
Bachelor thesis
Computer Science

Radboud University

Autoencoding Credit Card Fraud

Author:
Tom Sweers
S4584325

First supervisor/assessor:
prof. dr. Tom Heskes

t.heskes@science.ru.nl

Second assessor:
Jesse Krijthe

jkrijthe@gmail.com

June 26, 2018

Abstract

We propose a credit card fraud detection method using autoencoder and
variational autoencoder based anomaly detection. Autoencoders are neural
networks that learn to encode data efficiently, and a variational autoencoder
is a variant of autoencoder that uses a probabilistic graph as a basis. We
used the reconstruction error as an anomaly score for the autoencoder and
a reconstruction probability, the chance of generating the original data, for
the variational autoencoder.

We used these principles to detect credit card fraud. Experimental re-
sults show that both perform decent in detecting fraud on our used data
set and that overall regular autoencoders perform better than variational
autoencoders.

Contents

1 Introduction 2

2 Preliminaries 3
2.1 Anomaly Detection . 3
2.2 Autoencoders . 4
2.3 Variational Autoencoders . 6

3 Research 7
3.1 Method . 7

3.1.1 Anomaly Detection Using Autoencoders 7
3.1.2 Anomaly Detection Using Variational Autoencoders . 7
3.1.3 The Experiment . 8

3.2 Results . 9
3.2.1 Autoencoder . 9
3.2.2 Variational Autoencoder 12

4 Related Work 14

5 Conclusions 16

1

Chapter 1

Introduction

Large purchases are often made by using credit cards. A risk for both
companies and customers is a person using the credit card of someone else
to pay. This is credit card fraud. Because fraud does relatively not happen
often it is a difficult task recognizing fraudulent transactions.

In this paper we will propose a possible method to recognise credit card
fraud by doing anomaly detection using autoencoders and variational au-
toencoders, and see which one performs better. An anomaly is a data point
that is sufficiently different from the other data points [1]. Because fraud
happens rarely it can be considered an anomaly and thus anomaly detec-
tion can be used to detect fraud. Autoencoders are neural networks that
learn efficient encoding of data in such a way that the decoding is similar
to the original data [2]. When an autoencoder is trained on data containing
no anomalies the reconstruction of an anomaly will be worse than the re-
construction of a normal point, hence we can use this as an anomaly score
[3].

Variational autoencoders are probabilistic variants of an autoencoder.
We can use the reconstruction probability, the chance of generating the
original data from the encoding, as the anomaly score [4].

First we will explain the concepts of autoencoders and variational au-
toencoders. Then we will give a short overview of anomaly detection and
explain the combination of anomaly detection with the autoencoders and
how this can be used for fraud detection. We will continue by explaining
the method of the experiment. Then the results of the experiments are given
and we will end with discussing related work and the results.

2

Chapter 2

Preliminaries

2.1 Anomaly Detection

Anomaly or outlier detection is the detection of points in a data set that are
different from all other “normal” points [1]. It is often used in tasks such
as intrusion detection (in cyber-security), fault detection in various types of
systems and military surveillance. There are six types of techniques used
to detect anomalies: Classification based techniques, clustering based tech-
niques, statistical techniques, information theoretic techniques and spectral
techniques [1].

Classification based methods use a labeled training set to learn and can
then use this to classify all entries in a test set. One or more of the resulting
classes can be considered anomalies [1].

Clustering uses unsupervised learning to group data points that are sim-
ilar into a cluster. One can use this to detect anomalies by, for example,
classifying points that are not in a cluster, or an entire cluster as anomalies
[1].

Statistical methods use probabilistic distributions. When data is mod-
eled by such a distribution one can classify a data point as an anomaly when
it has a low (below a threshold) probability of being generated by the model
[1].

Information theoretic techniques use the information content of a data
set and apply information theoretic measures, like Kolomogorov Complexity
and entropy. One can then find irregularities in the information content and
find anomalies [1].

Spectral methods use dimension reduction of data. The principle is that
anomalies look different from normal data points in this reduced form and
can then be detected [1].

3

x1

x2

x3

xm−2

xm−1

xm

z1

z2

zn−1

zn

y1

y2

y3

ym−2

ym−1

ym

Encoder Decoder

...
...

...

