
Tree Automata

Willem van Summeren

April 8, 2018

1

Contents

1 Introduction 3

2 Preliminaries 4
2.1 Basic descriptions . 4
2.2 Tree Representation . 4
2.3 Trees without brackets . 8

3 Finite Tree Automata 12
3.1 General properties . 12

3.1.1 Description . 12
3.1.2 Acceptance . 14
3.1.3 Tree Automata as a Ground Rewrite System 15

3.2 Nondeterministic Finite Tree Automata 16
3.3 Deterministic Finite Tree Automata 16
3.4 NFTA versus DFTA . 20
3.5 Reduction . 23
3.6 NFTA with epsilon rules . 25

4 Language properties for Tree automata 29
4.1 Pumping Lemma for Tree Automata 29
4.2 Closure properties . 30

4.2.1 Union . 31
4.2.2 Union with preservation of determinism 32
4.2.3 Complementation . 35
4.2.4 Intersection . 36

5 Top down Automata 37
5.1 Basics . 37
5.2 Types of Top down automata . 38
5.3 Comparison of top down and bottom up automata 40

5.3.1 Top-down and bottom-up NFTA equivalence 40
5.3.2 Top-down NFTA vs Top-down DFTA 41
5.3.3 Path closure . 43

6 Conclusion 46

7 References 47

2

1 Introduction

Tree automata are automata that process trees rather than strings. A lot of re-
search has been done on tree automata since they were conceptualized. Today
almost all information concerning these automata is combined in one document:
Tree Automata Techniques and Applications by H. Comon et al [1] .

Tree automata were introduced by Doner [2][3] and Thatcher and Wright[5][6]
for proving the decidability of the weak second order theory of multiple succes-
sors, with their original definitions based on the algebraic approach. The style
in which we represent tree automata has been introduced by J.E. Hopcroft and
J.D. Ullman[4].

Whilst anything that can be done by tree automata should be possible to do
using push down automata, there are things that tree automata can do more
efficiently and in an easier to follow fashion. I.e: for checking if a tree is in
the language {fn(a)|n ∈ N} we only need two 2 rules and one state using tree
automata, while it’s PDA equivalent would be far more complex, since we will
have to keep track of brackets.

Even though TATA [1] is considered to be the source material when researching
tree automata, it is not always equally complete. The authors quickly glance
over several subjects without fully explaining them, several theorems lack proof,
some algorithms could have been added and a lot of subjects do not have any
examples.

This document aims to add those missing proofs and algorithms to the first
chapter of TATA [1], and clarify it’s contents using clear examples. Concepts,
definitions, algorithms will be used that are also described in TATA [1], yet this
document can also be used as a standalone document for info on tree automata.

In this document we will start by defining some basics about trees, then de-
fine tree automata themselves. We will explain the difference between non-
deterministic and deterministic tree automata, bottom-up and Top down tree
automata, tree language properties and several algorithms to rewrite tree au-
tomata. Definitions and algorithms will be clarified using examples and proofs
are added for the theorems we describe.

3

2 Preliminaries

In order to describe the functioning of tree automata, two sets will be defined
here that will be used throughout this document. Most of these definitions
originate from the preliminaries in TATA [1], pages 15 - 17.

2.1 Basic descriptions

Definition 2.1. N is the set of all natural numbers, N = {0, 1, 2, . . .}., n ∈ N
can be any non-negative integer.

N is the set containing all natural numbers, n is commonly used throughout
this document as a variable in N unless otherwise defined at given time.

Definition 2.2. N∗ is the set of finite strings over N, N∗ = {ε, 0, 1,00, . . .},
where an empty string is denoted by ε.

N∗ is the set containing all possible concatenations of natural numbers.

2.2 Tree Representation

To describe trees, two definitions are introduced which are related to each other:
the function Arity(f) and the set F .

Definition 2.3. F is a finite set of symbols, Arity(f) is a function mapping
F to N, for f ∈ F , for which Arity(f) says how many arguments a symbol f has.

Fn is the set of symbols f for arity(f) = n. Symbols of arity(f) = 0, 1, 2, 3, . . . , n
are called constant, unary, binary, ternary and n-nary respectively.

F should contain at least 1 constant.

We will shorten the descriptions of symbols by using only commas and brack-
ets. A constant will be represented henceforth by using only the symbol of the
constant itself: f . Symbols that are of higher arity will be represented using
brackets: f(), and commas will be added to split arguments if the arity is above
one: f(,) means that f is binary, f(, ,) is ternary and so on.

Using these definitions we are able to describe trees. The requirement for F
containing at least one constant is easily explained by the requirement for trees
to have leaves: On the bottom of every branch in the tree there should be leaves,
and only constants can act as leaves.

Trees can be either represented graphically, or as a formula, as we will see
in the next examples.

4

Example 2.4. Consider the tree f(a, a). Its graphical representation is:

f

a a

For this tree T we have F = {f(,), a}.

arity(f(,)) = 2 and arity(a) = 0, therefore F0 = {a}, F2 = {f(,)}.

Put differently, a is a constant and f(,) is binary.

Example 2.5. Consider the tree f(g(c), b, h(g(a), b)). Its graphical representa-
tion is:

f

g

c

b h

g

a

b

For this tree T we have F = {f(, ,), g(), h(,), a, b, c}.

arity(f(, ,)) = 3, arity(g()) = 1, arity(h(,)) = 2, arity(a) = 0, arity(b) = 0
and arity(c) = 0.

Thus F0 = {a, b, c}, F1 = {g()}, F2 = {h(,)}, F3 = {f(, ,)}.

Put differently; a, b and c are constants, g() is unary, h(,) is binary and f(, ,)
is ternary.

The next example will show that a tree cannot be completed without constants.

Example 2.6. Given a set F = {f()}
The (bottom of a) tree made using this set would look like:

f

This tree would be incomplete, since f still requires an argument. Given this set
the only option would be giving it f as argument resulting in the tree:

f

f

5

Hence repeating the problem. The only kind of symbol that does not require
arguments is a constant, therefore constants are required to complete a tree.

When looking at the n-nary symbols in previous examples it should be noted
that these functions have several different options as argument, the arguments
are variable. f(,) is in fact f(x, y) when not being shortened. Therefore a
definition for variables is required.

Definition 2.7. V is the set of variables. V and F0 should be disjoint. In this
document, x, y and z are elements from V unless stated otherwise.

For means of clarity, F0 and V should be disjoint, otherwise it would be unclear
whether the character that is in both sets is either the constant or the variable,
much like when using the character 1 as a variable regular math.

Definition 2.8. The set T (F , V) of terms over F and V is the smallest set
defined by:

- F0 ⊆ T
- V ⊆ T
- if p ≥ 1, f ∈ Fp and t1, . . . , tp ∈ T (F , V), then f(t1, . . . , tp) ∈ T (F , V)

If V = ∅ then T (F , V) can be written as T (F), of which its terms are called
ground terms.

If each variable occurs at most once in t ∈ T (F , V), then t is linear.

Example 2.9. Consider the terms h, f(x), g(x, x) and g(x, y). Here h is a
ground term, and terms h, f(x) and g(x, y) are linear, while g(x, x) is not.

Definition 2.10. A (ground) substitution σ is a mapping from V into
T (F , V), where the amount of variables mapped to themselves is finite.

The subset of variables x ∈ V such that σ(x) 6= x is called the domain of sub-
stitution σ.

For every i between 1 and n, {x1 ← t1, . . . , xn ← tn} maps xi ∈ V on ti ∈
T (F , V).

We shall now clarify substitution with an example.

Example 2.11. Given F = {f(), g(,), a} and V = {x, y}. Let us consider the
terms t1 = f(x), t2 = f(y) and t3 = g(x, y) and the substitutions σ1 = {x← a}
and σ2 = {x← y, y ← a}.

First we get the results of t1σ1 = f(x){x ← a} (left), t2σ1 = f(y){x ← a}
(middle) and t3σ1 = g(x, y){x← a}(right):

6

f

a

f

y

g

a y

Next are the results of t1σ2 = f(x){x ← y, y ← a} (left), t2σ2 = f(y){x ←
y, y ← a} (middle) and t3σ2 = g(x, y){x← y, y ← a}(right):

f

y

f

a

g

y a

Definition 2.12. A linear term C ∈ T (F , Vn), in which Vn is a sequence of
x1, . . . , xn , is called a Context.

The expression C[t1, . . . , tn] for t1, . . . , tn ∈ T (F) denotes the term in T (F) ob-
tained by applying C[t1, . . . , tn] = C{x1 ← t1, . . . , xn ← tn}, which means that
for 1 ≤ i ≤ n every variable xi is replaced by ti. A context is trivial if it is a
variable.

Example 2.13. Given F = {a, b, f(), g(,)} and V = {x, y}, some examples of
C ∈ T (F , V) are: C[x], C[f(a)], C[f(b)], C[f(y)], C[g(a, a)] and C[G(a, b)].

Definition 2.14. Kn(F) denotes the set of contexts over n variables.K(F) de-
notes the set of contexts containing a single variable, meaning K1(F) = K(F).

Given C ∈ K(F), C0 is the trivial context, C1 = C and Cn = Cn−1[C] for
n > 1 is a context in K(F).

In order to describe properties of trees, we define several functions that will be
used later on.

Definition 2.15. Pos(t) ⊆ N∗ is a set of positions satisfying the properties:

• Pos(t) is nonempty and prefix-closed.

• ∀p ∈ Pos(t) t(p) ∈ Fn, n ≥ 1 =⇒ {j|pj ∈ Pos(t)} = {1, . . . , n}
• ∀p ∈ Pos(t) t(p) ∈ V ∪ F0 =⇒ {j|pj ∈ Pos(t)} = ∅

A position that complies to ∀j ∈ N, pj /∈ Pos(t) is called a frontier position,
the set of which is denoted as FPos(t). Positions in t such that t(p) ∈ V are
called a variable position, denoted as V Pos(t). Head(t) is the root symbol of
t.

Definition 2.16. The size of a term t is denoted by ||t||, is inductively defined
as:

• ||t|| = 0 if t ∈ V
• ||t|| = 1 if t ∈ F0

7

• ||t|| = 1 +
∑
i∈{1,...,n} ||ti|| if Head(t) ∈ Fn

Definition 2.17. The height of a term t is denoted by Height(t), is inductively
defined as:

• Height(t) = 0 if t ∈ V
• Height(t) = 1 if t ∈ F0

• Height(t) = 1 +max(Height(ti)|i ∈ {1, . . . , n}) if Head(t) ∈ Fn

Example 2.18. Given the tree:

h

f

a

f

a

In this tree the head is h, the set of frontier positions is {11, 21} which are the
positions of both a’s in the tree. The height of the tree is 3 and its size is 5.

