language over Σ = {a, b},
namely L = {w ∈ Σ∗|#a(w) = 3k and #b(w) = 2i with k, i ∈ N}.

q0start q1 q2

p0 p1 r

t

a,R

b,R
`,R

a,L

a,R

b,R a,L

b,Ra,R

a,L

a,L

b,L

`,R

b,L

a,L

`,R
`,R
a,R
b,R
a,L

`,R
a,R
b,R
a,L

Figure 4.1: A 2DFA by Dexter Kozen

Remark 4.7. An automaton is deterministic when every state has a transition
arrow for every letter in the language Σ, ` and a. Note that not every state has
4 transition arrows in this example. A lot of those are omitted, because those
situations will never be reached.

Definition 4.8 (Shepherdson[2]). A two-way deterministic finite automaton (Shepherdson-
2DFA) over Σ is a system M = (Q, δ, s, F ) where:

• Q, the final set of states;

• δ : Σ×Q→ L×Q, the transition function with L = {−1, 0, 1} the direction;

• s, the initial state and

• F , the set of final states.

If for all q ∈ Q and a ∈ Σ, we have that |δ(q, a)| ≤ 1, then M is said to be
deterministic.
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Definition 4.9. A word w ∈ Σ∗ in a Shepherdson-2DFA is said to be:

• accepted if M is done reading w and it moves off the word at the right-hand-
edge of w while M is in a state belonging to F .

• rejected in any other case.

The set of words that are accepted by M is called L(M).

Example 4.10. The automaton accepts the language L((a|ab)∗). Note that this
automaton is deterministic, because |δ(q, a)| ≤ 1 holds for all q ∈ Q and a ∈ Σ.

q0start q1 q2
b,−1

a,1

a,1

b,1

Figure 4.2: A Shepherdson-2DFA accepting L((a|ab)∗)

We have now only seen examples of Two-Way Deterministic Finite Automata.
A Non-Deterministic variant is also possible. To make a 2NFA one would need to
make a few adjustments:

• The transition function needs to be in the form of δ : Σ×Q→ 2Q×L. Instead
of δ being a function that gives every pair (a, q) a single value in the form of
(q, d), it will now give a set as answer. This needs to happen because in a
2NFA it is possible for an automaton to move to different states when reading
a letter, or to no states at all.

• It is possible, but not necessary, to give the 2NFA the option of having multiple
initial states.

For an exact definition of an variant of a two-way non-deterministic finite au-
tomaton, see definition 6.3.
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Chapter 5

Converting 2DFA to 1DFA

5.1 The algorithm

For this part we will use the Two-Way Deterministic Finite Automaton as described
by a Kozen-2DFA in Definition 4.1.

To construct a 1DFA M ′ from a 2DFA M we need to find the set of states, which
will be found through the creation Tx for x ∈ Σ∗. To every x we associate a function
Tx : (Q ∪ {•})→ (Q ∪ {⊥}), which will be later shown in the form of a table.
To construct Tx we first need to introduce the symbols • and ⊥. Throughout this
construction let y ∈ Σ∗ be the concatenation of x ∈ Σ∗ and z ∈ Σ∗. On this input
the machine M will start reading the word y on the left side and will move through
it from left to right. Therefore, it may cross the border from x to z. Here we say
that M crosses the border from x to z if the last letter that is read is the last letter
of x and the next letter that will be read is the first letter of z.
Note that there are two possibilities, M either crosses the border from x to z or it
doesn’t:

1. M crosses the border from x to z. It does so for the first time while going
from q ∈ Q (the last letter of x is read) to q′ ∈ Q (the first letter of z is read).
This will be denoted as Tx(•) = q.

2. M does not cross the border. This will be denoted as Tx(•) = ⊥.

Let’s assume that the machine does cross the border from x to z and enters into z.
Similarly to the above, M will either cross the border again from z to x or it will
not. Say it does cross the border between z and x and enters back into x, entering
into qi (the first letter from z is read). We can repeat the distinction from above:

1. M crosses the border again from x to z in some state qj ∈ Q. This will be
denoted as Tx(qi) = qj.

2. M never crosses the border between x and z again. This will be denoted as
Tx(qi) = ⊥.

Notice that after crossing the border into x from z in state qi, the state qj in which
it emerges only depends on x and qi and not on z, motivating the used notation.
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The explicit construction of making a 1DFA from a 2DFA consists of a few
steps. The largest step in the algorithm is determining all function Tx, which will
be represented by tables. This can be done in various ways. Since there are finitely
many tables possible, namely (n + 1)n+1 with n being the number of states in
Q, one can construct all tables and see how they interact with one another when
constructing the transition function. Seeing that a lot of the tables will never be
reached, this is a highly inefficient method. Consider at the following algorithm.

Definition 5.1. This algorithm lets us construct all Tx, starting at step 1.

1. Let w = λ.

2. Construct Tw as stated above.

3. If Tw(•) = ⊥ or Tw already exists, stop at this branch.
Else, save Tw. For every a ∈ Σ let w := wa and repeat from step 2.