Figure 2.1: An autoencoder

2.2 Autoencoders

Autoencoders are neural networks that learn how to find an encoding of data
so that the input and the reconstruction of the encoding are close to each
other [5]. In its simplest form, the autoencoder’s neural network structure
consists of three layers like depicted in Figure 2.1. The first layer is the input
layer and consists of m nodes, the same amount of nodes as the dimension of
the data, and the middle hidden layer has n nodes, where n is the dimension
of the encoding. The third layer is the output layer and, just as the input
layer, it has m nodes. Typically autoencoders are used for dimensionality
reduction, so the resulting encoding usually has a smaller dimension than
the input data [2].

An autoencoder can be divided into two parts, an encoder and a decoder.
The transition between the first and second layer represents the encoder and
the transition between the second layer and the third layer represents the
decoder. The equation

z = σ(Wencx+ benc)

represents the encoder in this autoencoder [5]. The W is a n by n matrix
consisting of the weights of the layer in the neural network. The b is a n-
sized vector containing the bias of the layer. x is the input vector of length
n. The σ stands for a nonlinear transformation function like the sigmoid
function. In the same way we can represent the decoding

y = σ(Wdecz + bdec)

4

x1

x2

x3

x4

x253

x254

x255

x256

p1

p2

p3

p126

p127

p128

z1

z2

z63

z64

q1

q2

q3

q126

q127

q128

y1

y2

y3

y4

y253

y254

y255

y256

Total Encoder Total Decoder

Encoder 1 Decoder 1Encoder 2 Decoder 2

...
...

...
...

...

Figure 2.2: A stacked autoencoder

An autoencoder can also have a more complex structure by having more
hidden layers, for example by stacking encoders and decoders [6]. For ex-
ample consider the autoencoder shown in Figure 2.2, here the first encoder
reduces the dimension from 256 to 128 and the second encoder from 128 to
64. Vice versa the first decoder enlarges the dimension back to 128 and the
second one to 256. The equations of the entire neural network then looks
like this

e1 = σ(Wenc1x+ benc1)

e2 = σ(Wenc2e1 + benc2)

d1 = σ(Wdec1e2 + bdec1)

y = σ(Wdec2d2 + bdec2)

An autoencoder learns, unsupervised, to make an encoding and decoding
while minimizing the reconstruction error by a backpropagation algorithm.
The reconstruction error is a metric measuring the similarity between input

5

and output of the autoencoder. During training the autoencoder is given
unlabeled training data and it tries to minimize the reconstruction error
over all training data. A commonly used reconstruction error is the mean
squared error.

2.3 Variational Autoencoders

A variational autoencoder (VAE) is another version of a normal autoencoder.
The difference is that a VAE is a discrete probabilistic graphical model
(DPGM), while a regular autoencoder is a non probabilistic graphical model
[4]. A neural network is used to approximate the posterior of the DPGM
which results in a structure that resembles an autoencoder as shown in
Figure 2.1 The approximate posterior of the DPGM is noted as qφ(z|x),
where x is the input data and z is a latent variable representing the encoded
data, and pθ(z) is the prior distribution of z [7]. The model of pθ(x|z)
functions as the decoder and the model of qφ(z|x) functions as the encoder.
These are trained by the neural network, whose goal is finding an optimal
variational lower bound of the marginal likelihood of the input data [4].

Hence the neural network part of the VAE does the same thing as in a
regular autoencoder, it learns, unsupervised, to minimize a reconstruction
error. Only the reconstruction error that the autoencoders tries to minimize
is different for the VAE. The reconstruction error of a VAE is calculated
using the marginal likelihood of the data, which is the sum of the likelihood
of all individual data points. During training the parameters of the VAE
are tuned to maximize

Q = −DKL(qφ(z|x(i)||pθ(z)) + Eqφ(z|x(i))[log pθ(x|z)]

where the first term is the Kullback-Leibler divergence of the approximate
posterior and prior and the second term relates to the reconstruction of the
data [7].