Example 2.19. Given the tree:

h

f

a x

y

In this tree the head is h, the set of frontier positions is {11, 12, 2}, and the set
of variable positions is {12, 2}. The height of the tree is 3 and its size is 3.

2.3 Trees without brackets

It is common practice to write down trees using brackets in order to keep them
readable: when we read things f(a, a) or f(g(a), g(f(a, a))) we know exactly
what that tree should look like.

It is also possible to write down trees without using brackets and commas, thus
writing down the previous trees as faa and fgagfaa.

In both representations, the leftmost branch of each tree is described first, and
the symbols are described depth-first. In the representation using brackets this
is enforced by use of brackets and commas, in the string representation this is
only done by the order of the symbols. Since there are no brackets or commas
to enforce the or represent the arity of used symbols, the arity of all symbols
must be known in order to construct the represented tree.

8

This property ensures that any given tree represented as string can only be
interpreted one way, since the leftmost open branch must always be completed
first.

Example 2.20. Given arity(f) = 2, arity(g) = 1 and arity(a) = 0, the tree of
the string fgagfaa’s is constructed as follows:

First the f is processed leaving gagfaa as remainder of the string and building
the tree:

f

Next we process the symbol g, which has arity 1, since it has to go to the leftmost
open spot we get:

f

g

Next we must place the a, leaving gfaa as the remainder string. Once again we
must place it on the leftmost position:

f

g

a

When we continue the processing the string in using the same method, we get
the products below:

f

g

a

g

f

g

a

g

f

f

g

a

g

f

a

f

g

a

g

f

a a

The result is the same tree as represented by f(g(a), g(f(a, a))).

Example 2.21. Given a tree string zxxyy with no known arities, possible rep-
resentations are:

9

z

x

x

y

y

z

x x y y

A finite number of incomplete trees can also be made, such as:

z

x

x

y

y z

x x y y

z

x x y y

z

x

x

y

y

Knowing our string is a valid and complete tree limits the number of possible
trees, yet without knowing the arities of the symbols even the simple example
above has 2 completely different possibilities. A string such as fgfhaaba would
have many more possible forms, and without further knowing the arities of the
used symbols it is impossible to say which of these is meant.

Definition 2.22. We will now use a tuple (s, o) in which s is the string repre-
sentation of a tree, and o is the number of open subtree slots that still need to
be filled. s consists of symbols fn in which n is the arity of that symbol.

Given a string s, a string s′ in which the first character fn has been removed
and the amount of open slots o, we can reduce the string as follows:

(s, o)→ (s′, o− 1 + n) r1

Starting with any given string s, we start out with a value for o of 1 since there
is currently one open branch, which is the root.

Now if the string is a valid tree, there should be a reduction path:

(s, 1)
∗−→ (ε, 0)

In which ε is an empty string. We can then define a function:

toTree :: String → Tree ∨ error

10

which produces a tree from a string if that strings represents a valid tree, meaning
(s, 1)

∗−→ (ε, 0) holds, or returns an error whenever the tree is invalid, thus being

when (s, 1)
∗−→ (ε, n 6= 0) or (s, 1)

∗−→ (s′ 6= ε, 0).

Theorem 2.23. If the string s denotes a valid tree, then the procedure outlined
in Definition 2.22 above yields:

(s, 1)
∗−→ (ε, 0)

Proof of (2.23). Induction basis: If s consists of a single constant f0, we get
a starting scenario of (f0, 1). If we apply r1 to this tuple we get:

(fn, 1)→ (ε, 0)

Induction Step: For s = fks
′,k ≥ 1 we get starting scenario (fks

′, 1). As induc-

tion hypothesis we take: (s′, k)
∗−→ (ε, 0). Applying r1 we get:

(fks
′, 1)→ (s′, k)

When we apply the Induction hypothesis we get:

(fks
′, 1)→ (s′, k)

∗−→ (ε, 0)

Thus completing the proof.

11

3 Finite Tree Automata

3.1 General properties

3.1.1 Description

Section 1.1 in TATA describes several forms of tree automata: The Nondeter-
ministic Finite Tree Automaton (NFTA), the Deterministic Finite tree Automa-
ton, a NFTA with epsilon rules and Top down Tree Automaton (TDTA). We
will start by defining NFTA’s, since all rules for a NFTA also apply to DFTA’s,
yet the DFTA has some extra restrictions which NFTA’s do not have.

We will first introduce a few definitions that apply to all tree automata.

Definition 3.1. A tree automaton over F is a tuple A = (Q,F , Qf ,∆), where:

Q is a final set of states.

F is the set of symbols, which each have an arity.

Qf is the set of final states where Qf ⊆ Q.
∆ is the finite set of transition rules.

Definition 3.2. Transition rules are of the form:

f(q1(x1), . . . , qn(xn))→ q(f(x1, . . . , xn))

Where n ≥ 0, f ∈ F with arity(f) = n, q, q1, . . . , qn ∈ Q and x1, . . . , xn ∈ V

Tree automata do not have an initial state, instead they have initial (transition)
rules, which are transition rules handling transitions at the leaves of the tree.

A simple transition rule will be used in the example below to further the expla-
nation of transition rules.

Example 3.3. Consider the transition rule:

a→ q1(a)

in which a is a constant and q1 is the resulting state of that transition, which
has a as an argument. Transitions may require a set underlying states to allow
the transition.

Applying this rule on a tree consisting of only a, will result in the following tree:

q1

a

12

Definition 3.4. −→
A

means a transition is made on a tree automaton using a

transition rule from ∆.

Let A = (Q,F , Qf ,∆) be a Tree Automaton over F , The relation t −→
A

t′ for

trees t and t′ is defined as follows:

Let t, t′ ∈ T (F ∪Q)

t −→
A

t′ :=


∃C ∈ K(F ∪Q),∃u1, . . . , un ∈ T (F)),
∃f(q1(x1), . . . , qn(xn)) −→ q(f(x1, . . . , xn)) ∈ ∆,
t = C[f(q1(u1), . . . , qn(un))],
t′ = C[q(f(u1, . . . , un))].

(1)

Definition 3.5.
∗−→
A

is the transitive and reflexive closure of −→
A

Example 3.6. We consider the tree automaton below with F = {f(,), g(,), a, b, c}
and f(qα(x), qβ(y))→ qγ(f(x, y)) ∈ ∆. Applying the transition rule:

f(qα(x), qβ(y))→ qγ(f(x, y))

on the trees below we get:

f

qα

a

qβ

a

−→
A

qγ

f

a a

f

qα

g

a b

qβ

c
−→
A

qγ

f

g

a b

a

This transition is not valid for trees that do no meet the requirements, thus those
that contain symbols or parts of trees not described in the given transition rules.

Example 3.7. We consider the tree automaton below with F = {f(,), g(,), h(), a, b, c}
and f(qα(x), qβ(y))→ qγ(f(x, y)) ∈ ∆. Applying the transition rule f(qα(x), qβ(y))→
qγ(f(x, y)) on the trees below is not possible:

f

qα

a

qα

a

f

qα

a

h

qβ

a

g

qα

a

qβ

a

13

3.1.2 Acceptance

Definition 3.8. A tree is accepted by a tree automaton if there is a computation
that halts in a final state, where said state is above the tree, or in formula:

t
∗−→
A

qf (t)

Where qf ∈ Qf .

Tree automata do not accept a tree when computations halt before the end of
the tree has been reached, or the automaton produces a result qx(t) in which qx
is not a final state.

Example 3.9. The following automaton with F = {f(,), a} that has come to
a halt:

qx

f

a a

In this tree automaton calculations have halted with the state qx on top of the
tree. In the case qx is a final state (qx ∈ Qf) the input tree is accepted. In the
case that qx is not a final state (qx /∈ Qf) the input tree is rejected.

Example 3.10. Looking at the following automaton with F = {f(,), a} that
has come to a halt:

f

qx

a a

In this example it does not matter whether qx is a final state since the full tree
has not been processed, or in other words, qx is not the top of the tree. Therefore
it does not satisfy the acceptance rule t

∗−→
A

qf (t).

Definition 3.11. The tree language recognized by A, which is denoted as
L(A), is the set of all ground terms accepted by A. A set L of ground terms is
recognizable if for some A:

L = L(A)

Two tree automata are equivalent if they recognize the same tree language.

14

3.1.3 Tree Automata as a Ground Rewrite System

In the previous sections transition rules have been defined, in such a way that
the original tree is preserved when processed by a Tree Automata, only adding
states and moving them up in the tree.

TATA (section 1.1, p21) also explains how to write down trees as a ground
rewrite system, and continues using this method throughout the document.
We can also define these transitions as a ground rewrite system, in which the
original tree is not preserved but rewritten by states.

Definition 3.12. In a tree automaton that is written as a ground rewrite sys-
tem, ∆ contains only rules of the form:

f(q1. . . . , qn) −→ q

These rules are named ground transition rules. A tree automaton using
ground state transition rules accepts a term t if:

t
∗−→
A

qf with qf ∈ Qf

The language acceptance of Tree Automata is unaffected by whether ground
transition rules or normal transition rules are used, since the automata will still
work upward and only has rewrite rules for terms, but not for states. For this
reason, no extra transitions are made in an automaton using ground transition
rules.

The resulting tree however will look different, it will no longer be the original
tree with an amount of states added to it, rather a tree with states as far as the
tree could be processed.

Example 3.13. We consider the tree automata A (left) and An (right) below,
both with F = {f(), a}, qa, qf ∈ Q and qf ∈ Qf . For A we have a→ qa, f(qa)→
qf ∈ ∆ and for An we have a→ qa(a), f(qa(x))→ qf (f(x)) ∈ ∆n which are the
same rules in both forms.

f

f

a

−→
A

f

f

qa

−→
A

f

qf

qa

−→
A

qf

qf

qa

f

f

a

−−→
An

f

f

qa

a

−−→
An

f

qf

f

a

−−→
An

qf

f

f

a

In either case the input tree has been accepted, yet the resulting trees are differ-
ent.

