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Abstract

Ascon is a family of authenticated encryption schemes which appears
in the final portfolio of the CAESAR competition and as a candidate in
the NIST lightweight cryptography competition. It uses a cryptographic
permutation as main building block that is designed to have a straight-
forward and efficient implementation.

RISC-V is a hardware instruction set architecture which is completely
open-source and based RISC principles. It offers a small and simple in-
struction set with little space for optimization.

We optimize the Ascon’s permutation for the RISC-V RV32IMAC ar-
chitecture. We find improvements over the reference implementation in
several parts and get very close to the theoretical optimal speed. At the
same time, we keep register usage to a minimum to allow our techniques
to be ported to other architectures easily.
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1 Introduction

In recent years, many critical vulnerabilities have been found in various kinds of
software and hardware. The software industry continues to grow and the value
of hacking grows with it. Making software secure is hard and many companies
consider it a waste of money. This has lead to botnets, among other things.
Botnets usually consist of a large number of cheap internet-connected consumer
devices that are easily hacked. Because the profit margins are smaller for cheap
devices, there is often less money available for implementing good security.

One way to make good security cheaper is by providing security primitives
with simple interfaces that nonetheless ensure all desirable properties. An ex-
ample of this is authenticated encryption systems, which provide all of the most
important security properties for symmetric encryption. By using authenti-
cated encryption, a developer does not need to introduce authentication to an
encryption system manually, leading to fewer possibilities to make mistakes.

Authenticated encryption has traditionally been implemented by combining
privacy-only encryption with message authentication codes [1] [2]. This combi-
nation turned out to be hard to make without introducing new vulnerabilities.
In addition, performance suffers because two passes need to be made over the
plaintext, one for encryption and one for authentication. To resolve this, cryp-
tographers have called for new primitives that integrate all desirable properties.

This call has taken the shape of several competitions, where a diverse set
of teams each publish a family of new primitives, followed by public analysis
of these new primitives by many other researchers. New primitives are then
selected based on how well they withstood public analysis.

Ascon is one of these new primitives, aimed at lightweight applications. It
was first submitted to the CAESAR competition [3] and has been selected as
the first choice for lightweight applications in the final portfolio. It was also
recently submitted to be considered for standardization in NIST Lightweight
Cryptography [4] and has been selected as a round 1 candidate.

While secure software is important, the hardware it runs on must also be
secure. The integrated circuit industry has tradionally been a closed ecosystem.
Chip manufacturers keep their implementations secret in order to monopolize
the market. This means that when a vulnerability is discovered in a chip,
consumers are entirely dependent on the manufacturer to fix them. It also
makes it hard for third parties to verify a chips behavior.

RISC-V is a hardware instruction set architecture that intends to solve this
issue by being completely open-source. This means anyone is free to use, im-
plement, extend and adapt it. As a result, RISC-V has been gaining popularity
with researchers as well as companies. RISC-V is an architecture based on RISC
principles, which makes it a good fit for low-power applications.

So far, there has been little work towards optimizing crypto algorithms for
RISC-V in software. Most efforts have been focused on creating hardware exten-
sions for RISC-V as this was not possible with closed-ecosystem architectures.
Despite the fact that RISC-V extensions do not have licensing costs and have
reduced development costs, chip manufacturing remains expensive, so fast soft-
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ware implementations remain important. We optimize the Ascon authenticated
encryption system for the RISC-V instruction set architecture.

1.1 Related work

Although there is very little related work for software optimizations of crypto
for RISC-V, there are a number of previous implementations of Ascon. Among
others, it has been optimized on FPGAs [5] and the ARM Cortex-M3 [6] and
optimization using ARM NEON was attempted [7]. Some optimized software
implementations have been benchmarked on various platforms as well [8].

2 Preliminaries

2.1 Symmetric encryption

In communication, it is often desirable to keep one’s messages hidden from third
parties. This property is called confidentiality. In more precise terms, confiden-
tiality means that a message is transformed in such a way that authorized parties
can recover the original message from it, while unauthorized parties can not.

In symmetric encryption, the authorized parties are defined as the parties
that know some secret information, called the key. The original message is
called the plaintext and the transformed message is called the ciphertext. The
transformation from plaintext to ciphertext is called encryption, while the trans-
formation back is called decryption. When the same secret key is needed for both
encryption and decryption, it is called symmetric encryption. Because the key
is needed for decryption, unauthorized parties are prevented from recovering
the plaintext.

2.1.1 Nonces

While unauthorized parties are unable to decrypt ciphertexts, similar plaintext
may result in similar ciphertexts, and unauthorized parties may therefore detect
when similar messages are sent. In order to prevent this, during every encryp-
tion, a different number is used to modify the resulting ciphertext. It is needed
again during decryption in order to revert that modification. Because a different
number is used every time, the resulting ciphertexts will also differ.

This number is called the nonce, short for number used once. If it is used
more than once, unauthorized parties may be able to infer information about
the difference or similarity of the messages it was used for. One option to ensure
uniqueness in practice is to use random numbers that are sufficiently large to
make the chance of duplicates negligable. When it is chosen randomly, it must
be attached to the ciphertext unencrypted, as decryption will fail without it.

A counter can also be used to generate unique nonces, if it is sufficiently large
that it will never overflow within its lifetime. This has the advantage that a
good source of randomness is not needed, and the disadvantage that the current
count must be kept track of and synchronized between uses. If all messages
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are sent synchronously and messages cannot be lost, this can be as simple as
attaching the current counter to each message.