This is not the only difference between a regular autoencoder and a VAE.
The parameters of the VAE that are being learned by the neural network
are not parameters of the value, like in the case of a regular autoencoder,
but of the distribution [4]. This means that the encoder and decoder are a
so-called probabilistic encoder and decoder. Hence the encoder f(x, φ) does
not output encoded data or the latent variable z, but instead it outputs
parameters for the approximate posterior qφ(z|x). To obtain z we have to
sample from a normal distribution and reparameterize the sample to make
it follow the distribution of the posterior [4]. This also holds for decoding
using the probabilistic decoder.

6

Chapter 3

Research

3.1 Method

To recognise fraud in the credit card data set we are going to use a method
that can be categorised as a spectral method: Anomaly detection by au-
toencoders and VAE’s. Autoencoders reduce the dimension of the data and,
as we will see, we can use the reconstruction error to measure the difference
between anomalies and normal points in the reduced form. Hence we can
use the reconstruction error as an anomaly score.

3.1.1 Anomaly Detection Using Autoencoders

The principle of anomaly detection by using autoencoders is as follows: First
train the autoencoder on a training set that only contains the non-anomaly
points. Because the autoencoder is now fitted on the normal data set, and
the autoencoder has not yet encountered any anomalies, the reconstruc-
tion should perform better on normal data than on anomalies. Hence we
can determine whether data points are anomalies or not by calculating the
reconstruction error used to train the autoencoder. Generally the recon-
struction errors of anomalies are higher than the reconstruction error of the
normal data. Hence we can determine an upper bound α for the reconstruc-
tion error. Is the reconstruction error of point xi higher than α then xi is
an anomaly, otherwise it is not [3].

3.1.2 Anomaly Detection Using Variational Autoencoders

Anomaly detection using VAE is based on the same principle as discussed
before. The difference is that we don’t use the reconstruction error but a
reconstruction probability [4]. This is the probability that the data point can
be generated from a latent variable drawn from the approximate posterior
distribution. We calculate the reconstruction probability for data point xi

by first encoding xi using the probabilistic encoder from the VAE, which

7

results in the distribution of the posterior. Then we draw L samples from
a normal distribution and reparameterize it with the mean and standard
deviation of the distribution of the posterior [4]. The probabilistic decoder
is then used on the samples which results in a distribution of the prior. By
using the mean and standard deviation of the resulting distribution for every
sample we can calculate the reconstruction probability through

1

L

L∑
l=1

pθ(x
(i)|µx(i,l) , σx(i,l))

We can again determine a boundary α to evaluate whether xi is an anomaly
or not. When the reconstruction probability of a data point is above α
then the chance of reconstructing it from the encoder is high, so it is not
an anomaly. When the reconstruction probability is lower or equal it is an
anomaly.

3.1.3 The Experiment

The Data

The data was collected from the data mining contest website Kaggle [8].
It consists of two days of credit card transactions from Europeans done in
September 2013. There are a total of 284,807 transactions of which 492 are
considered fraud. This is, as said earlier, highly unbalanced.

All transactions are labeled as either fraudulent or not. Each transaction
consists of 30 features. The first 28 features where obtained by a PCA
transformation. What the original features were and any other information
about it could not be given because of the sensitivity and confidentiality
issues with the data. The other two features are “time” and “amount”
corresponding respectively with the point of time the transaction occurred
and the amount of money that was paid.

Before training all features were normalized and the data set was split
in a training and a test set. We sampled 80% of the normal transactions of
the data set to serve as the training set. The other 20% and the fraudulent
transactions are used as the test set.

The autoencoders

We built four different autoencoders models and four different variational
autoencoder models. The first two consist of neural networks having only
one hidden layer. The other two are stacked autoencoders: They consist
of 5 hidden layers with the middle one being the smallest. The difference
between these two are the amount of nodes in these layers.

In case of the one hidden layer network the amount of nodes in this one
layer is either 2 or 10. In the case of the stacked autoencoders the sequence

8

of the amount of nodes in the hidden layers in the first network is: 25-20-10.
The other network has this sequence: 20-10-2.

To build and train these autoencoders we used Tensorflow in Python.
We used 0.01 as learning rate and trained every neural network with 100
epochs. Every model is trained and tested 10 times to ensure that the results
are valid. The scripts for the autoencoder are based on [9] and the scripts
for the VAE’s are based on [10].