15

3.2 Nondeterministic Finite Tree Automata

A tree automaton that only follows the rules listed in the previous subsection is
called a Nondeterministic Finite Tree Automaton. A NFTA is a tree automaton
that accepts trees if any sequence of transition rules in ∆ leads to satisfying the
acceptance rule.

For any (processed) input multiple transitions could occur, and multiple tran-
sitions can lead to the same state. A Nondeterministic Finite Tree Automaton
can be compared to a nondeterministic finite automaton. Given an (processed)

input, multiple transitions can occur. If any of these satisfy t
∗−→
A

qf (t), then the

input tree is accepted.

Example 3.14. Given an NFTA A with F = {f(,)a},∆ = {a → q1(a), a →
q2(a), f(q1(x), q2(y)) → qf (f(x, y))}, where qf ∈ Qf , and an input tree t =
f(a, a). In this example the following transitions can occur:

f

a a

∗−→
A

f

q1

a

q1

a

f

a a

∗−→
A

f

q2

a

q1

a

f

a a

∗−→
A

f

q2

a

q2

a

f

a a

∗−→
A

f

q1

a

q2

a

∗−→
A

qf

f

a a

Since one of these computations lead to an accepting state above the input tree,
t is accepted.

Another variant of a NFTA exists, which has rules to alter a state without
processing any symbols of a tree. This kind of NFTA, named NFTA-ε, will be
described in a later section.

3.3 Deterministic Finite Tree Automata

Section 1.1 of TATA[1] also introduces the notion of a Deterministic Finite Tree
Automaton. The DFTA follows the same rules as the NFTA, but has some
extra restrictions.

Definition 3.15. A DFTA over F is a tuple A = (Q,F , Qf ,∆) in which there
is at most one transition rule for every read input.

16

A DFTA is unambiguous, which means that for every transition rule l→ r ∈ ∆
there are no 2 rules with the same term on the left side of the rule. In other
words: There is only one single output for every input tree in a DFTA.

Example 3.16. Given three tree automata all with:

Q = {q1, q2}

F = {f(), a, b}

Qf = {q2}

Each of these automaton Ai has its own transition rule set ∆i.
The sets of transition rules are the following:

∆1 = {a→ q1(a), b→ q2(b), f(q1(x))→ q2(f(x)), f(q2(x))→ q2(f(x))}

∆2 = {a→ q1(a), b→ q1(b), f(q1(x))→ q2(f(x)), f(q2(x))→ q1(f(x))}

∆3 = {a→ q1(a), b→ q1(b), f(q1(x))→ q1(f(x))}

A1,A2 and A3 are all DFTA’s since they comply to the rules set in Subsection
3.1.1. and definition 3.15. A3 will not be able to accept any trees, yet that is
not a requirement to either a tree automaton or a DFTA.

Example 3.17. Given tree automata A4 and A5 with:

Q = {q1, q2, qf}

F = {f(), a, b}

Qf = {qf}

The sets of transition rules are the following:

∆4 = {a→ q1(a), a→ q2(a), f(q1(x))→ q3(f(x)), f(q2(x))→ qf (f(x))}

∆5 = {a→ q1(a), b→ q1(b), f(q1(x))→ q2(f(x)), f(q1(x))→ qf (f(x))}

Both A4 and A5 are not DFTA’s. In A4 we can see 2 transition rules for a read
character a, and therefore it is ambiguous, and in A5 we have the same issue
for f(q1(x)). They are still valid NFTA’s however.

Definition 3.18. A complete DFTA is a DFTA which has at least one
rule f(q1(x1), . . . , qn(xn)) → q(f(x1, . . . , xn)) ∈ ∆ for all n ≥ 0, f ∈ F , and
q1, . . . , qn ∈ Q.

Example 3.19. Looking back at the automata in examples 3.16 and 3.17, we
can now state that A1 and A2 are complete DFTA’s, A3, A4 and A5 are not,
this is because:

17

In A1 there is a transition for every possible input.

In A2 there is a transition for every possible input.

In A3 there is no transition for f(q2(x))

In A4 is not a DFTA.

In A5 is not a DFTA.

In the previous subsection we stated that the NFTA can be seen as the NFA for
trees. Likewise, a complete deterministic tree automaton (DFTA) can be seen
as the tree equivalent of the Deterministic Finite Automaton. Like in a DFA,
given a read piece of the input (or automaton processed input in the case of tree
automata) there is exactly one possible transition.

Any DFTA can be transformed into a complete DFTA accepting the same lan-
guage, which TATA[1] has made no mention of. The idea is simple: Add a
dead state (a state that states the machine is stuck) to the machine and add
transition rules for any read tree for which there are none, with each of these
rules going to the dead state.

Algorithm 3.20. Completion Algorithm
COMPLETE (DFTA A = (Qd,F , Qdf ,∆d))

Qc = Qd ∪Qfail where Qfail 6∈ Qd, Qfail 6∈ Qdf
∆c = ∆d

While (rules can be added to ∆c)
{

∆c = ∆c ∪ {f(q1(x1), . . . , qn(xn))→ qfail(f(x1, . . . , xn))}
where f ∈ F , q1, . . . , qn ∈ Qc

6 ∃q∈Qc
(f(q1(x1), . . . , qn(xn))→ q(f(x1, . . . xn)) ∈ ∆c)

}
return DFTA Ac = (Qc,F , Qdf ,∆c)

Example 3.21. Given a DFTA with:

F = {f(,), g(), a}.

Qd = {qa, qf , qg}.

Qdf = {qg}.

∆d = {a→ qa(a), f(qa(x), qa(y))→ qf (f(x, y)) g(qf (x))→ qg(g(x))}.

When we start the completion algorithm3.20, we first get sets Qc = Qd ∪ qfail
and ∆c = ∆d. Then we add rules to ∆c for trees that do not appear on any left
hand side of any transition rules, all leading to the state qfail:

18

g(qa(x))→ qfail(g(x)) g(qf (x))→ qfail(g(x))

g(qg(x))→ qfail(g(x)) g(qfail(x))→ qfail(g(x))

f(qa(x), qf (y))→ qfail(f(x, y)) f(qf (x), qa(y))→ qfail(f(x, y))

f(qa(x), qg(y))→ qfail(f(x, y)) f(qg(x), qa(y))→ qfail(f(x, y))

f(qa(x), qfail(y))→ qfail(f(x, y)) f(qfail(x), qa(y))→ qfail(f(x, y))

f(qf (x), qf (y))→ qfail(f(x, y)) f(qg(x), qg(y))→ qfail(f(x, y))

f(qf (x), qg(y))→ qfail(f(x, y)) f(qg(x), qf (y))→ qfail(f(x, y))

f(qf (x), qfail(y))→ qfail(f(x, y)) f(qfail(x), qf (y))→ qfail(f(x, y))

f(qg(x), qfail(y))→ qfail(f(x, y)) f(qfail(x), qg(y))→ qfail(f(x, y))

f(qfail(x), qfail(y))→ qfail(f(x, y))

The result is a new complete deterministic finite tree automaton (Qc,F,Qdf ,∆c).

Theorem 3.22. For every DFTA, there exists a complete DFTA that accepts
the same language.

Proof of (3.22). Using algorithm 3.20 we can construct a complete DFTA Ac
using any input DFTA Ad. In order for Theorem 3.22 to hold we must show
that Ac accepts a tree t only and only if it is accepted by Ad. We can split this
in 2 cases:

t ∈ L(Ad) : Any tree t accepted by Ad is also accepted by Ac, since it
uses the same transition rules and states for processing that tree, resulting
in the same final tree. A rule going to state qfail will never be accessed
processing this tree since the original automaton Ad will have had rules
for any transactions in this tree. It is also impossible for a DFTA to infer
transition rules on any fully processed tree.

t 6∈ L(Ad) : Which can have one of two reasons:

t
∗−−→
Ad

q(t), q 6∈ Qdf : In this case Ac will process t exactly the same

resulting in the same state and rejecting t.

t 6 ∗−−→
Ad

q(t) : This case is the one where Ac differs from Ad. Where Ad

gets stuck, Ac transfers to a state qfail (which is a sink), and from
that point onward keeps pushing state qfail upward. Since qfail 6∈ Qdf ,
the end result qfail(t) will not be accepted.

Therefore Ac and Ad accept the same language.

19

3.4 NFTA versus DFTA

Whilst the NFTA and DFTA are slightly different, for every NFTA there is a
equivalent DFTA and vice versa. This would mean there is no difference in their
expressive power, and that different variants only simplify or change the form
or Tree Automaton, not change it’s acceptance.

We can state that every DFTA is a valid NFTA since both are tuples A =
(Q,F , Qf ,∆), and a NFTA has even less restrictions than a DFTA. Therefore
the most easily made NFTA from a DFTA is the DFTA itself without any
changes. Smaller and simpler versions might be made in some instances, but
this fact does show that for every DFTA there is a NFTA equivalent.

Any NFTA has an equivalent DFTA. A NFTA can be converted into a DFTA
using the algorithm below. In this algorithm Qd is the newly formed set of state
sets, which is a subset of the power set of Qn, Qd ⊆ P(Qn) in short. This en-
abled the nondeterministic transitions to be converted, making them transition
to a set of states containing all states the NFTA could transition to.

TATA (1.1, p26) proposes an algorithm to transform NFTA’s into an equivalent
DFTA. Below we have an altered version of this algorithm, which does not use
tree automata as a ground rewrite system.

Algorithm 3.23. Determinization Algorithm
DET (NFTA A = (Qn,F , Qnf ,∆n))

Qd = ∅
∆d = ∅
While (rules can be added to ∆d)
{

Qd = Qd ∪ {s}
∆d = ∆d ∪ {f(s1(x1), . . . , sn(xn))→ s(f(x1, . . . , xn))}
where f ∈ F , s1, . . . , sn ∈ Qd
s = {q ∈ Qn|∃(q1 ∈ s1, . . . , qn ∈ sn),

f(q1(x1), . . . , qn(xn))→ q(f(x1, . . . xn)) ∈ ∆n} and s 6= ∅
}
Qdf = {s ∈ Qd|s ∩Qf 6= ∅}
return DFTA Ad = (Qd,F , Qdf ,∆d)

Using this algorithm NFTA’s can be converted into equivalent DFTA’s. The
resulting tree automaton is a DFTA, since it has no nondeterministic steps. The
algorithms turns nondeterministic steps into a single transition towards the set
of all resulting states of the nondeterministic transitions. The resulting DFTA
is not complete, since there will be sets of states which do not occur on either
side of the transition rules.