If there is no space to attach the nonce to the ciphertext, it is not possible
to use a random nonce. In this case, information that is available during both
the encryption and decryption should be used to construct a unique nonce. For
example, when adding encryption support to existing filesystems, there may be
no space for nonces in the existing data structures and these probably need to
stay compatible with earlier versions. In this case, a nonce for a block can be
constructed by combining the inode and offset within the file into a nonce. With
this construction, uniqueness cannot be guaranteed, so security is reduced, but if
encryption is otherwise not possible, it is still an improvement over unencrypted
data or encryption without nonces.

2.1.2 Authentication

Although unauthorized parties cannot recover the plaintext from the ciphertext,
they may be able to modify the ciphertext, resulting in a modified plaintext
after decryption. It is not always possible to prevent such modifications, but it
is possible to detect them. The property that it is detectable whether a message
has been changed, is called integrity.

Unauthorized parties may also attempt to construct messages from scratch.
Because the key is needed for encryption, they will be unable to encrypt a
specific plaintext, however, they will be able to send specific ciphertexts, even
if they do not know what plaintexts corresponds to them. In order to prevent
this, it is desirable for the receiving party to be able to verify that a message
comes from an authorized party. Together with integrity, this property is called
authenticity. Encryption that provides both confidentiality and authenticity to
the plaintext is called authenticated encryption or AE.

Authenticated encryption is usually implemented by generating an authen-
tication tag. Just like the ciphertext, this tag is based on the key, the nonce
and the plaintext. This tag is needed again during decryption. The decryption
algorithm checks if the tag is correct and only returns a plaintext if it is. If
the ciphertext is modified, it will decrypt to a different plaintext from the one
used to generate the tag and cause the decryption to fail. Because the tag also
depends on the key, valid tags cannot be created without it.

2.1.3 Associated data

Even when confidentiality and authenticity are assured, unauthorized parties
may still repeat a message they have seen before in a different context. To
prevent this, some data about the context in which a message is allowed to
appear can be associated with it. This is one of the uses of associated data, which
is defined as information that requires authentication but not confidentiality.
An authenticated encryption scheme that supports this is called authenticated
encryption with associated data or AEAD.
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Figure 1: The following table specifies the symbols and notation used in this
document.

1337h hexadecimal number
⊥ verification failure

x ‖ y concatenation of bitstrings x and y
x⊕ y bitwise addition of bitstrings x and y
x ≫ n 64-bit word x rotated right by n bits

2l set of messages of l bits
P(S) Set of all subsets of set S.

In some encryption schemes, associated data is used during encryption to
modify the resulting ciphertext and is needed during decryption in order to
revert that modification. In these cases, because the correct associated data
is needed during decryption, it prevents messages from being decrypted using
the wrong associated data. In other schemes, associated data only affects the
authentication tag and it is the responsibility of the implementation to reject
inputs with incorrect authentication tags.

The associated data can be sent or stored together with the ciphertext,
but in some cases it can also be inferred from other data during encryption
and decryption. In those cases, sending or storing it is not necessary. If the
associated data is inferred from the context, it can prevent encrypted data from
being decrypted in the wrong context. For example, this prevents two encrypted
records containing positive and negative information respectively from being
swapped between contexts specifying different persons.

Note that some encryption schemes do not need the associated data for
decryption. Correct implementations of these will still check the associated
data and return failure if it does not match. The behavior is the same, but such
schemes allow incorrect implementations to go undetected more easily.

2.1.4 Formal definition

To formalize AEAD schemes, we begin by defining their interface: An AEAD
scheme is defined by a tuple of functions (E ,D). E is a function that takes a
key, a nonce, some associated data and a message and produces a ciphertext
and an authentication tag.

E : K ×N ×A×M → C × T (1)

D is a function that takes a key, a nonce, some associated data, a ciphertext
and an authentication tag and produces either a failure or a message.

D : K ×N ×A× C × T →M ∪ {⊥} (2)
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Let k be a key, n be a nonce, a be any associated data and m be a mes-
sage. The result of decryption after encryption with the same nonce, key and
associated data is the original message.

∀k, n, a,m. D(k, n, a, E(k, n, a,m)) = m (3)

In particular, this means decryption never returns ⊥ when supplied with
valid encryption results. This property ensures the message can be recovered
from the ciphertext and related data. If this property were not required, an
AEAD scheme could be constructed simply by always returning the empty ci-
phertext for encryption and failure for decryption.

The remaining properties of AEAD systems, authenticity and confidentiality,
must be defined with respect to a security parameter. The security parameter
specifies how much effort is required to break the security properties of the
system. The security parameter is expressed in bits and is equivelant to the
2-log of the number of operations needed to break the security claim.

A security property holds when no algorithm exists that can break it in
fewer operation than specified by its security parameter. We say that no ef-
ficient algorithm exists. These algorithms implicitly have access to all public
knowledge.

We can now define the property of authenticity. First, we define Vk to be
the set of valid decryption inputs for key k.

∀k ∈ K. Vk = {(n, a, c, t) | D(k, n, a, c, t) 6= ⊥} (4)

Authenticity is violated when an efficient algorithm exists that constructs
valid and new decryption inputs without the correct key. An encryption system
provides authenticity if no such algorithm exists.

@A. ∀k ∈ K, s ∈ P(Vk). A(s) /∈ s ∧ A(s) ∈ Vk (5)

To define confidentiality, we must define what it means to know something
about a message. In order to keep this definition simple, we will assume the
length of a message is always known, as is often the case with AEAD schemes.

We will define knowledge about a message m of length l as a probability
distribution over all messages of that length, 2l. We define ul to be the uniform
probability distribution, which has no information about any message.