Performance

To measure the performance of the autoencoders and VAE’s we used recall-
at-k and precision-at-k:

recall-at-k =
|FTrue ∩ PFk|
|FTrue|

precision-at-k =
|FTrue ∩ PFk|
|PFk|

where FTrue is the set containing all true fraudulent transactions and
PFk is the set containing the top k predicted fraud cases, sorted in descend-
ing order on the reconstruction error or reconstruction probability.

We did not use measures like accuracy because these give a wrong view
of the situation due to the imbalance of the data.

3.2 Results

3.2.1 Autoencoder

Figure 3.1: Left: A graph showing recall-at-k for the autoencoders. Right:
A graph showing precision-at-k for the autoencoders.

9

Autoencoder Recall at 10000 Recall at 20000 Recall at 50000

Random 0.174 0.349 0.872

AE (30-2-30) 0.565 0.621 0.856

AE (30-10-30) 0.556 0.613 0.856

AE (30-20-10-2-10-20-30) 0.545 0.632 0.898

AE (30-25-20-10-20-25-30) 0.617 0.699 0.938

Table 3.1: Recall-at-k scores for the regular autoencoders

Autoencoder Precision at 10000 Precision at 20000 Precision at 50000

Random 0.008 0.008 0.008

AE (30-2-30) 0.028 0.015 0.008

AE (30-10-30) 0.027 0.016 0.008

AE (30-20-10-2-10-20-30) 0.027 0.016 0.009

AE (30-25-20-10-20-25-30) 0.030 0.017 0.009

Table 3.2: Precision-at-k scores for the regular autoencoders

Figure 3.2: Scatterplot of the encoding of the test data by the 30-2-30
autoencoder (above) and the 30-20-10-2-10-20-30 autoencoder (below). The
orange dots are normal transactions and the blue points are fraud.

10

Figure 3.1 shows the recall-at-k and precision-at-k for all autoencoders
on the credit card data set. It shows that for k lower than 1000 the sim-
pler autoencoders, the ones with one hidden layer, perform better than the
stacked autoencoders. In the case of the simple autoencoder the one that
reduces the dimension to 2 detects fraud better than the autoencoder that
reduces the dimension to 10. That difference is not notable for the stacked
autoencoders. The stacked autoencoders also are barely better than a ran-
dom detector, while the simple autoencoders perform significantly better
than random.

Table 3.1 shows the recall-at-k of all four autoencoder models on the
credit card data set for higher values of k. Although less relevant than the
lower values of k it still shows that the stacked autoencoders outperform
the simpler autoencoders with only one hidden layer when k is higher than
20000, and the stacked autoencoder that reduces the dimension to 10 is
already better at k = 10000. The same can be concluded from the precision-
at-k in Table 3.2.

The differences in the dimension that the autoencoder reduces to are
also notable at the higher values, although the difference in the simpler
autoencoder becomes less significant. The difference grows actually more
significant for the stacked autoencoders. But for the stacked autoencoders
the difference is the other way around; the autoencoder that reduces the
dimension to 10 performs better than the other.

Another notable difference is the average reconstruction error on the
test set. The reconstruction error is significantly lower with the stacked
autoencoders than with the regular autoencoders even with the same amount
of training time. It is worth mentioning that during training this difference
is immediately noticeable, in the first epoch the reconstruction error on the
simple autoencoder starts around 0.30 and the reconstruction error on the
stacked autoencoder starts around 0.030.

Figure 3.2 shows scatterplots of the encoding of the autoencoders that
reduce the dimension to 2. The scatterplot of the more complex autoencoder
has more distinguishable fraudulent data points, which resembles the overall
better results of the more complex autoencoder for higher values of k.

11

3.2.2 Variational Autoencoder

Figure 3.3: Left: A graph showing recall-at-k for the VAE’s. Right: A graph
showing precision-at-k for the VAE’s.