20

Example 3.24. We use the determinization algorithm on the NFTA in Ex-
ample 3.14. First we add a subscript n to the set of states and the set of
transition rules to more easily identify them as belonging to the NFTA, Qn =
{q1, q2, qf},∆n = {a→ q1(a), a→ q2(a), f(q1(x), q2(y))→ qf (f(x, y))}.

We first set Qd and ∆d, the set of states and the set of transition rules for the
DFTA, to be empty.

We then look for possible s. Since Qn is empty only rules adding constants can
be added, for which we find the rules a → q1(a) and a → q2(a), hence for this
formula we take f = a, s = {q1, q2} and then expand Qd with {q1, q2}, and ∆d

with a→ {q1, q2}(a).

This results in the sets ∆d = {a → {q1, q2}(a)} and Qd = {q1, q2}. Now there
is one last rule we can add. if we pick f = f(,), s = qf , s1 = q1 and s2 = q2 we
can add the rule f({q1, q2}(x), {q1, q2}(y)) → {qf}(f(x, y)) to ∆d, and {qf} to
Qd.

This will result in ∆d = {a→ {q1, q2}(a), f({q1, q2}(x), {q1, q2}(y))→ {qf}(f(x, y))}
and Qd = {{q1, q2}.{qf}}. Finally Qdf = {qf} is set in the final line and DFTA
Ad = (Qd,F , Qdf ,∆d) is completed.

Example 3.25. In this example we will only show what is produced each iter-
ation in a table. For this example we will use the following data:

Qn = {q1, . . . q5}
Qf = {q4, q5}
F = {a, b, c, f(), g(,)}
∆n = {a→ q1(a), b→ q1(b), b→ q2(b), c→ q2(c), f(q1(x))→ q3(f(x)),
f(q2(x))→ q3(f(x)), g(q1(x), q1(y)→ q4(g(x, y)), g(q3(x), q1(y))→ q5(g(x))}

We will now display all data from using the algorithm in the table below, in which
we show for each iteration what symbol is processed, the {s} that is evaluated
and the rule that is added.

21

F {s} Rule
0
1 a {q1} a→ {q1}(a)
2 b {q1, q2} b→ {q1, q2}(b)
3 c {q2} c→ {q2}(c)
4 f() {q3} f({q1}(x))→ {q3}(f(x))
5 f() {q3} f({q1, q2}(x))→ {q3}(f(x))
6 f() {q3} f({q2}(x))→ {q3(f(x))}
7 g(,) {q4} g({q1}(x), {q1}(y))→ {q4}(g(x, y))
8 g(,) {q4} g({q1}(x), {q1, q2}(y))→ {q4}(g(x, y))
9 g(,) {q4} g({q1, q2}(x), {q1}(y))→ {q4}(g(x, y))
10 g(,) {q4} g({q1, q2}(x), {q1, q2}(y))→ {q4}(g(x, y))
11 g(,) {q5} g({q3}(x), {q1}(y))→ {q5}(g(x, y))
12 g(,) {q5} g({q3}(x), {q1, q2}(y))→ {q5}(g(x, y))

Qd is then the set of all items listed in the {s} column, ∆d the set of all rules
listed in the rule column and Qdf is the set of all states Qd that contain states
in Qf , thus Qdf = {{q4}, {q5}}.

Theorem 3.26. Using Algorithm 3.23, any NFTA An can be converted in an
equivalent DFTA Ad, which accepts the same language (L(An) = L(Ad)).

Given a term t, if a transition to a state q can be made in the NFTA, a transition
is made in the DFTA towards a set containing q and vice versa:

∀q ∈ Qn(t
∗−−→
An

q(t)) ⇐⇒ (t
∗−−→
Ad

s(t)) where q ∈ s, s ∈ Qd

Since computations in the equivalent NFTA and DFTA will halt in (a set con-
taining) the same state, a language is accepted in both if that state is a accepting
state.

Proof 3.27. We will now prove that:

∀t∀q ∈ Qn(t
∗−→
A

q(t)) =⇒ ∃s ∈ Qd(t
∗−−→
Ad

s(t)), with q ∈ s

by using induction on terms.

Basis: Consider t ∈ F0 (t is a constant). If there is a transition t −→
A

q(t),

then according to the algorithm there is a transition t −−→
Ad

s(t) with q ∈ s.

Inductive step: Consider f ∈ Fn, where n > 0. We should then prove that if
there is a transition
f(t1, . . . , tn)

∗−→
A

f(q1(t1), . . . , qn(tn)) −→ q(f(t1, . . . , tn)) in the NFTA,

we have a equivalent transition in the DFTA
f(t1, . . . , tn)

∗−−→
Ad

f(s1(t1), . . . , sn(tn)) −→ s(f(t1, . . . , tn))

22

with q ∈ s, q1 ∈ s1, . . . , qn ∈ sn

We have ∀i∈1,...,nti
∗−−→
Ad

si(ti) with qi ∈ si as Induction Hypothesis.

In A we have a rule f(q1(t1) . . . qn(tn)) −→
A

q(f(t1, . . . , tn) Applying the algo-

rithm we will have a rule f(s1(t1), . . . sn(tn)) −−→
Ad

s(f(t1, . . . , tn)) for some s

with q ∈ s, resulting in f(t1, . . . , tn)
∗−−→
Ad

f(s1(t1), . . . , sn(tn)) −→ s(f(t1, . . . , tn))

with q ∈ s, q1 ∈ s1, . . . , qn ∈ sn.

Proof 3.28. We will now prove that:

∀t∀s ∈ Qd(t
∗−−→
Ad

s(t)) =⇒ ∃q ∈ s(t ∗−→
A

q(t))

by using induction on terms.

Basis: Consider t ∈ F0 (t is a constant). If there is a transition t −−→
Ad

s(t),

then according to the algorithm there exist ∀q∈st −→
A

q(t).

Inductive step: Consider f ∈ Fn, where n > 0. We should then prove that if
there is a transition
f(t1, . . . , tn)

∗−−→
Ad

f(s1(t1), . . . , sn(tn)) −→ s(f(t1, . . . , tn))

we have a equivalent transition in the NFTA

f(t1, . . . , tn)
∗−→
A

f(q1(t1), . . . , qn(tn)) −→ q(f(t1, . . . , tn)),

with q ∈ s, q1 ∈ s1, . . . , qn ∈ sn

We have ∀i∈1,...,nti
∗−→
A

qi(ti) with qi ∈ si as Induction Hypothesis.

Following the algorithm a rule f(s1(t1), . . . sn(tn)) −−→
Ad

s(f(t1, . . . , tn)) is made

if there originally was a rule f(q1(t1), . . . qn(tn)) −→
A

q(f(t1, . . . , tn)) with for

every q in s, with ∃q1,...,qnq1 ∈ s1, . . . , qn ∈ sn.

3.5 Reduction

Tree automata, much like regular automata, allow for unaccessible states to
exist. Since these states are unaccessible, they do not determine whether a
language is accepted or have any other major influence on the workings of the
automaton. Therefore a reduction algorithm exists to remove these unaccessible
states, which was proposed in TATA (p25).

Algorithm 3.29. Reduction Algorithm
RED (NFTA A = (Q,F , Qf ,∆))

23

M = ∅
While (States can be added to M)
{

M = M ∪ q
where f ∈ F , q1, . . . , qn ∈M,

f(q1(x1), . . . , qn(xn))→ q(f(x1, . . . xn)) ∈ ∆
}
Qr = M
Qrf = Qf ∩M
∆r = {f(q1(x1), . . . , qn(xn))→ q(f(x1, . . . , xn)) ∈ ∆|q, q1, . . . , qn ∈M}
return NFTA Ar = (Qr,F , Qrf ,∆r)

Example 3.30. Given a tree automaton for which:
F = {f(), a}, {q1, q2, qf} ∈ Q,{qf} ∈ Qf and {a→ qf (a), f(q1(x))→ q2(f(x))} ∈
∆

First qf is added to M , since there are no states currently in M and the rule
a→ qf (a) has no need for any states to be found.

The other states can not be added to M , since they do not satisfy the require-
ments for being added. In the case of q1 there exists no rule that has q1 on the
right hand side. In the case of q2 there is a rule but it requires a state q1 as the
argument of f(), and since q1 /∈M, q2 can not be added either.

Qr is then created using everything in M = {qf}.Qrf is then made consisting
of only qf , since this is the only state in both Qf and M.∆r is then set to be
{a→ qf (a)}, since it is the only rule in ∆ whose states are in the list of acces-
sible states.

The NFTA Ar = (Qr,F , Qrf ,∆r) is then returned.

Example 3.31. We define a tree automaton with
F = {f(), a}, {q1, q2, q3, q4, q5, qf} ∈ Q,{q5, qf} ∈ Qf and {a→ q1(a), f(q1(x))→
q2(f(x)), f(q3(x))→ q4(f(x)), f(q2(x))→ qf (f(x))} ∈ ∆

M Rule
0
1 q1 a→ q1(a)
2 q2 f(q1(x))→ q2(f(x))
3 qf f(q2(x))→ qf (f(x))

This will result in a new NFTA with a set Qr which contains all the items in the
column labeled M, a ∆r containing all items in the rule column, Qrf = {qf}.
The resulting NFTA has only accessible states, therefore q3, q4 and q5 have been
removed.

24

3.6 NFTA with epsilon rules

We briefly mentioned the NFTA-ε in an earlier section. NFTA’s can be extended
with ε rules, which are similar to the NFA’s λ rules. Using ε rules a NFTA can
change a state without taking any input.

Definition 3.32. A NFTA-ε is a Tree automaton that has transitions rules of
the form:

f(q1(x1), . . . , qn(xn))→ qx(f(x1, . . . , xn))

and ε rules of the form:
q(x)→ q′(x)

For any NFTA-εAε there is a NFTA A that accepts the same language, thus
L(A) = L(Aε); There exists no NFTA-ε that accepts a language that cannot
be accepted by any NFTA. Thus the NFTA-ε only exists to simplify proofs and
examples.