Definition 5.2. Given the 2DFA M = (Q,Σ,`,a, δ, s, t, r) we define the 1DFA
M ′ = (Q′,Σ, s′, δ′, F ′) as follows:

• Q′ = {Tx|x ∈ Σ∗}, a finite set of states;

• s′ = Tλ, the start-state;

• δ′(Tx, a) = Txa, the transition-function; and

• F ′ = {Tx|x ∈ L(M)}, the set of finite states.

Before we are able to prove that the 2DFA M and the 1DFA M ′ accept the same
language, we first state the following lemmas.

Lemma 5.3. Let x, y ∈ Σ∗: δ̂′(Tx, y) = Txy.

Proof. We will prove this by induction over y.

• Induction base:
y = λ. δ̂′(Tx, λ)

def
= Tx = Txλ.

• Induction hypotheses:
δ̂′(Tx, y) = Txy.

• Inductive step:
y′ = ya, which will be the concatenation of a word y and a letter a ∈ Σ.

δ̂′(Tx, ya)
def
= δ′(δ̂′(Tx, y), a)

IH
= δ′(Txy, a) = Txya.

Since both the base and the inductive step have been performed and are correct, by
mathematical induction, δ̂′(Tx, y) = Txy holds for all x ∈ Σ∗.

Lemma 5.4. Let x ∈ Σ∗: Tx ∈ F ′ ⇔ x ∈ L(M).

Proof. ⇐: this follows from the definition of F ′.
⇒: If Tx ∈ F ′, then there exists some y ∈ L(M) with Tx = Ty. Now we prove that
x is also an element of L(M): let us look at the sequences of states M finds itself
in when crossing the boundary between x and a, and y and a. These sequences are
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identical because they are determined by the identical tables Tx and Ty. We know
that y ∈ L(M), so the sequence of y contains t at some point. This indicates that
the sequence of x also contains t at some point, meaning that the word is accepted
by M . After all, when the 2DFA M reaches the state t it will never leave this state
and thus the word x is accepted. Therefore, x ∈ L(M).

We can now finally show that the Kozen-2DFA M and the 1DFA M ′ accept the
same languages. This proves that when a Kozen-2DFA accepts a certain language, a
1DFA can be created that accepts the same language. It is merely another method
of describing an automaton that accepts said language.

Theorem 5.5. L(M) = L(M ′)

Proof.

x ∈ L(M ′)⇔ δ̂′(s′, x) ∈ F ′

⇔ δ̂′(Tλ, x) ∈ F ′

⇔ Tx ∈ F ′

⇔ x ∈ L(M)

Now we see that w ∈ L(M)⇔ w ∈ L(M ′) and therefore L(M) = L(M ′).

5.2 Examples

This algorithm gives an upper bound ofO((n+1)(n+1)), because there are (n+1)(n+1)

tables as mentioned in Section 5.1 Here is an elegant example and a not so elegant
example, in order for the reader to get an idea of how this algorithm works.

The algorithm essentially consists of constructing the individual elements of a
1DFA.

5.2.1 Example 1

We will now see a fairly elegant example in which Kozen’s algorithm is used. This
automaton does not have a blow-up in the number of states.

L = {w ∈ Σ∗|#a(w) = 3k and #b(w) = 2i with i, k ∈ N} with Σ = {a, b}.
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q0start q1 q2

p0 p1 r

t

a,R

b,R
`,R

a,L

a,R

b,R a,L

b,Ra,R

a,L

a,L

b,L

`,R

b,L

a,L

`,R
`,R
a,R
b,R
a,L

`,R
a,R
b,R
a,L

Figure 5.1: A 2DFA accepting L

We can now compute all different Tx.

Taaa
• q0
p0 t
p1 r
u0

Taa
• q2
p0 t
p1 r
u1

Ta
• q1
p0 t
p1 r
u2

Tb
• q0
p0 r
p1 t
u3

Tab
• q1
p0 r
p1 t
u4

Taab
• q2
p0 r
p1 t
u5

Note that the following always holds for this automaton:

Tx
q0 q0
q1 q1
q2 q2
r r
t t

States that are the same for every Tx will be left out in the examples that follow.
Taaa can be read as follows:

• Taaa(•) = q0
When reading aaa starting from the left starting in q0, we see that after reading
the first a the automaton goes to q1. After reading the second a the automaton
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goes to q2. After reading the third a the automaton goes to q0 again. So after
reading aaa, the automaton ends in q0. Note that whether an a,b,` or a
follows, the automaton will leave the state q0. Therefore Taaa(•) = q0.

• Taaa(q0) = q0
We start reading aaa starting from the right in q0. After reading the a, we
go to q1. So the state we left before crossing the border is q0. Therefore
Taaa(q0) = q0.

• Taaa(q1) = q1
We start reading aaa starting from the right in q1. After reading the a, we
go to q2. So the state we left before crossing the border is q1. Therefore
Taaa(q1) = q1.

• Taaa(q2) = q2
We start reading aaa starting from the right in q2. After reading the a, we
go to q0. So the state we left before crossing the border is q2. Therefore
Taaa(q2) = q2.

• Taaa(p0) = t
Now we will start reading from the right side of aaa starting in q0. We read
the “third” a and go to p0. We read the “second” a and go to p0. We read the
first a and go to q0. Then we read the ` and go to t. In state state we will
read the three a’s, before we cross the rest of the word, all while staying in t.
Therefore, Taaa(p0) = t.