∀l ∈ N,m ∈ 2l. ul(m) =
1

2l
(6)

When the probability that a distribution d picks m is greater then the prob-
ability u picks m by a factor of 2b, we say d knows b bits about m. I(d,m)
represents the information in bits that d has about m.

∀l ∈ N,m ∈ 2l, d ∈ D(2l). I(d,m) = log2
d(m)

ul(m)
(7)

An encryption scheme provides confidentiality if no efficient algorithm ex-
ists that determines knowledge about a message given its decryption inputs
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and all prior public knowledge. This public knowledge can include many other
valid decryption inputs, as well as decryption inputs with their corresponding
plaintexts, but with different nonces.

@A. ∀k, n, a,m. I(A(k, n, a, E(k, n, a,m)),m) > 0 (8)

It should be noted that the formal definitions given above are not completely
accurate. For example, it is hard to formalize the tradeoffs between computa-
tional power and odds of succes for an attack. It is also hard to formalize all the
public data that attacking algorithms can be based on. There are entire books
dedicated to formalizing these properties so the formalizations above should be
taken with a grain of salt.

2.2 Ascon internals

Ascon [9] is an authenticated encryption cipher designed for use in resource-
constrained environments, like embedded devices. It has an internal state of
just 320 bits, which can be kept in registers on most architectures. This ensures
moving data between registers and memory is kept to a minimum, which is
important, as embedded devices usually do not have the same amount of cache
available as larger systems.

2.2.1 Mode of operation

Ascon aims to provide 128 bits of security. To that end, its key, nonce, and
authentication tag are 128 bits in size each. The plaintext, ciphertext and
associated data can all be of any length and are processed in blocks. There
are multiple variants of Ascon, we implement two of them: Ascon-128, which
processes 64-bit blocks and Ascon-128a, which processes 128-bit blocks.

Ascon uses a 320-bit state and a permutation that mixes the state in a way
that is hard to reverse. This permutation consists of a transformation that is
applied in multiple rounds, each with a different round constant. Both variants
of Ascon use permutation pa, which consists of 12 rounds, during initialization
and finalization. After processing each block, Ascon uses permutation pb, which
consists of 6 rounds in Ascon-128 and 8 rounds in Ascon-128a. Figure 2 gives
an overview of encryption and decryption.

Encryption starts with the initialization of the state. The state is initialized
to the concatenation of an initialization vector, the key and the nonce. The
initialization vector encodes the parameters of the variant of Ascon that it is
used for. This initial state is then passed through the first permutation, pb.
Finally, the key is bitwise added to the least significant bits of the state again.

After initialization, the associated data is mixed into the state. If there is
no associated data, the state is left unmodified. Otherwise, the associated data
is padded and split into blocks. Each of the blocks is bitwise added to the most
significant bits of the state, followed by applying the second permutation, pb.
At the end, the least significant bit is inverted. This is done to separate the
associated data from the plaintext, which comes next.
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Figure 2: Ascon’s mode of operation
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The plaintext is padded and split into blocks in the same way as the associ-
ated data. Each block of plaintext is bitwise added to the most significant bits of
the state. The result of this bitwise addition also forms the corresponding block
of the ciphertext. After adding each block, except for the last, permutation pb

is applied again.
Finalization begins with bitwise adding the key to the most significant bits of

the state that were not used to add the plaintext. After that, the permutation pa

is applied again and finally, the key is bitwise added to the least significant bits
of the state again. The result of this last operation is used as the authentication
tag.

Decryption is identical to encryption, except the ciphertext is processed in a
slightly different way from the plaintext: Each block of the ciphertext is again
bitwise added to the most significant bits of the state to form the plaintext, but
instead of using this result in the state, the most significant bits of the state are
replaced with the ciphertext before the bitwise addition.

2.2.2 Permutation

Ascon’s main component is a permutation consisting of three phases, which are
applied in several rounds. Ascon-128 uses 6 rounds to process blocks of 64 bits
at a time. Ascon-128a uses 8 rounds to process blocks of 128 bits at a time. Both
use keys of 128 bits and 12 rounds to initialize and finalize the state. A round
consists of the following three phases: The addition of the round constant, the
substitution layer and the linear diffusion layer. Each of these phases modify
the internal state in a different way. The internal state consists of 320 bits,
logically split into five 64-bit state words called x0, x1, x2, x3 and x4.

The round constant is a single byte that changes from round to round and is
added bitwise to the least significant 8 bits of x2. It ensures rounds are not all
identical. The final round constant is always 4bh. The round constant changes
linearly, decreasing by fh every round. This means the round constant can be
computed easily based on the number of rounds that are left.

The substitution layer applies a 5-bit lookup function (called an S-box) in
parallel to the five state words. It provides non-linear mixing between the five
state words. It is usually implemented as a sequence of bitwise operations which
compute the substitution on five machine words in parallel.

The linear diffusion layer provides linear mixing of the bits within each state
word. It consists of a bitwise addition of the original state word with the same
state word rotated by two different amounts. Each of the five state words uses
different rotation amounts.

2.3 RISC-V

RISC-V [10] is a hardware instruction set architecture which aims to be com-
pletely open: Anyone is free to create custom variations and implementations.
It is also designed to be modular: A basic RISC-V processor starts with just the
base integer instruction set, using either 32-bit or 64-bit machine words. Several
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extensions are available which offer different common processor features, such as
support for floating point operations. Manufacturers can choose to implement
any combination of these extensions and will usually pick extensions based on
the intended application.