We will now introduce a new function:

Definition 3.33. εclose(q) is the set of states that are accessible from q by only
using ε rules. It is inductively defined as:

• q ∈ εclose(q)
• q′′ ∈ εclose(q) if q′ ∈ εclose(q) and q′(x)→ q′′(x) ∈ ∆

Example 3.34. Given states q1, q2, q3, q4, and ∆ = {q1(x) → q2(x), q2(x) →
q3(x), q4(x)→ q1(x)}, we get:

εclose(q1) = {q1, q2, q3}
εclose(q2) = {q2, q3}
εclose(q3) = {q3}
εclose(q4) = {q1, q2, q3, q4}

Though TATA states that all NFTA-ε can be transformed into an equivalent
NFTA, it doesn’t propose any algorithms to do so. Therefore we introduce the
following algorithm:

Algorithm 3.35. Epsilon removal Algorithm
EPS (NFTA-ε A = (Qe,F , Qef ,∆e))

Q = ∅
∆ = ∅
While (rules can be added to ∆d)
{

Q = Q ∪ {s}
∆ = ∆ ∪ {f(s1(x), . . . , sn(x))→ s}
where f ∈ F , s1, . . . , sn ∈ Q

s = {εclose(q)|∃(q1 ∈ s1, . . . , qn ∈ sn),

25

f(q1(x1), . . . , qn(xn))→ q(f(x1, . . . xn)) ∈ ∆e}
and s 6= ∅

}
Qf = {s ∈ Q|s ∩Qef 6= ∅}
return NFTA A = (Q,F , Qf ,∆)

Example 3.36. Given an NFTA-ε Ae = (Qe,F , Qef ,∆e) with
Qe = {qa, qb, qc, qf}, F = {a, f()} and
∆e = {a→ qa(a), qa(x)→ qb(x), f(qa(x))→ qc(f(x)), f(qb(x))→ qf (f(x))}

Using the Epsilon removal algorithm, we get the following table of steps:

{s} Rule
0
1 {qa, qb} a→ {qa, qb}(a)
2 {qc} f({qa, qb}(x))→ {qc}(f(x))
3 {qf} f({qa, qb}(x))→ {qf}(f(x))

In the first step the only rule we can add is the rule that states a→ qa(a), and
since there is an ε rule that moves from qa to qb, that rule is altered to reach
the set of both states.

We then have two choices of rules to add, as presented in steps 2 and 3. In step
2 we start with the original rule f(qa(x)) → qc(f(x)). From this rule we can
only derive one rule, since the only set of states in Q containing qa is {qa, qb},
thus creating f({qa, qb}(x))→ {qc}(f(x)).

Step 3 does the same thing for the rule f(qb(x)) → qf (f(x)), resulting in the
rule f({qa, qb}(x))→ {qf}(f(x)) .

Finally all sets of states containing states that are in Qef are put in the set of
final states Qf for the newly created NFTA.

Example 3.37. Given an NFTA-ε Ae = (Qe,F , Qef ,∆e) with
Qe = {qa, qb, qc, qe, qf , qg},Qef = {qa, qf}, F = {a, b, f(), g(,)} and ∆e shown
in the table below:

Rule εRule
a→ qa(a) qa(x)→ qb(x)
b→ qb(b) qb(x)→ qc(x)
f(qa(x))→ qf (f(x)) qg(x)→ qa(x)
f(qc(x))→ qe(f(x))
g(qe(x), qf (y))→ qg(g(x, y))

Following the algorithm, we get the table below:

26

{s} Rule
0
1 {qa, qb, qc} a→ {qa, qb, qc}(a)
2 {qb, qc} b→ {qb, qc}(b)
3 {qf} f({qa, qb, qc}(x))→ {qf}(f(x))
4 {qe} f({qa, qb, qc}(x))→ {qe}(f(x))
5 {qe} f({qb, qc}(x))→ {qe}(f(x))
6 {qa, qb, qc, qg} g({qe}(x), {qf}(y))→ {qa, qb, qc, qg}(g(x, y))
7 {qf} f({qa, qb, qc, qg}(x))→ {qf}(f(x))
8 {qe} f({qa, qb, qc, qg}(x))→ {qe}(f(x))

This will result in a new NFTA with a set Q which contains all the items in
the column labeled {s}, a ∆ containing all items in the rule column, Qf =
{{qa, qb, qc}, {qf}, {qa, qb, qc, qg}}.

Proof 3.38. We will now prove that:

∀t∀q ∈ Qe(t
∗−−→
Ae

q(t)) =⇒ ∃s ∈ Q(t
∗−→
A

s(t)), with q ∈ s

by using induction on terms.

Basis: Consider t ∈ F0. If there is a transition t −−→
Ae

q(t), then according to

the algorithm there is a transition t −→
A

s(t) with q ∈ s.

Inductive step: Consider f ∈ Fn, where n > 0. We should then prove that if
there is a transition
f(t1, . . . , tn)

∗−−→
Ae

f(q1(t1), . . . , qn(tn)) −→ q(f(t1, . . . , tn)) in the NFTA-ε,

we have a equivalent transition in the NFTA
f(t1, . . . , tn)

∗−→
A

f(s1(t1), . . . , sn(tn)) −→ s(f(t1, . . . , tn))

with q ∈ s, q1 ∈ s1, . . . , qn ∈ sn

We have ∀i∈1,...,nti
∗−→
A

si(ti) with qi ∈ si as Induction Hypothesis.

In Ae we have a rule f(q1(t1) . . . qn(tn)) −→
A

q(f(t1, . . . , tn) Applying the algo-

rithm we will have a rule f(s1(t1), . . . sn(tn)) −→
A

s(f(t1, . . . , tn)) for some s with

q ∈ s, resulting in f(t1, . . . , tn)
∗−→
A

f(s1(t1), . . . , sn(tn)) −→ s(f(t1, . . . , tn))

with q ∈ s, q1 ∈ s1, . . . , qn ∈ sn

27

Proof 3.39. We will now prove that:

∀t∀s ∈ Q(t
∗−→
A

s(t)) =⇒ ∃q ∈ s(t ∗−−→
Ae

q(t))

by using induction on terms.

Basis: Consider t ∈ F0 (t is a constant). If there is a transition t −→
A

s(t),

then according to the algorithm there exist ∀q∈st −−→
Ae

q(t).

Inductive step: Consider f ∈ Fn, where n > 0. We should then prove that if
there is a transition
f(t1, . . . , tn)

∗−→
A

f(s1(t1), . . . , sn(tn)) −→ s(f(t1, . . . , tn))

we have a equivalent transition in the NFTA-ε

f(t1, . . . , tn)
∗−−→
Ae

f(q1(t1), . . . , qn(tn)) −→ q(f(t1, . . . , tn))

with q ∈ s, q1 ∈ s1, . . . , qn ∈ sn

We have ∀i∈1,...,nti
∗−→
A

qi(ti) with qi ∈ si as Induction Hypothesis.

Following the algorithm a rule f(s1(t1), . . . sn(tn)) −→
A

s(f(t1, . . . , tn)) is made

if there originally was a rule f(q1(t1), . . . qn(tn)) −−→
Ae

q(f(t1, . . . , tn)) with for

every q in s, with ∃q1,...,qnq1 ∈ s1, . . . , qn ∈ sn

28

4 Language properties for Tree automata

4.1 Pumping Lemma for Tree Automata

In Section 1.2 of TATA[1] the pumping lemma is given for tree automata:

Theorem 4.1. Let L be a recognizable set of ground terms. Then there exists
a k > 0 satisfying:

For every ground term t in L such that height(t) > k there exists:

1. a context C ∈ K(F)

2. a nontrivial context C ′ ∈ K(F)

3. a ground term u

such that t = C[C ′[u]] and ∀n ≥ 0, C[C ′n[u]] ∈ L

Example 4.2. Given F = {a, f(), g()}) and the recognizable language

L = {f(gi(a))|i ≥ 0}

In this case we can choose k = 2, C = f(x), C ′ = g(x), u = a, and we observe
that ∀nC[C ′n[u]] ∈ L.

Example 4.3. Given F = {a, f(), g()}) and a recognizable language

L = {g((f(g(f)))i(a)))|i > 0}

Which means that, after an initial g(), the segment f(g(f())) is repeated i times
followed by an a. Examples are g(f(g(f(a)))) and g(f(g(f(f(g(f(a))))))).

In this case we can choose k = 2, C = g(x), C ′ = f(g(f(x))), u = a, and we
observe that ∀nC[C ′n[u]] ∈ L.

Example 4.4. Given F = {a, f(,), g()}) and a language
L = {f(gi(a), (gi(a))|i ≥ 0}.

Suppose L is recognizable, then according to Theorem 4.1, there is a k > 0 such
that the properties in 4.1 hold.

Take t = f(gk(a), gk(a)), then height(t) > k. So there is a context C and non-
trivial context C ′ and a u such that t = C[C ′[u]] and ∀nC[C ′n[u]] ∈ L

Now there are the following possibilities choices for C,C ′ and u:

• C = f(x, gk(a)), C ′ = gm(x), u = gj(a), j + m = k, j < k : Take n = 0,
resulting in f(gk(a), gj(a)) ∈ L.

29

• C = f(gk(a), x), C ′ = gm(x), u = gj(a), j + m = k, j < k : Take n = 0,
resulting in f(gk(a), gj(a)) ∈ L.

• C = x,C ′ = f((x, gk(a))), u = gk(a) : Take n = 0, resulting in gk(a) ∈ L.

• C = x,C ′ = f((gk(a)), x), u = gk(a) : Take n = 0, resulting in gk(a) ∈ L.

All these options lead towards a contradiction , because the resulting word is not
in L, therefore L is not recognizable.

Proof of (4.1). Let A = (Q,F , Qf ,∆) be a FTA such that L = L(a), and
k = |Q|. Consider a ground term t ∈ L such that height(t) > k.

Consider a successful run r on t by A. Since height(t) > k and k = |Q|, there
is a path in t that is longer than k and there are 2 positions p1 < p2 such that
r(p1) = r(p2) = q for some state q.

Let u1 be the ground subterm of t at p1, and u the ground subterm of t at p2.
There then exists a non-trivial context C ′ such that u1 = C ′[u]. We then define
the context C such that t = C[C ′[u]].

Consider a term t = C[C ′n[u]] for some n > 1. Suppose that r corresponds to

the reduction t
∗−→
A

qf , qf ∈ Qf then we have:

C[C ′n[u]]
∗−→
A

C[C ′n[q]]
∗−→
A

C[C ′n−1[q]]
∗−→
A

. . . C[q]
∗−→
A

qf .

The same holds for n = 0

4.2 Closure properties

For the class of regular languages over words there are several closure properties
that hold, such as Union and Intersection. Chapter 1.3 of TATA[1] describes
that these properties hold for the class of regular tree languages as well, and
gives the theory for these properties, but no proof nor any examples. This sec-
tion will therefore give a more complete view on these closure properties.

