
Bachelor thesis
Computing Science

Radboud University

The anatomy of the modern window manager
A case study in developing a novel top-level reparenting list-based

tiling window manager for X in an Agile manner

Author:
Max van Deurzen
s4581903

First supervisor/assessor:
dr. Cynthia Kop

c.kop@cs.ru.nl

Second supervisor:
dr. Peter Achten

p.achten@cs.ru.nl

2019

Abstract

At the heart of the modern personal computer experience lies the desktop environment, an implemen-
tation of the desktop metaphor comprising a variety of programs that together provide common graphical
user interface components. Arguably the most complex and, in some systems, the most important com-
ponent of the desktop environment, is the window manager. A window manager is system software that
controls the placement and appearance of windows within a graphical user interface.

In this thesis we describe the functioning of top-level window managers. We showcase what common
features window managers may consist of, and what their interaction with other system software looks
like. In doing so, we will discuss the X Window System [1], along with the Inter-Client Communication
Conventions Manual [2] (ICCCM) and Extended Window Manager Hints [3] (EWMH), two standard protocols
that define policy on top of the X Window System. Together, they form an environment that facilitates
the interoperability between window managers and other, regular programs.

As a proof of concept, we provide and discuss kranewm, a complete C++ implementation of an ICCCM
and EWMH compliant top-level reparenting, tiling window manager, built on top of the X Window System,
using Xlib as client-side programming library. With it, we illustrate the low-level functioning of modern
top-level window management. Leading up to an extensive demonstration of the product, we review several
Agile software development concepts that were applied throughout, before describing the process undergone
to realize the implementation.

Acknowledgements

I would like to thank both of my supervisors, dr. Cynthia Kop and dr. Peter Achten, for guiding me
through the research process, for the many incremental proofreads, and for the suggestions made during
the development phase of kranewm.

Contents

1 Introduction 4

2 Window Management 5
2.1 Windowing systems . 5

2.1.1 Graphical user interface . 5
2.1.2 Display server . 5
2.1.3 Widget toolkits . 6

2.2 The window manager . 6
2.2.1 Responsibilities . 7
2.2.2 Stacking . 7
2.2.3 Tiling . 7
2.2.4 Compositing . 11
2.2.5 Reparenting . 12

3 The X Window System 14
3.1 History . 14
3.2 Client-server architecture . 14
3.3 System model . 15
3.4 Core protocol . 15
3.5 Client-side libraries . 15
3.6 Graphical environment . 16
3.7 Resources and identifiers . 17
3.8 Messages . 18

3.8.1 Events . 18
3.9 Color . 19
3.10 Graphics operations . 20

3.10.1 Images . 20
3.10.2 Text . 20
3.10.3 Exposures . 21

3.11 Fonts . 21
3.12 Input . 21
3.13 Properties and atoms . 23
3.14 The X window manager . 24
3.15 Wayland . 25

3.15.1 Architecture . 25

4 Policy in X 27
4.1 ICCCM . 27

4.1.1 Client properties . 28
4.1.2 Window manager properties . 30

4.2 EWMH . 35
4.2.1 Non-ICCCM features . 35
4.2.2 Root window protocol definitions . 37
4.2.3 Client window protocol definitions . 40

5 Agile Software Development 44
5.1 Agile Manifesto . 44
5.2 Extreme Programming . 44
5.3 Personal Software Process . 45
5.4 Personal XP . 46

6 Implementation Process 48
6.1 The planning game . 48

Max van Deurzen Page 1 of 79

Case Study in Top-Level Window Management Contents

6.2 Small releases . 49
6.3 Metaphor . 49
6.4 Simple design . 50
6.5 Testing . 50
6.6 Refactoring . 51
6.7 Pair programming . 51
6.8 Collective ownership . 51
6.9 Continuous integration . 51
6.10 40-hour week . 52
6.11 On-site customer . 52
6.12 Coding standard . 52

7 Implementation Product 53
7.1 Design . 53
7.2 Reparenting . 53
7.3 Workspaces . 54
7.4 Sidebar and struts . 55
7.5 Key bindings . 56
7.6 Mouse bindings . 57
7.7 General usage . 57

7.7.1 Terminal . 57
7.7.2 Program launching . 57
7.7.3 Closing clients . 57

7.8 Window states . 57
7.8.1 Floating state . 57
7.8.2 Fullscreen state . 58

7.9 Window manipulation . 58
7.9.1 Inner-workspace focus movement . 58
7.9.2 Inner-workspace window movement . 59
7.9.3 Cross-workspace window movement . 60

7.10 Layouts . 60
7.10.1 Floating mode . 60
7.10.2 Tile mode . 60
7.10.3 Stick mode . 60
7.10.4 Deck modes . 61
7.10.5 Grid mode . 61
7.10.6 Pillar mode . 62
7.10.7 Column mode . 62
7.10.8 Monocle mode . 62
7.10.9 Center mode . 63

7.11 Rules . 63
7.11.1 Centering . 64
7.11.2 Autoclosing . 64
7.11.3 Workspace hint blocking . 64

7.12 Process jumping . 64
7.13 Marking . 65
7.14 Summary . 65

8 Related Work 66

9 Conclusions 67

A List-based Tiling Window Managers 71
A.1 wmii . 71
A.2 dwm . 72
A.3 awesome . 73

Max van Deurzen Page 2 of 79

Case Study in Top-Level Window Management Contents

A.4 xmonad . 73

B Tree-based Tiling Window Managers 75
B.1 i3 . 75
B.2 bspwm . 76
B.3 herbstluftwm . 77

C X.Org Foundation Distribution 79

Max van Deurzen Page 3 of 79

Chapter 1
Introduction

Windowing systems and window managers alike have
assumed crucial roles in guiding the look and feel of
graphical user interfaces. In fact, without them, the
concept of a graphical user interface would not even
exist. The windowing system allows for the draw-
ing of graphical primitives to the screen, and creates
the notion of windows. Windows are presented on
screen, and convey important information from ap-
plications to the user, but how are they to be ma-
nipulated? The windowing system merely provides
drawing capabilities, and does not in itself allow for
the resizing or moving of windows, or other forms of
interaction for that matter. The window manager,
a different subset of the desktop environment, pro-
vides this functionality. The window manager inter-
acts with the windowing system in such a way as to
allow the user to be in complete control of the win-
dows and their contents.

Window managers come in many different shapes
and forms. Some only enable users to move and re-
size windows, whereas others have predefined layouts
along which windows can be arranged. In general,
we speak of three types: stacking, tiling, and com-
positing window managers. Stacking window man-
agers are the traditional and most widely used type,
as they do not impose any constraints on the user’s
interaction with windows, and hence allow them to
be moved around and resized freely. Tiling win-
dow managers organize windows into (mutually non-
overlapping) partitions of the screen, and often allow
the user to alternately activate predefined arrange-
ment schemes. Compositing window managers, of-
ten called compositors, perform additional process-
ing on the windows’ buffers, possibly applying 2D or
3D (animated) effects to them. These different types
of window managers are not mutually exclusive, as
some or all of them may be combined in what are
referred to as a dynamic window manager.

In most commercial system software, like Win-
dows and macOS, both the windowing system and
the window manager are indistinguishable parts of
the desktop environment. These systems usually do
not empower the user to replace one or other, and
as such offer a fixed set of features. Most of the
more popular systems employ stacking window man-
agement functionality due to its ease of use. Tiling
functionality is seen as more advanced, and requires
a user to anticipate an arrangement that best suits
their current workflow.

The X Window System is the most widely used
non-commercial windowing system. It does not man-

date a particular kind of window manager to be
running and thereby allows its users to swap out
the window manager if they see fit, facilitating cus-
tomizability. To make such customizability possible,
the X Window System does not define policy, only
mechanism. To ensure that applications are able to
work well together and can communicate with the
window manager, several standard protocols were
designed to define a layer of policy atop of the X
Window System’s mechanism. The two most widely
implemented protocols are the Inter-Client Commu-
nication Conventions Manual (ICCCM) and the Ex-
tended Window Manager Hints (EWMH).

The development of an X window manager is no
small task. To aid in the development process, an
Agile software development methodology can be ap-
plied. Agile methodologies assure that developers
anticipate changing requirements, circumvent inte-
gration problems, and avoid defects altogether. One
such methodology is Extreme Programming, which
aims to facilitate team synergy and better software
quality. To furthermore improve performance, an
individual developer may benefit from the Personal
Software Process, which helps bring discipline to the
way they develop software, and tracks predicted ver-
sus actual development progress. These two tech-
niques have together been used to design an Ag-
ile methodology geared towards one-person teams,
called Personal Extreme Programming.

In this thesis, we aim to answer several questions.
How do modern top-level window managers allow
for the displaying and positioning of, and user inter-
action with programs’ graphical components? What
are a window manager’s rights and responsibilities?
What is the X Window System, and how is policy
defined on top of it? What does a window manager
in X look like, and are there alternatives to X?

As we shall see, all of the aforementioned come
together nicely as we discuss kranewm, an implemen-
tation of an ICCCM and EWMH compliant repar-
enting, tiling X window manager, all the while ap-
plying the Personal Extreme Programming method-
ology. In particular, we aim to show what a modern
tiling window manager looks like, and what the pro-
cess gone through to realize such an implementation
entails. We finally aim to assess the applicability and
effectiveness of the Personal Extreme Programming
methodology in its strict application throughout the
development process of kranewm.

Max van Deurzen Page 4 of 79

Chapter 2
Window Management

As its name would suggest, a window manager is
a program that manages windows. That is, it con-
trols the placement and appearance of programs’
graphical components in a graphical user interface.
It is generally the most important part of a collec-
tion of programs together implementing the desktop
metaphor, called the desktop environment [4].

Before we begin our discussion on window man-
agement (Section 2.2), we must introduce the topic
of windowing systems.

2.1 Windowing systems
A windowing system is system software that realizes
a graphical model that is suitable for constructing
and presenting graphical user interfaces [5]. Its main
task is to assign display real-estate to currently run-
ning applications’ graphical components [5]. These
real-estate assignments usually take the form of re-
sizeable, rectangular surfaces of the display, or win-
dows, used by the applications to present their own
graphical interfaces to the user [5,6]. Windowing sys-
tems provide the functionality to construct and draw
these windows [5].

Oftentimes, windowing systems also integrate
one or more widget toolkits, such as to provide de-
velopers using the system with a means to more con-
veniently decorate client graphical interfaces [5].

2.1.1 Graphical user interface
A graphical user interface (or GUI) is a type of
computer-human interface. It solves the blank
screen problem that confronted early computer users
who only had a prompt to interact with [7].

Conceptually, a computer-human interface is the
point of communication between the human and the
computer. The analogy can be made with a car and
its steering wheel [8]. The steering wheel is the con-
nection between the driver and the operation and
functionality of the vehicle. When driving, a driver
should not have to concentrate on the steering wheel,
let alone the internals of the machine. Similarly,
the GUI binds the user of the computer system to
the operation and potential of that system. Good
GUI design removes the encumbrance of communi-
cation with the computer system and allows the user
to work directly on the problem at hand [7].

In technical terms, the graphical user interface
is a visual operating display that is presented on the
monitor to the computer operator [9], or, more specif-

ically, a specification for the look and feel of the
computer system [7].

The windowing system contains several impor-
tant interfaces [1]. First and foremost, the program-
ming interface, a library of routines and types pro-
vided in a programming language for interacting with
the windowing system [1]; both low-level (e.g. line
drawing) and high-level (e.g. menus) such interfaces
are usually provided. Second, the application inter-
face, which takes care of the mechanical interac-
tion with the user and the visual appearance spe-
cific to an application (and thus not to the system
as a whole) [1]. The management interface provides
another mechanical interaction with the user [1]. It
deals with overall control of the desktop and the
input devices. The management interface typically
defines how applications are arranged and rearranged
on the screen, and how the user switches between ap-
plication windows; individual application interfaces
define how information is presented and manipulated
within an application’s own graphical components [1].
The user interface is the sum total of all application
and management interfaces [1].

WIMP

Graphical user interfaces often have common char-
acteristics, such as windows, icons, menus, and push-
buttons [8]. This is what is known as the WIMP-
interface. It is a style of interaction that includes a
specific set of elements of the user interface [7].

Collectively, WIMP are pictures that bring forth
a certain action or an action space. The user issues
commands via the GUI to applications [7].

Throughout the thesis, in our discussion on
graphical user interfaces, we will adhere to the nam-
ing conventions described by the WIMP paradigm.

2.1.2 Display server
The term display server is often used synonymously
with windowing system, with the technicality that
a windowing system normally incorporates a display
server, and hence the former really belongs to the
latter [10]. In fact, the display server is usually the
main component of a windowing system [10].

The display server interacts with the operating
system and the underlying hardware to draw graph-
ics to the screen and to relay input and output
from graphical applications to and from the rest of
the system [10]. Communication between the display
server and its clients happens along the display server

Max van Deurzen Page 5 of 79

Case Study in Top-Level Window Management Chapter 2. Window Management

protocol, a communications protocol that is often
network-transparent [10].

Any program that presents its application inter-
face in a window is a client of the display server. The
display server functions as an intermediary between
the clients and the user [1,7].

The display server receives its input from the ker-
nel, that in turn gets notified by the system’s input
devices, such as the keyboard and the mouse. After
perhaps processing an input event itself, the display
server passes it off to the correct client [11,12].

Another important responsibility of the display
server is to draw the client windows’ output to the
computer monitor. The display server enables the
user to work with multiple graphical programs at the
same time, allowing each program to display its ap-
plication interface in their respective window [10].

As we shall see later on, from a developer’s point
of view, the windowing system, through use of its
display server, implements graphical primitives, such
as font rendering and the drawing of simple shapes
to the screen [11,12]. It provides a layer of abstraction
above the graphics hardware for use by higher-level
components of the graphical user interface, such as
the window manager [11,12].

2.1.3 Widget toolkits
A widget toolkit is a library or collection of libraries
containing a set of graphical control elements (or
widgets) [5,6]. These widgets are elements of inter-
action used to more easily and consistently construct
the graphical interface of a program—they define the
application interface [5,6,8].

User interface libraries such as Windows Presen-
tation Foundation (for Windows-based applications),
GTK+ and Qt (cross-platform), and Cocoa (for ma-
cOS), contain a collection of controls and the logic
to render them [6].

Examples of widgets include sliders, buttons, and
even windows themselves (for a window can contain
multiple other windows) [5,6,8].

Each widget facilitates a specific type of human-
computer interaction, and appears as a visible part
of the application’s graphical user interface, as de-
fined by the theme and rendered by the toolkit’s
rendering engine [8]. A rendering engine is nothing
more than another programming interface that uses
the rudimentary hooks provided by the display server
to draw, or render, its elements on the screen. The
theme makes all widgets adhere to a unified aesthetic
design and creates a sense of overall cohesion. Some
widgets support interaction with the user (e.g. labels,
buttons, and check boxes). Others act as containers
that group the widgets added to them (e.g. windows,
panels, dividers, and tabs) [6,7].

2.2 The window manager
The window manager is system software that inter-
acts with the windowing system to seize control of
the display space—by taking away sizing and po-
sitioning responsibilities from individual windows—
and to form a single point of interaction for the
user [6]. With a window manager in place, applica-
tions need not worry about their designated area of
the screen, or whether or not the user’s interaction
with its graphical components is consistent with how
other applications handle interaction [4]. The window
manager, and only the window manager, is to take
care of the placement and appearance of the win-
dows under its reign, with the user as its conductor.
In essence, the window manager is in sole control
of the management interface, while the applications
retain control of their own application interfaces.

Few desktop environments are designed with a
clear distinction between the windowing system and
the window manager [5]. Proprietary system soft-
ware, like Windows and macOS, generally only com-
prise a single monolithic, largely non-replaceable
desktop environment [5]. Within it, there is often no
option to change core components, such as the win-
dowing system or the window manager [5]. In such
systems, the role of the window manager is tightly
coupled with the kernel’s graphical subsystems [5].
The window manager is essentially an indistinguish-
able part of the windowing system [5].

Window managers usually allow the user to open,
close, minimize, maximize, move, and resize run-
ning applications’ graphical components [4]. Other
window manager functionality is the decorating of
windows to indicate, for instance, which window has
input focus [5,11]. Many window managers also come
with or support various utilities and features, such
as docks, status bars, program launchers, desktop
icons, and a desktop wallpaper.

Conventionally, a system has only one window
manager active at a time [1]. Depending on the win-
dowing system’s policy, however, it may be permitted
to have multiple different window managers running
concurrently. Because window managers assume to
be in control of all top-level windows, having multi-
ple active window managers often leads to problems,
and thus it is generally discouraged.

Because our proof of concept (Chapter 7) is im-
plemented to interact with X, and because the def-
inition of the window manager within the context
of X is the most stand-alone, whenever there is in-
consistency between the definitions of window man-
ager functionality within the various platforms (pro-
prietary Windows and macOS, X), we will adhere to
those expounded by the X Window System.

Max van Deurzen Page 6 of 79

Case Study in Top-Level Window Management Chapter 2. Window Management

2.2.1 Responsibilities
Unlike windowing systems such as those of Windows
and macOS, X does not impose a window manager,
nor does it dictate how a window manager is to
behave [10]. X does not mandate even a particular
type of window manager [10]. Its developers have
tried to make X itself as free of window manage-
ment or user interface policy as possible [13]. In fact,
X does not require a window manager to be running
at all [10]. Applications must therefore be developed
to work with any type of window manager, and with
none at all. This approach is quite different from
that of windowing systems on different platforms.
On Windows and macOS, for instance, an applica-
tion could not possibly function without the window
manager. In Unity, the window manager is even re-
sponsible for rendering part of programs’ application
interfaces [14].

As we shall see, window managers have vary-
ing responsibilities. Some window managers are
only concerned with the arrangement of windows on
screen, whereas others solely deal with effects and
transition animations. Then there are window man-
agers that incorporate the functionality of both of
the aforementioned, and more. Often, the category
a window manager belongs to may be vague. For in-
stance, many stacking window managers have some
(very) limited tiling features, and almost all tiling
window managers have a floating state for windows
not suited for tiling. This floating state can usually
be toggled on a per-window basis by the user.

As we discuss the different forms of window man-
agement, note that a window manager can belong
to just one of them, or to multiple at once. Window
managers that take on the responsibilities of more
than a single type of window manager are generally
referred to as dynamic window managers.

2.2.2 Stacking
A stacking window manager (or floating window
manager) is a window manager that allows windows
to overlap, and to be moved around and resized freely
by the user. In essence, no predefined arrangement
is imposed by the window manager.

Windows in a stacking window management
scheme can be seen as pieces of paper on a desk.
Windows may (partially) overlap, and only the top-
most window on a stack of overlapping windows is
guaranteed to be entirely visible, given it is confined
within the boundaries of the screen. Effectively, a
stacking window manager attempts to fully emulate
the desktop metaphor. In drawing the windows to
the screen, painter’s algorithm is most commonly
used, referring to the technique used by painters,

for painting distant objects before those that are
nearer [15]. Knowing which windows are to be drawn
in front of or behind which others, is the window
manager’s task, and is often handled differently, de-
pending on layout policy [11].

Windows freely positioned on screen

Most commercial systems, such as macOS and
Windows, incorporate this coordinate-based stacking
window management scheme by default.

Depending on the implementation, stacking may
be a wasteful process, requiring every window’s ap-
plication interface to be continually redrawn, even
those of programs that are entirely covered by other
windows. Because of this, many stacking window
managers do not redraw windows that are not visi-
ble. Some window managers handle redrawing on a
per-program basis, instructing the rerendering of a
program’s application interface only when that pro-
gram’s content has changed.

When windows are drawn over one another, the
content of windows being covered is overwritten (due
to single-buffer rendering). Those windows must be
redrawn when they are brought back into view, or
when visible parts of them change. When a win-
dow’s content has changed, or when its position on
the screen has changed, the window manager gets
notified by the windowing system, and may decide
to restack all windows, and have them all redraw
their application interface. Applications that stop
responding will be unable to redraw their content.
This usually causes their application interface to re-
tain parts of windows previously covering it.

2.2.3 Tiling
Most contemporary window managers employ mul-
tiple overlapping windows, and leave the spatial ar-
rangement of the individual windows to the user. As
a consequence, important information may be hid-
den in occluded windows, and users spend a signifi-
cant amount of time switching between windows to
reveal obscured content [16,17].

Max van Deurzen Page 7 of 79

Case Study in Top-Level Window Management Chapter 2. Window Management

An alternative approach to a stacking window
manager and its overlapping windows is the tiling
window manager that tiles windows beside each
other, in a grid-like format. In a tiled window ar-
rangement, the screen is often partitioned to be
filled completely by windows. Usually, depending on
the tiling scheme, no two windows will overlap each
other. In certain workflows, tiling window manage-
ment has proved to be superior [18,19,20].

Whenever there are more than a few windows on
the screen, managing them for effective viewing can
be an annoyance to the user [21]. Users end up spend-
ing much of their time manipulating window position
and structure, rather than working with the content
of the windows, and on the problems at hand [21].
Tiling offers the option of automatic control of win-
dows, benefiting users who do not want or need to
arrange and rearrange windows [21].

The desktop metaphor inherently explains the
problem with a stacking approach. It is all too fa-
miliar, the problem of locating a piece of paper that
is not immediately visible on a messy desk. The
same situation arises when windows are hidden be-
hind others [21]. In a tiled environment, all windows
are visible and readily accessible at all times [21].

Partially overlaid windows are often simply wast-
ing space, causing unnecessary distraction [21]. In
tiled window arrangements, screen space is always
going to be allocated to some useful purpose [21].

Certain types of windows, such as pop-up win-
dows, dropdown menus, and fixed-size windows, are
not suited for tiling. These often require a prede-
fined position on screen, and mostly have a static
application interface. Good tiling window managers
will detect such windows, and have them operate in
a floating state instead. If these windows were to be
sent to the background, they would be fully covered
by the windows in tiling mode. As such, windows in
the floating state should always be rendered in front
of those in tiled mode.

There are many different ways to categorize tiling
window managers. Some incorporate techniques
that are comparable, while others have little to noth-
ing in common. Amongst contemporary tiling win-
dow management, two tiling techniques are gener-
ally employed: list-based and tree-based tiling [22].
The names of these techniques refer to the under-
lying data structures used to store and manipulate
windows. It is worth noting that there are also tiling
window managers that integrate both of these tech-
niques, and there are tiling window managers that
do neither.

List-based tiling

A list-based tiling window manager uses an ordered
list to keep track of its windows. Windows are all
assigned a unique number based on their position in
the ordered list. The number associated with each
window determines where it is to be tiled on screen.
The list-based tiling window manager will have sev-
eral predefined layouts that regulate the size and po-
sition of each window in the ordered list. Layouts do
not stipulate a specific number of windows to con-
trol, and are, in that sense, dynamic. That is, adding
a new window to the list will usually—depending on
the layout and its policy—cause all windows to be
rearranged. This is a direct consequence of the tiling
philosophy: the screen is to be fully filled with win-
dows, and no window is to be covered by any other
window.

List-based tiling window managers offer users the
functionality to change the currently active layout on
the fly. This allows for highly efficient workflows, in
which the user continually switches to the layout that
best suits their latest needs. Users are also able to
change the order of the windows in the list, therein
directly manipulating their placement on screen.

Layout nomenclature is not standardized; each
window manager will have their own naming scheme.
The underlying concepts, however, are mostly the
same.

The most common layout found in list-based
tiling window managers today is stack mode, some-
times called master-stack mode, master mode, or tile
mode. In it, one window—the first window in the
ordered list—is appointed to be the master window.
The master window is considered to be the most im-
portant window, in that it gets assigned the largest
partition of the screen. All other windows in the or-
dered list—those deemed non-master windows—are
part of the so-called stack.

1 2 3 4 5

Ordered list containing 5 windows

1

2

3

4

5

Window arrangement on screen

Max van Deurzen Page 8 of 79

Case Study in Top-Level Window Management Chapter 2. Window Management

Master windows fill the left half of the screen,
while windows in the stack are stacked on top of
each other on the right. Non-master windows all
take up an equal part of the portion of the screen
devoted to the stack.

A variant of the stack mode layout is n-master
mode. Window managers employing this layout will
often provide the ability to dynamically change the
number of master windows in stack mode. For ex-
ample, if n = 2:

1 2 3 4 5

1

2

3

4

5

Just as in stack mode, non-master windows all
have the same size. When there are multiple mas-
ter windows, those too take up equal parts of their
dedicated portion of the screen. If ever there are
no master windows, or no windows in the stack, all
windows in the ordered list are stretched along the
entire width of the screen.

A third common layout is aptly named monocle
mode, fullscreen mode, or sometimes max mode, in
which all windows in the ordered list fill the entire
screen. Of course, technically, this does not comply
with our definition of tiling, for all windows overlap
each other. Notwithstanding, this layout can prove
tremendously useful, especially in situations where
every program that is being worked with has a more
involved application interface.