• Taaa(p0) = r
Now we will start reading from the right side of aaa starting in q1. We read
the “third” a and go to p1. We read the “second” a and go to p1. We read the
first a and go to q1. Then we read the ` and go to r. In state state we will
read the three a’s, before we cross the rest of the word, all while staying in r.
Therefore, Taaa(p0) = r.

• Taaa(t) = t
We start reading aaa starting from the right in t. After reading the t, we go
to t. So the state we left before crossing the border is t. Therefore Taaa(t) = t.

• Taaa(r) = r
We start reading aaa starting from the right in r. After reading the r, we go to
r. So the state we left before crossing the border is r. Therefore Taaa(r) = r.

To construct the DFA corresponding to the 2DFA we need to take several steps.
We have to give the set of states Q′, the starting state s′, the transitioning function
δ′ and the set of states that are accepting, F ′.

We have already found all different Tx, so Q′ is given above.

We see that s′
def
= Tλ = Taaa = u0.
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We see that δ′(Tx, a)
def
= Txa. This provides us with the following transition

function:

a b
u0 u2 u3
u1 u0 u4
u2 u1 u5
u3 u5 u0
u4 u3 u1
u5 u4 u3

Table 5.1: The transition function δ′

Finally we see that F ′
def
= {Tx|x ∈ L(M)} = {Taaa} = {u0}, because of all the

option as stated above, only aaa ∈ L(M).
This provides us with the following DFA.

u0start u1 u2

u3 u4 u5

a

b

a

b

a

b

a

b

a

b

a

b

Figure 5.2: The DFA accepting L

5.2.2 Example 2

We will now see an example that isn’t quite as elegant as example 1. This example
is mainly used to show that the algorithm is indeed capable of a blow-up.

Let us start by considering the language
I4 = (a+ b)∗a(a+ b)3.
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q0start q1 q2 q3 q4

r

t
a,L

a,R
b,R
`,R

a,L
b,L

`,R

a,L
b,L

`,R

a,L
b,L

`,R

a,L

b,L
`,L

`,R
a,R
b,R
a,L

`,R
a,R
b,R
a,L

Figure 5.3: A 2DFA accepting the language I4.

We can now find all Tx:

Taaaa
• q0
q1 t
q2 t
q3 t
q4 t
u0

Taaab
• q0
q1 t
q2 t
q3 t
q4 r
u1

Taaba
• q0
q1 t
q2 t
q3 r
q4 t
u2

Taabb
• q0
q1 t
q2 t
q3 r
q4 r
u3

Tabaa
• q0
q1 t
q2 r
q3 t
q4 t
u4

Tabab
• q0
q1 t
q2 r
q3 t
q4 r
u5

Tabba
• q0
q1 t
q2 r
q3 r
q4 t
u6

Tabbb
• q0
q1 t
q2 r
q3 r
q4 r
u7

Tbaaa
• q0
q1 r
q2 t
q3 t
q4 t
u8

Tbaab
• q0
q1 r
q2 t
q3 t
q4 r
u9

Tbaba
• q0
q1 r
q2 t
q3 r
q4 t
u10

Tbabb
• q0
q1 r
q2 t
q3 r
q4 r
u11

Tbbaa
• q0
q1 r
q2 r
q3 t
q4 t
u12

Tbbab
• q0
q1 r
q2 r
q3 t
q4 r
u13

Tbbba
• q0
q1 r
q2 r
q3 r
q4 t
u14

Tbbbb
• q0
q1 r
q2 r
q3 r
q4 r
u15

The set of states of the 1DFA Q′ is as stated above.

The starting state is equal to Tλ, which in this case equals u15.
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This provides us with the following transition function:

a b
u0 u0 u1
u1 u2 u3
u2 u4 u5
u3 u6 u7
u4 u8 u9
u5 u10 u11
u6 u12 u13
u7 u14 u15
u8 u0 u1
u9 u2 u3
u10 u4 u5
u11 u6 u7
u12 u8 u9
u13 u10 u11
u14 u12 u13
u15 u14 u15

Table 5.2: The transition function δ′.

The final thing that rests us to do, is to compute the set of final states:
F ′ = {Tx|x ∈ L(M)} = {u0, u1, u2, u3, u4, u5, u6, u7}. This is because
aaaa, aaab, aaba, aabb, abaa, abab, abba, abbb ∈ L(M).

Now that we have computed all the parts of the 1DFA, we can actually construct
it. The 1DFA M ′ is as follows:
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u15start u14

u13

u12

u11

u10

u9

u8

u7

u6

u5

u4

u3

u2

u1

u0

b

a

a

b

a

b

a

b

a

b

a

b

a

b

a

b

ab

a

b

a

b

a

b

a

b

a

b

a

b

a

b

Figure 5.4: A 1DFA accepting the language I4.

21



5.3 Complexity

When constructing a 1DFA from a Kozen-2DFA, we see that the number of states
equals the number of tables. Therefore, the maximum number of states is bound by
the number of possible tables. When we take a look at the function Tx : (Q∪{•})→
(Q ∪ {⊥}), we see that there is a maximum of (n+ 1)(n+1) tables, with n being the
number of states the Kozen-2DFA has. We can now easily see that the upper bound
for the complexity of this algorithm is O((n + 1)(n+1)). It is not clear whether this
algorithm has the lowest complexity, but at least we can show that such an algorithm
cannot be polynomial.