In this thesis, we will use the HiFive1 development board created by SiFive.
It features a RV32IMAC processor. The RV32I stands for the RISC-V 32-bit base
integer instruction set. The letters that follow stand for the extensions that
are implemented in this processor: M stands for the multiplication extensions
which offers integer multiplication and division instructions, A stands for the
atomic memory access extension and C stands for the compressed instruction
set extension which can be used to reduce code size.

At this point it is important to note that our target processor uses 32-bit
machine words, while Ascon is defined in terms of five 64-bit state words. These
state words do not fit in a single register, so each state word will be stored using
two registers. We describe our implementation mostly in terms of machine
words.

For Ascon, we won’t need multiplication instructions or atomic memory
access. The compressed instructions are used transparently by the assembler:
Each compressed instruction corresponds to a single full size instruction and
whenever a compressed instruction is available, it will be used instead of a full
size instruction. We would like to use the bit manipulation extension, but it
is not available on this board and may not be available on other embedded
RISC-V systems, so we optimize Ascon for RISC-V processors without it.

RISC stands for Reduced Instruction Set Computer, as opposed to CISC,
which stands for Complex Instruction Set Computer. RISC architectures aim
to have a small set of simple and general instructions, while CISC architectures
aim to provide complex instructions which can do multiple things at once. An
example of this is that the CISC x86 architecture allows memory access as
part of almost every instruction, while RISC architectures usually have separate
memory access instructions.

RISC-V takes RISC to an extreme, it is much more reduced than ARM,
which stands for Advanced RISC Machine. For example, RISC-V does not save
carries for arithmetic operations and it only has about 40 instruction in the base
integer instruction set, all of which do only one thing. Figure 3 shows the eight
instructions needed for the inner loop of Ascon.

3 Optimization

In this section, we will optimize Ascon in several parts. We begin by looking
at the state representation and we continue by considering the possibilities for
each phase of the Ascon permutation. We find efficient implementations for
them and consider whether further improvement is possible. In the end, we
look at the entire round and the entire permutation, which loops over several
rounds.
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Figure 3: The RISC-V instructions used in the inner loop of Ascon.

and r, a, b Store the bitwise and of registers a and b in register r.
or r, a, b Store the bitwise or of registers a and b in register r.
xor r, a, b Store the bitwise addition of registers a and b in register r.

This operation is also known as bitwise exclusive or.
not r, a Store the bitwise inversion of register a in register r.
addi r, a, b Store the sum of the value of register a and constant b in

register r.
srli r, a, b Store the value of register a shifted right by constant

amount b in register r.
ssli r, a, b Store the value of register a shifted left by constant amount b

in register r.
bne a, b, l Jump to the label l if the value of register a is not the same

as the value of register b.

3.1 Endianness

The first optimization we can make is due to endianness. Ascon uses big en-
dian state words, while most processors, including the HiFive1, support little
endian memory access only. This means the endianness of the plaintext and the
associated data needs to be reversed before it can be merged into the state.

The reference implementation switches endianness while loading and storing
the Ascon state to memory every time new data needs to be merged into it. It
does this by storing individual bytes, which means 40 load and store operations
are needed, while just 10 would be sufficient if the endianness had matched.

To improve on this number, it’s possible to keep the endianness of the state
the same at all times and instead switch the endianness of the data that needs
to be merged into it. For Ascon128, this means only 64 bits of data needs their
endianness reversed instead of 320 bits, and for Ascon128a, only 128 bits of data
needs their endianness reversed. In addition, the data that needs to be merged
into the state only needs to be loaded, it doesn’t need to be stored in the same
endianness again.

3.2 Substitution layer

The substitution layer in Ascon is a 5-bit S-box which is applied in parallel
to 64 sets of 5 bits. This allows an efficient implementation using bit slicing.
Bit slicing is a technique for computing many lookup tables in parallel and in
constant time by computing the lookup table using binary operations. Each of
these binary operations take two bits as input and produce one bit as output. All
common architectures have bitwise operation instructions that run such binary
operations in parallel on entire machine words.

Ascon was optimized for bit slicing: The 5 bits of the S-box are located in
5 different state words in the same bit position. The Ascon paper describes an
instruction sequence that uses bit slicing to compute the S-box efficiently. The
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x0 ˆ= x4; x4 ˆ= x3; x2 ˆ= x1;
t0 = ˜x0; t1 = ˜x1; t2 = ˜x2; t3 = ˜x3; t4 = ˜x4;
t0 &= x1; t1 &= x2; t2 &= x3; t3 &= x4; t4 &= x0;
x0 ˆ= t1; x1 ˆ= t2; x2 ˆ= t3; x3 ˆ= t4; x4 ˆ= t0;
x1 ˆ= x0; x0 ˆ= x4; x3 ˆ= x2; x2 = ˜x2;

Figure 4: This instruction sequence is the parallel implementation the S-box of
Ascon was designed for. It consists of 22 operations.

o0 = i3 ⊕ i4 ⊕ (i1 ∨ (i0 ⊕ i2 ⊕ i4))

o1 = i0 ⊕ i4 ⊕ ((i1 ⊕ i2) ∨ (i2 ⊕ i3))

o2 = i1 ⊕ i2 ⊕ (i3 ∨ ¬i4)

o3 = i1 ⊕ i2 ⊕ (i0 ∨ (i3 ⊕ i4))

o4 = i3 ⊕ i4 ⊕ (i1 ∧ ¬(i0 ⊕ i4))

Figure 5: These formulas compute the Ascon S-box in 17 operations (once
duplicate operations are taken out), while the reference implementation uses 22
operations. on indicates output bit n and in indicates input bit n.

instruction sequence translates to 22 single-cycle instructions. Because these can
only be applied to 32 bits at a time on 32-bit platforms and the five state words
are 64 bits in size each, they need to be run twice. Therefore, a straightforward
implementation takes 44 cycles. The instruction sequence is shown in Figure 4.