Some window managers allow its users to define
their own layouts. Usually, this type of customiza-
tion is more geared towards developers, as adding
layouts mostly involves altering source code. Most
layouts will revolve around the master-stack disposi-
tion, allowing users to dynamically change the num-
ber of master windows, like in n-master mode, and
updating the geometry of the windows on screen ac-
cordingly. An example of such a custom layout, spi-
ral mode, with two master clients:

1

2

3

4

5

6
7

8

There are many more layouts employed amongst
the vast choice of list-based tiling window managers.

It is common for list-based tiling window man-
agers to offer the ability to dynamically change the
so-called master factor, or, the factor of master por-
tion width to screen width. In the examples pre-
sented above, in which there are both master clients
and non-master clients, the master factor is 50%.

1

2

3

4

5

Master factor of 70%

When a new window is added to the environ-
ment, most list-based tiling window managers will
prepend it to the ordered list. Some are implemented
to insert the new window behind the window that
currently has input focus, and others will append it
to the list.

List-based tiling can be extremely useful if the
available layouts tailor exactly to the user’s every
whim. If they do not, it can become a frustration,
and even a deterioration of productivity. This inflex-
ibility has prevented mainstream adoption, as list-
based tiling has only seen popularity amongst devel-
opers and hobbyists.

Refer to Appendix A for a discussion on and com-
parison between contemporary list-based tiling win-
dow managers.

Max van Deurzen Page 9 of 79

Case Study in Top-Level Window Management Chapter 2. Window Management

Tree-based tiling

Tree-based (or manual) tiling window managers in-
ternally represent windows as leaves of a tree. In-
ternal nodes and the root of the tree are dividers
(sometimes called split containers or splits). Di-
viders recursively split up the set of windows and
dividers passed along by its parent into constituents.
For this reason, the tree can be seen as a nested
container. Dividers lay out their direct children into
either a horizontal local arrangement, or a vertical
one. Consider the following tree.

H

V

1 2

3 V

4 5

Tree with 3 dividers and 5 windows

It corresponds to the following window arrange-
ment on screen.

1

2

3

4

5

Here, the red lines represent the horizontal di-
vider specified by the root of the tree. It has three
children, two of which are themselves dividers. It
divides the screen into three equally sized partitions
that are evenly distributed amongst its children. The
blue lines represent the two vertical dividers; both
have two children, all of them being windows. These
two dividers hence each divide their assigned portion
of the screen into two. Windows fill the portion of
the screen allocated to them by their parent (which
is always a divider).

Whereas with list-based tiling, the user has lit-
tle to no control over where a new window is placed,
with tree-based tiling, a user can specify the exact
position and local tiling arrangement. Say we wanted
to add a window to the arrangement shown above,
between windows 1 and 2. The user would direct in-
put focus to window 1, and spawn the new window.
The resulting arrangement is the following.

H

V

1 6 2

3 V

4 5

1

2

3

4

5

6

Because the local arrangement was vertical (win-
dow 1 has a vertical divider as parent), the new win-
dow inherits this, and is tiled along with its siblings
in a vertical layout. The user may want to tile win-
dows horizontally, while the local arrangement is ver-
tical. Tree-based tiling window managers allow users
to specify this, internally calling for a new divider to
be created. If we wanted to add a new window to
the right of window 4, we would navigate to window
4, instruct the window manager that upon adding a
new window, we want a horizontal divider to be cre-
ated, and we would get the following.

H

V

1 6 2

3 V

H

4 7

5

1

2

3

4

5

6

7

Often, such window managers will also allow the
user to adjust the width and height of a window

Max van Deurzen Page 10 of 79

Case Study in Top-Level Window Management Chapter 2. Window Management

within its local arrangement. And, as with list-based
tiling, the user can swap the positioning of two win-
dows within the tree (and hence, on screen).

Just as list-based tiling, tree-based tiling is de-
terministic, in that the representation is never am-
biguous with regard to the corresponding window ar-
rangement.

Tree-based tiling offers the user the ability to
fine-tune the arrangement, essentially allowing for
custom layouts to be constructed as the user sees
fit. For this reason, tree-based tiling window man-
agers tend to garner more widespread popularity than
their list-based counterparts, though still not nearly
as much as traditional stacking window managers do.

Refer to Appendix B for a discussion on and com-
parison between contemporary tree-based tiling win-
dow managers.

2.2.4 Compositing
A compositing window manager, or compositor, is a
window manager (or a component of one) that regis-
ters an off-screen buffer—sometimes called a surface
or canvas—for each of an application’s windows.
The window manager blits these window buffers into
an image that represents the screen, and writes the
result into display memory. Compositing has little
to do with window arrangement, such as is the re-
sponsibility of stacking and tiling window managers.
A window manager can be both a compositor and
a stacking or tiling window manager. More com-
monly, following the Unix philosophy, compositors
are run alongside other window managers to pro-
vide arrangement and compositing functionality sep-
arately.

To form the image shown on screen, windows’
application interfaces are composited together. In
order to do this, each window needs a dedicated
buffer to which to draw [23]. As a result, composi-
tors require more memory (system memory or graph-
ics memory) for each new window that will be dis-
played. The primary benefit to compositing over tra-
ditional window management is compartmentaliza-
tion. Each window has its own buffer to draw to,
and the compositor has complete control over the
final image [23]. As a consequence, artefacts typical
of traditional single-buffer rendering, such as screen
tearing, are not seen in compositing window man-
agers, since the window manager does not need to
wait for or request that windows repaint areas previ-
ously clipped or covered when they are moved.

Compositing window managers may perform ad-
ditional processing on buffered windows, such as an-
imated effects and fading. Computer graphics tech-
nology allows for visual effects to be rendered in real
time, such as drop shadows, live previews, and com-

plex animations. If a screen is double buffered—
which most modern monitors are—flickering does
not occur during image updates.

Mac OS X 10.0 was the first mainstream operat-
ing system to feature software-based 3D compositing
and effects, through use of its Quartz component
(display server and compositor).

Microsoft first presented the Desktop Window
Manager (DWM), which is Windows’ composit-
ing window manager, in Project Longhorn, at the
2003 Windows Hardware Engineering Conference.
There, the compositor’s wobbly windows feature was
demonstrated. Due to delays in the development
of Longhorn, Microsoft did not debut its then 3D-
compositing window manager until the release of
Windows Vista in January 2007.

Of course, because buffers are converted to im-
ages before being rendered on the screen, any pro-
cessing done to imagery can also be done to a
window and its encompassed application interface.
Here, we present several features commonly imple-
mented in modern compositors.

Duplication

A window manager may want to duplicate images to
create effects, or to mirror a window’s content on an-
other display. Compositors can achieve this merely
by copying the window’s buffer to another display.

Alpha compositing

Alpha compositing is the process of combining an
image with a background to create the appearance
of partial or full transparency. Alpha compositing is
often used by window managers to emulate trans-
parency on the windows of applications that other-
wise do not support it.

Window buffers given an opacity of 40%

Fading

Compositors can produce a fading effect when cer-
tain operations are performed on a window, such as

Max van Deurzen Page 11 of 79

Case Study in Top-Level Window Management Chapter 2. Window Management

when it is opened, closed, minimized, or maximized.
Upon closing a window, for instance, the compositor
may perform an animation on the window, having it
seemingly fade out, into the background.

A window fading out into the background

Scaling

Scaling is the gradual resizing of an image. Window
managers can produce zoom effects by scaling a win-
dow’s buffer before it is displayed in full size on the
screen. Upon opening an application from the dock,
a zoom-in effect can be simulated by having the ap-
plication’s buffer image resized from the size of the
dock icon to full scale, and by at the same time hav-
ing it moved from the dock to its initial position.

A window being scaled up to full size,
and moved to its initial position

Contortion

Of course, buffer images can also be rotated and con-
torted. Certain effects can be simulated by gradually
rotating or contorting a buffer image, such as having
a window seemingly being sucked into the dock upon
minimizing it, by stretching it out. macOS’ genie
effect is an example of this.

A window being stretched into the dock

Blurring

A blur effect can be achieved on (part of) a window’s
buffer by applying a Gaussian function. The visual
effect of this technique is a smooth blur that resem-
bles that of viewing the image through a translu-
cent screen. Image blurring is sometimes used by
window managers to visually distinguish an input-
focused window from windows that are not in focus.

2.2.5 Reparenting
A reparenting window manager is a window manager
that adds its own graphical elements to a program’s
windows. These elements are added as an addition
to the program’s own application interface. DWM,
Windows’ compositor, is a reparenting window man-
ager, and so is macOS’ Quartz. On most proprietary
platforms, applications have a border and title bar
rendered around their content. Programmers that
develop graphical applications for Windows or ma-
cOS, for example, need not draw these borders and
title bars themselves; they are added and maintained
by the window manager.

Windows given a frame that contains buttons

The term stems from the X environment, in
which every window has a parent window which it
is a part of. When a window manager reparents

Max van Deurzen Page 12 of 79

Case Study in Top-Level Window Management Chapter 2. Window Management

an existing window, what it is really doing, is creat-
ing a new window to act as a frame around it. The
window manager then sets this frame to be the ex-
isting window’s parent, and any decoration, such as
the title of the window, is drawn to the frame by the
window manager. The application interface remains
unaltered.

Frames may also contain control elements, such
as buttons used for closing, minimizing, and maxi-
mizing the window. The program knows nothing of
these control elements, and is not notified when one
of them is pressed. The window manager is to re-
spond to any interaction with them, by, for example,
destroying or resizing the window.

Max van Deurzen Page 13 of 79

Chapter 3
The X Window System

The X Window System is a network-transparent win-
dowing system that runs on a wide variety of ma-
chines [1,24]. It is most common on Unix-like oper-
ating systems, though it is relatively straightforward
to build the X.Org Foundation software distribution,
which it is part of, on most ANSI C and POSIX-
compliant systems [25]. Commercial implementations
are also available for a wide range of platforms.

Throughout most of this chapter, we will be
heavily referencing The X Window System by Robert
Scheifler and Jim Gettys, The X Window System,
Version 11 by Jim Gettys, Philip Karlton, and Scott
McGregor, and the books in the series The Defini-
tive Guides to the X Window System.

The proof of concept presented and discussed in
Chapter 7 is a window manager implementation that
sits on top of the X Window System. Therefore, fa-
miliarity with the notions detailed in this chapter is
assumed.

3.1 History
The X Window System was created in the mid-1980s
at the Massachusetts Institute of Technology [26]. In
1988, MIT formed a member-funded consortium that
was to provide the leadership required to support
further development of the X Window System [26].
In 1992, MIT and the membership formed an inde-
pendent organization with the purpose to move the
consortium out of MIT. The rights to the X Window
System were assigned to X Consortium, Inc. by MIT
in 1994. In 1996, the X Consortium, Inc. closed its
doors and the rights to the X Window System were
transferred to The Open Group (then known as the
Open Software Foundation) [26].

In 2004, the X.Org Foundation was formed as
the successor to the X.Org Group at The Open
Group. The X.Org Foundation was meant to foster
the development, advancement, and maintenance
of the X Window System as a comprehensive set
of vendor-neutral, system architecture independent,
network-transparent windowing and user interface
standards [26]. Membership in the X.Org Foundation
is free and open to anyone [26].

The X.Org Foundation requests that the follow-
ing names be used when referring to the windowing
system: X Window System, X, X Version 11, X Win-
dow System Version 11, and X11 [1,25].

Despite its age, the X Window System is still
highly relevant. Even as the release of Wayland

(Section 3.15), another windowing system and dis-
play server protocol that is meant to replace the X
Window System, draws closer, it is believed that the
transition from X to Wayland may take many years,
and that a great number of systems will continue to
use the X Window System in the future [27].

The X Window System servers target computers
with bitmap displays [25]. The server sends user input
to and accepts output requests from various client
programs through a variety of different inter-process
communication channels [1,25]. The most common
case is for the client programs to be running on the
same machine as the server, though clients can also
be run transparently from other machines, including
machines with different architectures and operating
systems [1,25].

X supports overlapping hierarchical subwin-
dows, and text and graphics operations, on both
monochrome and color displays [25].

The number of programs that use X is quite
large [25]. The core X.Org Foundation distribution
alone includes a plethora of X programs. Refer to
Appendix C for the list of programs that are part of
the standard X.Org Foundation distribution.

Other user-contributed software is available in
the X.Org Foundation distribution, and is otherwise
available on the Internet [25].

3.2 Client-server architecture
The X Window System operates in a client-server
model. The X server controls one or more physical
display devices, underlying input devices, and service
requests from the clients [1,24,28].

An application that wishes to interact with these
devices takes on the role of an X client. Clients
communicate with the server in that they issue
requests and receive information (back) from the
server [1,14,24,28]. Generally, every application with a
graphical interface is a client.

The communication protocol used between
server and clients can work over any inter-process
communication mechanism that provides a reliable
octet stream [1]. Of course, an X server and its
clients may run on the same computer, in which case
they communicate via domain sockets [1,24]. If server
and clients are on different machines, communica-
tion usually happens over TCP/IP [1,24,28].

The greatest advantage of X’s design is the fact
that clients only need to know how to communi-

Max van Deurzen Page 14 of 79

Case Study in Top-Level Window Management Chapter 3. The X Window System

cate with the server, and need not be concerned
with the details of interacting with the underlying
hardware [1,24,28]. Programmers of client graphical
application interfaces are not required to deal with
rudimentary graphics operations; at the most basic
level, a client directs the server to “draw a line from
here to here,” to “render this string of text, using
this font, in the top-left corner of the screen,” or to
“move this window to this position on-screen.”

However, as X’s design requires the server and
its clients to operate separately, some overhead is
always incurred. Most of this overhead comes from
network round-trip delay time between the server and
its clients (latency), as opposed to from the protocol
itself [1]. As such, a common criticism of X’s design
is that its network features result in excessive com-
plexity and decreased performance when run locally.

3.3 System model
Several clients can have connections open to a server,
and a client can have connections open to multiple
servers [1]. The server is to multiplex requests from
clients to the display, and demultiplex keyboard and
mouse input to the appropriate client [1,11].

The server is typically implemented as a single
sequential process [1]. It uses round-robin schedul-
ing among clients, with which many synchronization
problems are trivially solved, though a multiprocess
server has also been implemented [1]. Instead of be-
ing implemented as part of the kernel of an operating
system in order to improve performance, a user-level
server process is much easier to debug and main-
tain [1,11].

The server incorporates the base window system,
and it provides the fundamental resources, mecha-
nisms, and hooks needed to implement the various
user interfaces [1]. Device dependencies are handled
by the server [1]. As a consequence, the communica-
tion protocol between clients and server forms an
abstraction layer above the various devices [1]. Be-
cause the device dependencies are placed at one end
of the network connection, all client applications are
completely device independent [1,11].

3.4 Core protocol
The core X protocol is the true definition of the X
Window System [10]. Any code in any language that
implements it is a true implementation of X [10]. It
is designed to communicate the information required
to operate a windowing system over a single asyn-
chronous bidirectional stream [10].

When client and server operate on the same ma-
chine, the connection relies on local inter-process

communication channels, shared memory, or domain
sockets [10]. All connections, whether local or re-
mote, use the X protocol [10].

Clients typically implement the X protocol using
a programming library that interfaces to a single un-
derlying network protocol, such as TCP/IP [10]. Two
of such programming libraries will be discussed in
Section 3.5.

The X protocol was developed with the intention
to provide mechanism, not policy [1,10]. Mechanism
describes concrete implementation details, covering
algorithms, data structures, and so on. Policy is de-
fined at a higher level, and uses mechanism to es-
tablish rules and standards for interaction between
X clients [2,13].

Because the developers of the protocol found it
likely the need would arise for changing one without
affecting the other, they chose to separate mecha-
nism from policy [1,10,13]. In fact, the X protocol says
nothing of policy [1]. Instead, it is left to X client
application developers to incorporate these rules and
standards [2,10,13].

This design decision proved to have both advan-
tages and disadvantages. On the one hand, X has a
highly modular architecture that has withstood nu-
merous changes over the years [13]. On the other
hand, many believe policy decisions were forced to
be made in the wrong place [13]. Rather than be-
ing something end users, system integrators, or sys-
tem administrators were given control over, X client
program developers are to integrate policy them-
selves [13]. This is problematic not only to end users,
who might notice discrepancies in the way different
programs interpret a standard, if they even imple-
ment policy at all, but also to developers, who are
burdened not only with effectuating the program’s
desired behavior, but now also with making sure
the program plays nicely with other clients running
under the same server—such as the window man-
ager [2,10,13].

To provide end users with consistency amongst
different programs, and to relieve developers from
the burden of having to define their own policy, sev-
eral conventions, rules, and standards were captured
in standard protocols [13]. Two main protocols used
widely today are the Inter-Client Communication
Conventions Manual (ICCCM), and Extended Win-
dow Manager Hints (EWMH), which we will both
discuss in Chapter 4 [2,3].

3.5 Client-side libraries
There exist two official C libraries for low-level client-
side X programming: Xlib and XCB. They are essen-
tially helper libraries—technically sets of libraries—

Max van Deurzen Page 15 of 79

Case Study in Top-Level Window Management Chapter 3. The X Window System

that provide an API for talking to the X server. Xlib,
released in 1985, was the original X protocol client
library [11]. In fact, it was the only official X pro-
tocol client library until the introduction of XCB in
2001 [14]. The two libraries have significantly differ-
ent design goals: while Xlib tries to hide the X proto-
col behind an API that serves as an abstraction layer,
XCB directly exposes the plumbing beneath [11,14,29].

This difference manifests itself most directly in
how the two libraries handle the asynchronous na-
ture of X’s client-server architecture [11,14,29]. Xlib
hides the asynchronous X protocol behind an API
that behaves both synchronously as asynchronously,
whereas XCB fully preserves X’s asynchronous be-
havior in its API [11,14,29].

For instance, to retrieve the attributes (size, po-
sition, etc.) of a window, one would write the fol-
lowing using Xlib’s C API.

Listing 3.1: Xlib synchronous attribute lookup
XWindowAttributes attrs;
XGetWindowAttributes(dpy, win, &attrs);
// do something with attrs

Here, dpy is a pointer to the display structure
that serves as the connection to the X server; it con-
tains all information about that X server. win is
the window we wish to receive attributes from, and
attrs is the structure representing the window’s at-
tributes. Under the hood, XGetWindowAttributes
sends a request to the X server, and subsequently
blocks until it receives a response. Hence, it is syn-
chronous [11].

Doing the same using XCB’s C API results in the
following.

Listing 3.2: XCB asynchronous attribute lookup
xcb_get_window_attributes_cookie_t cookie =

xcb_get_window_attributes(con, win);
// do something while waiting for a response
xcb_get_window_attributes_reply_t∗ reply =

xcb_get_window_attributes_reply(con, cookie, nullptr);
// do something with reply
free(reply);

As in our Xlib example, we have identifiers rep-
resenting the connection with the X server, con, and
the target window, win. The former hides a queue
of messages coming from the server, and a queue of
pending requests that our client intends to send to
the server [29]. XCB returns a cookie for each request
that is sent. This cookie is an XCB-specific data
structure that contains the sequence number with
which the request was sent to the X11 server [29]. To
receive any response, that cookie has to be provided,
such that XCB knows which of the waiting replies is
targeted [29].

Because XCB is asynchronous, the function
xcb_get_window_attributes does not block af-
ter sending a request to the X server; it re-
turns immediately without waiting for a response.
To subsequently block on receiving a response,
xcb_get_window_attributes_reply is called [29].

The advantage of the asynchronous approach is
obvious if we consider a situation in which we need
to retrieve the attributes of multiple windows at
once [14]. Using XCB, we can immediately send all
requests to the X server, do something that does not
require a response, and then wait for all of them to
return. With Xlib, we have to send one request at
a time and wait for its response before we can send
the next request. As such, we would expect to only
block for the duration of a single round-trip to the X
server using XCB, compared to multiple with Xlib.

The disadvantage of the asynchronous approach
is XCB’s verbose nature, and its much more involved
interface [14]. As can be gleaned from our examples,
the Xlib code, as by design, looks much more like an
average C library call, hiding the fact that function
calls result in protocol requests to a server, whereas
the XCB code is a lot messier [11,14,29].

A confusing part of Xlib, and consequently
the main reason behind the creation of XCB, is
its mixture between synchronous and asynchronous
APIs [29]. Function calls that do not require a re-
sponse from the X server are queued in a buffer to be
sent as a batch of requests to the server [11]. Those
that do require a response flush all the buffered
requests, and then block until the response is re-
ceived [11]. Effectively, this means that functions that
return values (such as XGetWindowAttributes)
are synchronous, while functions that do not
(e.g. XMoveWindow) are asynchronous [11].

Most higher-level applications, such as regular
programs incorporating a graphical interface, should
want to call Xlib and XCB sparingly [7]. Higher-level
toolkits (such as GTK+) offer more efficient pro-
gramming models, and often support features ex-
pected in modern applications that are not directly
available when using Xlib or XCB [8]. Examples of
such features are internationalized input and output,
and integration with desktop environments [30]. Nev-
ertheless, sometimes applications will find that they
require a more direct interaction with the X server,
as we shall see later on in our discussion on X win-
dow managers (Section 3.14).

3.6 Graphical environment
What is traditionally known as a window in most
graphical user interfaces, is known to the X Win-
dow System as a top-level window [1,12]. A window

Max van Deurzen Page 16 of 79

Case Study in Top-Level Window Management Chapter 3. The X Window System

that is part of—that is, a child of—another window,
is called a subwindow to its parent window [1,12].
Graphical elements, such as those mentioned in Sec-
tion 2.1.1, can be realized using subwindows. The
generic term window may refer to both top-level win-
dows and subwindows. A top-level window is often
referred to as a client to the X server. As such, a
client is a single top-level window that may or may
not consist of subwindows [10].

A client may request the creation of a new win-
dow. Technically, this is a request to create a sub-
window of an existing window. The reason only top-
level windows are considered clients, is because of
the tree arrangement of X11’s window hierarchy [11].
At the root of the tree, fittingly, we have what is
called the root window. The root window is a special
window that is created automatically by the server
at startup [11]. It is always as large as the screen,
and lies behind all other windows [12]. In this ar-
rangement, top-level windows are windows of which
the parent is the root window. Analogously, all of
the root window’s direct children are the X server’s
clients.

When a window is moved, resized, covered by
another window, or in general made partly or en-
tirely non-visible, the window’s contents may be de-
stroyed, depending on whether or not the server is
maintaining a backing store [10,12]. A client may re-
quest backing store memoization of window content,
but there is no guarantee the server will obey such a
request [24]. As such, a client may not assume a back-
ing store is being maintained. Clients are sent spe-
cial messages called events—which we will discuss
in Section 3.8—that notify them that their content
must be redrawn. Subwindows may exist beyond the
boundaries of their parent. Parts of a subwindow
that are not within its parent’s drawing area are sim-
ply not displayed on the screen [11,12].

All windows have an associated set of window at-
tributes, comprising a window’s geometry (size and
position), border width and color, whether backing
store has been requested for it, and much more [11].
There are also special messages in place to exam-
ine or change a window’s attributes. Windows may
be assigned a window class at the time of creation:
input-only, or input-output [24]. Input-only windows
cannot be used as a drawable—that is to say, they
cannot be used as a source or destination for graphics
requests [11]. Effectively, creating a window with this
class results in a window that can never be shown
on screen; it can only be used to receive input [11].
Input-output windows can be shown on screen [11,24].
They have a body, and may or may not consist of
a border [24]. If set, the border spans all four edges
of the body. The body has a background color,

may contain subwindows, and is otherwise used for
drawing [11,24]. Every subwindow has a depth rela-
tive to its siblings. The depth defines which win-
dows are rendered above or below which other win-
dows [10,11,12].

At any given time, a window may be visible or
not, regardless of whether the window is within a
drawable area [11]. Unmapping a window changes
the state of a window to hidden, and prevents the
X server from rendering the window and all of its
contents—including subwindows [11,12]. Mapping a
window registers it for rendering, along with all of
its subwindows, unless a subwindow, in its turn, is
hidden [11,12].

In X, drawables collectively refer to windows and
pixmaps [10,12]. A pixmap is an off-screen resource
used for various operations, one of which is drawing
to the screen [1]. The difference between a pixmap
and a window is subtle. The main distinction lies
in the way they are displayed. In windows, graph-
ical output immediately becomes visible on screen;
for pixmaps, a drawing must first be copied to the
screen [1]. The content of a pixmap can be trans-
ferred to a window, and vice versa. A bitmap is a
single bit-plane pixmap [1]. Pixmaps are an important
resource in X, as they are used to define icons, cur-
sors, background and border patterns for windows,
and fill patterns [10,11,12].

3.7 Resources and identifiers
All X resources—such as windows, fonts, and
cursors—are stored on the server [1]. Clients use iden-
tifiers and messages (described in Section 3.8) to in-
form about and modify these resources [11,12]. Iden-
tifiers are nothing more than integers a client uses
as a name for a resource on the server [10,11]. The
win variables in Listings 3.1 and 3.2 are such identi-
fiers. The most important server-side resources that
are referenced client-side through a numerical iden-
tifier are the following [10,11,12,31].

Drawable• Window
• Pixmap
• Font
• Colormap
• Graphics context

When a client requests the creation of one such
resource, an identifier must also be specified for
it [10,11]. To create a new window, for instance, the
client specifies several attributes of the window (its
parent, position, width, height, etc.) and an iden-
tifier to associate with the window for further refer-
ence [10,11,12,31].