Theorem 5.6. There exists no polynomial algorithm that can convert a general
Kozen-2DFA into a 1DFA.

Proof. An example was given in which a Kozen-2DFA has a linear number of states
and the corresponding 1DFA has 2n states when converting the class of languages
In. Let’s assume a polynomial algorithm is given for converting a Kozen-2DFA into
a 1DFA. The created 1DFA will always have at least 2n states according to Lemma
3.2. Therefore, the algorithm will never be polynomial.
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Chapter 6

Converting 2NFA to 1DFA

To show we can turn a 2NFA into a 1DFA we will use an variation of the algorithm
that Shepherdson describes is his paper[2]. We will see that the algorithm Shep-
herdson uses is basically the same as the algorithm Kozen uses. The reason for not
using the algorithm of Kozen when dealing with 2NFA’s is because of his usage of
end-markers, which his method is based on.

6.1 Kozen versus Shepherdson

We will compare the method Kozen uses for constructing a DFA out of an Kozen-
2DFA (see Definition 4.1) with the method Shepherdson uses to construct a DFA
from a Shepherdson-2DFA(see Definition 4.8). Note that the method Shepherdson
uses shows great similarity to the method Dexter Kozen uses. We will see that
Shepherdson mainly uses a different notation. The only difference that really pops
out is the construction of the tables that will be the finite set of states in the 1DFA.
Kozen uses Tx for this, while Shepherdson uses τt.

Definition 6.1. The construction of τt : (Q ∪ {•})→ (Q ∪ {⊥}) is as follows:

1. For all t ∈ Σ∗ with t 6= λ, τt is defined as follows:

• τt(q) = q′ if M , started in the state q while reading the rightmost letter
of t, leaves the word t on the right side in state q′.

• τt(q) = ⊥ when M leaves t at the left or when it is stuck in a loop,
starting in the state q.

• τt(•) = q′ if M , started in the state q0 while reading the leftmost letter
of t, leaves the word t on the right side in state q′.

• τt(•) = ⊥ when M leaves t on the left edge or when M is stuck in a loop,
starting in the state q0.

2. τλ is defined as follows:

• τλ(q) = ⊥ and

• τλ(•) = s.

The rest of the construction is as follows:
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Shepherdson Kozen
Q′ {τt|t ∈ Σ∗} {Tx|x ∈ Σ∗}
F ′ {τt|τt(•) ∈ F} {Tx|x ∈ L(M)}
s′ τλ Tλ
δ′ : Σ×Q→ Q : Q× Σ→ Q

One can see that most of these attributes are just simply rewritten, the only
attribute that looks significantly different is that of F .

To actually show that these two methods are equal, it remains to prove that the
set of end-states of the method of Shepherdson equals those of the method of Kozen:

Lemma 6.2. {τt|τt(•) ∈ F} = {Tx|x ∈ L(M)}

Proof. We need to prove that τt(•) ∈ F ⇔ t ∈ L(M).
Both of these statements are equivalent to the following: After M is done reading t
it is in some state q ∈ F

6.2 2NFAs

We will first need a definition of a Two-Way Non-Deterministic Finite Automaton.
For that, we will use the following definition, which is a simple adjustment of the
the standard definition Shepherdson uses for a 2DFA.

Definition 6.3. A Shepherdson-2NFA M = (Q, s, δ, F ) over an alphabet Σ is a
automaton that holds the following properties:

• Q, the set of states;

• s, the begin-state;

• δ : Σ×Q→ 2Q×L;

• F , the set of final states.

To know whether a word w ∈ Σ∗ is accepted by Shepherdson-2FA M , we first
need to look at a few useful definitions.

Definition 6.4. A configuration of M is a pair (q, i) ∈ (Q×N) consisting of a state
q and a position i.

Definition 6.5. A run is a sequence of configurations. It is an element of (Q×N)∗.
Formally, (q0, i0), . . . , (qm, im) is a run of M on a word w = a0, . . . , an ∈ Σ∗ if the
following holds:

1. q0 = s, the run starts with the begin state;

2. i0 = 0, the run starts on position 0;

3. im ≤ n+ 1, the final configuration does not exceed the position n+ 1;

4. ∀j : 0 ≤ j < m, we have:
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� 0 ≤ ij ≤ n, except for maybe the final configuration, the run never leaves
the bounds of the word;

� there exists a configuration (t, k) ∈ δ(qj, aij) such that sj+1 = t and
ij+1 = ij + k.

Definition 6.6. A run is accepting if im = n+ 1 and qm ∈ F .

Definition 6.7. A word w ∈ Σ∗ is said to be:

• accepted by M if it has an accepting run on w;

• rejected by M if it does not have an accepting run on w.

The set of words that are accepted by M is called L(M).

The second requirement to convert a Shepherdson-2NFA into a 1DFA, is an
adjustment to the construction of all τt with t ∈ Σ∗.

Definition 6.8. The function τt : Q ∪ {•} → 2Q∪{⊥} is constructed as follows:

1. When talking about a state q we see the following

• τt(q) = {q′ | M starts in q on the rightmost letter of t, there is a run
where M leaves t at the right in state q’}.
• ⊥ is added to τt(q) otherwise. This includes when M leaves t at the left

or when M is stuck in a loop.