VAE Recall at 10000 Recall at 20000 Recall at 50000

Random 0.174 0.349 0.872

VAE (30-2-30) 0.529 0.688 0.883

VAE (30-10-30) 0.498 0.652 0.901

VAE (30-20-10-2-10-20-30) 0.736 0.820 0.913

VAE (30-25-20-10-20-25-30) 0.536 0.600 0.800

Table 3.3: Recall-at-k scores for the variational autoencoders

VAE Precision at 10000 Precision at 20000 Precision at 50000

Random 0.008 0.008 0.008

VAE (30-2-30) 0.026 0.017 0.009

VAE (30-10-30) 0.025 0.016 0.009

VAE (30-20-10-2-10-20-30) 0.036 0.020 0.009

VAE (30-25-20-10-20-25-30) 0.026 0.015 0.008

Table 3.4: Precision-at-k scores for the variational autoencoders

In Figure 3.3 we can see the recall-at-k and precision-at-k scores for the
VAE’s. In contrast with the regular autoencoders we can see that stacked
VAE’s score significantly better than one-layered VAE’s when k ≤ 1000.
Also in contrast with the regular autoencoder is the difference in score when
varying the amount of hidden nodes. For the VAE’s with one hidden layer,
the VAE reducing the dimension to 10 performs better, while it was the
other way around for the regular autoencoders. For the stacked VAE’s the
same is true when k ≤ 500, when k is larger the VAE reducing the dimension
to 2 is better. All VAE’s perform better than a random detecting method.

12

In Table 3.3 and Table 3.4 we can see the scores of the VAE’s for higher
values of k. We can see that the stacked VAE’s also perform than the simple
VAE’s when k is higher, although there is a clear difference in score between
the stacked VAE that reduces the dimension to 2 and the stacked VAE
that reduces the dimension to 10. For both the stacked and the one-layered
VAE’s the model that reduces the dimension to 2 is the better one.

With k under 10000 the best regular autoencoders (the autoencoders
with one hidden layer) have better scores than the best VAE’s (the stacked
VAE’s). All four VAE’s perform better than the stacked autoencoders how-
ever. The stacked VAE’s are as good as the regular autoencoders when k
gets higher than 10000. The VAE with sequence 30-20-10-2-10-20-30 ac-
tually scores higher than the regular autoencoders. This difference is less
noticeable when k becomes higher than 20000.

13

Chapter 4

Related Work

In this paper we proposed a method to detect credit card fraud. In this
section we will discuss other researched methods.

Credit card fraud detection has previously been done by methods like

• Neural and Bayesian Networks

• Logistic Regression

• Decision Tree

• Hidden Markov Model

• K-Nearest Neighbour Algorithm

Roy et al [11] used four different methods to detect credit card fraud.
They analysed and tested a Feed Forward Multilayer Perceptron network,
Recurrent Neural Networks, Long Short-term Memory and Gated Recurrent
Unit. They found that the Gated Recurrent Unit performed the best. For
each of the methods they concluded that larger networks perform better.

Iyer et al [12] used a Hidden Markov Model (HMM) to detect credit
card fraud. In this paper the HMM is trained on a training set containing
only legitimate transactions. The authors conclude that method performs
better than others, although hybrid models have to be used to avoid high
false positives.

Awoyemi et al [13] tested three classifier based methods. From naive
Bayes, k-nearest neighbour and logistic regression they found that the second
performed best. They also concluded that training with a 34:66 (fraud
against non-fraud) distribution improved results.

Malini and Pushpa [14] analysed k-nearest neighbours and anomaly de-
tection methods to detect credit card fraud. They concluded that both
methods work well, although k-nearest neighbours are generally more accu-
rate and efficient.

14

Chen et al [3] used autoencoder-based anomaly detection to detect net-
work cyber attacks. They ran an experiment on NSL-KDD data set, where
they tested PCA, Autoencoder and convolutional autoencoder based anomaly
detection. They concluded that convolutional autoencoders performs the
best, even more they concluded that it outperformed other detection meth-
ods.

These papers are relevant because they researched credit card fraud de-
tection, but they all used different data sets as each other and as us. On the
website Kaggle, where the data set originates, multiple solutions have been
proposed.

Kaggle user Neil Schneider [15] compared GBM, xgboost and lightGDM
in detecting fraud in the credit card data set. GDM performed worst, while
xgboost and lightGDM are close to each other with a small advantage for
lightGDM. Besides the higher accuracy he also preferred lightGDM because
of faster training time and low memory usage.

Another user named Gabriel Preda [16] experimented with RandomFor-
est on the data set. He concluded that the performance, considering that
he did little tweaking, was relatively good.