The substitution layer can be optimized by computing the same S-box with
a different formula. I derived shorter binary formulas by first writing down the
the bit sequences that occur for each of the 5 output bits for all 32 inputs. This
allowed me to recognize patterns in the bit sequences. I first eliminated input
bits that did not affect the output, or only affected the output through a single
exclusive or operation. Then, I looked at the remaining bit patterns and found
short and overlapping binary formulas for them.

Figure 5 shows the result of this analysis. These formulas are based on three
bitwise additions which are used three times each. Three operations are used
to compute these bitwise additions and 14 more operations are then used to
compute all formulas. This results in a total of 17 operations, five fewer than
the reference implementation.

From these, an instruction sequence can be produced like the one in Figure 6.
It computes all five of the above formulas with one caveat: The results end up
in different registers. We will compensate for this in the linear diffusion layer.
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.macro sbox s0, s1, s2, s3, s4, r0
xor t0, \s1, \s2
xor t1, \s0, \s4
xor t2, \s3, \s4
not \s4, \s4
or \s4, \s4, \s3
xor \s4, \s4, t0
xor \s3, \s3, \s1
or \s3, \s3, t0
xor \s3, \s3, t1
xor \s2, \s2, t1
or \s2, \s2, \s1
xor \s2, \s2, t2
not t1, t1
and \s1, \s1, t1
xor \s1, \s1, t2
or \s0, \s0, t2
xor \r0, \s0, t0

.endm

Figure 6: This macro computes boolean formulas of the substitution layer in
parallel on the registers s0 through s4, using t0, t1 and t2 as temporary regis-
ters. This macro must be run twice with different state registers, because each
64-bit state word is split in two 32-bit machine words. Note that after this
macro, the state words end up in different registers. In order to make space to
move the state words back into position, the final result is stored in register r0
instead.
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3.2.1 Superoptimization

As these formulas were constructed by hand, it may be possible to do better.
There are many possible formulas, so it is infeasable to find the best option
by hand. One option is to use something like the GNU Superoptimizer [11]
which tries all possible instruction sequence of a certain length in order to see
if any of them computes a specific formula. Unfortunately, according to its
README, the longest instruction sequence it was able to find for anything was
seven instructions long. This is not enough, since it is expected that at least
five bitwise addition operations and at least five bitwise and operations need to
be computed, leading to a minimum of 10 instructions.

Stoffelen [12] attempted to optimize binary formulas for S-boxes of various
cryptographic primitives using a SAT solver. He found ways to compile an S-box
to a satisfiability problem determining whether it can be computed in a given
number of instructions. I made use of his project to prove that it is not possible
to compute the Ascon S-box in 10 instructions. Unfortunately, the project did
not finish within reasonable time for instruction counts larger than 10, so I was
unable to verify whether 17 instructions is the best number possible.

3.3 Linear diffusion layer

The linear diffusion layer in Ascon mixes the bits with each of the five state
words. Each of them is rotated by two different amounts and added with the
results. For each of the five state words, two different rotation amounts are
used.

The state words are 64 bits in size, so 64-bit rotations are used. On most
64-bit architectures, this can be done with just one instruction, but 32-bit ar-
chitectures generally do not have 64-bit rotate instructions.

The most straightforward method of simulating a 64-bit rotate instruction
is using shifts. By combining a left shift and a right shift, all bits of a single
machine word can be placed at the correct offset. Because each shift loses some
of the bits when they are shifted out, it is not possible to simulate a rotate
instruction with one shift. Because a state word is two machine words in size,
four shifts are needed in total. After this, there are four intermediate results
that need to be combined to two resulting machine words. There are several
options to combine these intermediate results:

Since each bit will be zero in at least one of the two operands, the combining
instructions can be bitwise or, bitwise exclusive or, or integer addition instruc-
tions. Since the results will be combined using bitwise exclusive or operations,
we will use these for combining intermediate shift results as well. Because bit-
wise exclusive or operations are associative, it does not matter in what order all
intermediate results are combined, which gives us more freedom during imple-
mentation. Bitwise exclusive or can also be seen as bitwise addition, or addition
without any carries between the bits. I will use bitwise addition to refer to this
operation from here on.

Because two shifts are needed to simulate one rotate instruction, it would be
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preferable to use the latter. Unfortunately, rotating both halves of a state word
independently does not have the same effect as rotating the word as a whole.

This is usually resolved using bit interleaving: By storing even-numbered
bits in one word and odd-numbered bits in another, a 64-bit rotation can be
simulated using two 32-bit rotations. For even rotation amounts, both words are
rotated by half the amount. For odd rotation amounts, the words are rotated
by half the amount, rounded up and down respectively, and then swapped.
The disadvantage is that some extra cycles are needed to convert between bit-
interleaved representation and normal representation.

Unfortunately, the microcontroller we are targeting does not have rotate
instructions at all. The SiFive HiFive1 does not include the bit-manipulation
extension, which is where RISC-V introduces its rotate instructions. This means
that we are stuck using the straightforward method using four shifts and two
bitwise additions. The result also needs to be bitwise added back into the
original, which takes another two instructions, one for each of the machine
words. This means that handling one rotation takes eight instructions in total.