2. When talking about • we see the following

• τt(•) = {q′ | M starts in q on the leftmost letter of t, there is a run
where M leaves t at the right in state q’}.
• ⊥ is added to τt(•) otherwise. This includes when M leaves t at the left

or when M is stuck in a loop.

Definition 6.9. Given the 2NFA M = (Q, s, δ, F ) we define the 1DFA M ′ =
(Q′, s′, δ′, F ′) as follows:

• Q′ = {τt|t ∈ Σ∗}, a finite set of states;

• s′ = τλ, the start-state;

• δ′(τt, a) = τta, the transition-function; and

• F ′ = {τt|∃q ∈ F : q ∈ τt(•)} the set of finite states.

Before we can actually see that these two automata accept the same language,
we have to introduce a few help functions.

Definition 6.10. Considering letters as words of length 1, we can view δ̂′ as an
extension of δ′ for words of arbitrary length. We will define δ̂′(τx, y) inductively
with y ∈ Σ∗ as follows:
δ̂′(τx, λ) = τx
δ̂′(τx, ya) = δ′(δ̂′(τx, y), a)
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Lemma 6.11. Let x, y ∈ Σ∗: δ̂′(τx, y) = τxy.

Proof. We will prove this by induction over y.

• Induction base:
y = λ. δ̂′(τx, λ)

def
= τx = τxλ.

• Induction hypothesis:
δ̂′(τx, y) = τxy.

• Inductive step:
y′ = ya, which will be the concatenation of a word y and a letter a ∈ Σ.

δ̂′(τx, ya)
def
= δ′(δ̂′(τx, y), a)

IH
= δ′(τxy, a) = τxya.

Since both the base and the inductive step have been performed and are correct, by
mathematical induction, δ̂′(Tx, y) = Txy holds for all x ∈ Σ∗.

Theorem 6.12. L(M) = L(M ′)

Proof.

t ∈ L(M ′)⇔ δ̂′(s′, t) ∩ F ′ 6= ∅
⇔ δ̂′(τλ, t) ∩ F ′ 6= ∅
⇔ τt ∩ F ′ 6= ∅
⇔ ∃q ∈ F : q ∈ τt(•)
⇔ t ∈ L(M)

And now we see that L(M) = L(M ′).

6.3 Example

The example will make use of the following class of languages:
Ln = (a+ b)∗a(a+ b)n−1a(a+ b)∗

Let us take a look at the following automaton representing the language L2 =
(a+ b)∗a(a+ b)a(a+ b)∗:

q0start q1 q2 q3

a,R
b,R

a,L a,L
b,L

a,R

a,R
b,R

Figure 6.1: A Shepherdson-2NFA accepting L2
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τλ
• q0
q0 ⊥
q1 ⊥
q2 ⊥
u0

τa
• q0,⊥
q0 q0,⊥
q1 ⊥
q2 q3

u1

τb
• q0
q0 q0
q1 ⊥
q2 ⊥
u2

τaa
• q0,⊥
q0 q0,⊥
q1 q3
q2 q3

u3

τaaa
• q0, q3,⊥
q0 q0, q3
q1 q3
q2 q3

u4
τab

• q0,⊥
q0 q0
q1 q3
q2 ⊥

u5

τaaab
• q0, q3,⊥
q0 q0
q1 q3
q2 ⊥

u6

τaba
• q0, q3,⊥
q0 q0, q3
q1 ⊥
q2 q3

u7

τabb
• q0,⊥
q0 q0
q1 ⊥
q2 ⊥

u8
τaaabb

• q0, q3,⊥
q0 q0
q1 ⊥
q2 ⊥

u9

τabaa
• q0, q3,⊥
q0 q0,⊥
q1 q3
q2 q3

u10

τabba
• q0,⊥
q0 q0,⊥
q1 ⊥
q2 q3

u11

τaaabba
• q0, q3,⊥
q0 q0
q1 ⊥
q2 ⊥

u12

The set of states is all different τt, as stated above. The start-state is s′ = τλ = u0.
The transition function δ′ is given below:

a b
u0 u1 u2
u1 u3 u5
u2 u1 u2
u3 u4 u5
u4 u4 u6
u5 u7 u8
u6 u7 u9
u7 u10 u6
u8 u11 u8
u9 u12 u9
u10 u4 u6
u11 u3 u5
u12 u10 u6

Figure 6.2: The transition function δ′

The set of final states is F = {τt|τt(•) ∈ F} = {u4, u6, u7, u9, u10, u12}. This
gives us the following 1DFA. As you might notice, the states u4, u6, u7, u9, u10 and
u12 could be merged into one state. As the word enters through u4 or u7 it will
never leave that area. Note that the algorithm given is not optimal!
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u0start u1

u2

u3

u4

u5

u6 u7

u8

u9u10

u11

u12

a

b

a b

a

b

a

b

a
b

a

b

a

ba

b

a

b

a b

a
b

a b

a

b

Figure 6.3: A 1DFA accepting L2

6.4 Complexity

Because this algorithm is an adaptation of the algorithm Dexter Kozen uses, the
lower bound remains the same.