Regular tree languages are the class of languages which are accepted by a NFTA,
and therefore by any other previously mentioned type of tree automaton. Like
in for the class of regular languages over words, there exist several closure prop-
erties for the class of the class of regular tree languages. These include union,
complementation and intersection; All of which will be described and proven
in the coming subsections.

We will prove these closure properties by construction of automata, since regular
tree languages consist of languages accepted by a NFTA we can prove these
properties by showing that automata for the languages created by these closure
properties of tree regular tree languages can be made.

30

4.2.1 Union

The first closure property we will describe is union, however we must first note
that there are 2 possible approaches to this property. We will start with the
simpler version, which does not preserve the determinism of the tree languages
that are put in union.

Definition 4.5. Given A1 = (Q1,F,Q1f ,∆1) and A2 = (Q2,F,Q2f ,∆2) with
Q1∩Q2 = ∅ (which can also be enforced by renaming states), the tree automaton
A1 ∪ A2 is defined as follows. A = (Q,F,Qf ,∆) with:

• Q = Q1 ∪Q2

• Qf = Q1f ∪Q2f

• ∆ = ∆1 ∪∆2

Theorem 4.6. Let L1 and L2 be two recognizable tree languages for which
L1 = L(A1) and L2 = L(A2). Then, L1 ∪ L2 = L(A1) ∪ L(A2)

Note that by using Definition 4.5 and Theorem 4.6, the properties of determin-
ism and completeness for A1 and A2 are not preserved in A.

Example 4.7. Given A1 = (Q1,F,Q1,∆f1) with F = {a, f()}, Q1 = {q1, q2, q3},
Qf1 = {q1, q3} and ∆1 = {a→ q1(a), f(q1(x))→ q3(f(x)), f(q3(x)→ q2(f(x))};
and A2 = (Q2,F,Q2,∆f2), with Q2 = {qa, qb, qc}, Qf2 = {qc} and ∆2 = {a →
qa(a), f(qa(x))→ qb(f(x)), f(qb(x)→ qc(f(x)), f(qc(x)→ qc(f(x))}

We can see that L1 = {f(a) ∨ a} and L2 = {fn(a)|n ≥ 2}. Now, according to
Theorem 4.6 L = L1 ∪ L2 = {f(a) ∨ a ∨ fn(a)|n ≥ 2} = {f i(a)|a ≥ 0}.

Now let us consider t1 = a, t2 = f(a) and t3 = f(f(a)). We shall now show
how these trees are processed in A, A1 and A2. We start with t1:

q1

a
←−−−−
A/A1

a −−−−→
A/A2

qa

a

In which we underlined q1 to mark it is an accepting state. we can see that A
accepts t1 due to a rule it received from A1, yet it can also apply a rule from A2

that leads to a state that is not accepted. For t2 the following transitions exist:

q3

f

a

←−−−−
A/A1

f

q1

a

←−−−−
A/A1

f

a
−−−−→
A/A2

f

qa

a

−−−−→
A/A2

qb

a

a

31

We can see that t2 is accepted for the same reasons as t1. t3 however was not
in L1, but since it was in L2 it will still be accepted by A, using the rules it
received from A2:

q2

f

f

a

←−−−−
A/A1

f

q3

f

a

←−−−−
A/A1

f

f

q1

a

←−−−−
A/A1

f

f

a

−−−−→
A/A2

f

f

qa

a

−−−−→
A/A2

f

qb

f

a

−−−−→
A/A2

qc

f

f

a

We can see in these examples even though both A1 and A2 were deterministic,
the unified machine is nondeterministic. Also note that due to Q1 ∩ Q2 = ∅,
once the first reduction in one direction is made, no rules applied in the other
direction can be used.

Proof of (4.6). Since L(A1) ∪ L(A2) uses the transition rules from both A1

and A2, which cannot access the same states, therefore it only accepts trees that
are in the language of either A1, A2 or both, and nothing more.

Therefore if we have this machine for which L(A) = L, it follows that if L(A) =
L(A1) ∪ L(A2), we have L = L(A) = L(A1) ∪ L(A2) = L1 ∪ L2.

4.2.2 Union with preservation of determinism

In the last subsection we discussed a theorem for union that does not preserve
determinism. Yet in TATA [1] there is a second theorem for union that does pre-
serve determinism. The idea behind this theorem is that the two tree automata
process the input term in parallel.

Definition 4.8. Let L1 and L2 be two recognizable tree languages, and A1 =
(Q1,F .Qf1,∆1) and A2 = (Q2,F .Qf2,∆2) be two tree automata for which
L1 = L(A1) and L2 = L(A2).

Suppose that Q1 ∩Q2 = ∅, and that A1 and A2 are complete. A1 ×A2 is then
defined as A = (Q,F,Q,∆) with:

• Q = Q1 ×Q2

• Qf = (Qf1 ×Q2) ∪ (Qf2 ×Q1)

• ∆ = ∆1 ×∆2

with: ∆1×∆2 = {f((q1, q
′
1)(x1)), . . . , f((qn, q

′
n)(xn))→ (q, q′)(f(x1, . . . xn))|

f(q1(x1), . . . , qn(xn))→ q(f(x1, . . . , xn)) ∈ ∆1,

f(q′1(x1), . . . , q′n(xn))→ q′(f(x1, . . . , xn)) ∈ ∆2 }

32

Theorem 4.9. Let L1 and L2 be two recognizable tree languages for which
L1 = L(A1) and L2 = L(A2). Then, L1 ∪ L2 = L(A1 ×A2), where A1 and A2

are two complete DFTA’s.

Example 4.10. Given F = {a, f(), g()}, A1 = (Q1,F,Q1,∆1f) with:

• Q1 = {q1, q2}

• Q1f = {q2}

• ∆1 = {a → q1(a), f(q1(x)) → q2(f(x)), f(q2(x)) → q2(f(x)), g(q1(x)) →
q1(g(x)), g(q2(x))→ q2(g(x))}

And A2 = (Q2,F,Q2,∆2f), with:

• Q2 = {qa, qb}

• Q2f = {qb}

• ∆2 = {a → qa(a), f(qa(x)) → qa(f(x)), f(qb(x)) → qb(f(x)), g(qa(x)) →
qb(g(x)), g(qb(x))→ qb(g(x))}

This means that means A1 accepts any tree that contains at least one f , A2

does the same with g. We create a new machine A = A1 × A2. Applying the
rules in 4.8, we get A = (Q,F , Qf ,∆) with:

• Q = {{q1, qa}, {q1, qb}, {q2, qa}, {q2, qb}}

• Qf = {{q1, qb}, {q2, qa}, {q2, qb}}

• ∆ = {a→ (q1, qa)(a),
f((q1, qa)(x))→ (q2, qa)(f(x)),
f((q1, qb)(x))→ (q2, qb)(f(x)),
f((q2, qa)(x))→ (q2, qa)(f(x)),
f((q2, qb)(x))→ (q2, qb)(f(x)),
g((q1, qa)(x))→ (q1, qb)(g(x)),
g((q1, qb)(x))→ (q1, qb)(g(x)),
g((q2, qa)(x))→ (q2, qb)(g(x)),
g((q2, qb)(x))→ (q2, qb)(g(x))}

Now let us consider the trees t1 = a, t2 = f(a), t3 = f(g(a)) and t4 = g(a).
First we will show the reduction of t1:

a −→
A

(q1, qa)

a

t1 is accepted by neither A1 nor A2, and the resulting machine from A1 × A2

does not accept it either. Now for t2, which would have been accepted by A1:

33

f

a
−→
A

f

(q1, qa)

a

−→
A

(q2, qa)

f

a

We get a machine with a final state above its tree after the run of our new
machine, thus accepting t2. Now we show a run on t3:

f

g

a

−→
A

f

g

(q1, qa)

a

−→
A

f

(q1, qb)

g

a

−→
A

(q2, qb)

f

g

a

t3 is accepted by both A1 and A2, which can be seen back in A’s run on t3 by its
resulting final state on top being one containing final states from both machines
it embeds. t3 is therefore accepted by A. Now for our final tree, t4:

g

a
−→
A

g

(q1, qa)

a

−→
A

(q1, qb)

g

a

t4 is accepted by A2, and as it shows above it is accepted by A as well. The
tuple (q1, qb) also shows us that A1 would not have reached an accepting state,
and would have rejected t4.

Proof of (4.9). Let L1 and L2 be two recognizable tree languages, A1 =
(Q1,F .Q1f ,∆1) and A2 = (Q2,F .Q2f ,∆2) be two complete DFTA’s such that
L1 = L(A1) and L2 = L(A2). Let A = A1 × A2 be a automaton constructed
using Definition 4.8. Then there are 2 types of cases which could occur while A
does a run on some tree t:

6 ∃q∈Q1t
∗−−→
A1

q(t)∨ 6 ∃q′∈Q2t
∗−−→
A2

q′(t) :

These cases in which either machine, or both, get stuck cannot occur since
we are working with complete automata, which have transition rules for
every possible input (3.18).
If one of these automata would not be complete however, this could cause
the machine to get stuck in while processing a tree that would be accepted
by the other machine, resulting in A getting stuck and rejecting that tree.
Therefore it is imperative that both machines are complete.

∃q∈Q1,q′∈Q2
t
∗−−→
A1

q(t) ∧ t ∗−−→
A2

q′(t) :

In these cases the machine A will have a run t
∗−→
A

(q, q′)(t) in which the

following cases can occur:

34

q ∈ Q1f ∨ q′ ∈ Q2f : From Definition 4.9 follows that if either of the

states q and q′ is an accepting state, the state (q, q′) is an accepting
state. Therefore a tree t is accepted by A if either A1 and/or A2

accepts this tree.

q 6∈ Q1f ∧ q′ 6∈ Q2f : From Definition 4.9 follows that if neither of the

states q and q′ is an accepting state, the state (q, q′) will not be an
accepting state either. Therefore a tree t is rejected by A if both A1

and A2 machine reject this tree.

Therefore A accepts trees only if A1 and/or A2 accepts them, thus L = L(A) =
L(A1)× L(A2) = L1 × L2.

4.2.3 Complementation

Definition 4.11. Let L be a recognizable tree language, and A = (Q,F .Qf ,∆)
be a complete DFTA such that L = L(A). Now we can complement the set
of final states to recognize the complement of L, creating an automaton Ac =
(Q,F .Qcf ,∆) with:

• Qcf = Q \Qf

To complement a NFTA, the determinization algorithm 3.23 and the comple-
tion algorithm 3.20 have to be run on it first. This may however lead to an
exponential blow up.