There are five state words which each have two rotations applied to them.
This means that a total of 80 instructions are needed for the linear diffusion
layer. On 32-bit RISC-V, without the bit manipulation extension, it is not
possible to do better. This is easy to see:

The only method of moving bits to different offsets is the shift instruction,
and because some bits are lost when they are shifted out, there are always two
needed to handle 32 bits, or one machine word. Therefore, to move all bits into
two separate new positions for five state words, or ten machine word, a total of
40 shifts are needed. Each of these shifts produces an intermediate result and
all those intermediate results need to be merged back into the unrotated state
words.

Each merging instruction takes two operands and produces one result, re-
ducing the number of intermediate results by one, so a total of 40 merging
instructions is needed to merge all intermediate results. On the HiFive1, there
are no instructions that can merge more than two machine words at a time.
This means that it is not possible to do the linear diffusion layer in less than
80 instructions. Figure 7 shows how the rotations for a single state word are
implemented in RISC-V assembly.

3.4 Addition of round constant

The addition of the round constant is a very short phase: A single byte gets
bitwise added to one of the state words. This takes one instruction. The correct
value to be added still needs to be computed though. We note that the round
constant for any given round is always fh lower than in the previous round. This
means we can compute it based on the previous round with one subtraction.
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.macro xorror dl, dh, sl, sh, sl0, sh0, r0, sl1, sh1, r1
slli t0, \sl0, (32 - \r0)
srli t2, \sh0, \r0
xor t0, t0, t2
slli t2, \sl1, (32 - \r1)
xor t0, t0, t2
srli t2, \sh1, \r1
xor t0, t0, t2
slli t1, \sh0, (32 - \r0)
srli t2, \sl0, \r0
xor t1, t1, t2
slli t2, \sh1, (32 - \r1)
xor t1, t1, t2
srli t2, \sl1, \r1
xor t1, t1, t2
xor \dl, \sl, t1
xor \dh, \sh, t0

.endm

Figure 7: The xorror macro applies the rotates and bitwise additions of the lin-
ear diffusion layer to a single state word. Because of the limitations of assembly
macros, it takes many arguments: dl and dh are the registers for storing the
low and high part of the result. sl, sh, sl0, sh0, sl1 and sh1 are the source
registers for the state word, without rotation, with rotation r0 and with rotation
r1 respectively. Because 32-bit shift instructions can only shift by 31 at most,
representing rotate amounts above 32 is done by subtracting 32 and swapping
the respective source registers. This is why the source registers must be supplied
three times.
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3.5 Full round

The round constant for the initial round is based only on the number of rounds
that will be run in that invocation of the permutation. Therefore, it can be a
parameter to the permutation which is constant in every location where it is
called. Because the constant is just one byte in size, the initial constant can be
created with just one move immediate instruction.

The initial constant has been chosen in such a way that the constant in the
final round is always 4bh. This means the current round constant can be used to
check if we’ve reached the final round. This saves us the instructions necessary
to keep track of the round number.

As mentioned before, the substitution layer shuffles the state words into
different registers and this needs to be resolved during the linear diffusion layer.
The first step is to store one state word in temporary registers. That frees up
the two registers corresponding to another state word. We compute the linear
diffusion layer for the state word that should end up in those registers, thereby
freeing another pair of registers, the ones this new state word was stored in.

We repeat this five times, and at the end, we use the state word that was
stored in the temporary registers. Figure 8 shows the inner loop for the entire
round. The xorror macro’s first two arguments are the registers where the result
will be stored and the next two arguments are the registers that are freed up.

4 Benchmarks

In this section, we will look at the expected and measured performance of the
permutation loop in detail. In principle, because this is the innermost loop, the
optimizations done here should have the most effect. We focus on the inner loop
and leave the outer loop for future work as it is relatively easy to optimize, and
therefore not as interesting.

4.1 Register usage

Before looking at our implementations speed, it is interesting to look at the
number of registers our implementation uses. Although variations exist, most
RISC-V microarchitectures offer 31 general-purpose registers. One of these is
always needed to point to the stack, leaving us with 30 registers for our imple-
mentation. We will still try to keep register usage to a minimum however, so
that the techniques used in this implementation may be easily ported to other
microarchitectures.

The 320-bit Ascon state needs ten 32-bit registers at all times in order to
avoid loading and storing it from memory. Our implementation of the substitu-
tion layer uses three temporary registers during its computation. Because these
are temporary registers, they are available again after the substitution layer
finishes.

Our linear diffusion layer uses the same three temporary registers for its own
computation, however, because the substitution layer moved the state words
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round:
# Addition of round constant
xor a2, a2, t5

# Substitution layer
sbox a0, a1, a2, a3, a4, t3
sbox s0, s1, s2, s3, s4, t4

# Linear diffusion layer
xorror a0, s0, a2, s2, a2, s2, 19, a2, s2, 28
xorror a2, s2, a4, s4, a4, s4, 1, a4, s4, 6
xorror a4, s4, a1, s1, a1, s1, 7, s1, a1, 9
xorror a1, s1, a3, s3, s3, a3, 29, s3, a3, 7
xorror a3, s3, t3, t4, t3, t4, 10, t3, t4, 17

# Compute next round constant
addi t5, t5, -15

# Loop back if final round has not been reached
bne a5, t5, round

Figure 8: The main permutation loop that loops over all rounds in a permu-
tation, defined in terms of the sbox and xorror macros. t5 contains the round
constant, a0 through a4 contain the least significant halves of the five state
words, s0 through s4 contain the most significant halves of the five state words.
t0 through t4 are used as temporary registers and a5 contains the round con-
stant where the loop should end, 3ch.
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Figure 9: Register allocation during the permutation

Purpose Registers used
Ascon state 10
Temporary 3
Shuffle into place 2
Current round constant 1
Final round constant 1
Total 17

around, two more registers are needed to move them back into place again.
The current round constant uses another register and the final round con-

stant uses one more. Because the final round constant is small and constant, it
can be traded for a single-cycle instruction to generate it, but on RISC-V, there
is no need.