The upper bound changes to O(2(n+1)(n+1)
), because τt gives a maximum of

2(n+1)(n+1)
tables where n is the number of states of the 2NFA that is being con-

verted.

28



Chapter 7

Unary Languages and Automata

We now introduce unary finite automata, both deterministic and non-deterministic
one-way, and both one-way and two-way. Since we will only be talking about words
over a one-letter alphabet in this chapter, input words can be identified as positive
integers, as well as 0. Therefore, we will write x instead of ax.

All of the given transformations in this chapter are from “Finite Automata and
Unary Languages”[4] written by M. Chrobak in 1986. As is written there, we will
talk about the transformation of a 1NFA to a 1DFA, a 2DFA to a 1DFA and 1NFA
to 2DFA. All of these automata will be unary.

Definition 7.1. A unary one-way deterministic finite automaton (U1DFA)
A = (Q, q0, E, F ) is an automaton with the following properties.

• Q: the finite set of states;

• q0 ∈ Q: the begin-state;

• E ⊆ Q×Q: the set of directed edges between states, such that for every qi ∈ Q
there exists a unique qj ∈ Q with (qi, qj) ∈ E;

• F : the set of final states, with F ⊆ Q.

Note that when we are talking about a deterministic unary finite automaton, the
number of edges is equal to the number of states, |E| = |Q|.

Definition 7.2. The acceptance of a word x for a unary deterministic finite automa-
ton is the same as the acceptance of a word w for a deterministic finite automaton.
The only difference is that when we are talking about a unary 1DFA, we don’t have
a transition function, but purely the set of edges. When we have an edge (qi, qj), we
consider this the same as δ(qi, a) = qj.

Definition 7.3. A unary one-way non-deterministic finite automaton (U1NFA)
A = (Q, q0, E, F ) is an automaton with the following properties.

• Q: the finite set of states;

• q0 ∈ Q: the begin-state;

• E ⊆ Q×Q: the set of directed edges between states, such that for every qi ∈ Q
there exists qj ∈ Q with (qi, qj) ∈ E;
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• F : the set of final states.

Note that the number of edges of a non-deterministic unary finite automaton is at
least as large as the number of states, |E| ≥ |Q|.

When we are talking about the acceptance of a unary non-deterministic finite
automaton, this is nearly the same as Definition 7.2. The only difference is of course,
that we are talking about unary non-deterministic finite automata instead of unary
deterministic finite automata.

Definition 7.4. An unary two-way deterministic finite automaton (U2DFA)
B = (Q, q0, δ, F ) is an automaton with the following properties.

• Q: the finite set of states;

• q0 ∈ Q: the begin-state;

• δ : Q× {a,`,a} → Q× {L,R}: the transition-function with a being the only
letter that is being read. L and R represent left and right: the direction that
the we read the input word in. a and ` represent the endmakers of the word.
A word x will be read af ` x a.

• F : the set of final states.

Definition 7.5. A word ` x a:

• is accepted by B if the run of x on B ends in a state q ∈ F .

• is not accepted by B otherwise.

We could also define a two-way non-deterministic automaton, but since we will
not be using these automata the definition will be omitted.

Definition 7.6. A sweeping automaton is an automaton that only turns the direc-
tion of which it is reading the word at the end (and beginning) of the word. This is
the same for “normal” as well as unary automata.

7.1 Normal form 1NFA

Definition 7.7. Let A be a unary one-way non-deterministic finite automaton
(U1NFA) with the following properties.

• r of its vertices are in cycles

• s of them are not, so that r + s are equal to |Q|

Then we define S(A) = (r, s).

Definition 7.8. A U1NFA A = (Q, q0, E, F ) is in normal form if it meets the
following requirements.

• The states consist of the states that are the prelude to the cycles and the states
that are in the the cycles themselves.
Q = {q0, q1, . . . , qn} ∪ C1 ∪ C2 ∪ . . . Ck, where Ci = {pi,0, pi,1, . . . , pi,yi−1} for
i ∈ {1, . . . , k}, with Ci being the i’th cycle.
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• The vertices consist of the path from q0 to qn, the paths in the cycles C1, . . . , Ck
and the connections between the cycles and qn.

E ={(qi, qi+1)|i ∈ {0, . . . , n− 1}}∪
{(pi,j, pi,j+1)|i ∈ {0, . . . , yj − 1}}∪
{(qn, pi,0)|i ∈ {1, . . . , k}}

The addition of j + 1 in the second component is mod yi.

q0start · · · qn−1 qn

C1

...

Ck

Figure 7.1: The general shape of an normal form U1NFA

We state the following lemma without proof. The proof can be found in the
paper “Finite Automata and unary languages”[4], Lemma 4.3.

Lemma 7.9. For every U1NFA A with n states, there exists a normal form U1NFA
A′ that accepts the same language such that S(A′) ≤ (n,O(n2)).

7.2 1NFA to 1DFA

Say we want to transform a n-state U1NFA A into a U1DFA B. First we want to
transform A into a normal form U1DFA A′. For A′ we define y1, . . . , yk and y as
follows.

• y1, . . . , yk are the lengths of the cycles C1, . . . , Ck

• y = lcm(y1, . . . , yk)

The U1DFA B = (Q, q0, E, F ) is then constructed as follows.