Theorem 4.12. Let L be a recognizable tree language, and A = (Q,F .Qf ,∆)
be a complete DFTA such that L = L(a). Ac recognizes the complement of L in
T (F).

The complement of L is denoted by L

Example 4.13. Going back to the language of A from Example 4.10, we
can create a complementary machine to it using Definition 4.11, resulting in
Ac = (Q,F .Qcf ,∆) with Qcf = {(q1, qa)}.

This language should only accept languages not containing f or g, thus only
accepting a. Since the transition rules for this machine have not changed, the
reductions for A and Ac will be equal to each other. So any tree reduction re-
sulting in (q1, qa)(tx) in Example 4.10 will be accepted, all other reductions will
be rejected.

This will result in only t1 = a to be accepted, and anything containing f or g to
be rejected, thus if Lc = L(Ac) then Lc = L.

Proof of (4.12). Let L be a recognizable tree language, and A = (Q,F .Qf ,∆)
be a complete DFTA such that L = L(a). Now there are 2 possibilities for a tree
not to be accepted:

35

• t→ q(t) with q 6∈ Qf : If the state put above the tree is not a final state,
the tree is rejected.

• t 6→ q(t): Can not occur in a complete DFTA (see Definition 3.18).

Therefore the complement of L, L will only exist of trees that do get a state put
above a tree after a run of A. Therefore Ac only has to accept trees topped with
those states A rejects, and vice versa. Definition 4.11 enforces by it’s definition
of Qcf , thus resulting in L(Ac) = L

4.2.4 Intersection

Definition 4.14. Let L1 and L2 be two recognizable tree languages, and A1 =
(Q1,F .Qf1,∆1) and A2 = (Q2,F .Qf2,∆2) be two tree automata for which
L1 = L(A1) and L2 = L(A2).

A1 ∩ A2 is then defined as A = (Q,F,Q,∆) with:

• Q = Q1 ×Q2

• Qf = Qf1 ×Qf2

• ∆ = ∆1 ×∆2

with: ∆1 ×∆2 = {f((q1, q
′
1), . . . , f((qn, q

′
n))→ (q, q′)|

f(q1, . . . , qn)→ q ∈ ∆1, f(q′1, . . . , q
′
n)→ q′ ∈ ∆2}

Theorem 4.15. Let L1 and L2 be two recognizable tree languages for which
L1 = L(A1) and L2 = L(A2). Then, L1 ∩ L2 = L(A1 ∩ A2)

Example 4.16. Taking the automata from Example 4.10, and creating a new
machine Ai = A1 ∩ A2 = (Q,F,Qfx,∆). The reductions for t1, . . . , t4 would
remain the same as in Example 4.10, yet since Qfx = {(q2, qb)} only t3 would
be accepted on this machine.

Proof of (4.15). Let L1 and L2 be two recognizable tree languages, A1 =
(Q1,F .Q1f ,∆1) and A2 = (Q2,F .Q2f ,∆2) be two FTA’s such that L1 = L(A1)
and L2 = L(A2). Let A = A1∩A2 be a automaton constructed using Definition
4.14. Then there are 2 types of cases which could occur while A does a run on
some tree t:

6 ∃q∈Q1
t
∗−−→
A1

q(t)∨ 6 ∃q′∈Q2
t
∗−−→
A2

q′(t) :

In these cases that either machine A1 or A2 gets stuck, the automaton
A gets stuck as well and rejects the tree, just like A1 or A2 would have
rejected that tree.

36

∃q∈Q1,q′∈Q2t
∗−−→
A1

q(t) ∧ t ∗−−→
A2

q′(t) :

In these cases the machine A will have a run t
∗−→
A

(q, q′)(t) in which the

following cases can occur:

q ∈ Q1f ∧ q′ ∈ Q2f : From Definition 4.14 follows that if both states

q and q′ are accepting states, the state (q, q′) is an accepting state.
Therefore a tree t is accepted by A if both A2 and A2 accept this tree.

q 6∈ Q1f ∨ q′ 6∈ Q2f : From Definition 4.14 follows that if either of the

states q and q′ is not an accepting state, the state (q, q′) will not be
an accepting state. Therefore a tree t is rejected by A if either A2

and/or A2 rejects this tree.

Therefore A accepts trees only if both A1 and A2 accept them, thus L = L(A) =
L(A1) ∩ L(A2) = L1 ∩ L2.

5 Top down Automata

Previous sections of this document have described bottom-up automata: Tree
automata that start working in the leaves and work their way up. Similarly
a second type of tree automaton exists that works the other way around: Top
down Automata. These automata start working at the head and work their way
down to the leaves. Section 1.7 of TATA[1] describes these automata briefly,
yet we describe them in more detail.

5.1 Basics

For us to be able to use Top down tree automata we must first define them,
their components and their rules.

Definition 5.1. A top down tree automaton over F is a tuple A = (Q,F,I,∆)
with:

• Q : the set of states, which are unary.

• F : the set of symbols.

• I : the set of initial states, for which I ⊆ Q.

• ∆ : the set of rewrite rules.

Definition 5.2. Rewrite rules are of the form:

q(f(x1, . . . , xn))→ f(q1(x1), . . . , qn(xn))

where n ≥ 0, f ∈ Fn, q, q1, . . . , qn ∈ Q, x1, . . . , xn ∈ V . When n = 0 this means
that the rewrite rule is of the form:

q(a)→ a

37

which occurs in the leaves of the tree.

Definition 5.3. Let A = (Q,F , I,∆) be a Top down Tree Automaton over F ,
The move relation t −→

A
t′ for trees t, t′ ∈ T (F ∪Q) is defined as:

t −→
A

t′ :=


∃C ∈ K(F ∪Q),∃u1, . . . , un ∈ T (F)),
∃q(f(x1, . . . , xn))→ f(q1(x1), . . . , qn(xn)) ∈ ∆,
t = C[q(f(u1, . . . , un))],
t′ = C[f(q1(u1), . . . , qn(un))].

(2)

∗−→
A

is the transitive and reflexive closure of −→
A

.

Definition 5.4. The language L recognized by A = (Q,F,I,∆) is the set of all
ground terms t such that:

∃q∈I(q(t)
∗−→
A

t)

A tree is rejected when for every initial state the tree gets stuck.

5.2 Types of Top down automata

Now that we have given the basic definitions for the workings of Top down
automata we define the types of Top down automata.

Definition 5.5. A Top down tree automaton that adheres to the definitions
and restrictions mentioned in Definitions 5.1, 5.2, 5.3 and 5.4 is called a Top
down NFTA.

Example 5.6. Let us consider a Top down NFTA with A = (Q,F,I,∆), where:

Q = {q1, q2, qi, qj , qk}

F = {a, f(), g(,)}

I = {qi, qj , qk}

∆ = {q2(a)→ a, q1(f(x))→ f(q2(x)),
qi(g(x, y))→ g(q1(x), q1(y)), qk(a)→ a}

and trees t1 = a, t2 = g(f(a), f(a)) and t3 = g(a, a). We will start by showing
all possible runs on t1:

qk

a
−→
A

a
qj

a
6−→
A

qi

a
6−→
A

As is shown, only the run starting with qk has any possible reductions. In that
run the tree is accepted, in the runs starting with other initial states it gets
stuck and is rejected. The machine however does have a run that accepts t1,
and therefore A accepts t1. We will now show the successful run on t2, not
showing the ones that get stuck at start:

38

qi

g

f

a

f

a

−→
A

g

q1

f

a

q1

f

a

−→
A

g

f

q2

a

q1

f

a

−→
A

g

f

q2

a

f

q2

a

∗−→
A

g

f

a

f

a

In which the last step the rule q2(a) → a is applied to both branches, leading
to the term t2, thus accepting t2. Now if we move on to t3 there are no paths
starting from in initial state and leading towards t3 itself:

qi

g

a a

−→
A

g

q1

a

q1

a

6−→
A

qj

g

a a

6−→
A

qk

g

a a

6−→
A

Therefore t3 is not accepted. Considering the rules of A we can state that
L(A) = {a, f(g(a))}

Definition 5.7. A Top down DFTA has several extra restrictions in than a
Top down NFTA (5.5):

• |I| = 1, there is only one single initial state.

• No two rules in ∆ share the same left hand side; there is at most one
possible transition for every input.

Example 5.8. The automaton in Example 5.6 is not a DFTA, since it has
multiple initial states.

Example 5.9. Consider the top down DFTA A = (Q,F,I,∆) with:

Q = {q1, qi}

F = {a, b, f()}

I = {qi}

∆ = {qi(f(x))→ f(q1(x)), q1(f(x))→ (f(qi(x))),
q1(a)→ a, qi(b)→ b }

A is a valid top down DFTA since |I| = 1 and no two rules in ∆ share the same
left hand rule.

Now let us look at the trees t1 = a, t2 = b, t3 = f(a), t4 = f(f(a)), t5 = f(b) and
t6 = f(f(b)). First we will show the runs on t1 and t2:

qi

a
6−→
A

qi

b
6−→
A

39

As we can see on both t1 and t2 the machine gets stuck, rejecting these trees.
Now for t3 and t4

qi

f

a

−→
A

f

q1

a

−→
A

f

a

qi

f

f

a

−→
A

f

q1

f

a

−→
A

f

f

q2

a

6−→
A

We can see that t3 is accepted and t4 rejected. Finally there are t5 and t6:

qi

f

b

−→
A

f

q1

b

6−→
A

qi

f

f

b

−→
A

f

q1

f

b

−→
A

f

f

q2

b

−→
A

f

f

b

Where t5 is rejected and t6 is accepted. Considering the rules and initial states
we can say that L(A) = {f2n+1(a), f2n(b)|n ≥ 0}.

5.3 Comparison of top down and bottom up automata

TATA[1] states that, because of the restrictions on a Top down DFTA, it is
strictly less powerful than a Top down NFTA; and that Top down NFTA’s are
equally powerful as bottom up NFTA. TATA[1] does not provide the proof of
this, but only some example exercises. This section will fill some of the missing
information on the comparison of expressive power between these types of au-
tomata.

5.3.1 Top-down and bottom-up NFTA equivalence

Theorem 5.10. Top down NFTA and bottom up NFTA’s accept the same class
of languages and therefore have the same expressive power: For every top-down
NFTA At there exists a bottom up NFTA Ab with L(At) = L(Ab), and vice
versa.