In total, we use 17 registers out of 30, which leaves 13 registers to implement
the outer loop. This should allow the implementation of the outer loop to
avoid loading or storing anything but the inputs and outputs of the algorithm.
Figure 9 gives an overview of these allocations.

4.2 Expected performance

The substitution layer was optimized by using different binary formulas to com-
pute the S-box. The original formulas used 22 single-cycle instructions while the
improved formulas use 17 single-cycle instructions. We have made an attempt
to prove this is the smallest number possible, but the method we used was not
sufficiently powerful.

Because we can only operate on machine words and the Ascon state words
are twice the size of a machine word, we expect the substitution layer to take
34 cycles.

As described in the section on optimization, the linear diffusion layer must
take at least 80 cycles. We give an implementation that reaches this minimum,
while also moving the state words back into their original registers, to reverse
the shuffling from the substitution layer. This is possible thanks to RISC-V’s
abundant number of registers.

Finally, the addition of the round constant takes a single cycle, and its
computation from the previous round constant takes one more. This round
constant is also used to terminate the loop, by comparing it to the final round
constant. As long as this constant is loaded in a register, comparing to it and
jumping back should take on cycle. Of course, due to branch misprediction, this
may take more cycles in the first few rounds and at the end of the last round.
On all other rounds, the addition of the round constant and the loop together
should take 3 cycles. Summing these, one round of the permutation is expected
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to take 117 cycles.

4.3 Method

We take several measures in order to get highly reliable benchmarks. First of all,
we run the processor at a low frequency, approximately 18 MHz, much lower
than this processor’s maximum frequency of around 300 MHz. This assures
other components, like memory and instruction cache can keep up. Second, we
run each benchmark 32 times. We report the median of these results.

Next, in order to test only the speed of rounds after the branch predictor
and other factors have stabilized, we report the difference between the timings
of running the target number of rounds and twice that number of rounds in a
single permutation.

Finally, we choose the number of permutations to be the product of several
small factors that could be the periods of various kinds of fluctuations. We use
120 rounds, which is well above realistic usage of Ascon, but the computation
remains the same, so the speed should not be affected. After taking all these
measures, we find the results are completely consistent between runs.

4.4 Results

Figure 10 shows the measured cycles for a single round of the Ascon permuta-
tion. While a single round was expected to take 117 cycles, in practice it takes
118 cycles. It is unclear what causes this. The most likely explanation is that
the compare-and-jump-if-not-equal instruction used at the end of the loop takes
two cycles rather than one. Unfortunately, the documentation from SiFive does
not specify clear cycle counts for each instruction.

Figure 11 shows the resulting increase in speed for encryption and decryption
across the different implementations. To encrypt 4096 bytes using Ascon128,
it is first padded to 4104 bytes and then split into 513 blocks. To separate
these blocks, 6 rounds of the permutation are run between them, 512 times in
total. Initialization and finalization cost another 12 rounds each, for a total of
3096 rounds. These rounds cost 365328 cycles, before branch mispredictions.
This means encryption spends 66% of its time on the Ascon permutation and
decryption spends 76% of its time on the permutation. This difference is due
to the time spent copying and padding the plaintext during encryption, which
is not needed during decryption.

5 Discussion

We have optimized the Ascon internal loop for the RISC-V RV32IMAC archi-
tecture. While doing this, we have noted that both Ascon and RISC-V are very
simple and have little room for optimization. Nonetheless, we have found im-
provements in the boolean formulas used to compute the substitution layer and
an oppertunity to combine the round constant with the loop counter. We have

20



Figure 10: Number of cycles each phase of an Ascon permutation round takes
after the branch predictor has stabilized.

Phase Expected Measured
Substitution layer 34 34
Linear diffusion layer 80 80
Addition of constant and loop 3 4
Total 117 118

Figure 11: Number of cycles for encrypting and decrypting 4096 bytes for dif-
ferent implementations.

Implementation Encryption Decryption Relative speed
Reference implementation 701340 627863 100%
Big endian state 612095 538205 116%
Inner loop in assembly 552076 478262 129%

also switched the representation of the state to big endian in order to reduce
the number of endian conversions necessary. Our improvements have provided
an increase in speed of 29% relative to the reference implementation.

There is still room for more improvement however. We have omitted to op-
timize the Ascon outer loop. Because RISC-V offers plenty of registers, writing
the outer loop in assembly makes it possible to avoid loading and storing the
state to memory altogether. It is also possible that the boolean formulas of
the substitution layer are not yet optimal. Finding and proving the optimal
formulas will require some careful analysis however, as the search-space is quite
large.

Finally, it is important to note that our optimizations are quite general and
should be portable to other architectures. Our new boolean formulas do not
only improve speed from 22 to 17 cycles, but also register usage from 5 to
3 temporary registers. This makes it plausible to implement the substitution
layer without needing the stack on 32-bit ARM architectures which often only
have 14 registers available for implementation. It is also of interest to improve
our implementation using the RISC-V bit manipulation extension, once it is
frozen and more widely available.
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Appendices

A Reproducability

Nix [13] is a functional package manager designed to make its packages highly
reproducable. As a package manager, it cannot eliminate entropy from con-
currency and some other sources, so multiple builds of the same package are
not necessarily byte-for-byte identical. Instead, it tries to eliminate entropy by
specifying almost all direct and indirect dependencies with high precision.