Max van Deurzen Page 17 of 79

Case Study in Top-Level Window Management Chapter 3. The X Window System

At the protocol level, identifiers are 32-bit inte-
gers with the three most significant bits equal to
zero [10]. The server assigns a set of unique iden-
tifiers to each client in an acceptance packet that
a client receives upon successfully connecting with
the server [1]. These identifiers may subsequently be
used by the client to create resources [10,11,12,31].

After a client has created a resource, its identi-
fier is used to operate on it by sending requests to
the server [10,11]. There are operations that modify a
resource (a request to move a window, for example),
and there are operations that merely ask for infor-
mation about a resource (such as our examples in
Listings 3.1 and 3.2) [10,11,12,31].

No two resources ever have the same identifier;
identifiers for all resources on the same server must
be unique, even if those resources were created by
different clients [11,12]. This is because a client is able
to reference another client’s resource, if it so de-
sires, regardless of whether that resource’s identifier
is within the client’s own assigned set of unique iden-
tifiers [11,12,31]. Concretely, this means that all clients
that are connected to the same server use the same
identifiers to refer to the same resources [10,11].

Say a client creates a window with identifier
0x3e00061, and transfers this identifier to another
application (using domain sockets, for example).
This other application is now able to request for op-
erations to be performed on the window associated
with that identifier. This is an important feature
used by many programs that require access to an-
other client’s windows (such as applications used for
taking screenshots) [10,12,31].

Resources are destroyed at the end of the life of
the client that created them, unless the client explic-
itly instructs the server to retain them [12,31].

3.8 Messages
The X protocol defines four types of messages.
There are requests, which are sent from the client
to the server, and replies, events and errors, all sent
from the server to the client [10].

• Requests are generated by the client and
sent to the server. A request can carry a
wide variety of information, such as the in-
struction to create or move a window, or an
inquiry about the current position of a win-
dow [10].

• Replies are sent from the server to the client.
They are brought about by requests that ask
for information. Requests that instruct the
drawing of a line, for example, do not insti-
gate replies, whereas requests that ask about

the current position of a window, do [10].
• Events are also sent from the server to the

client, though not necessarily in response to
a request. Events convey information about
a device action, or about a side effect of an
earlier request [10]. Data carried by events is
largely varied, because events are the princi-
pal method by which clients retrieve informa-
tion [10].

• Errors are similar to events, but are pro-
cessed differently by clients. Errors are to be
handed to error-handling routines by client-
side programming libraries [10]. These rou-
tines may be defined by the programmer.

Requests that instigate a reply are called round-
trip requests [10]. The use of such requests is ideally
minimalized in client programs as they lower perfor-
mance in case of network delays [10]. A typical exam-
ple of a round-trip request is the call for a window’s
attributes given in Listing 3.1.

3.8.1 Events

Events are the most important type of X message [10];
they are the principal means by which the window
manager communicates with the environment. At
the protocol level, events are packets sent from
the server to a client [10]. They communicate that
something the client may be interested in has hap-
pened [10]. For instance, an event is sent when the
user presses a key on the keyboard, or when a mouse
button has been clicked. Events not only notify of
input, they may also be sent when a window requests
to be mapped, or to indicate the creation of a new
subwindow [10,11,12].

Every event is connected to some window [10]. If
the user clicks a mouse button when the mouse cur-
sor is hovering over a window, the event will be rel-
ative to that window. The events a client receives
need not be requests triggered by one of its own
windows, however [10,11]. A client can request the
server to redirect an event to another client; this
is a means for clients to communicate within the
X environment [11]. Requesting text that is currently
selected in another client is an example of such com-
munication. The resulting event is then sent to the
client that holds the selection [11,12].

Clients may only want to be notified of certain
types of events. As such, events relative to a par-
ticular client are only reported when the client has
previously selected for them [11,12]. For example, a
client may want to be notified of keyboard input
events, but not of mouse input events. Clients spec-
ify which types of future events they wish to receive

Max van Deurzen Page 18 of 79

Case Study in Top-Level Window Management Chapter 3. The X Window System

by setting a specific window attribute [10]. In order
to be able to redraw a window when its contents
have been affected by an external factor, a client
must receive Expose events that inform it that the
window needs to be redrawn [11]. A client will receive
Expose events from the server, only if the client has
previously instructed the server to notify it of such
events. This is done by accordingly setting the event
mask attribute of the window in question [10,11,12].
Consider the following example.

Listing 3.3: Setting a window’s event mask
long mask = ExposureMask | KeyPressMask |

KeyReleaseMask;
XSelectInput(dpy, win, mask);
// win will now receive exposure and keyboard
// input events

In this Xlib example, dpy again represents the
required connection with the X server. win is the
window for which we wish to receive events. The
XSelectInput function requests that the X server
report the events associated with the specified event
mask, mask. Initially, X will not report any of these
events [11]. Setting the event mask attribute of a win-
dow overrides any previous call for the same window,
but not for other windows [11].

If a window is not interested in a particular event,
it usually propagates to the closest ancestor that is
interested, unless the do_not_propagate mask pro-
hibits it to [10,11]. This way, a client is able to receive
and act on events for any of its subwindows [31].

It is possible for different clients to request events
on the same window. They may even set different
event masks on the same window, because the server
maintains a separate event mask for each client and
window pair [10,31]. For example, a client may re-
quest only mouse input events on a window, while
another client requests only keyboard input events
on the same window. There are certain types of
events that can only be selected for on a window by
one client at once, such as event types that report
about mouse button clicks and window management
changes [10,11,31].

3.9 Color
The programmer of a typical X application can spec-
ify color for the background and border of each of
its windows, they can define colors for the cursor,
and they can set foreground and background col-
ors of so-called graphics contexts used for drawing
graphics and text. [11]. For a regular program, one
that uses color merely to create a pleasing aesthetic,
color correctness may not be of all too much im-
portance. However, more complex applications—

such as Computer Aided Design (CAD) programs—
might use color to distinguish physical or logical lay-
ers [11]. Other programs—those used in imaging, for
instance—might require precise gradations of color
to depict real-world data [11]. Therefore it is essential
for an accurate color system to be in place; one that
is to run successfully on the wide variety of screen
hardware available in the X ecosystem [11].

X’s color system is implemented in such a way
that programmers need not port their application
multiple times to cover the spectrum of targeted
display hardware [1]. X also provides for multiple
applications to share a single colormap [1]. This is
important, for applications should always show true
color on the screen [1]. To achieve this, and to si-
multaneously have applications remain device inde-
pendent, pixel values are not programmed explicitly
into applications [1]. The X server instead manages
the colormap, and the colormap is always expressed
in hardware-independent terms [1].

Listing 3.4: Changing colors
const unsigned long RED = 0xFF0000;
const unsigned long GREEN = 0x00FF00;
XSetWindowBackground(dpy, win, RED);
XSetWindowBorder(dpy, win, GREEN);
XClearWindow(dpy, win);
// win's background color is now red
// and its border color is now green

Without the need to tailor to hardware specifics,
we are able to specify a hexadecimal (or hex) triplet
to define a color [11]. A hex triplet is a six-digit,
three-byte hexadecimal number. These bytes rep-
resent the red, green and blue components of the
color. One byte represents a number in the range 00
to FF in hexadecimal notation, or 0 to 255 in dec-
imal notation. This represents the least (0) to the
most (255) intensity of each of the color compo-
nents [11,12]. These values specify colors in the True
Color (24-bit RGB) color scheme. The hex triplet is
formed by concatenating three bytes in hexadecimal
notation, as in our example in Listing 3.4, with RED
and GREEN [11,31].

In the most rudimentary of requests, the client
simply supplies red, green, and blue color values.
The server subsequently allocates an arbitrary pixel
value and sets the colormap so that the pixel value
represents the most accurate color that the display
hardware can provide [1]. To avoid variations in color
representation amongst displays, the server adminis-
ters a color database that clients can use to trans-
late names of colors into red, green, and blue values
appropriate for the targeted display [1].

Max van Deurzen Page 19 of 79

Case Study in Top-Level Window Management Chapter 3. The X Window System

3.10 Graphics operations
Generally, graphics operations are the most complex
part of any windowing system, due to the fact that
many different effects and variations are required to
tailor to a wide range of applications [1]. The most
important of graphics operations in X pertain to im-
ages, text, and exposures. We will go over each of
them in turn.

3.10.1 Images
As alluded to in Section 3.6, X supports two types of
off-screen images: pixmaps and bitmaps. A pixmap
is an N -plane rectangle. N represents the number
of bits per pixel used by the targeted display [1]. A
bitmap is simply a pixmap with N = 1 [1]. Pixmaps
can be created by moving all bits to the server, or
by copying a rectangular region of a window [1].

Bitmaps are mainly used as masks, though sev-
eral graphics requests use bitmaps as a clipping re-
gion [1]. A clipping region is merely a designated area
used to selectively enable or disable the rendering of
graphics [10]. Bitmaps may also be used to create
cursors [1]. Pixmaps are used for storing frequently
rendered images, and as a temporary backing store
for pop-up menus [1]. Pixmaps are most often used
as tiles [1]. Tiles are patterns that are replicated in
two dimensions to cover a region [1].

Graphics and text requests in X specify a logic
function and a plane-select mask to alter the oper-
ation [1]. The function is applied bitwise on corre-
sponding bits of source and destination pixels, but
only on bits specified in the plane-select mask [1].
The most common logic function is the copy op-
eration, replacing the destination pixels with source
pixels in all planes [1].

Another common graphics operation is the bit
block transfer. With it, one region of a window is
composited with another region of the same win-
dow [1]. The source and destination are given as
equally sized rectangular regions of the window [1].
Overlap in the regions passed to this operation will
not affect the result [1].

X supports line drawing with a complex built-
in primitive, which provides for arbitrary combina-
tions of straight and curved line segments, and al-
lows for the creation of both open and closed (filled)
shapes [1]. Solid lines can be drawn by rendering with
a single source pixel value, dashed lines are made
by alternately drawing and not drawing, and pat-
terned lines are created by alternately drawing with
two source pixel values [1]. Closed shapes can be
filled with either a pixel value or a tile [1].

3.10.2 Text
For graphical text output, X incorporates bitmap
font support [1]. Bitmap fonts consist of a matrix of
pixels that represent the image of each glyph in each
face and size. A font comprises up to 256 bitmaps [1].
The height of every bitmap in a font is the same,
while their width may vary [1]. To facilitate the cre-
ation of server-bound font representations, clients
can simply supply the name of a font, instead of
having to copy bitmap images to the server [1]. A
font may then be used—either as a mask or as a
source—to draw strings of text [1].

The server contains numerous buffers that clients
may use to read and write arbitrary strings of
bytes [1]. This functionality is in place to offer cut-
and-paste operations between applications [1]. The
server does not impose interpretation on the data,
though they are mostly used for clipboard purposes
to temporarily store text [1]. In general, cooperat-
ing applications can use these buffers to exchange
resource identifiers and images [1].

Numerous resources are used when performing
graphics operations in X [11]. Most information about
producing graphics—such as the foreground and
background color, the font of text, and line style—
is stored in a special type of X resource called a
graphics context [11,24]. Most requests for graphics
operations include a graphics context. In theory,
the X protocol allows the sharing of graphics con-
texts between applications, though it is generally ex-
pected that applications use their own graphics con-
texts when carrying out operations [11,24]. Sharing
of graphics contexts is not recommended, as client-
side programming libraries may cache their states [11].
Graphics operations can be performed on all draw-
ables [11,31].

Listing 3.5: Displaying text
char ∗text = "TEXT";
XDrawString(dpy, win, gc, x, y, text, n);
// TEXT is displayed within win at x, y
// pixels from win's origin (top left)

In this Xlib example, we draw a string—fittingly
containing the text “TEXT”—to the supplied win-
dow. In the call to XDrawString, we supply a graph-
ics context, gc, that contains information about the
font used, letter spacing, and much more. The des-
ignated position of the text is specified in terms rel-
ative to the origin of the window it will be drawn on,
and thus not necessarily relative to the screen’s ori-
gin. As this is a C interface, Xlib requires the size of
the string to be given, n here.

The most important aspect of any graphics sys-
tem is performance. [24]. To display an application’s
graphical user interface, many different types of op-

Max van Deurzen Page 20 of 79

Case Study in Top-Level Window Management Chapter 3. The X Window System

erations are required, and, depending on rendering
speed, techniques such as dragging images or the
editing of complex graphics may or may not be pos-
sible [24]. X applies what are known as poly routines.
Poly routines are hooks used for drawing [11]. They
operate on an array of objects, which saves both net-
work protocol overhead and set-up costs [24]. This
technique surmises the observation that if an appli-
cation draws a line or a rectangle, it tends to draw
another with high probability. Besides routines for
rendering text and clearing and copying regions, X
has routines for rendering points, lines, rectangles,
arcs, and polygons [24].

3.10.3 Exposures
When a window is (partially) obscured, and then
becomes visible again, the client is responsible for
restoring the contents of the window [1]. The X
server sends an event to a client when it has detected
that one of its windows is in need of redrawing [1].
Naively, a client might respond to such an event by
redrawing the entire window [1]. More sophisticat-
edly, one will redraw only the exposed region [1]. Of
course, when a client has requested the server to ad-
minister a backing store for it, the server itself is
capable of redrawing the window [1]. Even so, re-
lying on client-controlled refresh derives from widely
accepted window management philosophy [1,24].

Applications cannot be written with predeter-
mined top-level window sizes built in. They must
generally work properly with virtually any size, and
must continue to do so as the windows are resized [1].
This is required if applications are to run on a wide
variety of displays under a wide variety of window
management policies [1]. It is reasonable to expect
an application to require a minimum size to function
properly; X allows the client to attach resize hints
to each of its windows, to inform window managers
about size preferences [1]. More of such hints exist,
and are further discussed in Chapter 4.

An Expose event is sent when an area of a win-
dow, of which the content is (partially) destroyed,
is made visible [10,11]. There are numerous situations
that lead to the destruction of window content [11].
One of them is the (partial) covering of a window by
another window. The server generates an Expose
event to notify the client that (part of) the window
has to be redrawn [10,11,12].

3.11 Fonts
The core protocol provides for the use of server-side
fonts [10]. These fonts are accessed directly through
use of the underlying filesystem, or otherwise over

the network from a so-called font server [10]. Fonts
can be loaded and unloaded, meaning that they are
respectively moved into and removed from the font
server. [11]. A font may only be unloaded if it is not
in use by any other clients [11]. A client may send
a request to inquire about font information, such as
its inherent spacing or descent [11,12].

Each font has a set of metrics that describe its
inherent properties, such as spacing and which char-
acters are defined [24]. Every glyph in the font has
left and right bearing information, character width,
and ascent and descent information [24]. Each font
also has a set of properties that together convey
other information, such as whether to superscript
or subscript the font, its spacing values, underlin-
ing and strikeout information, weight, and more [24].
Font properties are extensible, and may additionally
be defined by clients if they so please [24].

The most basic form of graphical text output re-
quests enables the client to change the font and to
add spacing between characters [24]. A line of text
can be printed with a single request [24]. Usually,
glyphs of a font are interpreted as a mask. That is,
only bits in the glyph that are set are rendered [24].
There are also text requests that additionally render
the background of a character, as opposed to just
the foreground [24].

Font naming in X follows the conventions de-
scribed in the X Logical Font Description Con-
ventions (XLFD) [24]. The XLFD specifies how to
name fonts; a font’s name suggests point size, font
face, italic, foundry, and the many other character-
istics [24].

Extensions to the X core protocol exist that move
font access and glyph image generation from the X
server to the X client. There are several advan-
tages linked to client-side glyph management: ac-
cess the details of the font file, application-specific
fonts, rasterization, and the ability to share known
fonts with the environment, like printers [32]. A pop-
ular such extension is the X Render Extension (or
XRender). XRender allows for image compositing
in the X server, which facilitates efficient display of
transparent images and antialiasing [32].

3.12 Input
In X, there are several translations that take place
between the pressing of a key and its interpreta-
tion within a program [10,11]. Every physical key on
the keyboard is associated with a keycode, which is
nothing more than a number in the range 8–255 [11].
The mapping between physical keys and keycodes
is entirely server-dependent, and cannot be modi-
fied by a client. These keycodes only identify the

Max van Deurzen Page 21 of 79

Case Study in Top-Level Window Management Chapter 3. The X Window System

key itself, not what the key in turn maps to, like
the character “k” or the term “Return”. Instead,
these characters or terms are associated with what
are called keysyms [11]. Keycodes represent physi-
cal keys that are pressed or released, whereas the
value of a keysym depends on more than a single key
press [11]. Lastly, there is a mapping from keysyms to
strings. This mapping is local to the client. With it,
a client can, for example, allow the user to map the
function keys to strings, having what the user types
appear as text inside the application [11].

At the protocol level, whenever a physical key is
pressed or released, the server respectively sends an
X event of type KeyPress or KeyRelease to the
client that has input focus [10,11]. Such events con-
tain the following information [11].

• The keycode of the key being pressed
• The state of the modifier keys (Shift, Con-

trol, Alt, etc.) and mouse buttons

It is up to the client to translate from keycode
and modifier information to a keysym [11]. A client
may, for instance, receive an event informing it that
a specific key with keycode 0x61 has been pressed
down, along with the Shift modifier. The client can
convert the keycode into a character or term—in this
case, keycode 0x61 stands for the lowercase charac-
ter “a”—and hence associates this event with the up-
percase character “A” [11]. Keysyms are often refer-
enced in client-side programming libraries by named
symbols, such as XK_A in Xlib [11].

Even though the translation from keycodes and
modifiers into keysyms is done client-side, the ta-
ble that holds this association is maintained by the
server [11]. As such, the table only needs to be stored
in a single, centralized location, and all clients can
access it. Usually, a client only requests this map-
ping to use it for decoding keycodes and modifiers
into keysyms, though a client is also able to change
it, if it wants to [11]. Since this mapping is server-
wide, however, changes to the table will affect all
clients [11]. Normal applications should therefore not
want to make changes to this table.

A modifier is a key that, when pressed, changes
the interpretation of other keys [11]. The Shift and
Alt keys are such modifiers. Each modifier may be
associated with more than one key on the keyboard.
It is quite common for keyboards to have more than
one key for a single modifier. Many keyboards have
two Shift keys, for example. Although the two keys
produce different keycodes when pressed, they both
map to the same modifier within the X environ-
ment [11].

The X server also reserves modifier mappings for
the mouse buttons [11]. Mouse buttons cannot be

mapped or unmapped, only permuted [11]. This is
mostly useful for interchanging left and right mouse
buttons for left-handed users.

Within X, there are two modes of keyboard man-
agement: real-estate and listener [1]. In real-estate
mode, the keyboard always follows the mouse cursor.
That is, keyboard input is always directed to what-
ever window the mouse cursor is hovering over [1]. In
listener mode, all keyboard input is directed to a spe-
cific window, regardless of the position of the mouse
cursor [1].

There are times when an application might wish
to bypass normal keyboard or pointer event propa-
gation, in order to receive input independent of the
position of the pointer, and independent of keyboard
management mode. This is the purpose of grabbing
the keyboard and mouse [11]. A grab is a state within
the X environment, in which all keyboard or mouse
events are directed to a single client [11]. It is pos-
sible for a client to request all keyboard and mouse
events to be grabbed, or for it to arrange that only
certain keyboard and mouse events are directed to
it [11]. Until the grab is subsequently released, all
specified keyboard and mouse events are sent to the
client that has initiated the grab [11]. Only the grab-
bing client will receive these events; other clients will
not [11]. One reason for grabbing is to handle a series
of events contiguously, without the intervention of
unwanted events.

A client initiating a grab must specify which win-
dow is to be grabbed. The specified events are sent
to the initiating client, as if they were relative to the
window being grabbed [11]. Other clients do not re-
ceive these events, even if they have been set in the
grabbed window’s event mask [11].

X implements active and passive grabs. An ac-
tive grab takes effect immediately, whereas a passive
grab becomes active only after a certain combination
of keys or buttons is pressed [10,11].

Listing 3.6: Grabbing the mouse
int button = 1; // button 1 is the left mouse button
int modifiers = ShiftMask | ControlMask;
unsigned mask = ButtonPressMask | ButtonReleaseMask;
XGrabButton(dpy, button, modifiers, win, true, mask,

GrabModeAsync, GrabModeAsync, None, None);
// win will now receive events informing it when
// a button has been pressed or released, but
// only if at the time of pressing or releasing,
// the Shift and Control keys are pressed down

The XGrabButton function establishes a passive
grab. If in the future, the mouse is not already
grabbed, the specified button (here, the left mouse
button) is logically pressed down when the specified
modifier keys are logically down, and no other but-
tons or modifier keys are logically down, then the

Max van Deurzen Page 22 of 79

Case Study in Top-Level Window Management Chapter 3. The X Window System

pointer becomes actively grabbed [11,31]. Once these
conditions are met, a ButtonPress event is reported
to the grabbing client [11]. Since, in our example, the
grab’s event mask consists of both ButtonPress
and ButtonRelease events, the same will occur
when the button is logically released, provided that
analogous conditions are met [11,31].

Grabbing the keyboard is similar to setting the
keyboard focus window [11]. At the protocol level,
giving a window keyboard focus generates a FocusIn
event for the window gaining focus, and a FocusOut
event for the one losing it [10,11]. Clients usually
respond to such events by updating visual cues.
A terminal emulator may do this by changing the
command-line cursor, for example. A window man-
ager will usually govern the transition of focus be-
tween clients, and will add its own visual cues, such
as title bars that indicate which client is currently fo-
cused by, for instance, changing its background color.
If mouse grabs and ungrabs cause the mouse to move
in or out of a window, they generate EnterNotify
and LeaveNotify events, respectively [10,11].

A request for grabbing can include a request for
freezing the keyboard or the mouse cursor [11]. The
difference between the two, is that grabbing changes
the which client receives events, whereas freezing
ceases their delivery altogether [11,12]. The events a
frozen window would normally instigate are instead
queued up, such that they can be delivered once the
freeze is released. [11,12].

It is also possible for a client to perform a grab
on the server itself. Doing so will cause no requests
to be processed by the server, except for those com-
ing from the client that initiated the grab [11,12].

3.13 Properties and atoms
In essence, a property in X is nothing more than a
means by which clients communicate arbitrary data
with each other [11]. At the protocol level, a property
is a packet of named, typed data that is associated
with a window [11]. A client’s properties are always
public, in the sense that they are available to all other
clients running under the same server [10,31]. Prop-
erties are an essential part of the X environment,
for without them, there would be no standardized
way for clients to impart their preferences and re-
quirements [11,31]. In fact, without them, X window
managers would not nearly be as effective as they
are with them (as discussed further in Chapter 4).

Properties have a string name and a unique nu-
merical identifier, called an atom [11]. Atoms for
properties are analogous to identifiers used to refer
to server resources, except that both an atom and
a window are needed to uniquely identify a prop-

erty [11]. The same atom may be used to identify
a property on one window as on another—only the
window is different in the calls to set or read this
property on the two windows. In client code, prop-
erties are never explicitly referred to; they are un-
derlying data managed by the server—just as with a
window and its identifier [11].

Property name strings are typically all upper
case, with words separated with underscores, such
as WM_TRANSIENT_FOR [11]. The protocol specifica-
tion suggests that names of atoms used for private
vendor-specific reasons should begin with an under-
score [31]. To prevent conflicts among software li-
braries and organizations, additional prefixes should
be chosen (e.g. _KRANEWM_SIDEBAR_WIDTH) [2,31].

A property also has a type, such as string, or
integer—it can even be an atom [11,31]. Because
these types are encoded using atoms, arbitrary new
types can be defined by the client programmer. Data
of only a single type may be associated with a prop-
erty name [11,31].

Listing 3.7: Retrieving a window property
Atom state = XInternAtom(dpy, "_NET_WM_STATE");
Atom _a, prop;
int _i;
unsigned long _ul;
unsigned char ∗prop_raw = NULL;

XGetWindowProperty(dpy, win, state, 0L, sizeof prop,
false, XA_ATOM, &_a, &_i, &_ul, &_ul, &prop_raw);

prop = ∗(Atom ∗)prop_raw; // untyped data to Atom
XFree(prop_raw); // free X-allocated memory
// use prop, which in this case is the state of
// win, as defined in the EWMH (retrieval may
// fail; error handling redacted)

Because properties can hold data of any type,
comprehensive client-side administration is required.
In this example, we want to retrieve the state of
the supplied window, as defined in the EWMH (Sec-
tion 4.2). We pass the _NET_WM_STATE property
name to the XInternAtom function, which queries
the server for the atom associated with this property
name [11]. Using the atom, we can ask the server for
the data belonging to the supplied window for this
property, by calling the XGetWindowProperty func-
tion [11]. In this case, the data returned is an atom
itself, though it is initially untyped, so we must con-
vert it to the appropriate type before using it [3,31].