In order to make things easier we create a definition to transform a set of
transition rules for a bottom up NFTA into an equivalent set of rewrite rules
for a top down NFTA.

Definition 5.11. Given a set of rules ∆, ∆I is the set of inversed rules obtained
by:

∀l→r∈∆r → l

40

Example 5.12. Given the Top down NFTA from Example 5.6, we can construct
an equivalent machine Ab = (Q,F,Qf ,∆b) with Qf = I and ∆b = ∆I . For
example a run on t2 by Ab will look like:

g

f

a

f

a

∗−→
A

g

f

q2

a

f

q2

a

−→
A

g

f

q2

a

q1

f

a

−→
A

g

q1

f

a

q1

f

a

−→
A

qi

g

f

a

f

a

Which is the reversed path of the run on t2 by A in 5.6. Since now qi ∈ Qf ,
this tree is accepted by Ab, which it also is by A.

Proof of (5.10). Given a top-down NFTA At = (Q,F,I,∆) and the bottom
up NFTA Ab = (Q,F, Qf ,∆I) where Qf = I. Given any rule

q(f(x1, . . . , x2))→ f(q1(x1), . . . , qn(xn)) ∈ ∆,

there exists a rule

f(q1(x1), . . . , qn(xn))→ q(f(x1, . . . , x2)) ∈ ∆I ,

therefore:

q(t)
∗−−→
At

t⇐⇒ t
∗−−→
Ab

q(t)

Now since Qf = I we get:

qi(t)
∗−−→
At

t, qi ∈ I ⇐⇒ t
∗−−→
Ab

qf (t), qf ∈ Qf where qi = qf

Therefore L(Ab) = L(At)

Since any bottom-up NFTA has a equivalent bottom up DFTA, and any NFTA-ε
has an equivalent bottom-up NFTA, the same can be said for top-down NFTA’s
having equivalent bottom-up DFTA’s NFTA-ε’s.

5.3.2 Top-down NFTA vs Top-down DFTA

Top-down DFTA’s are strictly less powerful than top-down NFTA’s: There are
recognizable tree languages that cannot be accepted by a any top-down DFTA.
We will prove this by giving two examples of recognizable tree languages that
cannot be accepted by any top down DFTA.

41

Example 5.13. Let us consider the following symbols and language as proposed
in exercise 1.2[1]: F = {f(,), g(), a} and a language:

L = {C[f(a, g(u))]|C ∈ K(F), u ∈ T (F)}

which are trees containing in their tree:

f

a g

Let us consider the complete bottom up DFTA A = (Q,F,Qf ,∆) with:

Q = {qa, qg, q, qL}

Qf = {qL}

∆ = {a→ qa(a), g(qa(x))→ qg(g(x)),
g(qL(x))→ qL(g(x)), g(q(x))→ qg(g(x)),
g(qg(x))→ qg(g(x)), f(q(x), q(y))→ q(f(x, y)),
f(qa(x), qg(y))→ qL(f(x, y)), f(qa(x), qa(y))→ q(f(x, y)),
f(qg(x), qa(y))→ q(f(x, y)), f(qg(x), qg(y))→ q(f(x, y)),
f(q(x), qa(y))→ q(f(x, y)), f(qa(x), q(y))→ q(f(x, y)),
f(q(x), qg(y))→ q(f(x, y)), f(qg(x), q(y))→ q(f(x, y)),
f(qa(x), qL(y))→ qL(f(x, y)), f(qL(x), qa(y))→ qL(f(x, y)),
f(qg(x), qL(y))→ qL(f(x, y)), f(qL(x), qg(y))→ qL(f(x, y)),
f(q(x), qL(y))→ qL(f(x, y)), f(qL(x), q(y))→ qL(f(x, y)),
f(qL(x), qL(y))→ qL(f(x, y)) }

which goes into the accepting state qL when f(a, g(x)) is found and pushes this
accepting state up to top of the tree. Therefore L(A) = L

Now we introduce the top-down NFTA At = (Q,F,I,∆t), with I = Qf ,∆t =
∆I . According to Theorem 5.10 L(At) = L(A) = L. We note that At has
become nondeterministic by the inversion of rules.

It is impossible to construct any top-down DFTA that accepts L however. Using
a single initial state would require a different DFTA for every possible variation
of u. There are however an infinite number of possible variations of u, and
therefore it would require a union of infinite top-down DFTA’s to recognize L.

Example 5.14. Let F = {f(,), a, b}. Consider the recognizable tree language
L = {f(a, b), f(b, a)}. We will start by showing that L is recognizable. Let us
consider an bottom-up automaton A = (Q,F,Qf ,∆) with:

42

Q = {qa, qb, qf}

Qf = {qf}

∆ = {a→ qa(a), f(qa(x), qb(y))→ qf (f(x, y)),
b→ qb(b), f(qb(x), qa(y))→ qf (f(x, y)) }

A recognizes L, and so does its Top down equivalent At = (Q,F, I,∆I) in which
I = Qf .

Let us consider the top-down DFTA Ad that recognizes L. We know it has only
one initial state, qi ∈ I (see Definition 5.7), and it must be able to remove states
from the leaves of it’s input tree, leading to some rules q(a)→ a and q′(b)→ b
for some states q and q′.

Now if q 6= q′ we will require two rules q1(f(x, y))→ f(q(x), q′(y)) and q2(f(x, y))→
f(q′(x), q(y)) for some q1, q2. If we pick q1 = q2 the machine would no longer
be a DFTA, and if we pick q1 6= q2 we can only pick one of either states to be
qi, therefore only accepting part of L.

Now if q = q′ we will require a rule q”(f(x, y))→ f(q′(x), q′(y)). As a result of
this choice, both f(a, a) and f(b, b) would also be accepted, therefore L(Ad) 6= L

5.3.3 Path closure

Top down DFTA’s do not accept all regular tree languages(The class of lan-
guages which are recognized by NFTA’s). They do, however, recognize another
class of tree languages known as path-closed tree languages. TATA[1] briefly
adresses these in exercise 1.8, which will be worked out in this section.

Definition 5.15. Let t be a ground term , the path language π(t) is then in-
ductively defined by:

• if t ∈ F0 then π(t) = t

• if t = f(t1, . . . , tn) then π(t) =
⋃i=n
i=1{fiw|w ∈ π(ti)}

Let L be a tree language, the path language of L is defined as
⋃
t∈L π(t), the path

closure of L is defined as pathclosure(L) = {t|π(t) ⊆ π(L)}. A tree language L
is path closed if pathclosure(L) = L.

Example 5.16. Given F = {f(), g(,), a} and trees t1 = a, t2 = f(f(a)) and
t3 = g(f(a), a) we have:

π(t1) = {a}

π(t2) = {f1f1a}

π(t3) = {g1f1a, g2a}

43

Consider L = {t1, t2, t3}. we then get:

π(L) = {a, f1f1a, g1f1a, g2a}

pathclosure(L) = {t1, t2, t3}

pathclosure(L) = L thus L is path closed.

Theorem 5.17. A language L is accepted by a top down DFTA if and only if
L is path closed.

We will not prove this theorem, yet we will use this theorem to prove that the
languages in Examples 5.13 and 5.14 are not accepted by any top down DFTA’s.

Lemma 5.18. The language L of Exercise 5.13 can not be accepted by a top
down DFTA.

Proof of (5.18). Given the language in Example 5.13, we will consider the
following subtrees t1 = f(f(a, g(a)), a) and t2 = f(a, f(a, g(a))):

f

f

a g

a

a

f

a f

a g

a

which are both in L. We then get

π(t1) = {f1f1a, f1f2g1a, f2a}

π(t2) = {f1a, f2f1a, f2f2g1a}

π(t1) ⊂ π(L) and π(t2) ⊂ π(L)

Now if we look at π(L), due to f2a existing in π(t1) and f1a existing in π(t2),
f1a and f2a are both in π(L).

Therefore f(a, a) ∈ pathclosure(L), while f(a, a) 6∈ L, thus L 6= pathclosure(L),
which means that L is not path closed. Therefore, according to Theorem 5.17,
L cannot be accepted by a top down DFTA.

Lemma 5.19. The language L of Exercise 5.14 can not be accepted by a top
down DFTA.

44

Proof of (5.19). Given the language in Example 5.14, we get

π(L) = {f1a, f1b, f2a, f2b}

pathclosure(L) = {f(a, a), f(a, b), f(b, a), f(b, b)}

pathclosure(L) 6= L thus L is not path closed.

In this language, the path closure of L is a larger set than L itself. Therefore,
according to Theorem 5.17, L cannot be accepted by a top down DFTA.

Theorem 5.20. Top down DFTA’s are strictly less powerful than top down
NFTA’s. There are recognizable tree languages that cannot be accepted by any
top down DFTA.

Proof of (5.20). Lemma’s 5.18 and 5.19 show two regular tree languages that
can not be accepted by any top down DFTA.

45

6 Conclusion

In this document we have described tree automata and their properties. We
have described the different forms of tree automata and their different proper-
ties, provided algorithms for transforming various types of tree automata into
different ones and added examples and proofs where needed.

This document was created to clarify the contents of the first chapter of TATA[1],
for which numerous examples have been added. We have also added algorithms
for DFTA completion (algorithm 3.20) and epsilon removal (algorithm 3.35),
provided the proofs for the Language properties for tree automata, and ex-
panded on the Top down automata section in TATA[1].

46

References

[1] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez,
S. Tison, and M. Tommasi. Tree automata techniques and applications.
Available on: http://www.grappa.univ-lille3.fr/tata, 2007. release October,
12th 2007.

[2] J. E. Doner. Decidability of the weak second-order theory of two successors.
Notices Amer. Math. Soc., 12: 365 – 468, 1965.

[3] J. E. Doner. Tree acceptors and some of their applications. Journal of
Comput. and Syst. Sci, 4:406 – 451, 1970.

[4] J. E. Hopcroft and J. D. Ullman. Introduction to automata theory, lan-
guages, and computation. Addison Wesley, 1979.

[5] J. W. Thatcher and J. B. Wright. Generalized finite automata. Notices
Amer. Math. Soc., 820, 1965. Abstract No 65T–649, 1965.

[6] J. W. Thatcher and J. B. Wright. Generalized finite automata with an ap-
plication to a decision problem of second-order logic. Mathematical System
Theory, 2:57-82, 1968.

47