Packages are specified by derivations, which specify a shell script that builds
the package, any relevant environment variables, and a list of sources and
package dependencies the build needs. These derivations are cryptographically
hashed, and the resulting hash uniquely identifies the package. Whenever the
version or configuration of a package or one of its dependencies changes, the
resulting hash will be different, which means it will be a different package.

In order to make our results reproducable, we use Nix to specify precisely
what compiler was used to compile the binaries for the board. We do this by
creating a pseudo-package, which specifies dependencies, but no build instruc-
tions. The nix-shell command was designed to use this: It takes a package
and starts a bash session with all dependencies injected into the PATH, in the
same way it would when building the package. The code used for this thesis is
available online.1

B Code listing

B.1 permutation.s

# This macro computes boolean formulas of the substitution layer in
# parallel on the registers s0 through s4, using t0, t1 and t2 as
# temporary registers. This macro must be run twice with different
# state registers, because each 64-bit state word is split in two
# 32-bit machine words. Note that after this macro, the state words
# end up in different registers. In order to make space to move the
# state words back into position, the final result is stored in
# register r0 instead.
.macro sbox s0, s1, s2, s3, s4, r0

1https://github.com/Lucus16/ascon-riscv
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xor t0, \s1, \s2
xor t1, \s0, \s4
xor t2, \s3, \s4
not \s4, \s4
or \s4, \s4, \s3
xor \s4, \s4, t0
xor \s3, \s3, \s1
or \s3, \s3, t0
xor \s3, \s3, t1
xor \s2, \s2, t1
or \s2, \s2, \s1
xor \s2, \s2, t2
not t1, t1
and \s1, \s1, t1
xor \s1, \s1, t2
or \s0, \s0, t2
xor \r0, \s0, t0

.endm

# The xorror macro applies the rotates and bitwise additions of the
# linear diffusion layer to a single state word. Because of the
# limitations of assembly macros, it takes many arguments: dl and dh
# are the registers for storing the low and high part of the result.
# sl, sh, sl0, sh0, sl1 and sh1 are the source registers for the state
# word, without rotation, with rotation r0 and with rotation r1
# respectively. Because 32-bit shift instructions can only shift by 31
# at most, representing rotate amounts above 32 is done by subtracting
# 32 and swapping the respective source registers. This is why the
# source registers must be supplied three times.
.macro xorror dl, dh, sl, sh, sl0, sh0, r0, sl1, sh1, r1

slli t0, \sl0, (32 - \r0)
srli t2, \sh0, \r0
xor t0, t0, t2
slli t2, \sl1, (32 - \r1)
xor t0, t0, t2
srli t2, \sh1, \r1
xor t0, t0, t2
slli t1, \sh0, (32 - \r0)
srli t2, \sl0, \r0
xor t1, t1, t2
slli t2, \sh1, (32 - \r1)
xor t1, t1, t2
srli t2, \sl1, \r1
xor t1, t1, t2
xor \dl, \sl, t1
xor \dh, \sh, t0
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.endm

.text

.globl permutation

.align 2
permutation:

# a0 state pointer
# a1 round constant

addi sp, sp, -20
sw s0, (sp)
sw s1, 4(sp)
sw s2, 8(sp)
sw s3, 12(sp)
sw s4, 16(sp)

mv t6, a0
li a5, 0x3c
li t5, 0xf
mul t5, t5, a1
add t5, t5, a5

# t6 state pointer
# t5 round constant
# a5 final round constant

lw a4, (t6)
lw s4, 4(t6)
lw a3, 8(t6)
lw s3, 12(t6)
lw a2, 16(t6)
lw s2, 20(t6)
lw a1, 24(t6)
lw s1, 28(t6)
lw a0, 32(t6)
lw s0, 36(t6)

# a0-a4 lower halves of state
# s0-s4 upper halves of state

# The main permutation loop that loops over all rounds in a
# permutation, defined in terms of the sbox and xorror macros. t5
# contains the round constant, a0 through a4 contain the least
# significant halves of the five state words, s0 through s4 contain
# the most significant halves of the five state words. t0 through t4
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# are used as temporary registers and a5 contains the round constant
# where the loop should end, 0x3c.
round:

# Addition of round constant
xor a2, a2, t5

# Substitution layer
sbox a0, a1, a2, a3, a4, t3
sbox s0, s1, s2, s3, s4, t4

# Linear diffusion layer
xorror a0, s0, a2, s2, a2, s2, 19, a2, s2, 28
xorror a2, s2, a4, s4, a4, s4, 1, a4, s4, 6
xorror a4, s4, a1, s1, a1, s1, 7, s1, a1, 9
xorror a1, s1, a3, s3, s3, a3, 29, s3, a3, 7
xorror a3, s3, t3, t4, t3, t4, 10, t3, t4, 17

# Compute next round constant
addi t5, t5, -15

# Loop back if final round has not been reached
bne a5, t5, round

sw a4, (t6)
sw s4, 4(t6)
sw a3, 8(t6)
sw s3, 12(t6)
sw a2, 16(t6)
sw s2, 20(t6)
sw a1, 24(t6)
sw s1, 28(t6)
sw a0, 32(t6)
sw s0, 36(t6)

lw s0, (sp)
lw s1, 4(sp)
lw s2, 8(sp)
lw s3, 12(sp)
lw s4, 16(sp)
addi sp, sp, 20

ret
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