The core protocol has a set of predefined prop-
erties and associated atoms, which are always avail-
able for use by the client programmer [11]. It is es-
sentially an implementation trick to avoid the cost
of repeatedly interning (i.e. retrieving an atom from
the server) atoms required upon startup of all graphi-
cal applications. Interning requires a handshake with
the server, and can be a costly process if done (un-

Max van Deurzen Page 23 of 79

Case Study in Top-Level Window Management Chapter 3. The X Window System

necessarily) often [10,11]. An example of a predefined
atom is XA_WM_NAME; it represents and is used to re-
trieve the title of a window [11].

Client programmers are themselves free to de-
fine arbitrary information, store it using properties,
and associate it with windows within the environ-
ment [31]. This may be useful for a group of related
clients, amongst which several properties and atoms
can be defined, that will have a meaning known to
all clients in the group [31].

At server start-up, properties do not have any
contents until a client or the window manager sets
them [11].

One of the most important uses of properties is
to communicate information from applications to the
window manager and vice versa [11]. A client may,
for instance, set a property on its top-level window,
to specify the range of sizes it prefers. A good win-
dow manager will take such client preferences, called
hints, into account, and process them accordingly.
Many such properties, collectively known as stan-
dard properties, are defined in standardized proto-
cols, which we will discuss further in Chapter 4 [11].

3.14 The X window manager
X does not mandate any particular type of window
manager; it does not even require a window manager
to be running at all [10]. We saw that X operates
in a client-server model, in which the server controls
one or more physical display devices and input de-
vices, and the clients are the applications that wish
to interact with these devices and display their ap-
plication interfaces to the user (Section 3.2). Win-
dow managers in X only concern themselves with
the management interface, while leaving the man-
agement of each application interface to its respec-
tive client. In this schema, there is no separate role
for the programs that form the desktop environment.
This means that all programs that are not the X
server are clients, no matter the responsibility of the
program [10]. In particular, this means that the win-
dow manager is a client like any other application,
even though it intuitively has more rights and re-
sponsibilities than those other applications. In fact,
the window manager must be in control of the other
applications, and may decide whether to accept or
reject requests it receives from them. Despite this
observation, the window manager operates entirely
in user space; it does not require any superuser privi-
leges to function [10,11]. To achieve this, it establishes
a connection with the X server and makes use of
a special set of APIs that only it has access to [11].
The X server makes sure that only a single window
manager is running at a time, by only allowing one

client access to these APIs at a time [10]. As we shall
discuss in Chapter 4, the window manager controls
and communicates with other applications through
the X server by using two mechanisms: properties
and messages. The following diagram illustrates the
interactions between entities in the X environment.

Application 2

Widget
Toolkit

X Server

Display
Devices

Application 1
Window
Manager

GPU Input
Devices

Interactions in the X environment

An important concept for X window managers is
substructure redirection. When no window manager
is running, an application that wants to do some-
thing with a window—like move it or resize it—sends
a request that will be directly processed by the X
server [10]. A window manager of course needs to in-
tercept these requests, to decide whether or not to
allow them. Reparenting window managers, for ex-
ample, need to know when new windows enter the
environment, such that they can decorate them by
adding a frame. If that window is resized, then the
frame around it also needs to be resized accordingly.
Substructure redirection is the mechanism that al-
lows window managers to not only be notified of
these requests, but also to accept, deny or alter
them [11].

When a client registers for substructure redirec-
tion on a window, the registering client will receive
all matching requests on any direct child window of
the targeted window [11]. None of these requests will
be executed by the X server unless they are accepted
by the window manager. The X server therefore redi-
rects any requests on the targeted window to the
registering client [11]. The structure refers to the at-
tributes of a window, that is, its position, size, bor-
der width, stacking order and mapping status. The
substructure is any of these statistics about any child
of a particular window [11]. Only direct children are
targeted by substructure redirection; a request on a
child of a child will not be received by the register-
ing client [11].

Registering for substructure redirection on the
root window will allow the window manager to in-
tercept any change to the configuration of any child

Max van Deurzen Page 24 of 79

Case Study in Top-Level Window Management Chapter 3. The X Window System

of the root window. But as we have seen, all top-
level windows in the X environment are children of
the root window, and so rerouting client window re-
quests to non-reparenting window managers is quite
straightforward. If a window manager reparents its
windows, however, it is harder to intercept client win-
dow requests, because the frames will be the direct
children of the root window. A reparenting window
manager will therefore need to do some administra-
tion to make sure it stays in the know of every client
window’s behavior.

The X server allows only one client to regis-
ter for substructure redirection on any given window
at a time. The request for registering substructure
redirection will fail if another client has already suc-
cessfully done so on the same window, and has not
since unregistered, disconnected from the X server,
or crashed [10,11]. Since every window manager must
register for substructure redirection on the root, in
X, it is not possible for two or more window man-
agers to run on the same display simultaneously [11].

3.15 Wayland
Wayland is developed by a group of volunteers as a
free and open source community-driven project, with
the intention of replacing the X Window System with
a modern, simpler windowing system in Linux and
other Unix-like operating systems [33].

Like the X Protocol, Wayland is but a protocol
that specifies the communication between a window-
ing system and its clients [33]. A windowing system
implementing the Wayland protocol is called a Way-
land compositor [33].

The developers of the protocol also provide a ref-
erence implementation of the protocol, written in C,
named Weston [33]. Weston can run as an X client or
under Linux kernel mode setting (KMS), and ships
with a few demo clients [33]. The Weston composi-
tor is a minimal and fast compositor that is suitable
for many embedded and mobile use cases [33].

The compositor can be implemented in several
ways. It may be a standalone windowing system,
running on Linux KMS and evdev input devices, an
X application, or a Wayland client itself [33]. The
clients can be traditional applications, X servers, or
other windowing systems [33].

3.15.1 Architecture
To discuss the Wayland architecture, and to show
how it differs from that of X, we will follow an event
from an input device to the point where the change
it propagates appears on screen. We assume a com-
positing window manager is running on top of X,

as this best demonstrates the problem with X, and
Wayland’s approach to alleviating it.

In X, the following sequence of events takes
place [33].

1. The kernel receives an event from an input
device, and sends it to the X server through
the input driver.

2. The X server determines for which window
the event is meant, and sends it to the clients
that have stated interest in it (Section 3.8.1).

3. The interested clients decide what to do with
the event. Most of the time, the applica-
tion interface of the window instigating the
event will need to change, if, for example,
the mouse is hovering over a link that must
change color, or if a checkbox was clicked.
After processing the event, the client sends a
rendering request to the server.

4. When the X server receives the rendering re-
quest, it sends it to a driver to have the
hardware perform the rendering. Because the
compositor may need to apply effects in re-
sponse to the event, it requests the X server
to calculate the clipping region of the render-
ing, and to send it a damage event for that
region.

5. The damage event tells the compositor that
something has changed in the window, and
that it has to recomposite the part of the
screen defined by the supplied clipping mask.
Usually, the compositor now sends the com-
posited image back to the X server for ren-
dering.

In step 2 of the above sequence, because a
compositor (Section 2.2.4) may perform transforma-
tions on a window (such as scaling and animations),
and thereby controls the window’s final location and
shape on screen, the X server cannot with certainty
say that it knows exactly which part of the window
is affected by the event. This is a direct consequence
of the fact that compositing features are not built
into the server. A compositor in X is—just as any
window manager in X—a client of the server, and
therefore interacts with the server in much the same
way as any client does. This means that only after
the server has rendered a window and its content,
the compositor applies its effects.

The flaw here is obvious. The compositor is re-
sponsible for rendering everything on the screen, yet
it first has to go through the X server to achieve this.
Essentially, the X server has now become an interme-
diary between applications and the compositor, and
between the compositor and the hardware.

Max van Deurzen Page 25 of 79

Case Study in Top-Level Window Management Chapter 3. The X Window System

In Wayland, the compositor sends input events
directly to the clients, and lets clients send damage
events directly to the compositor. A change in the
environment follows the following sequence of events
in Wayland [33].

1. The kernel receives an event from an input
device, and sends it to the Wayland compos-
itor through the input driver.

2. The compositor determines for which window
the event is meant, and knows the exact re-
gion affected, because it is aware of what is
on screen, and it understands which effects
and transformations are applied to which el-
ements.

3. The client is responsible for rendering its ap-
plication interface in response to the event.
It subsequently sends a damage request to
the compositor to indicate which region has
changed.

4. The compositor collects damage requests
from all its clients, and then recomposites
the screen.

As the windowing system incorporates composit-
ing abilities, the aforementioned problems with X are
circumvented [33].

Max van Deurzen Page 26 of 79

Chapter 4
Policy in X

X was built with the intention to specify only mech-
anism, and not policy [10,13]. A programmer looking
to write an application for X is handed a program-
ming interface and a lot of freedom in deciding how
the application is to behave. Thanks to this, an
application will almost always operate correctly in
isolation, given there are no flaws in its basic func-
tioning. However, a user seldomly uses a graphical
application without also concurrently running other
programs (like a window manager). What should
happen when two programs wish to share informa-
tion about the graphical environment? Is there a
shared clipboard that allows the user to copy infor-
mation from one program, and paste it in another?
How does a tiling window manager know whether a
program’s window is a dialog box or not, such that
it can decide whether or not it should tile it along
with the other windows, or have it operate in the
floating state? Different programmers may choose
to define policy in vastly different ways. Not only the
communication medium may be different, but also
data representation and semantics. Immediately it
becomes clear that even though it is beneficial for
a windowing system to be as simple as possible—by
only offering the most rudimentary of operations for
constructing applications—a graphical environment
without policy only leads to unexpected (faulty) pro-
gram behavior and ultimately to user exasperation.

To specify policy within the X environment, an
inter-client communication protocol is defined on top
of the X protocol [2,13]. There are several standard
protocols widely established, of which we will discuss
the most important two here.

4.1 ICCCM
The Inter-Client Communication Conventions Man-
ual (most often referred to as the ICCCM) is a stan-
dard communication protocol for the X Window Sys-
tem. It defines policy for communication between
clients within the X environment through use of the
X server. Most of the standards defined in it pertain
to communication between regular X clients and the
window manager, though it also proposes protocols
on selection management, cut buffers, session man-
agement, manipulation of shared resources, and de-
vice color characterization. In short, when it comes
to creating a cohesive environment in which graph-
ical applications can communicate with each other
seamlessly, it tries to cover everything that the X

Window System lacks. The ICCCM was designed at
the X Consortium (which has since been absorbed
by The Open Group) in 1988, just a few years after
the initial release of the X Window System.

Throughout the rest of this section, the portions
of the ICCCM relevant to our case study (the de-
velopment of an ICCCM and EWMH compliant top-
level tiling window manager, detailed in Chapter 7)
will be discussed. In doing so, we will be continually
referencing the manual [2], only explicitly referring to
other sources whenever they are used.

The ICCCM proposes conventions its authors
deemed suitable, without attempting to enforce any
particular user interface. To also not impose any
particular programming language or system architec-
ture, the conventions in it are expressed only in terms
of protocol operations, not in any specific program-
ming interface related denotation.

To impose semantics on property names, the
protocol defines six name spaces amongst which a
particular atom can have some client interpretation.
An atom can belong to multiple name spaces, and
the property associated with it depends on the name
space (context) from which it is called. The name
spaces are as follows [11].

• Property name
• Property type
• Selection name
• Selection target
• Font property
• ClientMessage type

The first two deal with generic properties (as de-
scribed in Section 3.13) that do not belong to any
of the other name spaces. The third and fourth gov-
ern properties related to selections. Selections in X
are the most powerful method of general communi-
cation between clients. They establish a dialogue be-
tween two applications, juxtaposed with cut buffers
which only set up a one-way communication chan-
nel [11]. Selections are also used to realize a shared
clipboard in X [11]. Font properties evidently specify
anything to do with fonts, and ClientMessage type
properties pertain to X events manually generated by
a client (as opposed to automatically by the server)
using the XSendEvent function [11].

As we are primarily concerned with window man-
agement in this paper, we will only cover that part
of the ICCCM that deals with communication be-
tween clients and the window manager. An inter-
ested reader is referred to the manual itself for a

Max van Deurzen Page 27 of 79

Case Study in Top-Level Window Management Chapter 4. Policy in X

rigorous description of and discussion on peer-to-
peer selection and cut-buffer communication, session
management, manipulation of shared resources, and
device color characterization.

To enable window managers to assume their ex-
pected role of mediating clients’ competing demands
for screen space and other resources, several conven-
tions must be in place that dictate on one hand how
clients should communicate their desires, and on the
other how the window manager is to retrieve from
clients the information it requires to do its job well.
These conventions should be defined in such a way
that a normal client should neither know nor care
which or whether a window manager is running. Of
course, when no window manager is running, some
client functions will not be supported. For example,
without a window manager active, the concept of
being iconified does not apply to a client, as iconifi-
cation is a feature implemented by the window man-
ager, and not by the client.

4.1.1 Client properties
Clients should always act as they would in the ab-
sence of a window manager, with the following three
exceptions.

• The client should expose hints to the win-
dow manager about resources it would like
to obtain;

• the client should cooperate with the window
manager by accepting resources allocated to
it, even if they are not explicitly requested;
and

• the client should be prepared for resource al-
locations to change at any time.

A window manager should always only be con-
cerned with top-level windows—that is, direct chil-
dren of the root. If the window manager reparents
the clients it manages, it will control the placement
and size of the frame window, but read properties
from the original window (the child of the frame). A
client should place certain properties on its top-level
windows to inform the window manager of behav-
ior and resources it desires. For any properties not
defined by a client, the window manager will have
defaults it assumes apply. Clients that have spe-
cific requirements must therefore always supply as-
sociated properties, and should not rely on the win-
dow manager’s assumptions. The window manager
will examine properties set by the client and moni-
tor them for changes. The properties a client should
always want to set are the following.

• WM_NAME

• WM_ICON_NAME
• WM_CLASS
• WM_TRANSIENT_FOR
• WM_NORMAL_HINTS
• WM_HINTS
• WM_PROTOCOLS

We will briefly cover each of them in turn.

WM_NAME

The WM_NAME property has type TEXT, and is an un-
interpreted string that the client wants associated
with the window. The value set in this property will
usually be the title or name of a window. A window
manager may, for example, use this string in the title
bar of the frame around the window, or in the sta-
tus bar to indicate which window currently has input
focus.

Window managers are expected to display this
information; ignoring WM_NAME is behavior not in ac-
cordance with the ICCCM. Clients may assume that
at least part of this string will be visible to the user.
Of course, even if a window manager displays the
string in question, it is not guaranteed it will be vis-
ible to the user at all times. The window may be
partially off-screen, or otherwise covered. The client
programmer must therefore never encode WM_NAME
with application-critical information, or use it to an-
nounce changes of the application’s state such as to
elicit a timely user response.

WM_ICON_NAME

The WM_ICON_NAME property (of type TEXT) is sim-
ilar to WM_NAME, in that it is an uninterpreted string
that the client wants to be interpreted by the win-
dow manager as being the title or name of the win-
dow. As its name suggests, this string will be dis-
played when the window is iconified. Clients should
not themselves attempt to display this information
in their icon pixmap or window, and should instead
rely on the window manager to do so.

WM_CLASS

The WM_CLASS property is of type TEXT and com-
prises a string without control characters that con-
tains two consecutive null-terminating strings. It
specifies the instance and class names to be used
by the client and the window manager to retrieve
resources for the application and identify the client.
This property must be set when a window leaves the
WithdrawnState state, and can only be changed
when in the WithdrawnState state.

Max van Deurzen Page 28 of 79

Case Study in Top-Level Window Management Chapter 4. Policy in X

WM_TRANSIENT_FOR

The WM_TRANSIENT_FOR property is of type WINDOW,
and contains the ID of a different top-level window.
A window that sets this property should be a pop-up
or dialog window of the window represented by the
ID set in the property. Window managers will often
decide not to decorate (reparent) such windows, or
otherwise treat them differently.

WM_NORMAL_HINTS

The WM_NORMAL_HINTS property is an important
property used by a client to indicate size and position
preferences to the window manager. A window man-
ager that complies with the ICCCM will take these
values in account, and respect them when possible.
The type of this property is WM_SIZE_HINTS, and its
contents are the following.

field type default
flags CARD32

pad 4 × CARD32

min_width INT32 base_width

min_height INT32 base_height

max_width INT32

max_height INT32

width_inc INT32

height_inc INT32

min_aspect (INT32, INT32)
max_aspect (INT32, INT32)
base_width INT32 min_width

base_height INT32 min_height

win_gravity INT32 NorthWest

The min_width, min_height, max_width and
max_height members respectively specify the min-
imum and maximum window sizes that still allow
the application to be useful. The width_inc and
height_inc members define an arithmetic progres-
sion of sizes (minimum through maximum) into
which the window prefers to be resized. The
min_aspect and max_aspect fields represent ratios
of x and y; they allow an application to specify the
range of aspect ratios it prefers. The base_width
and base_height members are set by an applica-
tion to specify the exact size it wishes to be given
upon startup, and it is the base size to which size in-
crements are added.

The win_gravity member is a point within the
body of the window (for example, East or Center),
including any frame and border, general to which
the window manager should interpret the rest of the
data.

The pad field is added padding for backwards
compatibility, and the flags bit definitions are as
follows.

name value field
USPosition 1 User x, y

USSize 2 User width, height

PPosition 4 Program x, y

PSize 8 Program width, height

PMinSize 16 min_width, min_height

PMaxSize 32 max_width, max_height

PResizeInc 64 width_inc, height_inc

PAspect 128 min_aspect, max_aspect

PBaseSize 256 base_height, base_width

PWinGravity 512 win_gravity

The first two bits indicate to the window man-
ager that the client’s request for changing the posi-
tion or size of the window was generated by the user.
The rest of the bits represent requests generated by
the program without direct user involvement. A dis-
tinction is made because a user’s wishes should gen-
erally have precedence over a program’s suggested
position and size hints. User-specified hints allow a
window manager to know that the user specifically
instructed a window to be moved or resized, and that
further interaction is not required. An example of
user-specified position and size constraints would be
xterm, when ran with the -geometry flag, allowing
the user to determine the size and position of the
window on startup [34].

WM_HINTS

The WM_HINTS property is used to communicate to
the window manager anything not covered by the
WM_NORMAL_HINTS property and several strings that
require separate properties, such as WM_ICON_NAME.
Its type is WM_HINTS, and the contents of the prop-
erty are as follows.

field type
flags CARD32

input CARD32

initial_state CARD32

icon_pixmap PIXMAP

icon_window WINDOW

icon_x INT32

icon_y INT32

icon_mask PIXMAP

window_group WINDOW

Max van Deurzen Page 29 of 79

Case Study in Top-Level Window Management Chapter 4. Policy in X

The input member communicates to the win-
dow manager the input focus model used by the ap-
plication. Applications that expect input but never
explicitly set focus to any of their subwindows (push
model focus management) should set this mem-
ber [11]. Applications that set input focus to their
subwindows only when the window manager assigns
focus to their top-level window should also set this
member [11]. Applications that independently man-
age their own input focus by explicitly setting focus
to one of their subwindows whenever they want key-
board input (pull model focus management) should
not set this member, and neither should windows
that never expect keyboard input focus [11].

Pull model window managers should enable push
model applications to get input by setting input focus
to the top-level windows of applications that have its
input member set [11]. Push model window managers
should assert that pull model applications do not
break them by resetting input focus to PointerRoot
when appropriate (for instance, when an application
with its input member set sets input focus to one of
its subwindows) [11].

The icon_pixmap member represents a pixmap
that may be used as an icon, and the icon_window
member, if set, should contain the ID of the window
that the client wants to use as its icon. The icon_x
and icon_y fields indicate to the window manager
the preferred position of the icon. Of course, the
window manager ultimately chooses the position of
the icon, and the client should therefore not assume
the acknowledgement of this hint. The icon_mask
defines which pixels of the icon pixmap should be
used in the icon, allowing for nonrectangular icons.

At any time, a client can be in one of three states:
NormalState, IconicState or WithdrawnState.
The NormalState state suggests that a client’s
top-level window is viewable as normal. When a
client is in the IconicState state, its top-level win-
dow is not viewable, but iconified, whatever that
means for the window manager, because, as men-
tioned earlier, iconification is implemented by the
window manager and not by the client. If it is set
in icon_window, the icon window will be viewable;
otherwise the icon pixmap (icon_pixmap) or the
string in WM_ICON_NAME will be displayed. A client
in the WithdrawnState state neither has its top-
level window nor icon visible. A window manager
is allowed to implement states with different (self-
defined) semantics if it so desires. A client’s ini-
tial state is captured in the initial_state field.
Newly created top-level windows always start in the
WithdrawnState state, and only the client can tran-
sition itself out of the WithdrawnState state, before
the window manager takes control and the initial

state is effectuated.
The window_group member allows a client to

specify that the window belongs to a group of win-
dows; window managers may provide facilities for
manipulating a group as a whole.

The flags bit definitions are the following.

name value field
InputHint 1 input

StateHint 2 initial_state

IconPixmapHint 4 icon_pixmap

IconWindowHint 8 icon_window

IconPositionHint 16 icon_x, icon_y

IconMaskHint 32 icon_mask

WindowGroupHint 64 window_group

MessageHint 128 obsolete
UrgencyHint 256 urgency

The MessageHint bit, if set in the flags field,
indicates that the client is using an obsolete window
manager communication protocol.

The UrgencyHint flag, if set in the flags field,
is used by a client to communicate that the contents
of a window are urgent, in the sense that a prompt
user response is required. Window managers must
do their best to induce the user to focus on this win-
dow as long as the flag in question is set.

A window manager is free to assume values it
deems convenient for all fields of the WM_HINTS prop-
erty that have not been defined by a client.

WM_PROTOCOLS

The WM_PROTOCOLS protocol has type ATOM[], and
defines a list of atoms. Each atom in the list spec-
ifies a communication protocol the client is willing
to use to talk with the window manager. A client is
not obligated to set this property; if no value is set,
then the client does not wish to participate in any
window manager protocol.

4.1.2 Window manager properties
The properties discussed in Section 4.1.1 are those
defined by the client to communicate information to
the window manager. There are also properties that
the window manager sets on clients’ top-level win-
dows and on the root window, which we will discuss
next. The most important properties that the win-
dow manager is concerned with are the following two.

• WM_STATE
• WM_ICON_SIZE

Max van Deurzen Page 30 of 79

Case Study in Top-Level Window Management Chapter 4. Policy in X

Furthermore, the ICCCM stipulates that a win-
dow manager should interfere in the following situa-
tions.

• A window requires a change in state;
• a window wishes to be configured, that is,

resized or repositioned;
• a change has occurred or is to occur in a

window’s attributes;
• a window wishes to acquire input focus;
• a window is to be iconified;
• a client wants to pop up a window; or
• a window has been added to or removed from

a window group.

We shall now briefly elaborate on each of these
points.

WM_STATE

The WM_STATE property has type WM_STATE, and
should be set by the window manager on all top-level
client windows that are not in the WithdrawnState
state.

There exist programs that require information on
top-level client windows in the X environment. When
a reparenting window manager is running, such a
program does not know whether the top-level win-
dow it targets is a frame or a client window. An
example of such a program is xprop, which is part
of the X.Org Foundation Distribution (Appendix C).
xprop will ask the user to click a top-level window
on which it is to operate. To convey to the envi-
ronment which window is the top-level window of a
client, the window manager must set the WM_STATE
property on this window. A client should recursively
search the window hierarchy until it finds a window
with this property set.

WM_ICON_SIZE

The WM_ICON_SIZE property is set on the root
window by the window manager, and is used to
place constraints on sizes of icon windows and icon
pixmaps. The contents of this property are the fol-
lowing.

field type
min_width CARD32

min_height CARD32

max_width CARD32

max_height CARD32

width_inc CARD32

height_inc CARD32

The fields in this property are very similar to
those in WM_NORMAL_HINTS, which a program uses
to encode window size hints that are to be taken into
account by the window manager.

Clients that wish to customize the appearance of
their icon must take this property into account.

Changing the state of a window

As we have seen, a client window can be in one
of three states (WithdrawnState, NormalState or
IconicState) or in a state with semantics the win-
dow manager implements itself. State changes can
be imposed by the window manager or precipitated
by the client to which the window belongs. New win-
dows start out in the WithdrawnState state, and
possible subsequent transitions are the following.

from to
WithdrawnState → NormalState

WithdrawnState → IconicState

NormalState → IconicState

NormalState → WithdrawnState

IconicState → NormalState

IconicState → WithdrawnState

The first two specify transitions out of the
WithdrawnState state; the initial_state field of
the WM_HINTS property must be set to NormalState
and IconicState respectively at the time the client
maps the window. The rest of the transitions take
place when the window is actively in use, and oc-
cur when the window is iconified, deiconified and
unmapped.

Reparenting window managers must make
sure to unmap windows that transition into the
IconicState state; merely unmapping the frame
window is not sufficient.

A window manager must update or remove the
WM_STATE property when a client withdraws a win-
dow. Clients that wish to re-use a window after is-
suing a withdrawal must wait for the withdrawal to
complete, by waiting until the window manager has
removed or updated the aforementioned property.

On transitions from the NormalState state to
IconicState, a client must send a ClientMessage
event to the root window. This event must contain
the window to be iconified, the WM_CHANGE_STATE
atom, and the IconicState value.