• Q = {q0, . . . , qs−1, qs, . . . , qy+s−1}

• q0 is the q0 of A′.

• E = {qi, qi+1)|i ∈ {0, 1, . . . , y + s− 2} ∪ {qy+s−1, qs)}

• F is constructed as follows:

– If qi with 0 ≤ i < s is an accepting state in A′, then qi ∈ F .

– If pi,j is an accepting state in A′, then qs+t ∈ F for each t such that
t− j = cyi for some c ∈ N.
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For a better understanding of this construction actually works, here is a step-
by-step breakdown. We will start with the normal form U1NFA, for there is were
the relevant steps happen.
The automaton A′ below accepts the language L = aaaa((aa)∗ + (aaa)∗).

q0start q1 q2 q3

q1,0 q1,1

q2,0 q2,1

q2,2

Figure 7.2: A normal form U1NFA

We see that this automaton is in normal form (Definition 7.8) with the following
constants.

n = 9 s = 4 y1 = 2
r = 5 y = 6 y2 = 3

Then we can start constructing the U1DFA B = (Q, q0, E, F ):

• Q = {q0, . . . , q3, q4, . . . , q9}

• E = {qi, qi+1)|i ∈ {0, 1, . . . , 8}} ∪ {q9, q4)}

• q0 remains the same.

• For F we have to look at the 2 accepting states of A′:

– p1,0 is an accepting state in A′, so qs+t ∈ F for each t such that t = 2c for
some c ∈ N. This is true for t = 0, 2, 4. So q4+0, q4+2, q4+4 = q4, q6, q8 ∈ F .

– p2,0 is an accepting state in A′, so qs+t ∈ F for each t such that t = 3c
for some c ∈ N. This is true for t = 0, 3, so q4+0, q4+3 = q4, q7 ∈ F .

This gives F = {q4, q6, q7, q8}

This gives us the following U1DFA:
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q0start q1 q2 q3 q4 q5 q6

q7q8q9

Figure 7.3: U1DFA B that accepts L = aaaa((aa)∗ + (aaa)∗).

7.3 2DFA to 1DFA

We have already seen how to transform a U2DFA into a U1DFA with the use of
Kozen’s method. There is also a method of transforming a U2DFA into a U1DFA
with the use of sweeping automata, this method is purely used for unary automata.
We will discuss both these methods and show the reader how the method works
with an example of a U2DFA that accepts L = {n|n ≡ 0 mod 6}.

7.3.1 The Kozen transformation

Please note that an R at an edge denote a,R and L denote a,L.

q0start q1 q2

q3 q4

q5

r

t

`,R
R

a,L
R a,L

L

`,R

a,L

L

a,L
L

`,R
R
a,L

`,R
R
a,L

Figure 7.4: U2DFA that accepts L = {an|n ≡ 0 mod 6}

To define the U1DFA corresponding to the U2DFA we need to take several steps.
Here we will do the same procedure as in Section 5.1. We have to decide the set
of states Q′, the starting state s′, the transitioning function δ′ and the set of states
that are accepting F ′.

For all the states in Q, see the tables below.
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Tλ
• q1
q3 t
q4 r
q5 r
u0

Ta
• q2
q3 r
q4 r
q5 t
u1

Taa
• q1
q3 r
q4 t
q5 r
u2

Taaa
• q2
q3 t
q4 r
q5 r
u3

Taaaa
• q1
q3 r
q4 r
q5 t
u4

Taaaaa
• q1
q3 r
q4 t
q5 r
u5

We have s′ = Tλ = u0 and δ′(Tx, a) = Txa. This provides us with the following
transition function.

a
u0 u1
u1 u2
u2 u3
u3 u4
u4 u5
u5 u0

Table 7.1: The transition function δ′

Finally we have F ′ = {Tx|x ∈ L(M)} = {Tλ} = {u0}, because of all the options
as stated above, only λ ∈ L(M).

This provides us with the following U1DFA:

u0start u1 u2

u3u4u5

Figure 7.5: U1DFA that accepts L = {an|n ≡ 0 mod 6}

Remark 7.10. When we’re talking about a 1DFA that accepts a language of the
form of {x|x mod n ≡ 0}, we can note that there is an automaton that has n states.
Indeed, the automaton needs to count n occurrences of the letter. Fig 7.3.1 shows
that a unary 2DFA for {x|x mod n ≡ 0} can be made with

|Q| = 3 +
∑
p prime

{
0 vp(n) = 0

pvp(n) otherwise

where vp(n) is the multiplicity of prime-number p in the number n.
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7.3.2 Using sweeping automata

We now give a general method for transforming a U2DFA into a U1DFA, now using
sweeping automata. This method only applies to unary languages, and is due to
[4]. The following is a high-level description of the idea. We first need to turn the
U2DFA into a sweeping U2DFA. This can be done easily, according to Chrobak[4].
Let the sweeping automaton A have n states:

The U1DFA B will simulate the sweeping U2DFA A = (Q, q0, δ, F ) on the input
x in the following way.