For more information on the anomaly detection using VAE’s that we
implemented [4] can be assessed. This paper explains the algorithm in great
detail and it shows by experiment that the VAE’s outperform the regular
autoencoders on anomaly detection.

15

Chapter 5

Conclusions

We have applied anomaly detection by using autoencoders and VAE’s to
detect credit card fraud. In our experiment we have found that the sim-
ple regular autoencoders outperform the VAE’s when detecting credit card
fraud, although the stacked VAE’s scored better than the stacked autoen-
coders and simple VAE’s.

So when the autoencoders and VAE’s are constructed the right way, they
detect credit card fraud, in the data set we used, quite well. Because our
analysis is only done on one data set it is not certain that our conclusions
are also applicable on other credit card fraud sets.

So to further research this topic one could test our method on other credit
card data sets and see if our conclusions also hold on these data sets. More
research can also be put into detecting credit card fraud using autoencoders
and VAE’s with even more hidden layers.

All things considered autoencoders and VAE’s perform decent in detect-
ing credit card fraud.

16

Bibliography

[1] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly de-
tection: A survey. ACM Comput. Surv., 41(3):15:1–15:58, July 2009.

[2] Yasi Wang, Hongxun Yao, and Sicheng Zhao. Auto-encoder based di-
mensionality reduction. Neurocomputing, 184:232–242, 2016.

[3] Z. Chen, C. K. Yeo, B. S. Lee, and C. T. Lau. Autoencoder-based net-
work anomaly detection. In 2018 Wireless Telecommunications Sym-
posium (WTS), pages 1–5, April 2018.

[4] Jinwon An and Sungzoon Cho. Variational autoencoder based anomaly
detection using reconstruction probability. SNU Data Mining Center,
Tech. Rep., 2015.

[5] J. Zheng and L. Peng. An autoencoder-based image reconstruction for
electrical capacitance tomography. IEEE Sensors Journal, 18(13):5464–
5474, July 2018.

[6] M. M. Yang, A. Nayeem, and L. L. Shen. Plant classification based
on stacked autoencoder. In 2017 IEEE 2nd Information Technology,
Networking, Electronic and Automation Control Conference (ITNEC),
pages 1082–1086, Dec 2017.

[7] Diederik P Kingma and Max Welling. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114, 2013.

[8] A. D. Pozzolo, O. Caelen, R. A. Johnson, and G. Bontempi. Calibrating
probability with undersampling for unbalanced classification. In 2015
IEEE Symposium Series on Computational Intelligence, pages 159–166,
Dec 2015.

[9] Autoencoder tensorflow. https://github.com/aymericdamien/

TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/

autoencoder.py. Accessed: 18-05-2018.

[10] Tensorflow mnist vae. https://github.com/hwalsuklee/

tensorflow-mnist-VAE. Accessed: 12-06-2018.

17

[11] A. Roy, J. Sun, R. Mahoney, L. Alonzi, S. Adams, and P. Beling. Deep
learning detecting fraud in credit card transactions. In 2018 Systems
and Information Engineering Design Symposium (SIEDS), pages 129–
134, April 2018.

[12] D. Iyer, A. Mohanpurkar, S. Janardhan, D. Rathod, and A. Sardesh-
mukh. Credit card fraud detection using hidden markov model. In
2011 World Congress on Information and Communication Technolo-
gies, pages 1062–1066, Dec 2011.

[13] J. O. Awoyemi, A. O. Adetunmbi, and S. A. Oluwadare. Credit card
fraud detection using machine learning techniques: A comparative anal-
ysis. In 2017 International Conference on Computing Networking and
Informatics (ICCNI), pages 1–9, Oct 2017.

[14] N Malini and M Pushpa. Analysis on credit card fraud identification
techniques based on knn and outlier detection. In Advances in Elec-
trical, Electronics, Information, Communication and Bio-Informatics
(AEEICB), 2017 Third International Conference on, pages 255–258.
IEEE, 2017.

[15] Gbm vs xgboost vs lightgbm. https://www.kaggle.com/nschneider/
gbm-vs-xgboost-vs-lightgbm. Accessed: 25-06-2018.

[16] Credit card fraud detection with rf. https://www.kaggle.com/

gpreda/credit-card-fraud-detection-with-rf-auc-0-93. Ac-
cessed: 25-06-2018.

18