Configuring a window

To configure a window, clients can send a
ConfigureWindow request to the server. Using this

Max van Deurzen Page 31 of 79

Case Study in Top-Level Window Management Chapter 4. Policy in X

request, several attributes can be changed: the win-
dow’s position on screen, its size, its border width,
and its place in the stack (which is used by the
windowing system to determine which windows are
to be drawn in front of or behind which others on
screen). The position is determined relative to the
root window’s origin, irrespective of any frames that
may be around the window if reparenting has oc-
curred. In determining the position, the most re-
cently set value for win_gravity is taken into ac-
count. For example, if the last known value for
win_gravity for a window was set to East, and
a request to reposition that window has been re-
ceived, the center of the right edge of the window will
be exactly positioned on the supplied coordinates.
Configure requests are similar to initial geometry
preferences that are set in the WM_NORMAL_HINTS
property (read when a window transitions from the
WithdrawnState state) and are interpreted in the
same way by the window manager. Clients are not
guaranteed that the window manager will adhere
to these requests, and must therefore be prepared
to take on any size and position; a tiling window
manager, for example, has its own arrangement pol-
icy, and will ignore ConfigureWindow requests that
state the wish to alter the window’s dimensions.

A window manager generally has three ways to
respond to a ConfigureWindow request:

• The window manager does not allow any-
thing the client requests, and the window the
request was issued for remains unchanged;

• the window manager moves or restacks the
window, without resizing it or changing its
border width; or

• the window manager resizes the window
or changes its border width (regardless of
whether it was also moved or restacked).

In the first situation, the client will receive a syn-
thetic ConfigureNotify event informing it of the
unchanged dimensions of the window. The position
supplied is in the root coordinate system, that is, rel-
ative to the root window’s origin. The client will
not receive a real ConfigureNotify event, as no
change has really taken place. In the second situ-
ation, the client will also receive a synthetic event
of the same type, this time containing the new di-
mensions of the window. The client may also receive
a real ConfigureNotify event, only if that client’s
top-level window has not been reparented by the win-
dow manager. In that case, the synthetic event will
follow the real one. In the third situation, if the
client has selected for StructureNotify events to
be received, a real ConfigureNotify event will be
sent containing the new dimensions of the window.

All of these synthetic events contain coordinates that
are relative to the root window’s origin, while the co-
ordinates in the real ConfigureNotify events are in
the window’s parent’s space (i.e., relative to the par-
ent’s origin). Both real and synthetic events are sent
because the client may want to use them for different
purposes.

A client must note that its windows’ borders may
not be visible, as window managers are free to re-
move them, and often do when applying reparenting
techniques. A client’s attempts to alter the border
width will then likely be overridden, and set to zero.
Clients must therefore never depend on changes to a
window’s border width, and must never assume that
the border will be visible.

Clients that issue requests to change a window’s
place in the stack may fail when that window has
been reparented by the window manager. Window
managers are always free to choose a window’s place
in the stack as they see fit. As such, clients must
never rely on the stacking order it suggests to a win-
dow manager.

Altering a window’s attributes

A window in the X environment has several
attributes that are supplied upon window cre-
ation. These attributes can be changed using the
ChangeWindowAttributes request, although most
of them are private to the client:

attribute accessibility
background pixmap private
background pixel private
border pixmap private
border pixel private
bit gravity private
window gravity public
backing-store hint private
save-under hint public
event mask public
do-not-propagate mask private
override-redirect flag public
colormap private
cursor private

The attributes that are private to the client will
never be altered by a window manager. The four
public ones may, and often will change to fit the
window manager’s needs. The window gravity of a
client’s top-level window will sometimes be changed
by a reparenting window manager, depending on its
decoration policy. A client can set the save-under

Max van Deurzen Page 32 of 79

Case Study in Top-Level Window Management Chapter 4. Policy in X

hint on its top-level window (which asks the X server
to save the contents of any windows that are ren-
dered below it and have been obscured), but must
take into account that it can be overridden by the
window manager. Every window has per-client event
masks, as we have seen in Section 3.8.1. As a result,
clients are allowed to select for any events deemed
convenient, irrespective of any events the window
manager may be selecting for. Some events can only
be selected for by a single client; the ICCCM states
that a window manager must never select for any of
these events. Clients are discouraged from setting
the override-redirect attribute on top-level windows,
except when popping up windows or redirecting re-
quests. The override-redirect flag is used to spec-
ify whether map and configure requests on a win-
dow should override a SubstructureRedirectMask
mask on the parent. Window managers use
the SubstructureRedirectMask mask to intercept
(redirect) map and configure requests such as to
control window placement or add decoration. If a
client sets the override-redirect flag on its top-level
window, the window manager will not be notified of
the necessary events, and will consequently not be
able to manage it in a way the user expects. Pop-up
windows, on the other hand, do need to be mapped
without window manager interference.

Acquiring input focus

The ICCCM identifies four models of input handling:

• No input. Keyboard input is never handed
to the client, and the client never expects as
much. Such clients are essentially output-
only. An example is xload, a program that
displays system load averages.

• Passive input. The client expects to be
handed keyboard input, but it never explic-
itly sets input focus. An example of such
a client is one that has no subwindows and
only accepts input in PointerRoot mode (in
which the focus window is dynamically taken
to be the root window of whatever screen the
pointer is on at each keyboard event) or when
the window manager sets input focus to its
top-level window.

• Locally active input. The client expects
to be handed keyboard input, and it explic-
itly sets input focus when one of its windows
already has focus. An example of such a
client is one with subwindows that can be cy-
cled through using the Next and Prev keys,
moving input focus between the subwindows.
This only works if the client’s top-level win-
dow has acquired focus in PointerRoot

mode or when the window manager sts in-
put focus to its top-level window.

• Globally active input. The client expects to
be handed keyboard input, and it explicitly
sets input focus, even if focus is currently
in a window that it does not own. An exam-
ple of such a client is one that allows the user
to scroll the window without disturbing input
focus, even if it is in another client’s window.
It wants to acquire input focus only when
the user clicks in the scrolled region, but not
when they click the scroll bar itself.

A client can realize any of these four models by
appropriately setting and unsetting the input field
in WM_HINTS and the WM_TAKE_FOCUS atom in the
WM_PROTOCOLS property.

input model input WM_TAKE_FOCUS

no input unset unset
passive input set unset
locally active input set set
globally active input unset set

Clients that implement the passive or locally ac-
tive input models both must set the input field,
indicating to the window manager that they re-
quire assistance in acquiring input focus. Clients
with an active input model (be it local or global)
and other windows that set the WM_TAKE_FOCUS
atom in their WM_PROTOCOLS property may receive
a ClientMessage event from the window manager;
if the client receiving such an event wants focus at
that time, it should respond with a SetInputFocus
request with the window field set to that client’s win-
dow that last had input focus, or to their default
input window. A client may receive WM_TAKE_FOCUS
when it transitions from the IconicState state, or
when an area outside of its top-level window (such
as its frame) is clicked, given the window manager
uses this to assign focus. Ultimately, the goal is to
support window managers that want to assign in-
put focus to a client’s top-level window in such a
way that the client can decide to pass it on to one
of its subwindows, or decline it altogether. The IC-
CCM suggests that a client should never give up in-
put focus on its own volition; it should ignore input
it receives instead.

The method by which the user commands the
window manager to set the focus to a window is
up to the window manager. For instance, clients are
not guaranteed to detect a click that transfers focus
to it.

When the window that currently has input focus
becomes not viewable, the focus needs to revert to

Max van Deurzen Page 33 of 79

Case Study in Top-Level Window Management Chapter 4. Policy in X

another window. To indicate to the window man-
ager which window to fall back on in such an event,
the revert-to field of the SetInputFocus request
is set to one of three values: Parent, PointerRoot
or None. The first is generally employed by clients
that assign focus to subwindows. If the subwindow
is unmapped, the focus will remain in the client’s
possession. The second transfers input focus to the
root window of the screen currently containing the
mouse pointer. The third completely releases input
focus. Neither PointerRoot nor None are entirely
safe to use, because if the window manager crashes
while input is lost, there is no way to reobtain it. As
such, clients that invoke a SetInputFocus request
should set its revert-to field to Parent.

Iconification

To know what to display in a window’s icon, the
window manager reads the WM_ICON_NAME prop-
erty associated with that window. The pixmap a
client specifies to be used in the icon (for exam-
ple, a logo) should be of one of the sizes found in
the WM_ICON_SIZE property. If the property is not
found, the window manager will likely not display
the pixmap, show only part of it if it is too large,
or tile it if it is too small. A client may set the
icon_window field of the WM_HINTS property for a
window; when that window is iconified, the client
expects the window manager to map that window.
The icon window should ideally be of one of the sizes
set in the WM_ICON_SIZE property on the root win-
dow, but window managers are reserved the right to
resize these windows as they see fit.

When a window is iconified, a window manager
should generally make sure that the following condi-
tions are met.

• If the icon_window field is set in the
WM_HINTS property of the iconified window,
the window it refers to should be visible;

• if the icon_window field is not set in the
WM_HINTS property of the iconified window,
but the icon_pixmap field is set in that prop-
erty, the pixmap it refers to should be visible;
and

• otherwise, the string in the WM_ICON_NAME
property for that window should be visible.

A window manager may choose to implement
more than just one of the above. For example,
some window managers display both the string in
WM_ICON_NAME and the icon pixmap in a client’s
icon.

The ICCCM suggests clients to stick to the fol-
lowing conventions pertaining to iconification.

• The icon window should be an InputOutput
window;

• the icon window should be a child of the root
window;

• the icon window should be one of the sizes in
the WM_ICON_SIZE property of the root win-
dow;

• a client should leave mapping of the icon win-
dow to the window manager;

• a client should leave unmapping of the icon
window to the window manager;

• a client should leave configuration of the icon
window to the window manager;

• a client should not set the override-redirect
flag on the icon window;

• a client should not select for
ResizeRedirect events on the icon win-
dow;

• a client should not assume that it will receive
input events through its icon window; and

• a client should select for Exposure events
on its icon window, and repaint its contents
when the X server requests it.

Most window managers will support input events
on a client’s icon window, such as mouse or key-
board events. For example, a window manager may
deiconify a window if its icon has been clicked.

Pop-up windows

To create a pop-up window, there are three things a
client can do:

• Create a new top-level window as normal; it
will get managed and possibly reparented by
the window manager.

• Create a new top-level window with the
WM_TRANSIENT_FOR property set to the ID
of the window creating the pop-up window;
the window manager knows it belongs to an-
other window, and will often add less or no
decoration. Clients should create a window
of this type if it expects the window to be vis-
ible for a relatively short period of time. An
example of such a window would be a dialog
box.

• Create a window with the override-redirect
flag set. Because the window manager will
never manage these windows, this should
only be done if the pointer is grabbed as long
as the window is mapped. Clients should cre-
ate a window of this type if it expects the
window to be visible for a very short period
of time. A pop-up menu is an example of
such a window.

Max van Deurzen Page 34 of 79

Case Study in Top-Level Window Management Chapter 4. Policy in X

Because a user is not able to configure or trans-
fer input focus to a window that has the override-
redirect flag set (due to the fact the window manager
will not be managing that window), a client will have
to grab the keyboard or have another top-level win-
dow with an active focus model to receive keystrokes
on that window.

Window managers are free in deciding whether
or not a window that has the WM_TRANSIENT_FOR
flag set should be iconified when the window it is
transient for is.

Window groups

As we have seen when we discussed the properties
a client should set to communicate preferences to
the window manager, the window_group field of
the WM_HINTS property is used by a client to state
a relation between that window and other top-level
windows. Each window in the group should set the
window_group to the same window ID, represent-
ing the group leader. Window managers may treat
the group leader differently from the other windows
in the group. An example of this would be that the
group leader gets a decorated frame around it, while
the others do not. The group leader need not neces-
sarily be a window that is in use by the user; it may
just as well be an invisible window that exists merely
as a placeholder. The window manager is entirely
free in deciding how it manages a group.

The ICCCM additionally enumerates conventions
that stipulate how a client is to respond to window
manager actions. We will not further discuss them
here, as they do not directly affect or concern the
window manager or its implementation. An inter-
ested reader is again referred to the manual itself for
information on client compatibility.

4.2 EWMH
The Extended Window Manager Hints specification
(referred to as the EWMH, also known as NetWM)
is a standard communication protocol for the X Win-
dow System that was developed by the X Desk-
top Group (XDG). It is an extension to the ICCCM,
defining conventions for interaction between window
managers, regular clients, and utilities that define the
desktop environment such as docks and status bars.
The ICCCM specifies window manager interactions
at a lower level, and does not provide much ways to
implement features expected in modern desktop en-
vironments. The Gnome and KDE desktop projects
had originally developed their own extensions to the
ICCCM to support such features; the EWMH re-

places those custom extensions, and offers a set of
standardized ICCCM additions that any desktop en-
vironment can adopt.

Again, only the parts of the specification [3] rele-
vant to our case study (Chapter 7) will be discussed
and continually referenced. Other sources will be
explicitly referred to.

Like the ICCCM, the EWMH specification de-
fines only protocol operations. It specifies properties
to be used by window managers and clients alike to
communicate their needs and preferences.

4.2.1 Non-ICCCM features
The EWMH recognizes window management fea-
tures and behaviors that are not specified in the IC-
CCM, but are common in modern desktop environ-
ments, most important of which are the following.

• additional states
• modality
• large desktops
• sticky windows
• virtual desktops
• pagers
• taskbars
• activation
• animated iconification
• window-in-window MDI
• layered stacking order

We will briefly discuss each of them in turn.

Additional states

As per the ICCCM, the window manager is allowed
to define its own state semantics. Custom states
will usually be substates of the NormalState and
IconicState states.

Two examples of common self-defined states are
MaximizedState and ShadedState. A maximized
window should fill the screen as much as is pos-
sible (this does not necessarily have be the entire
screen, as the window manager may use parts of
the screen for own use, to display a status bar, for
instance). Modern window managers sometimes of-
fer horizontal and vertical maximization in addition
to full maximization. Window managers should re-
member a window’s position and size such that upon
de-maximization, the window’s geometry is restored.
Shaded windows are windows that are rolled up, of-
ten implemented as an alternative to iconification.
Rolled up windows show up on the screen as only a
title bar (top of the frame); the window content is
hidden.

Max van Deurzen Page 35 of 79

Case Study in Top-Level Window Management Chapter 4. Policy in X

Modality

Modality is a property of window management that
describes the behavior of transient windows. The
WM_TRANSIENT_FOR property defined in the ICCCM
allows a client to link a top-level window to another
top-level window. An archetypal example would be
a dialog box. A dialog box always belongs to another
window, in the sense that it is brought into existence
with the sole purpose to aid in the functioning of that
other window. Some dialog boxes can be open for a
long period of time, while the user continues work-
ing in the main window. Others are closed moments
after being opened. Some even have to be closed
before input focus is allowed to be transitioned back
to the main window.

The ICCCM allows clients to implement modal
windows using a globally active input model, though
window managers sometimes also offer support for
modality themselves.

Large desktops

Window managers may choose to implement desk-
tops (or workspaces) that are larger than the screen
(equivalently, the root window). The screen then
functions as a viewport on this large desktop. Two
common policies that govern the positioning of the
viewport within the desktop are paging and scrolling.
Paging allows the user to only change the view-
port position in increments of the screen size, while
scrolling allows arbitrary repositioning.

The window manager should always interpret
user-defined and client-provided size and position
values relative to the current viewport, and not to
the desktop as a whole. This is necessary to comply
with the ICCCM requirement that all clients should
behave the same, whether a window manager is run-
ning or not.

Sticky windows

Sticky windows are windows that retain their ab-
solute position on the screen (i.e. relative to the
viewport). For large desktops, this means that the
window remains in the same position, irrespective of
any viewport movement.

Virtual desktops

A user may want more than a single desktop (or
workspace) to organize their windows, even if they
employ only a single screen. Virtual desktops ef-
fectuate this functionality. Window managers may
implement virtual desktops in different ways. Desk-
tops may be fixed in allocation, or new ones may be
created dynamically. The number of desktops may

be fixed on startup, or change dynamically as well,
as the user adds or removes them from the environ-
ment. Only a single desktop will be visible at a time,
and the window manager should offer the user the
ability to switch between virtual desktops and move
windows between them as they see fit.

If the virtual desktops are large, a window man-
ager may choose to have the viewport at an indepen-
dent position per desktop, or all fixed at the same
position.

Activation

Window activation in X stands for transferring input
focus. When virtual desktops are employed, and a
window is in a withdrawn state because it is on a
desktop that is not currently active, activation will
involve more than just moving input focus to that
window. The window manager will first have to
switch desktops (by first unmapping windows that
belong to the currently active desktop, and map-
ping those belonging to the to-be-activated desk-
top), and must subsequently possibly deiconify or
raise the window.

Pagers

A pager implements a separate user interface that
gives the user a zoomed out view of the desktop(s).
Windows are represented by small rectangles, and
the user is able to perform various window manage-
ment actions by manipulating these representations.
Such actions often include activation, moving, resiz-
ing, restacking, maximization and shading, iconifica-
tion, and closing.

Taskbars

Just as a pager, a taskbar implements a separate user
interface for window management tasks. Taskbars
display windows as a row of icons filled with icon
windows, icon pixmaps, the title of the window, a
user-defined image, or some combination of each.
When pressing an icon, an action is initiated de-
pending on the state of the window it represents.
Typical actions include activation, iconification, and
deiconification.

Animated iconification

As we have seen in our discussion on compositing
(Section 2.2.4), a window manager may want to
add effects and animations to window management
activities, such as iconification. To achieve certain
animated effects, a compositor is not necessarily re-
quired. For example, a window manager might draw
lines that connect the corners of the window with the

Max van Deurzen Page 36 of 79

Case Study in Top-Level Window Management Chapter 4. Policy in X

corners of the icon, or the window may be moved
and resized along a trajectory, joining the window
and the icon.

Window-in-window MDI

Window-in-window MDI (for multiple document in-
terface) is a window management technique origi-
nally developed by Microsoft for the Windows envi-
ronment. A program is allowed to define a workspace
within its top-level window; this workspace may con-
tain subwindows for documents that may be open in
it. These subwindows may be decorated with win-
dow manager frames as if they were children of the
root window and reparented as normal. They can
also be manipulated by the user within the parent
window as if they were ordinary top-level windows.

Layered stacking order

The X server manages the stacking order of windows
in the environment itself. That is, which windows
are to be drawn in front of or behind which other
windows is ultimately determined by the X server.
Of course, the window manager will want to com-
municate its stacking preferences to the server, and
manipulate an individual window’s position within
the stack. Luckily, the X server offers the function-
ality to do so. Some window managers choose to
create different layers within the stack. Within each
layer, windows can be raised or lowered arbitrarily,
but, depending on whether or not the stacking or-
der is strict, a window in a lower layer can never
be raised above a window in a higher one, and vice
versa.

The EWMH specification aims to provide con-
ventions to achieve the following.

• Enable clients to hint their startup pref-
erences to the window manager, with re-
spect to iconification, maximization, shading,
stickiness, startup desktop, stacking order.

• Allow clients to hint the type of one of its
windows, such that the window manager can
treat it differently from regular client win-
dows. An example of a special window type
is a dock; docks should have a fixed position
on screen, and should be visible on all desk-
tops.

• Make it possible for pagers and taskbars to
be implemented as regular clients and allow
them to work with any compliant window
manager.

These conventions allow special programs that
are part of the desktop environment—such as docks,

pagers, status bars and taskbars—to be implemented
as regular clients. The specification also adds exter-
nal control of window management actions. Thanks
to these external control elements, clients are able
to more directly interact with the window manager;
upon startup of a program, for example, a user may
be able to specify a ––desktop=n command line ar-
gument that tells the window manager the program
should start on virtual desktop n. As we have men-
tioned, these conventions are defined in protocol op-
erations, just as those of the ICCCM. The EWMH
specifies two types of protocol definitions: properties
and messages on client windows, and properties and
messages on the root window.

4.2.2 Root window protocol definitions
The EWMH specifies that a protocol definition on
the root window is a property that is initially set by
the window manager, and is subsequently read by
clients that require information about the environ-
ment and window management policy. Some clients
are allowed to change properties by sending events
to the root window. It is up to the window manager
to decide whether or not to accept the change.

To send a message to the root window, the
specification stipulates that the client should cre-
ate a ClientMessage event and send it using the
SendEvent request with the following arguments.

field value
destination the root window
propagate False

event mask SubstructureNotify |

SubstructureRedirect

event the ClientMessage event

As per the EWMH, the most important proper-
ties on the root window relating to window manage-
ment are the following.

• _NET_SUPPORTED
• _NET_CLIENT_LIST
• _NET_NUMBER_OF_DESKTOPS
• _NET_DESKTOP_GEOMETRY
• _NET_DESKTOP_VIEWPORT
• _NET_CURRENT_DESKTOP
• _NET_DESKTOP_NAMES
• _NET_ACTIVE_WINDOW
• _NET_WORKAREA
• _NET_SUPPORTING_WM_CHECK
• _NET_VIRTUAL_ROOTS
• _NET_SHOWING_DESKTOP
• _NET_CLOSE_WINDOW
• _NET_MOVERESIZE_WINDOW

Max van Deurzen Page 37 of 79

Case Study in Top-Level Window Management Chapter 4. Policy in X

• _NET_WM_MOVERESIZE
• _NET_RESTACK_WINDOW

We will briefly discuss each of them in turn.

_NET_SUPPORTED

The _NET_SUPPORTED property is of type ATOM[]
and defines a list of atoms. It holds the full set of
hints and features the window manager supports.
For instance, if a window manager supports a sub-
set of the states defined in the EWMH specification,
say HiddenState, ShadedState and StickyState,
both the _NET_WM_STATE atom and the atoms
representing the states (_NET_WM_STATE_HIDDEN,
_NET_WM_STATE_SHADED, _NET_WM_STATE_STICKY)
should be in the list.

_NET_CLIENT_LIST

The _NET_CLIENT_LIST property represents a list
of all clients under control of the window manager.
That is, each top-level client window that is being
managed by the window manager must be in this
list. Its type is therefore WINDOW[]. The list should
be in initial mapping order, starting with the oldest
(first mapped) window.

Another property of the same nature,
_NET_CLIENT_STACKING_LIST, contains all win-
dows in bottom-to-top stacking order. Both prop-
erties should be set and updated by the window
manager.

_NET_NUMBER_OF_DESKTOPS

The _NET_NUMBER_OF_DESKTOPS property is of type
CARD32 and is to be set and updated by the window
manager to denote the number of virtual desktops.

A pager may request a change in the number
of virtual desktops by sending a ClientMessage
event to the root window containing the
_NET_NUMBER_OF_DESKTOPS message type and the
new number of desktops. A window manager
may choose to accept or deny this request. If it
is accepted, the _NET_NUMBER_OF_DESKTOPS and
_NET_VIRTUAL_ROOTS properties must change ac-
cordingly, and so must _NET_DESKTOP_VIEWPORT
and _NET_WORKAREA. If the number of desktops has
decreased and _NET_CURRENT_DESKTOP contains a
value not in the range of desktop numbers, then this
property must be set to the last value in the range
and _NET_WM_DESKTOP must be updated.

_NET_DESKTOP_GEOMETRY

The _NET_DESKTOP_GEOMETRY property has type
CARD32[2] and represents an array of two values

that together define the common size of all desktops.
This can be the size of the large virtual desktop or
the screen size if large desktops are not implemented.

A pager may request a desktop resize by sending
a ClientMessage event to the root window contain-
ing the _NET_DESKTOP_GEOMETRY message type and
new width and height values. A window manager
may choose to accept or deny this request.

_NET_DESKTOP_VIEWPORT

The _NET_DESKTOP_VIEWPORT property holds an ar-
ray of pairs, and is therefore of type CARD32[][2].
These pairs represent x and y values that define
the top-left corner of each desktop’s viewport. Of
course, if large desktops are not implemented, this
array will contain n pairs that are set to 0, 0, where
n is the number of desktops.

A pager may request to move the current
desktop’s viewport by sending a ClientMessage
event to the root window containing the
_NET_DESKTOP_VIEWPORT message type and new
x and y values.

_NET_CURRENT_DESKTOP

The _NET_CURRENT_DESKTOP property is of type
CARD32 and contains the index of the currently ac-
tive desktop. An index is a value between 0 and
_NET_NUMBER_OF_DESKTOPS – 1. A window man-
ager must set and update this value.

A pager may request to switch to another
virtual desktop by sending a ClientMessage
event to the root window containing the
_NET_CURRENT_DESKTOP message type and the new
index value. A window manager may choose to ac-
cept or deny this request.

_NET_DESKTOP_NAMES

The _NET_DESKTOP_NAMES property (of type
TEXT[]) is a list of null-terminated strings contain-
ing the name of each virtual desktop. The list may
be larger or smaller than the amount of desktops de-
fined in _NET_NUMBER_OF_DESKTOPS. If it is larger,
the strings defining names for the desktops at indices
in excess of the total number of desktops will be re-
served in case the number of desktops increases. If
it is smaller, the desktops with no associated string
will be unnamed. A window manager or pager may
change these values at any time.