1. If x ≤ n and x has an accepting run on A, then x is accepted by B.

2. If x > n, then A will make a cycle when reading x. Let y1, . . . , yk be the lengths
of the cycles C1 . . . , Ck and y = lcm(y1, . . . , yk). We note that y1+· · ·+yk ≤ n,
because no state can be in more than one cycle.
For every two words u and v with v > u > n and v − u = y:
u ∈ L(A)↔ v ∈ L(A).

In other words, knowing the lowest common multiple y suffices for words that
are longer than n. If a word is longer than n, one must only keep subtracting
y from x, until the length of x is less than n, so it will fall in category 1.

Here are the details of the description by example using the following sweeping
U2DFA:

q0start q1 q2

q3

q4 q5q6

`,R R

a,L

R
R

L
`,R

L

R
`,R

Figure 7.6: U2DFA that accepts L = {an|n ≡ 0 mod 6}

Let us just look at the properties we can decude from this automaton:

1. The length of cycle one is 3: y1 = 3.

2. The length of cycle two is 2: y2 = 2.

3. y = lcm(2, 3) = 6
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For every x for which x ≤ 6, only 0 and 6 are accepted by A. Therefore, only
0, 6 ∈ L(B). From that information we see that 0+ky and 6+ky with k ∈ N should
be accepted by A. However, we see that those two are equivalent, because they only
differ by 6 which is the lowest common multiple.

We now only need to construct a U1DFA that accepts every x for which x = ky
with k ∈ N holds. This provides us with the following U1DFA:

u0start u1 u2

u3u4u5

Figure 7.7: U1DFA that accepts L = {an|n ≡ 0 mod 6}

7.4 1NFA to 2DFA

We now give a general method for transforming a U1NFA into a U2DFA using
normal form U1NFA. This method only applies to unary languages, and is due to
[4]. The following is a high-level description of the idea. We need to make a normal
form U1NFA A′ from a U1NFA A. We will not define the U2DFA B explicitly, but
will show how B simulates the normal form 1NFA A′. It will do so in the following
way:

• If x < s: x ∈ L(B) iff qx is an accepting state of A′

• Otherwise: B must make some passes over the input x, let’s say j. The length
of the cycle in that pass is yj. There B will compute if t = (x− s) mod yj. B
will accept x if and only if pj,t is an accepting state of A′.

Here are the details of the description by example using the following normal
form U1NFA:
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q0start q1 q2 q3

q1,0 q1,1

q2,0 q2,1

q2,2

Figure 7.8: A normal form U1NFA

This normal form U1NFA has the following properties:

n = 9 s = 4 y1 = 2
r = 5 y = 6 y2 = 3

So we calculate t for C1 and C2:

• C1: t ≡ (x− 4) mod 2.
t needs to be 0, because p1,0 is an accepting state in A′. Then we see that
(x− 4) mod 2 ≡ 0

• C2: t ≡ (x− 4) mod 3.
t needs to be 0, because p2,0 is an accepting state in A′. Then we see that
(x− 4) mod 3 ≡ 0

So for every x > 4, x will be accepted if

• (x− 4) mod 2 ≡ 0, or

• (x− 4) mod 3 ≡ 0

Remark 7.11. The best way to simulate this into a U2DFA is as follows. You first
perform the first r steps and perform the first cycle by going to the right. After
that you perform your “first” r steps again and perform cycle C2, both by going
left. This can be done until you are at the final cycle, alternating the direction for
every cycle.
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One obtains the following U2DFA

q0start q1 q2 q3 q4 q1,0 q1,1

q5q6q7q8q2,0q2,1

q2,2

`,R R R R R
R

a,L

L

LLLLL

L L

Figure 7.9: U2DFA
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Chapter 8

Conclusion

We have seen that two-way deterministic automata accept the same languages as
one-way deterministic finite automata. One can transform a 2DFA into a 1DFA
using the method Kozen provides in his lecture notes. This algorithm has an upper
bound of O((n+ 1)(n+1)) with n being the number of states the 2DFA has.

Furthermore we have seen that two-way non-deterministic finite automata also
accept the same languages as one-way deterministic finite automata. One can trans-
form a 2NFA into a 1DFA using a variation on the method Shepherdson provides.
This algorithm has an upper bound of O(2(n+1)(n+1)

) with n being the number of
states of the provided 2NFA.

As a final point we viewed both unary one-way (non-deterministic) finite au-
tomata and unary two-way deterministic finite automata. These kind of automata
have unique methods for transforming into one another, because of the fact that
they only accept unary languages. A common theme when transforming an unary
one-way deterministic automaton into another automaton is the usage of the normal
form one-way non-deterministic automaton.

8.1 A note on endmarkers

We notice that Kozen prefers the use of endmarkers, while others might not. End-
markers are used for a better understanding and construction of certain Two-Way
Automata. When one works with 2FA’s, one will quickly notice that a lot of the
2FAs are sweeping automata. When using an endmarker, the automaton quickly
recognizes it’s at the end of the word or at the beginning of a word. A plain 2FAs
doesn’t have a way of recognising it’s at the end (or at the beginning) of a word.

When adding something to an automaton, one creates the image that there are
more classes of languages that will be accepted than before. This is not true in
this case. According to Shepherdson one can transform a language that is based
on endmakers to a language that isn’t based on endmarkers. Addition of these
endmarkers does not create more classes of languages.
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