_NET_ACTIVE_WINDOW

The _NET_ACTIVE_WINDOW property has type
WINDOW and contains the window ID of the currently
active (focused) window, or None if no window is in

Max van Deurzen Page 38 of 79

Case Study in Top-Level Window Management Chapter 4. Policy in X

focus. In principle, this is a read-only property that
is set and updated by the window manager.

A client may request to transfer focus to an-
other window by sending a ClientMessage event
containing the _NET_ACTIVE_WINDOW window type,
a source indication value (1 if the request is from
a regular application, and 2 if it is from a pager),
and the window ID of the requesting client’s ac-
tive top-level window. The window manager may
choose to completely ignore the request, or set the
_NET_WM_STATE_DEMANDS_ATTENTION property.

_NET_WORKAREA

The _NET_WORKAREA property is of type
CARD32[][4], meaning it holds a list of four-tuples.
Each tuple represents the geometry (position and
size) relative to the viewport of an area within the
viewport. This workarea must be used by desktop
applications to place their desktop icons. A tuple
must be defined for each virtual desktop.

_NET_SUPPORTING_WM_CHECK

The _NET_SUPPORTING_WM_CHECK property (of type
WINDOW) is used by the window manager to commu-
nicate to the environment that an EWMH-compliant
window manager is running. To do this, the win-
dow manager creates a new child window of the
root window upon startup, and stores that window’s
ID in this property on the root window. The child
window does not necessarily need to be visible on
screen, and must store its own window ID in its
_NET_SUPPORTING_WM_CHECK property. The win-
dow manager must also set the _NET_WM_NAME on
this child window to set the name of the window
manager.

_NET_VIRTUAL_ROOTS

The _NET_VIRTUAL_ROOTS property holds IDs of
windows that act as root windows for each of the
virtual desktops. Its type is therefore WINDOW[].

This property allows programs that change the
the desktop background to function with virtual root
windows, and allows clients to find out which frame
belongs to their top-level window (if a reparenting
window manager is running).

_NET_SHOWING_DESKTOP

The _NET_SHOWING_DESKTOP property is of type
CARD32 and is used by the window manager to com-
municate to the environment whether or not the
showing desktop mode is activated, in which all win-
dows are hidden, and the (virtual) root is the only
visible window. A window manager only has to set

this property if it supports this feature. It then sets
the value in this property to 1 if this mode is acti-
vated, and 0 if it is not.

A pager may request to enter or leave show-
ing desktop mode by sending a ClientMessage
event to the root window containing the
_NET_SHOWING_DESKTOP message type and the new
boolean value. A window manager may choose to
accept or deny this request.

_NET_CLOSE_WINDOW

The _NET_CLOSE_WINDOW request is used by the
pager or normal applications to request for a cer-
tain window to be closed. A window manager must
then attempt to close the targeted window.

Normally, to request a window to close, the client
sends a WM_DELETE_WINDOW message to the applica-
tion if that protocol is supported, and otherwise an
XKillClient message should be sent. Because the
window manager may have more information about
the application that is to be closed, the requesting
client should always send the _NET_CLOSE_WINDOW
request before trying anything else.

_NET_MOVERESIZE_WINDOW

The _NET_MOVERESIZE_WINDOW request is used by
the pager or normal applications to request a win-
dow to be moved, resized or both.

In the request, the requesting client specifies
the source indication (regular application or pager),
the change flags (whether to only change the win-
dow’s position, only its size, or both), window
gravity, and position and size values. The val-
ues that can be supplied for the window grav-
ity are: NorthWest, North, NorthEast, West,
Center, East, SouthWest, South, SouthEast and
Static. When a value of 0 is supplied, the win-
dow manager should use the gravity supplied in the
WM_NORMAL_HINTS property.

This request may be used in place of the
ConfigureRequest request. The only reason
a client would choose this request over the
ConfigureRequest is if it has a reason to specify
the window gravity. Pagers especially benefit from
using this request, as with it, a window can be ex-
actly positioned and resized regardless of any framing
(window decorations), by specifying Static window
gravity.

_NET_WM_MOVERESIZE

The _NET_WM_MOVERESIZE request is used by clients
to ask the window manager to initiate window move-
ment or resizing. With this request, programs can

Max van Deurzen Page 39 of 79

Case Study in Top-Level Window Management Chapter 4. Policy in X

have elements in their own application interfaces
that the user can use to move or resize the window.

A client will benefit more from using
this request to hand off movement and re-
sizing to the window manager, rather than
using the _NET_MOVERESIZE_WINDOW or the
ConfigureRequest requests to move or resize the
window by itself. To the user, this also makes move-
ment and resizing more consistent.

In the request, the client must supply which but-
ton was pressed to initiate the movement or resizing,
the position of the button press with respect to the
virtual root, whether it is a move or resize event, and
to which edges of the window the event applies to
(only relevant if it is a resize event).

_NET_RESTACK_WINDOW

The _NET_RESTACK_WINDOW request is used by a
pager to indicate to the window manager that a win-
dow should be restacked. This request is similar to
a ConfigureRequest request with the CWSibling
and CWStackMode flags set. It should only be used
by pagers, and not by regular clients; regular clients
should use the ConfigureRequest request instead.

4.2.3 Client window protocol definitions
As we have seen, the window manager requires in-
formation about applications to manage them cor-
rectly. A dock, for instance, should not be repar-
ented, nor should it be able to be moved manually
by a user. Applications should set certain properties
on their top-level windows to communicate informa-
tion about them to the window manager, such as its
type (dock, dialog box, ...), the desktop it wishes to
start on, its state, and so on.

The most important properties that the EWMH
stipulates applications should set on their top-level
windows are the following.

• _NET_WM_NAME
• _NET_WM_VISIBLE_NAME
• _NET_WM_ICON_NAME
• _NET_WM_VISIBLE_ICON_NAME
• _NET_WM_DESKTOP
• _NET_WM_WINDOW_TYPE
• _NET_WM_STATE
• _NET_WM_ALLOWED_ACTIONS
• _NET_WM_STRUT
• _NET_WM_STRUT_PARTIAL
• _NET_WM_ICON_GEOMETRY
• _NET_WM_ICON
• _NET_WM_PID
• _NET_WM_HANDLED_ICONS
• _NET_FRAME_EXTENTS

We will briefly discuss each of them in turn.

_NET_WM_NAME

The _NET_WM_NAME property is of type TEXT and
contains the title of the window. The EWMH states
the window manager should use this property in pref-
erence to the WM_NAME property.

_NET_WM_VISIBLE_NAME

The _NET_WM_VISIBLE_NAME property has type
TEXT, and should contain the title of the window
as displayed by the window manager. If the window
manager does not change the title of the window in
any way, the string in this property should be the
same as in _NET_WM_NAME. If the window manager
displays a custom title somewhere on the screen, this
property should contain that string. This property
may be useful to pagers that want to display the
same title for each window as the window manager
does.

_NET_WM_ICON_NAME

The _NET_WM_ICON_NAME property is similar to the
_NET_WM_NAME property. It has type TEXT and
should contain the title of an application. The
EWMH states the window manager should use this
property in preference to the WM_ICON_NAME prop-
erty.

_NET_WM_VISIBLE_ICON_NAME

The _NET_WM_VISIBLE_ICON_NAME property is sim-
ilar to the _NET_WM_VISIBLE_NAME property. It is of
type TEXT and should contain the title of the window
as displayed by the window manager.

_NET_WM_DESKTOP

The _NET_WM_DESKTOP property has type CARD32
and should contain a value that represents the vir-
tual desktop the client wishes to start in. The value
zero represents the first desktop, one is the second
desktop, and so on. A client may of course choose
not to set this property; the window manager then
decides where to place it itself. The window man-
ager should always honor this request, if possible.

_NET_WM_WINDOW_TYPE

The _NET_WM_WINDOW_TYPE property (of type
ATOM[]) is an important application window prop-
erty that holds the type of a window. The EWMH
recognizes eight basic window types:

Max van Deurzen Page 40 of 79

Case Study in Top-Level Window Management Chapter 4. Policy in X

window type atom
normal _NET_WM_WINDOW_TYPE_NORMAL

desktop _NET_WM_WINDOW_TYPE_DESKTOP

dialog _NET_WM_WINDOW_TYPE_DIALOG

dock _NET_WM_WINDOW_TYPE_DOCK

menu _NET_WM_WINDOW_TYPE_MENU

toolbar _NET_WM_WINDOW_TYPE_TOOLBAR

splash _NET_WM_WINDOW_TYPE_SPLASH

utility _NET_WM_WINDOW_TYPE_UTILITY

This property should always be used by the win-
dow manager to determine where to place the win-
dow, which decorations to give it (if reparenting hap-
pens), how users are able to interact with the win-
dow, its stacking position, and whether or not the
window is visible on all virtual desktops, on a select
few of them, or perhaps on none of them at all.

A client is allowed to specify more than a sin-
gle type of window, some of which may be exten-
sions to the basic types named above. The types
it lists must be in order of preference, the first be-
ing the most preferable. Because a window manager
may not support any extensions to the basic types, a
client must always specify at least one basic window
type.

Normal windows are regular, top-level win-
dows that do not have a different (ac-
knowledged) type. Windows that do not
set the _NET_WM_WINDOW_TYPE property nor
WM_TRANSIENT_FOR must always be taked as this
type by the window manager.

Desktop windows are windows that implement
some type of desktop feature. This may be a sin-
gle window with the same dimensions as the root
window that contains desktop icons. This would al-
low the desktop environment to be in full control of
the desktop, without the need to proxy root window
events.

Dialog windows are windows that act as dialog
boxes. If a dialog box does not set this property,
then the WM_TRANSIENT_FOR property must be set
by the client to achieve the desired effect.

Dock windows are windows that implement a
dock or panel feature. A window manager would
mostly want to keep these windows on all virtual
desktops and have them rendered above all other
windows (i.e. keep them at the top of the stack).

Menu and toolbar windows are windows seem-
ingly popped out from the main application window.
These windows may also set the WM_TRANSIENT_FOR
property to indicate the main application window.

Splash windows are splash screens that are briefly
displayed as an application is starting up. Such win-
dows should usually be centered on the screen.

Utility windows are small persistent windows
such as palettes or toolboxes. A utility window is
different from a toolbar because it is not popped out
of the main application window. It is also different
from a dialog window because it is not a transient
dialog box; the user will usually keep it open for the
entire lifetime of the application. These windows
may also set the WM_TRANSIENT_FOR property to in-
dicate the main application window.

_NET_WM_STATE

The _NET_WM_STATE property (of type ATOM[]) lists
an array of hints describing the window state. All
atoms that are in the array must be considered set
by the window manager, and those not in the array
are unset. That is, the atoms in the array represent
states that accumulatively apply to the client’s win-
dow. The window manager must always honor the
state of a window and treat it accordingly, if possible.

A client may wish to change its state during oper-
ation. It can notify the window manager of its state
change by sending a ClientMessage event contain-
ing the _NET_WM_STATE message type and the new
state to the root window. The window manager
must always keep the state of the windows it man-
ages updated. The window manager should remove
the property upon withdrawal of the window. The
EWMH recognizes twelve basic window states:

window state atom
modal _NET_WM_STATE_MODAL

sticky _NET_WM_STATE_STICKY

max. (V) _NET_WM_STATE_MAXIMIZED_VERT

max. (H) _NET_WM_STATE_MAXIMIZED_HORZ

shaded _NET_WM_STATE_SHADED

skip taskbar _NET_WM_STATE_SKIP_TASKBAR

skip pager _NET_WM_STATE_SKIP_PAGER

hidden _NET_WM_STATE_HIDDEN

fullscreen _NET_WM_STATE_FULLSCREEN

above _NET_WM_STATE_ABOVE

below _NET_WM_STATE_BELOW

dem. attn. _NET_WM_STATE_DEMANDS_ATTENTION

Just as with window types, the window man-
ager may recognize extensions to these basic win-
dow states. A window manager must ignore atoms
it does not recognize, effectively removing it from
the array of window states.

A window in the modal state indicates that
that window is a modal dialog box. If the
WM_TRANSIENT_FOR property is set, the value in it
is the ID of the window that it is a dialog box for. If

Max van Deurzen Page 41 of 79

Case Study in Top-Level Window Management Chapter 4. Policy in X

it is not set or set to the root window, the window
is a dialog box for its window group.

A window in the sticky state means that that
window is sticky, as described in Section 4.2.1.

A window in the maximized state, either vertical
or horizontal, indicates that that window is stretched
along the entire height or width of the screen respec-
tively.

A window in the shaded state is rolled up, as de-
scribed in Section 4.2.1.

A window in the skip taskbar state indicates
that it should not be included in the taskbar. This
hint should be set by the application, and not by
the window manager. It should only be set if the
_NET_WM_WINDOW_TYPE property does not already
communicate the nature of the window.

A window in the skip pager state indicates that
it should not be included on a pager. It should only
be set if the _NET_WM_WINDOW_TYPE property does
not already communicate the nature of the window.

A window in the hidden state is not currently
visible on screen, even if it were on the currently
active desktop and within the viewport. This state
is set by the window manager when it unmaps the
window. Minimized windows, for instance, must be
in this state.

A window in the fullscreen state should fill the
entire screen, except parts that are reserved by the
window manager. Upon leaving this state, the win-
dow manager is expected to restore the geometry the
window had before it entered the fullscreen state.

A window in the above or below state means
that that window should be rendered before or after
most other windows, respectively. That is, it should
respectively be at a low or high position in the stack.
These two states are meant to be set by the user
when stating their preferences to the window man-
ager. A program must not, for instance, use these
states to draw attention to dialog windows.

A window in the demands attention state indi-
cates that some action in or with the window has
happened, and it requires user attention. For in-
stance, the window manager will put a window in this
state if that window requested activation, but the
window manager refused it. Both the client and the
window manager are allowed to set this state. This
state should be removed from the window manager
when it got the required attention.

_NET_WM_ALLOWED_ACTIONS

The _NET_WM_ALLOWED_ACTIONS property is a list
of atoms (hence of type ATOM[]) that each repre-
sent a window management action that the window
wants allowed. That is, the list enumerates user op-
erations that should be allowed on the window; op-

erations not in the list should not be allowed by the
window manager. The window manager must keep
this list updated, as taskbars, pagers and other such
tools use this property to decide which actions are
allowed on a window.

The EWMH recognizes the following user oper-
ations:

user operation atom
move _NET_WM_ACTION_MOVE

resize _NET_WM_ACTION_RESIZE

minimize _NET_WM_ACTION_MINIMIZE

shade _NET_WM_ACTION_SHADE

stick _NET_WM_ACTION_STICK

maximize (H) _NET_WM_ACTION_MAXIMIZE_HORZ

maximize (V) _NET_WM_ACTION_MAXIMIZE_VERT

fullscreen _NET_WM_ACTION_FULLSCREEN

change desktop _NET_WM_ACTION_CHANGE_DEKSTOP

close _NET_WM_ACTION_CLOSE

The operations listed are those that the win-
dow manager will honor for this window. A
client must request the operation to be performed
through the normal mechanisms discussed earlier.
For instance, if a window supports the close ac-
tion (_NET_WM_ACTION_CLOSE), this does not imply
that clients can send a WM_DELETE_WINDOW mes-
sage directly to remove the window from the en-
vironment; supporting this action means clients can
make a request to close it through the window man-
ager by sending a _NET_CLOSE_WINDOW message.
The window manager subsequently decides if and
how to honor the request, perhaps by sending a
WM_DELETE_WINDOW request to the window first, and
if it does not respond, kill it using the XKillClient
message.

Window managers are free to recognize exten-
sions to these window manager actions. A window
manager must ignore atoms it does not recognize, ef-
fectively removing it from the array of window states.

The move action indicates that the window may
be moved around the screen.

The resize action indicates that the window
may be resized. Of course, if its minimum and
maximum size are identical (as specified in the
WM_NORMAL_HINTS property), the window manager
knows this window is non-resizable.

The minimize action indicates that the window
may be iconified (Section 4.2.1).

The shade action indicates that the window may
be shaded (Section 4.2.1).

The stick action indicates that the window may
be put into the sticky state (Section 4.2.1).

Max van Deurzen Page 42 of 79

Case Study in Top-Level Window Management Chapter 4. Policy in X

The maximize (horizontal or vertical) action in-
dicates that the window may be maximized horizon-
tally or vertically, respectively.

The fullscreen action indicates that the window
may be put into the fullscreen state.

The change desktop action indicates that the
window may be moved between virtual desktops.

The close action indicates that the window may
be closed, that is, a WM_DELETE_WINDOW message
may be sent.

_NET_WM_STRUT and _NET_WM_STRUT_PARTIAL

The _NET_WM_STRUT_PARTIAL property is an impor-
tant property used by desktop environment programs
such as docks and status bars to indicate which re-
gion along the edge of the screen should be reserved
for it to function properly. The information in this
property is crucial to window managers, as it needs to
know, for example, where to stop tiling windows, or
which parts of the screen not to cover when maximiz-
ing a window. The property is of type CARD32[12]
and contains four values that specify the width of the
reserved area at each border of the screen, and an ad-
ditional eight values that specify the beginning and
end corresponding to each of the four struts. The
start and end values of each strut allow the client
to specify areas that do not span the entire width
or height of the screen. All coordinates specified
are relative to the (actual) root window. A client
may change this property at any time, and so the
window manager must watch for events that notify
it of property changes.

The _NET_WM_STRUT property is equivalent to
the _NET_WM_STRUT_PARTIAL property where all
start values are 0, and all end values are the height
or width of the screen. If a client has set both
the _NET_WM_STRUT_PARTIAL and _NET_WM_STRUT
properties, the window manager must acknowledge
the former and ignore the latter.

_NET_WM_ICON_GEOMETRY

The _NET_WM_ICON_GEOMETRY property is of type
CARD32[4] and contains the geometry (position and
size values) of a possible icon for the window, if
it is ever iconified. Desktop environment tools like
taskbars or icon boxes are allowed to set this value,
though it is optional. Window managers may use this
property to perform animations such as the stretch-
ing of the window into its icon.

_NET_WM_ICON

The _NET_WM_ICON property (of type
CARD32[][2+n]) lists an array of n possible icons

for the window. The window manager is allowed to
scale these icons as it pleases.

_NET_WM_PID

The _NET_WM_PID property has type CARD32 and
holds the process ID of the application that owns the
window. This ID is sometimes used by the window
manager to kill an application if it does not respond
to the _NET_WM_PING protocol.

_NET_WM_HANDLED_ICONS

The _NET_WM_HANDLED_ICONS property may be
used by pagers or taskbars on one of its own top-
level windows to indicate to the window manager
that it does not need to provide icons for iconified
windows.

_NET_FRAME_EXTENTS

The _NET_FRAME_EXTENTS property (of type
CARD32[4]) contains a four-tuple of values that de-
termine the frame protrusions along the four edges
of the window. That is, it defines the size of the
window decoration (if reparenting occurs) at each
edge of the window. This property must be set by
the window manager.

The EWMH additionally suggests implementa-
tion conventions on some of the subjects discussed
in Section 4.2.1 and more. An interested reader is
referred to the specification itself for more informa-
tion on how to implement window manager features
such as pagers and taskbars, how to kill hung pro-
cesses and how to maintain the stacking order.

Max van Deurzen Page 43 of 79

Chapter 5
Agile Software Development

Software development approaches have significantly
changed throughout the years. It used to be common
to work along so-called heavyweight methodologies,
like the Waterfall model or the Spiral model [35].
These traditional methodologies focus on detailed
documentation, inclusive planning, and highly struc-
tured design [35]. They have a relatively linear, se-
quential design regime with pre-organized phases of
the development lifecycle [35]. The flow of develop-
ment in such methodologies is said to be unidirec-
tional, as the developers progress in order through re-
quirements, design, development, testing, and main-
tenance [36]. In many of these traditional approaches,
each phase has a fixed deliverable and detailed doc-
umentation, both of which are subjected to rigorous
review [35]. They tailor well to products and environ-
ments in which requirements are precisely defined
and largely immutable (e.g. the construction indus-
try). The IT industry, in stark contrast, is continually
changing; it is often near impossible to define every
requirement well ahead of time. Employing a heavy-
weight methodology means that the solution is to
be detailed in advance, without the ability to change
the requirements once development has begun [35].

To tackle the aforementioned shortcomings,
lightweight or Agile methodologies came into exis-
tence [35,36]. Unlike their heavyweight counterparts,
Agile approaches revolve around the product owner,
are precise and unambiguous, and above all, allow for
modifications to be made to the product throughout
the phases of development [35]. As a result, these
methodologies tend to propose an incremental and
iterative line of action, in which the product or solu-
tion is repeatedly refined [35].

5.1 Agile Manifesto
The Manifesto for Agile Software Development is
a proclamation backed by IT consultants and other
industry professionals (who collectively called them-
selves the Agile Alliance) that articulates several val-
ues and principles that should guide software de-
velopers in their work [37]. The manifesto is in ac-
tuality an objection to the heavyweight development
approach, which they perceived to be cumbersome,
unresponsive, and too focused on documentation re-
quirements [37].

The values enumerated in the manifesto are said
to promote a software development process that fo-
cuses on quality by creating a product that meets

the consumer’s needs and expectations. The prin-
ciples are there to facilitate a working environment
that focuses on the customer, adheres to business
objectives, and is sufficiently resilient to changing
user needs and market forces, for change is the only
constant [37].

The Agile approach to software development
commits to creating software in an incremental man-
ner, in the sense that the development lifecycle is
divided into relatively brief periods of time, often
called sprints [38]. Splitting up product development
work into increments in this manner is meant to min-
imize up-front planning and design [38]. Each sprint
typically lasts one to four weeks, and involves cross-
functional teams working in all of the functions rele-
vant to the development process (e.g. planning, de-
sign, programming, and testing) [38].

Agile is but a philosophy, a reasoning about soft-
ware development relationships and priorities. It
does not specify a particular implementation such
as to achieve its goals; it does not identify means
to the desired end [37]. Several methodologies and
frameworks have since been designed to formalize
many or all of the values and principles expounded
in the Agile Manifesto. One of the most popular
such implementations is Extreme Programming [39],
which we will briefly discuss in Section 5.2.

We will furthermore discuss the Personal Soft-
ware Process development process [40] in Section 5.3,
as it has been used to apply Personal Extreme
Programming [41], a modified version of the Ex-
treme Programming methodology (discussed in Sec-
tion 5.4) throughout Chapters 6 and 7.

5.2 Extreme Programming
Extreme Programming (or XP) is an Agile software
development methodology that was initially devel-
oped in response to problem domains with changing
requirements [39]. Because it implements the Agile
philosophy, Extreme Programming accepts that re-
quirements will change, and creates opportunities for
improvement and competitive advantage [39].

Each feature the customer wants is represented
as a user story [42]. User stories are written by the
customer as things that the system needs to do for
them [42]. They are similar to usage scenarios, ex-
cept that they are not limited to describing a user
interface [42]. Each story is in the format of a few sen-
tences ideally written by the customer, in the cus-

Max van Deurzen Page 44 of 79

Case Study in Top-Level Window Management Chapter 5. Agile Software Development

tomer’s terminology, without technical jargon [42].
One of the most important key values in Ag-

ile software development methodologies is commu-
nication about the software [37]. The use of a system
metaphor is a powerful tool to facilitate this [43]. The
system metaphor is a type of user story that is ulti-
mately used to create the overall product design [39].
It helps each member of the team and the customer
understand and contribute to this design. As such,
the metaphor need not necessarily relate directly to
the product being developed [39]. A customer, for ex-
ample, may very well find it easier to talk about a
“chameleon” than about a window that should re-
actively change its transparency [43]. It is there to
help the team and the customer establish a common
vocabulary and reach agreement about the require-
ments [43]. The metaphor is consequently often used
in conversations amongst developers and with the
customer [43].

XP additionally uses test driven development and
iterative refactoring to produce a working and well-
defined demonstration at the end of each sprint [39].
High code quality is essential on an XP project.
Rules that enhance quality include pair program-
ming, refactoring, a sustainable pace, and full test
coverage at two different levels: unit tests and ac-
ceptance tests [39].

Developers constantly receive feedback by work-
ing in pairs and testing code as it is written, man-
agers get feedback at daily stand-up meetings, which
are nothing more than short meetings in which at-
tendees make commitments to team members and
otherwise participate while standing, and customers
get feedback with test scores and demos at the end
of each sprint [39].

The values and rules of Extreme Programming
are summarized into twelve core practices that every
XP programmer should follow [39].

1. The planning game. There is constantly a
back and forth negotiation of user stories be-
tween the customer and the developers.

2. Small releases. At the end of each iteration,
a working system containing a supplementary
set of features is put into production.

3. Metaphor. Each project has a system
metaphor, which helps guide the development
process and communication between all par-
ties.

4. Simple design. The most simple design pos-
sible is used to build the product at all times,
provided that all business requirements are
met.

5. Testing. Always apply a test-driven develop-
ment approach; every snapshot of the product
must be validated in its entirety before start-
ing work on the next feature.

6. Refactoring. If necessary to keep the code-
base as simple as possible, apply a series
of behavior-preserving transformations to im-
prove the structure of the code.

7. Pair programming. Programmers are paired
up and perform all development work together
at the same computer.

8. Collective ownership. All code is shared
amongst every member of the development
team; anyone can make changes to the code-
base at any time.

9. Continuous integration. Changes are inte-
grated into the main codebase as frequently
as possible. After an integration, tests are run
and must pass.

10. 40-hour week. Programmers adhere to a 40-
hour work week in order to maintain produc-
tivity and to avoid burn out.

11. On-site customer. The customer is at all
times available to the development team, and
must help guide the development process.

12. Coding standard. Every programmer uses the
same coding standards.

These practices incarnate the values and princi-
ples enumerated by the Agile manifesto, and thereby
help developers prioritize the customer, communi-
cate about the software and the requirements, in-
creasingly refine the product by adding features and
keeping the codebase minimal (by preventing code
bloat), and in general keep defects and loss of pro-
ductivity at a minimum [39].

The Extreme Programming process is geared to-
wards groups in that it specifies interactions between
the different functions within a team. As we shall
see in Section 5.4, an adaptation of XP exists that
defines rules for applying the methodology in a one-
person team.

5.3 Personal Software Process
The Personal Software Process (or PSP) is a struc-
tured software development process that is meant to
provide engineers with a disciplined personal frame-
work for doing software work [40]. It aims to improve
the quality and productivity of the personal work of
the software engineer as an individual. To this end,
it consists of methods, forms, and scripts that show

Max van Deurzen Page 45 of 79

Case Study in Top-Level Window Management Chapter 5. Agile Software Development

software engineers how to plan, measure, and man-
age their work [40]. The PSP uses a disciplined, data-
driven procedure to enable engineers to improve their
estimating and planning skills, to make realistic com-
mitments, to manage the quality of a project, and to
reduce the number of defects in their work [40]. It
was introduced in a paper by Watts Humphrey at
Carnegie Mellon University, which we will be refer-
encing throughout the rest of this section [40].

Engineers are to follow a process of three phases:
planning, development, and postmortem. This pro-
cess is applied to all development tasks. A task is
an iteration through this process, and most software
will comprise a large number of them. Input to each
task is the problem description. If the problem de-
scription for one task is too small or trivial, multiple
problems can together form a single task. The three
phases are organized as follows.

• Planning
1. Create a requirements statement based

on the problem description. A require-
ments statement is a simple list of re-
quirements that the task must satisfy.

2. Begin setting up a project plan sum-
mary, which is a snapshot of the
progress of a task. At the end of
this phase, it should contain informa-
tion about the planned changes to the
codebase; this information is mostly re-
volved around lines of code (such as
the number of additions, deletions, and
modifications), though it also includes
defects found and resolved.

3. Make a time estimation of each of the
phases (including the current phase) in
a time recording log, based on previous
iterations.

• Development
1. Produce a design that resolves the prob-

lem, and document it.
2. Implement the design.
3. Test the implementation.
4. Supplement the time recording log with

information gathered from this phase.
• Postmortem

1. Compare estimated duration with ac-
tual duration.

2. Record and review new duration and de-
fect rates.

3. Complete the project plan summary.

A developer should first apply the rules that are
part of the planning phase. This involves identifying

the requirements and properly documenting them,
logging task progress, and making time estimations
for the current iteration. The second phase pertains
to the development process. In it, the developer is
to work on the product by creating or refining the
design, by consequently implementing any changes,
and by making sure tests covering the implemen-
tation succeed and are complete. The final phase
serves as a reflection on the progress made through-
out the current iteration and on the development
process as a whole.

Throughout the iterations of development, at ev-
ery phase apart from the first, any defects found
must be recorded in a defect log and subsequently
fixed.

5.4 Personal XP
As we have discussed in Section 5.2, Extreme Pro-
gramming is geared towards groups. It lays out rules
that stipulate group processes like stand-up meet-
ings and user story negotiation, and many of the
practices involved require teamwork, as production
code is written, refactored, and tested in teams of
two programmers who constantly review each other’s
work. To be able to apply, as an individual, the Agile
software development philosophy and specifically the
rules and practices defined by the Extreme Program-
ming methodology, the Personal Extreme Program-
ming (or PXP) methodology was developed. The
rest of this section summarizes the ideas established
in the paper that introduced the methodology [41].

In PXP, all core practices in XP that are triv-
ially translatable to a single-person situation are left
unchanged. The following practices are not directly
applicable by an individual and hence differ from XP.

1. The planning game. If the developer is work-
ing for themselves or otherwise has enough in-
formation to stand in for the customer, then
the developer only needs to alternately switch
roles during the planning phase. Even if the
customer is not involved in this phase, the de-
veloper should write user stories in the usual
format all the same.

7. Pair programming. The benefits of pair pro-
gramming are obviously lost when working by
oneself. A programmer could apply the so-
called rubber duck debugging technique [44],
ask a colleague or loved one for reminders, and
should otherwise apply informal walkthroughs
and a test first philosophy.

11. On-site customer. When working alone,
projects are often not large enough to justify

Max van Deurzen Page 46 of 79

Case Study in Top-Level Window Management Chapter 5. Agile Software Development

the customer being available at all times, and
communication through email or phone will
suffice. Demos should still be prepared and
given at the end of each iteration, even if the
developer is working for themselves.

With alterations to three of the guiding prac-
tices of Extreme Programming—namely those that
consist of the ulterior requirement that the developer
applying it is working with others in a single team—a
viable foundation is established with which a devel-
oper can apply the Agile paradigm when working by
themselves.

Max van Deurzen Page 47 of 79

Chapter 6
Implementation Process

In this chapter, we will discuss the process gone
through to realize the implementation of the window
manager detailed in Chapter 7. We have mainly ap-
plied the software development approaches described
in Chapter 5. Specifically, the Personal Extreme Pro-
gramming methodology was at all times adhered to
during the development process.

Specialized versions of the twelve practices set
forth in the PXP paradigm were applied through-
out. For each of these practices, we will describe the
specifics of their application to the development of
our window manager.

6.1 The planning game
User stories are written in user terms and

contain minimal technical jargon.

While they do not contain technical details of the
window manager’s internal architecture per se, our
user stories do contain terminology common to the
X ecosystem, such as references to specifics in key-
board and mouse handling (Section 3.12). There
is no way around these references, as they directly
pertain to the manner in which a user wishes to be
in control of the different window management fea-
tures. Unlike most window managers, ours is tar-
geted at developers and hobbyists (collectively re-
ferred to as power users) who additionally want to
be able to describe how to control the software.

Consider the following user story. It requires the
window manager to allow the user to move windows
around by using a key on the keyboard in conjunc-
tion with the mouse.

As a user, I can press down the main modifier
key on the keyboard, left click the window I want
to move, and subsequently move that window
by moving the mouse. Releasing the left mouse
button will stop moving the window in question.

Surely, without such details, the user would not
be able to precisely define the usage parameters that
they require to reach that certain level of control.
The need for a higher degree of granularity is es-
pecially prevalent amongst projects aimed at power
users, as they often need to be given an extra layer
of complexity in order to achieve a more efficient
working situation than the average user.

A list of user stories was compiled up front, and

more were added later on as the need for them
arose. Features that allow for the direct manipula-
tion of window management concepts such as win-
dows, workspaces, and key and mouse bindings are
all narrated in user stories.

Bugs encountered during the development pro-
cess, and issues otherwise related to convenience and
consistency were not documented in user stories, as
they require a more technical, elaborate, and precise
wording. To this end, so-called issues were created,
similar to those found in common version control so-
lutions such as GitHub†. When applicable, they will
often contain a sketch of the problem. An example
of such an issue is the following.

Upon the reparenting of a window spawned by
a Java-based application, subwindow positioning
is incorrectly offset relative to the frame. Coordi-
nates of the subwindow are translated relative to
the origin of the frame by the distance between
its requested position and the origin of the root
window.

∆y

∆x

The window’s requested position

frame
∆y

∆x

The window’s frame offset

Max van Deurzen †https://help.github.com/en/articles/about-issues Page 48 of 79

https://help.github.com/en/articles/about-issues

Case Study in Top-Level Window Management Chapter 6. Implementation Process

User stories and issues were logged both digi-
tally and on paper. Paper logging was incorporated
when illustrations were required to better delineate
a problem. This approach did not cause any notable
hindrance, as logs did not need to be reported or
otherwise shared.

6.2 Small releases
At the end of each iteration, a working

system containing a supplementary set of
features is put into production.

Our sprints have varied in length, as changes
in requirements (Section 6.1) and schedule (Sec-
tion 6.10) were vetted preliminary to each iteration.
Initially, two-week sprints were employed; this time
frame proved suitable to the inaugural requirements
gathering and project set-up processes. After the
test framework was set up, a properly functioning
base system was in place, and an inceptive set of
important requirements was lined up, sprint dura-
tions ranged from a week to up to four weeks.

At the end of each iteration, a working snap-
shot of the product was put into production. Each
snapshot was required to pass unit and acceptance
tests that covered the entire codebase, and not just
the subset that had changed throughout the sprint.
Each release was accordingly tagged. Tags serve as
markers for specific points in history. To effectuate
release tagging, Git, our version control system of
choice, was used [45]. Each tag contains the itera-
tion number and a short message that summarizes
the changes since last release. Consider the follow-
ing tag. It introduces the concepts implemented in
the third iteration.

it3
Implements workspaces: virtual desktops
that remember window arrangement, tiling
layout, and several other parameters that per-
tain to groupings of windows. A window be-
longs to exactly one workspace, and exactly
one workspace is active at any time. Win-
dows can now be moved between workspaces,
and the user is now able to cycle between
workspaces.

Putting a release into production involves merg-
ing any changes made with the main development
branch. At all times, the main development branch
must reflect the most recent stable version of the
product. This implies that for the latest release, the
codebase is as simple as possible (Section 6.4) and
all-encompassing tests pass (Section 6.5).

6.3 Metaphor
The project has a system metaphor, a

high-level abstract (non-technical)
description of the product’s functionality.

The following user story serves as our system
metaphor.

As a user, I want a snappy, convenient, and re-
liable tiling window manager. It should behave
like any other modern window manager in its in-
teraction with other applications. I want it to
contain predefined tiling layouts, virtual desk-
tops, and convenient keyboard and mouse bind-
ings that collectively give me the means to work
effectively and efficiently.

The product does not lend itself to abstract
or obscure metaphors, for its users (together the
customer) are power users who are familiar with
common window management concepts, and therein
have specific needs and preferences.

A snappy, convenient, and reliable window man-
ager is one that has a low memory footprint, does not
cause impediment in its use, and does not crash or
lag during conventional operation. Proper planning
(Section 6.1), small releases (Section 6.2), a simple
design (Section 6.4), extensive testing (Section 6.5),
and a stream of small integrations (Section 6.9) were
all hewed to to accommodate this.

For it to behave like any other modern window
manager in its interaction with other applications,
the window manager should comply with standard-
ized protocols that define policy for inter-client com-
munication. To this end, our window manager imple-
ments both the ICCCM and EWMH standard proto-
cols (Chapter 4).

Because our product is a list-based tiling window
manager, it offers its users predefined layouts along
which groupings of windows are arranged. The ma-
nipulation of each such grouping is administered by
a workspace. Workspaces are virtual desktops that
record important information related to operations
performed on the windows it encompasses. The win-
dow manager has mouse and key bindings that allow
the user to effortlessly perform certain window man-
agement actions. As such, it contains predefined
tiling layouts, virtual desktops, and convenient key-
board and mouse bindings that collectively give the
user the means to work effectively and efficiently, as
required.

Max van Deurzen Page 49 of 79

Case Study in Top-Level Window Management Chapter 6. Implementation Process

6.4 Simple design
At all times, the codebase is as simple as

possible while still meeting the business
requirements.

Simple in this context does not mean short or small.
It does not mean not complicated. Nor does it mean
that everyone who is able to understand the syntax
must also be able to understand the semantics. The
meaning of a simple design depends on the product.
A project that aims to implement airplane autopilot
software, for instance, brings with it an inherent com-
plexity that cannot be factored out by writing less
complicated code.

To constantly keep the codebase at a most sim-
ple state, the developer must take a “simple is best”
approach. Whenever a new feature is added, the au-
thor should ask themselves whether or not there is
a simpler way to introduce the same functionality.
In fact, this holds retroactive to the codebase as a
whole. That is, the author should assess whether
any part of the codebase can be made simpler, even
if that part does not directly relate to the new fea-
ture. Perhaps the new feature and another part of
the program use the same underlying techniques, and
the problem can be generalized. Maintaining a sim-
ple design helps rule out scope creep, and empowers
the developer in understanding which parts of the
codebase are affected by the introduction of a new
feature.

The simplification of code should not be mis-
taken with its optimization. A simpler design only
aims to better the code, not the product. Of course,
simplifying code sometimes instigates changes in
running time or memory usage. If speed is an impor-
tant factor, and a simplification of code significantly
slows down the product, then that simplification is
not deemed viable, as the business requirements are
no longer all met.

As development progressed, the window man-
ager’s codebase was continually kept as simple as
possible. Certainly at the end of each sprint, and
often multiple times throughout the iteration, refac-
toring (Section 6.6) was done to generalize shared
functionality, to introduce encapsulation and poly-
morphism, to organize code into different compila-
tion units, or to otherwise move functionality from
one class to another.

6.5 Testing
A test-driven development approach is

applied; tests cover the entire codebase and
must pass at the end of each iteration.

A test-first philosophy was applied all through the
development process. Unit tests for a feature were
written before the code that implements it was, and
acceptance tests made sure that high-level require-
ments were at all times met.

The Catch2 (short for C++ Automated Test
Cases in a Header) [46] test framework was used to
construct and run our tests. Catch2 is C++-native
and header-only. It facilitates simple unit testing as
well as test-driven and behavior-driven development.
Consider the following example.

Listing 6.1: Focus cycle forward rotation test
TEST_CASE("test focus cycle", "[focus-cycle]")
{

SECTION("full group rotation forward")
{

auto before = fc.get_all();
for (size_t i = 0; i < before.size(); ++i) {

auto pre = fc.get_all();
fc.rotate_group_forward(0, before.size());
auto post = fc.get_all();

for (size_t j = 0; j < before.size(); ++j)
REQUIRE(pre[(j+1)%before.size()] == post[j]);

}

auto after = fc.get_all();
REQUIRE(before.size() == after.size());
for (size_t i = 0; i < before.size(); ++i)

REQUIRE(before[i] == after[i]);
}

}

Here, tests are defined for the focus-cycle compi-
lation unit. Specifically, group rotation functionality
is tested on the entire window list. A rotation is a
single-step counterclockwise moving of all windows
in the list. Where, for instance, the window list ini-
tially looks like this:

1 2 3 4 5 6

Ordered list containing 6 windows

After the rotation, the windows in the list are or-
dered as follows.

2 3 4 5 6 1

Result of a single forward rotation

This test case only tests forward rotation func-
tionality in one specific situation: all windows in the
list are non-floating. Other test cases handle dif-
ferent situations, and together they assure that the
compilation unit as a whole functions as expected.
It is worth noting that test cases like the one given
above are rather complex, and should never serve as
the only test that covers some higher-level function-
ality. In fact, our test case uses several atomic opera-

Max van Deurzen Page 50 of 79

Case Study in Top-Level Window Management Chapter 6. Implementation Process

tions on the data structure that must be tested sepa-
rately, such as the rotate_group_forward member
function.

Test cases are defined for each of the compilation
units that together comprise the window manager.
They are all made sure to pass whenever new func-
tionality is added and when an iteration is brought
to a close.

6.6 Refactoring
If the codebase is not as simple as possible,

it is refactored before moving on to the next
iteration.

Before the end of each iteration, and oftentimes
throughout the lifetime of a sprint, refactoring was
done to keep the codebase at a scalable and main-
tainable level. With scalable we mean that the re-
quirements that are still planned are able to make
its way into the codebase in a natural manner, that
is, without requiring a change in the code responsi-
ble for other functionality, and without breaking any
of the patterns or standards (Section 6.12) adhered
to thus far. Maintainable code can be reliably cov-
ered by test cases, is readable, and logically separates
concerns.

Of course, due to the Agile nature of our ap-
proach, not all requirements were known up front.
Whenever a new requirement was introduced some-
where down the line, given the state of the codebase,
there may not have been a scalable and maintain-
able way to implement it. As a result, an entire
overhaul of the codebase may have been in order.
Such a refactoring is a large undertaking, and may
take up half if not all of the sprint to realize. It is,
however, an essential part of the design process—as
the Waterfall generation learned the hard way—and
it cannot be replaced by any amount of upfront plan-
ning or experience [35]. Technical debt, a metaphor
developed by Ward Cunningham, helps explain that
doing things the quick and dirty way incurs interest
payments (like financial debt) in the form of extra
effort that needs to be done in future development
because of inferior design choices [47].

Aside from several small refactorings, we only
found the need to do a large overhaul of the code-
base once. This was to accommodate the drawing of
window manager specific graphics (especially text)
to the screen. Specifically, the refactoring involved
the splitting up of a compilation unit responsible
for handling data related to the X Server (such as
the variable that represents the connection with the
X Server) into a subsystem, separating it from the
functionality specific to window management behav-
ior (independent of any windowing system). This

change brought with it a significant change in over-
all code structure.

6.7 Pair programming
Informal walkthroughs and rubber duck

debugging are applied throughout.

Whenever faulty program behavior was encountered,
the so-called rubber duck debugging technique was
applied. It involves the explaining of the problem
line-by-line to oneself (not necessarily aloud) as if
they were speaking with someone else [44]. This tech-
nique helps the programmer to evaluate the prob-
lem from a different perspective, and can sometimes
provide deeper understanding. Most of all, it helps
break the habit of forcing oneself into tunnel vision.

In addition, informal walkthroughs were given to
interested friends and family members. These walk-
throughs are helpful in looking at the product from
an outsider’s perspective, and are mainly useful for
determining new requirements.

6.8 Collective ownership
Multiple features may be concurrently

worked on in separate branches.

The window manager comprises many different fea-
ture categories. Window movement, user control,
window decorations (framing), sidebar rendering,
workspaces, and so on. While it may be a good
idea to work on a single category during an iteration,
sometimes bugs arise in others, or a change must
be made elsewhere to facilitate the development of
a particular feature. It is best to not work on these
features at once—at least not in the same version of
the code. For this, we use branches. Branches al-
low the programmer to develop features completely
separate of each other, and to later merge them into
the main codebase. As the development progressed,
many features were implemented concurrently, as a
sprint rarely saw the implementation of just a single
feature.

6.9 Continuous integration
Changes are integrated into the main

codebase as frequently as possible. After an
integration, tests are run and must pass.

Strongly related to our single-team interpretation of
collective ownership (Section 6.8), continuous inte-
gration pertains to the development of features as
an isolated set of code alterations. These alterations
should be relatively small, and committed once im-
plemented. When a feature is completed, its dedi-
cated branch is finalized and merged with the main

Max van Deurzen Page 51 of 79

Case Study in Top-Level Window Management Chapter 6. Implementation Process

branch. Moving the development of each feature to
a dedicated branch is tremendously helpful in localiz-
ing bugs, and it allows the programmer to go back to
the state of the codebase before the program started
exhibiting faulty behavior to inspect just what went
wrong. To then pinpoint the culprit, only a relatively
small part of the code has to be scrutinized. Each
sprint saw tens of commits and multiple merges.

6.10 40-hour week
An attempt is made to continually adhere to

a 40-hour project work week.

A good attempt was made to adhere to 40-hour work
weeks (which also comprised weekends) dedicated
to the development of the window manager. This
includes time spent on research, design, implemen-
tation, debugging, and testing.

6.11 On-site customer
Customer requirements are garnered and

refined by assuming the role of an
intermediate user of common tiling window

managers.

As mentioned in Sections 6.1 and 6.3, our targeted
users (the customer) are power users. These users
are experienced with window managers, especially
with more advanced tiling window managers such as
those described in Appendices A and B. As an avid
user of such window managers myself, assuming the
role of the customer did not pose any difficulty.

6.12 Coding standard
The same coding standards are used

throughout.

Working alone means that it is relatively simple to
adhere to the same coding standards throughout the
development process. Even so, it is crucial to re-
main wary of contradicting practices that might di-
minish the readability of code or worse, introduce
faulty program behavior. An example of the former
is the use of more than one code formatting stan-
dard. If arbitrary naming conventions are chosen as
the programmer sees fit, or if there is no consistency
in indentation or block delimiter usage, then other
developers that may want to collaborate (or future
you) will have a harder time understanding the code.
The latter may occur if, for instance, incorrect use of
programming constructs leads to undefined behavior.

Many of the coding standards adhered to
throughout the development of the window man-
ager are those stipulated in C++ Coding Standards,

a seminal book written by Herb Sutter and Andrei
Alexandrescu [48]. In this book, the authors list rules,
guidelines, and best practices to improve software
quality, to reduce time-to-market, to eliminate the
wasting of time, and to simplify maintenance.

Additionally, the tried-and-true principles enu-
merated in the C++ Core Guidelines [49] were followed
throughout development. These core guidelines are a
collaborative effort led by Bjarne Stroustrup, creator
and developer of the C++ programming language,
and came into existence as a result of many years of
discussion and design across a number of organiza-
tions. Their design encourages general applicability
and broad adoption.

Max van Deurzen Page 52 of 79

Chapter 7
Implementation Product

This chapter details a proof of concept for the mat-
ter discussed throughout the first four chapters. We
will discuss a complete C++ implementation of an IC-
CCM (Section 4.1) and EWMH (Section 4.2) com-
pliant top-level reparenting (Section 2.2.5), tiling
(Section 2.2.3) window manager (Section 2.2.1),
built on top of X11 (Chapter 3), using Xlib (Sec-
tion 3.5) as client-side programming library. We will
do so by means of demonstration: for every feature
it boasts, a brief explanation is provided, including
illustrations where necessary.

The name I had decided to give the window man-
ager is kranewm, for no other reason than that cranes
move objects around in the same way a user might
operate a window manager to move windows around,
spelled with a k for distinguishing purposes, and end-
ing in wm to indicate that it is indeed a window man-
ager, as is tradition. It is released as free and open
source software under the BSD 3-Clause license and
is available on my GitHub and GitLab pages†.

7.1 Design
At a high level, kranewm does not present anything
particularly different from other, contemporary win-
dow managers. This is of course by design, as we
have sought to bring together and thoroughly under-
stand common window management techniques and
features by, in essence, implementing them ourselves.
At a lower level, personal preferences and experi-
ence has sometimes led to changes in the specifics
of a feature. Whenever this is the case, the conse-
quences of the choice and the rationale behind it will
be provided.

The design for kranewm was inspired by a whole
host of window managers in popular use today, in-
cluding but not limited to those discussed in Ap-
pendices A and B. Influences go far beyond those
of window managers alone, however, as several key
bindings (Section 7.5) and other design choices are
directly based on Vim, the text editor authored by
Bram Moolenaar. This influence goes even deeper,
as most other window managers already inherit no-
tions from Vim. This is mostly due to the edi-
tor’s modal nature, which, originally, was a neces-
sity in the early days of Unix computing, before the
wide adoption of the mouse, as it allowed for com-
plete keyboard driven editing. Similarly, most mod-
ern tiling window managers aim to provide the abil-
ity to “mouselessly” control windows, as does ours.

kranewm is ICCCM and EWMH (Chapter 4) compli-
ant and as such acts and feels like any other modern
tiling window manager.

7.2 Reparenting
Not all tiling window managers choose to reparent
the windows under their reign, as some will simply
resort to changing the color of the window’s border
to help the user distinguish which window currently
has input focus. A popular such window manager is
dwm (Section A.2). Choosing to not reparent win-
dows greatly reduces the window manager’s inner
complexity, as this cuts down on bookkeeping and
circumvents the necessity to deal with several cor-
ner cases in handling specific types of applications,
such as Java-based applications (Section 6.1). Or,
as the author of katriawm describes their experience
with implementing the reparenting feature [50]:

“Turned out, reparenting is not as easy as you
might think. Reparenting adds an additional layer
of complexity or maybe even more than one layer.
Plus, reparenting does not magically fix all your
problems. For example, Java expects to run un-
der a reparenting window manager by default. If
it doesn’t, then you might only get a grey win-
dow. Surely, when you write a reparenting WM,
even a simple one, this must be fixed, right? No,
it won’t be fixed. I ended up with either half of
the window being grey or with misplaced menus.”

Despite these difficulties, reparenting is a feature
in many modern window managers, and we have
therefore decided to implement it in full. Windows
in kranewm are embedded in a frame that protrudes
two pixels from the top, as can be seen in the figure
below.

Figure 7.1: Active, inactive, and urgent windows

Max van Deurzen †https://git{hub,lab}.com/deurzen/kranewm Page 53 of 79

https://github.com/deurzen/kranewm
https://gitlab.com/deurzen/kranewm

Case Study in Top-Level Window Management Chapter 7. Implementation Product

The window that currently has input focus (Fig-
ure 7.1, at the bottom) is given a frame with a
light protrusion from the top (by design very sub-
tle, though in practice sufficiently distinguishable),
whereas windows that do not will have a dark pro-
trusion (top left). kranewm works with all types of
correct (that is, mostly adhering to and not violating
the standards in the ICCCM and EWMH) programs,
including Java-based applications.

The frame also acts as an indicator for applica-
tion urgency. Whenever the demands attention bit
is set in the window state property (as defined in
the EWMH, Section 4.1.2), the user should direct
their attention to that window, for one reason or
another. To facilitate this, the frame of an appli-
cation window that sets this bit will be rendered in
red (Figure 7.1, top right). Whenever the window
that demanded attention is given input focus, or the
urgency bit is unset by the application, the frame is
colored normally depending on the conditions given
above.

7.3 Workspaces
Workspaces (sometimes called virtual desktops or
just desktops, see Section 4.2.1) are essentially
groupings of windows that are simultaneously ac-
tive or inactive. Active windows are shown on screen
and can be manipulated by the user, whereas inactive
windows are out of sight and therefore out of control.
A user is able to switch workspaces (usually by means
of a convenient key binding, Section 7.5), which will
render the windows on the previous workspace inac-
tive, and those on the target workspace active.

Different window managers implement
workspaces in differing ways. awesome (Sec-
tion A.3), for instance, enables the user to have more
than a single workspace active at a time. Some win-
dow managers, such as dwm, do not see workspaces
as anything other than groupings of windows, and
will not have other information saved amongst them,
such as tiling layout or the number of master clients.

kranewm does couple some kind of state with
each workspace. Each workspace remembers, spe-
cific to it, its current and previous tiling layout, the
number of master clients, master-to-stack factor,
gap size, and whether or not the orientation is mir-
rored. We will briefly go over each of these variables
and the way they are implemented in kranewm, in
turn.

Layout

Layouts are predefined patterns that define window
arrangements and together form a workable ensem-

ble. One and only one layout is enabled at a time,
and the user decides which layout to activate. As a
result, the user is at all times expected to anticipate
which tiling layout best fits their latest needs. For
this reason, tiling window managers are considered
not beginner friendly, and mostly target power users.
To alleviate the user from always having to think in
patterns, or to otherwise cater to applications that
require specifically structured workflows, most win-
dow managers provide a special kind of layout, often
called floating mode, that can be activated by the
user like any other layout. The floating mode layout
provides the user with a similar experience to that
found in traditional, stacking window managers (as
discussed in Section 2.2.2), where windows can be
moved around and resized freely.

kranewm implements a floating mode layout as
well as several tiling layouts (Section 7.10), some of
which are based on layouts found in other list-based
tiling window managers.

NMaster

Tiling layouts usually divide the entire tileable area
up into two partitions, one for master clients and one
for stack clients (Section 2.2.3). kranewm does so
too in its layouts. For the window manager to de-
termine which of the clients on the workspace are to
be part of the master area, and which of the stack
area, the nmaster variable is used. The user can
increment or decrement this variable in real time
as they see fit, and doing so will automatically re-
arrange the windows. The figure below illustrates
five tiled clients on a workspace in tiled mode, with
nmaster = 2.

Figure 7.2: Two master clients, three stack

MFactor

The mfactor variable determines the size of the
master area relative to the entire tileable area. So,
with mfactor = 0.60, the master partition will have
a width of 60% of this area, while the stack par-
tition will take up 40%. kranewm allows the user

Max van Deurzen Page 54 of 79

Case Study in Top-Level Window Management Chapter 7. Implementation Product

to dynamically increase or decrease the value of this
variable dynamically. Again, doing so will automat-
ically rearrange the windows. The workspace shown
in Figure 7.2 has mfactor = 0.30.

Window gap

kranewm uses this variable (gap_size) in tiling
procedures to render a gap between the edges
of the tileable area and the outer edges of the
master and stack areas, and between windows
amongst each other. The following figure shows
the same workspace as in Figure 7.2, but now with
gap_size = 10 (as opposed to 0).

Figure 7.3: Gap size of 10

A gap in this regard is nothing more than un-
used, void space. Rendering empty space around
and between windows can effectuate a clearer sense
of overview. It helps the user better distinguish be-
tween application interfaces, and it may provide for
a pleasing aesthetic as well.

Mirroring

Mirroring is a feature that was not (intentionally) im-
itated from other window managers. It was added to
kranewm after the need for it arose from extended
usage.

Figure 7.4: Mirrored workspace

The user may toggle mirroring on a workspace,
which will swap the position and size of the master
and stack partitions, dynamically. If, before toggling,
the workspace looks like the one in Figure 7.3, then
after it will like the one in Figure 7.4.

Toggling it again will of course reverse the re-
sult. Mirroring a workspace will not change any
other variables. That is, nmaster, mfactor, and
gap_size will remain the same, and so will input
focus. Clients in the fullscreen or floating state (Sec-
tions 7.8.1 and 7.8.2) will not be affected. Mirror-
ing a workspace in floating, grid, or center mode
(Section 7.10) has no visible effect, and mirroring
a workspace in pillar mode (Section 7.10) swaps the
position and size of the left and right stack panes—
the master area is unaffected.

7.4 Sidebar and struts
Where traditionally window managers did not deal
with such things as status bars, taskbars, system
trays or other such subsidiary information conveying
components (Section 4.2.1), as they were each a sep-
arate part of the desktop environment—therein prop-
erly following the Unix philosophy—modern window
managers often do choose to incorporate them. Usu-
ally, users will be allowed to disable these compo-
nents if they so please. Any window manager com-
plying with the EWMH will support external pro-
grams that provide similar functionality.

kranewm has a built-in sidebar that provides in-
formation about the current workspace. As with
most other window managers, the user may choose
to disable it and opt for an external tool, or decide
to not use one at all. The following figure shows the
window manager in use, with the built-in sidebar en-
abled.

Figure 7.5: Enabled sidebar

The sidebar displays, from top to bottom:

• A state indicator at the top right of the side-
bar;

Max van Deurzen Page 55 of 79

Case Study in Top-Level Window Management Chapter 7. Implementation Product

• The current workspace’s layout symbol ;
• Workspace numbers and corresponding sta-

tus indicators;
• Workspace client count.

A state indicator only appears when the cur-
rently focused window is in the fullscreen state (col-
ored indicator, green in Figure 7.5) or in the floating
state (white indicator). The layout symbol indicates
which layout is active on the current workspace:
floating (“F”, Figure 7.5), tiled (“T”), stick (“S”),
deck (“D”), doubledeck (“$”), grid (“#”), pillar
(“P”), column (“C”), monocle (“M”), or center
(“ˆ”) mode. Each of these tiling layouts is discussed
in Section 7.10. The workspace numbers are drawn
in order from top to bottom. The currently active
workspace’s number is colored. A square to the top
right of a workspace number, if present, indicates
one of three things. A square next to the currently
active workspace’s number will also be colored and
indicates that that workspace has at least one client
on it. Inactive workspaces’ numbers provide more
information. If a window on a different workspace
has demanded attention, the indicator next to its
workspace’s number is colored red (like workspace
number four in Figure 7.5). Otherwise, if it contains
windows, a white square will be rendered next to it
(as with workspace numbers one, seven, and eight
in Figure 7.5). If a workspace contains no windows,
no status indicator is drawn. The client count at the
bottom of the sidebar shows how many clients are
on the currently activated workspace if there are less
than ten, and the “>” symbol otherwise. The colors
used by the sidebar are configurable by the user.

Notice that the window that is in the fullscreen
state is nicely aligned with the sidebar, as well as with
the other three edges of the screen. It is reason-
able for the user to expect that upon disabling the
sidebar, or when enabling an external such program
(i.e. one that is given an absolute, static position
along an edge of the screen), the tileable screen area
is to change along with those adjustments. That
is, if we were to swap out the built-in sidebar with,
say, lemonbar [51], and configure it to be positioned
at the top of the screen with a height of n pixels,
all windows that are being tiled by the window man-
ager should then together take up the entire screen
width, and the screen height minus n.

kranewm is able to detect any changes of this
nature dynamically—so, when enabling or disabling
a program of this kind, the window manager will ad-
just its tileable area accordingly in real time, with-
out the need to configure or restart it. It does so
by watching for changes in the _NET_WM_STRUT and
_NET_WM_STRUT_PARTIAL properties, specified in
the EWMH (Section 4.2.3). Whenever the window

manager detects that a new window has spawned,
it reads its strut properties (if present) and conse-
quently does the bookkeeping required to precisely
define the tileable screen area. It is capable of re-
serving space at each edge of the screen. Of course,
when a window for which a strut area is reserved is
destroyed, the tileable area is readjusted. Figure 7.6
demonstrates a workspace in tiled mode with two in-
stances of lemonbar running at the bottom and top
strut areas, and the built-in sidebar at the left strut
area.

Figure 7.6: Three occupied strut areas

When a window is moved around or resized man-
ually by the user (implying that that window is either
in the floating state or floating mode is activated
for its workspace), that window is of course allowed
across the borders of the tileable area. Windows in
the fullscreen state disregard the top and bottom
strut areas, and will always take up the entire height
of the screen. Reserved space by programs at the
left or right strut areas are taken into account.

In the implementation notes section of the
EWMH, a stacking order is suggested for the dif-
ferent window types (Sections 4.2.1 and 4.2.3). In
particular, it is stated that dock windows, which are
the windows that reserve a strut area at the edge of
the screen, are to always be rendered over regular
windows. The window managers enumerated in Ap-
pendices A and B, amongst others, do not agree with
this suggestion, and choose to give regular windows
precedence over dock windows, as far as stacking or-
der is concerned. Regular windows are in active use
and convey more important information than dock
windows. kranewm therefore also prioritizes regular
windows over dock windows in the stacking order.

7.5 Key bindings
As kranewm focuses on keyboard driven window
management, most functionality is accessed by the
user through key bindings. Key bindings are sets of
keys that, when pressed together, instruct the win-

Max van Deurzen Page 56 of 79

Case Study in Top-Level Window Management Chapter 7. Implementation Product

dow manager to perform an action.
Throughout the rest of this chapter, when we

speak of key bindings, we mean that the functionality
behind the key binding is implemented by kranewm,
and that the user can access that functionality by
pressing a unique set of keys.

All key bindings are customizable in kranewm.
For that reason, we will only mention that an action
is coupled with a key binding, and not which specific
set of keys activates it.

7.6 Mouse bindings
Similar to key bindings, mouse bindings couple win-
dow manager functionality with the operation of the
mouse. A mouse binding is a specification for the
mouse button being clicked and an optional modi-
fier key pressed. For example, holding down the alt
key while left clicking the mouse on a client initiates
window movement.

kranewm defines cutomizable mouse bindings
that mostly map to actions over workspaces, such
as moving to the next and previous workspace by
pressing the forward or backwards buttons on the
mouse, respectively.

7.7 General usage
Where historically, window manager functionality in-
volved only the manipulation of windows, they are
more and more inheriting functionality traditionally
left to different parts of the desktop environment.
We will briefly go over some of the additions preva-
lent amongst modern window managers like those
listed in Appendices A and B. They are considered
general usage features, and they are mostly bound
by key bindings.

7.7.1 Terminal
The most important program to the power user will
probably be the terminal emulator. As such, most
modern window managers define a key binding to
spawn a terminal window; kranemwm does so too.

7.7.2 Program launching
While other programs could be launched from the
terminal, many prefer to not clutter their workflow
and would rather use a program launcher. For that
reason, window managers often also define a key
binding to spawn an external program used to del-
egate the program launching process. kranewm de-
fines such a key binding as well. Its program of choice

is dmenu, though a user can always swap it out for
a different program if they so please.

7.7.3 Closing clients
kranewm does not draw buttons on its window
frames to provide users with a universal method for
closing windows. Instead, closing functionality is
coupled with a key binding.

7.8 Window states
Like most modern window managers, kranewm im-
plements a floating state and a fullscreen state.

7.8.1 Floating state
Some windows are not meant to be tiled, such as
pop-up or dialog windows. The window manager
automatically detects these, as they should have the
WM_TRANSIENT_FOR property (Section 4.1.1) set,
given they properly comply with the standards in
the ICCCM. To distinguish them from other, reg-
ular windows that are to be tiled according to the
active layout, such windows are put in the floating
state. The floating state can also be manually tog-
gled on a per window basis by the user. So, if they
would rather have the window manager tile a tran-
sient window, they can toggle the floating state on
that window. Likewise, regular windows that are be-
ing tiled along the active layout can be put into the
floating state. Tiling will be performed on all win-
dows that are not in the floating state. Consider the
following figure. In it, two windows are in the float-
ing state. They are not tiled, and are drawn above
the tiled windows (that is, they take precedence in
the window stack).

Figure 7.7: Two windows in the floating state

Essentially, all windows in the floating state func-
tion as if they were in the floating mode layout.
That is, the user can move and resize them freely,
keyboard and mouse operations for floating windows

Max van Deurzen Page 57 of 79

Case Study in Top-Level Window Management Chapter 7. Implementation Product

work on them, and their drawing order depends on
their position in the window stack, though they will
always be rendered atop the tiled windows.

7.8.2 Fullscreen state
Fullscreen windows are an integral part of the mod-
ern desktop experience. All major desktop environ-
ments support them, and most applications rely on
the window manager to implement the fullscreen
state.

Like most other window managers, kranewm
supports the fullscreen state. Applications can
ask the window manager to put them into the
state by sending a ClientMessage event containing
the _NET_WM_STATE_FULLSCREEN atom (see Sec-
tion 4.2.3) to the root window. The user can also
toggle the fullscreen state on a window manually
through the window manager. Doing so will add the
_NET_WM_STATE_FULLSCREEN atom to the window’s
_NET_WM_STATE property, notifying the application
that it is being treated as a fullscreen window. Fig-
ure 7.5 shows a window in the fullscreen state.

7.9 Window manipulation
Windows in the environment, called clients to the
window manager, can be manipulated in several
ways. Each window manipulation belongs to at least
one of the following three categories.

• Inner-workspace focus movement;
• Inner-workspace window movement;
• Cross-workspace window movement.

Inner-workspace focus movements do not alter
the position or size of a window. They merely ex-
ist to move input focus from one window to an-
other. Focus is kept track of on a per workspace
basis. That is to say, focus is part of the state of a
workspace. For example, switching from workspace
one to workspace three, and then back to workspace
one again will have no effect as far as input focus is
concerned. Inner-workspace window movements do
affect the position or size of a window, and in the
process they may alter the ordering of the clients
on the workspace. Cross-workspace window move-
ments handle the transition of a window from one
workspace to another. A window can, for example,
be moved from workspace two to workspace three.
We will briefly discuss the features that belong to
each of these three categories.

7.9.1 Inner-workspace focus movement
Focus can be directed by using the mouse. Clicking
on a client will move input focus to it. Doing so will

also move that client to the top of its part of the
window stack, thereby having it rendered above all
other such windows on the screen.

The user may also use the keyboard to transfer
focus from one client to another. Key bindings are
defined that allow the user to transfer focus forward
a client, or backwards a client. This is what is known
as focus cycling. Alternatively, focus can move to ar-
bitrary clients in the list—this we call focus jumping.

Focus cycling

The user can cycle focus up or down, relative to the
ordered list of clients. For instance, if the clients on
a workspace are initially ordered as follows, where
the colored nodes represent master clients, and the
node with its index colored red is the client that has
input focus.

1 2 3 4 5

Moving the focus forward will result in the fol-
lowing.

1 2 3 4 5

Moving focus backwards has the reversed effect.
This process wraps around, so moving focus forward
from the first client sets it to the last.

Focus jumping

kranewm enables the user to move focus directly to
the first master client, the first stack client, and the
last client in the ordered list with convenient key
bindings.

Additionally, kranewm implements so-called
pane jumping. A user can move focus from the mas-
ter pane to the stack pane, and vice versa. The last
set focus for each pane is remembered, such that a
pane jump results in focus transference to the last
focused client of the other pane. If, starting from
our previous example, we were to jump panes, we
would get the following.

1 2 3 4 5

The first master client is now focused, as no
other master client has previously had input focus.
Jumping panes again will move focus back to the
fourth client in the list, as that was the last focused
client from the stack.

1 2 3 4 5

Max van Deurzen Page 58 of 79

Case Study in Top-Level Window Management Chapter 7. Implementation Product

Lastly, kranewm offers key bindings for directly
jumping to any of the first nine clients in the ordered
list by index.

7.9.2 Inner-workspace window movement
As most window managers, kranewm lets the user
move and resize clients with the mouse. To make
this process more convenient, the user can move a
client by holding the alt key while pressing down the
left mouse button and moving the mouse; they can
resize the client by holding the alt key while press-
ing down the right mouse button and moving the
mouse. Clients are resized from the corner closest to
the mouse cursor upon initiating the resize.

kranewm defines several key bindings for mov-
ing and resizing windows. Depending on a window’s
state and the layout that is currently active, some of
these bindings either directly move or resize the cur-
rently focused client, or they rearrange clients in the
ordered list, thereby also changing their position and
size as the layout is reapplied.

Centering and snapping

A user can center a floating window manually (that
is, the user directs the window manager to center the
currently focused window), or a rule (Section 7.11)
can be created to automatically have a window cen-
tered.

Aditionally, floating windows can be manually
snapped to any of the four edges of the screen.
That is, when a user instructs the currently focused
window to be snapped to, say, the top edge of
the screen, only that window’s vertical position will
change such that its top border is at the top of the
screen.

Zoom

Zooming is a concept inherited from other window
managers—dwm is an example of a window manager
that implements zoom functionality.

Zooming a window rearranges the ordered list of
clients such that the focused client gets moved to
the front of the list. If nmaster > 0, zooming will
result in the currently focused client becoming the
first master client.

If the currently focused client is the first client
in the ordered list, zooming will result in a rever-
sal of the previous zoom, if the previously unzoomed
master client, if any, is still present on the current
workspace. That is, if we begin with the clients or-
dered as follows.

1 2 3 4 5

Zooming will result in the following ordering.

4 2 3 1 5

Zooming again will reverse the result. If, how-
ever, after the first zoom, client number one were to
be removed from the workspace, zooming a second
time with the focus on client number four would have
no effect.

Bubble

Bubbling a window up or down involves the single-
step movement of a window forward or backwards in
the ordered list of clients.

In kranewm, key bindings allow the user to bub-
ble up or down the currently focused window. Bub-
bling down manipulates the ordered list as follows.

1 2 3 4 5
1 2 4 3 5

Bubbling up from this configuration results in the
reversed effect. Focus follows the client being bub-
bled up or down.

Rotation

In all layouts except for floating mode, client rota-
tion results in the single-step rotating of the ordered
list of clients. A forward rotation of the entire client
list:

1 2 3 4 5
2 3 4 5 1

Again, rotating backwards will reverse the result.
Notice that focus moves in the opposite direction
of the rotation. That is, focus remains at the same
index in the ordered list.

Besides full client list rotation, rotation func-
tionality also exists on the master clients and stack
clients separately. For example, starting from our
previous configuration, rotating the master clients
forward:

2 3 4 5 1
3 2 4 5 1

And subsequently rotating the stack clients back-
wards:

3 2 4 5 1
3 2 1 4 5

Max van Deurzen Page 59 of 79

Case Study in Top-Level Window Management Chapter 7. Implementation Product

Rotating stack clients while focus is on a master
client has no effect on focus, and neither does ro-
tating master clients when a client in the stack has
focus.

kranewm defines convenient key bindings for ro-
tating the entire client list, the master clients, and
the stack clients forward and backwards.

Incremental move and resize

A floating client is a client that is in the floating
state, or one that is on a workspace with the float-
ing mode layout active. Floating clients can be in-
crementally moved or resized by using the keyboard.
This allows the user to arrange clients on the screen
themselves, without the need to use the mouse.

Key bindings are defined that allow for incremen-
tal growing and shrinking of a client at all four of its
edges, and for movement up, down, left, and right.

7.9.3 Cross-workspace window movement
When working with groupings of windows, it is rea-
sonable for a user to expect that it is possible to move
windows from one grouping to another. All of the
window managers discussed in Appendices A and B
that implement workspaces (or a similar concept)
have the functionality to move clients across them,
and so does kranewm.

Key bindings are defined for moving the currently
focused window to one of the workspaces by index,
and for moving it up or down one workspace.

7.10 Layouts
As kranewm is a list-based tiling window manager,
it implements layouts along which windows on a
workspace are arranged. The user can switch be-
tween layouts with the activation of key bindings.
When changing a layout, the windows on the ac-
tive workspace are automatically rearranged. We will
briefly go over each of the offered layouts here.

7.10.1 Floating mode
Floating mode can be seen as an implementation of
the stacking window management paradigm (Sec-
tion 2.2.2). Windows can be moved around and re-
sized freely with both the mouse and they keyboard,
and the stacking order (which windows appear above
which others) is determined by the chronological or-
der of input focus—windows focused earlier will be
rendered below those focused later.

The arrangement of windows in floating mode is
saved, such that changing from floating mode to a

tiling layout and back again will preserve the place-
ment and size of the windows.

Figure 7.8: Workspace in floating mode

Figure 7.8 shows a workspace in floating mode.

7.10.2 Tile mode
Besides floating mode, kranewm allows the user to
dynamically activate several tiling layouts.

Like most other list-based tiling window man-
agers, kranewm implements n-master mode (Sec-
tion 2.2.3), which we call tile mode (activated in
Figure 7.9). It lays out the workspace’s clients in
two panes (columns): a master pane (left), and a
stack pane (right).

Figure 7.9: Workspace in tile mode

The amount of clients in the master pane is
determined by the nmaster variable (Section 7.3),
which can be set by the user during operation. In
fact, all variables set for the workspace, except for
the layout variable, of course, are applied, no mat-
ter the layout. That is, switching from tile mode to,
say, deck mode would have no effect on the variables
that determine the number of master clients, the gap
size, master pane width, or mirror status.

7.10.3 Stick mode
Almost identical to the tile mode layout is stick
mode, a layout not (intentionally) inherited from

Max van Deurzen Page 60 of 79

Case Study in Top-Level Window Management Chapter 7. Implementation Product

other window managers.
Stick mode arranges windows in the exact same

way as tile mode does. The only difference lies in
the layouts’ handling of gap size. Whereas tile mode
renders space between windows amongst each other
and between the panes and the screen edges equally,
stick mode only does so between the outer borders
of each pane and the screen.

Figure 7.10: Workspace in stick mode

Figure 7.10 shows a workspace with stick mode
activated. The workspaces in Figures 7.9 and 7.10
have the same gap size value.

The rationale behind the implementation of stick
mode is that arranging windows with a gap between
them may be less effective on large monitors, due to
the fact that the windows will be pushed away to-
wards the edges of the screen. Stick modes helps
keep windows neatly organized near the center of
the screen, regardless of its size.

7.10.4 Deck modes
The deck mode and doubledeck mode layouts ar-
range windows in panes, stacked behind each other,
like a deck of cards. Whereas deck mode only stacks
windows of the stack, doubledeck mode stacks both
the master and stack panes. The following figures
showcase workspaces with these modes activated.

Figure 7.11: Workspace in deck mode

The workspace in Figure 7.11 contains five win-
dows; two master windows (left), and three on the
stack, of which only the last focused is visible.

Figure 7.12: Workspace in doubledeck mode

Figure 7.12 shows a workspace in doubledeck
mode. It contains the same windows as the one in
Figure 7.11, though now only the last focused mas-
ter window from the master pane is visible.

Inner-workspace focus and window movements
determine which clients are visible on workspaces
with one of these two layouts active. Generally, the
last focused window per pane will be visible. Rotat-
ing a grouping that is not active will cause the next
client from that grouping to become visible. For ex-
ample, if one of the master clients currently has fo-
cus, and the user rotates the stack forward, the next
stack client will become visible.

Layouts with windows stacked behind one an-
other can prove useful when working on small screens
or with programs with minimal application inter-
faces. Cycling through the windows in either of the
panes can be done entirely through use of the key-
board. This makes it possible to quickly and intu-
itively access each program without the need to grab
for the mouse.

7.10.5 Grid mode
The only layout that ignores all workspace variables
is grid mode (Figure 7.13). To it, there is no such
thing as a master or stack pane, and it does not ren-
der a gap between or around windows. Grid mode
was not (intentionally) inherited from other window
managers.

Grid mode is a somewhat special layout in that it
caters to situations in which the user is working with
a (large) number of programs with minimal appli-
cation interfaces. Whenever possible, each window
will be given the same amount of space on screen,
as windows are arranged in a grid pattern.

Max van Deurzen Page 61 of 79

Case Study in Top-Level Window Management Chapter 7. Implementation Product

Figure 7.13: Workspace in grid mode

Workflows that could benefit from this layout
may for instance arise when working with multiple
terminal emulator windows, or when there is other-
wise the need for a high level overview of the win-
dows and their contents.

7.10.6 Pillar mode
The pillar mode layout, also independently added to
kranewm, arranges the clients on a workspace into
three columns, or pillars. The center pillar stacks
the master clients on top of each other, while the
left and right pillars contain the windows from the
stack, equally divided amongst the two, also stacked
on top of each other.

Figure 7.14: Workspace in pillar mode

This layout responds to the various workspace
variables. Like the other layouts that do so, the
mfactor variable determines the size of the mas-
ter pane relative to the size of the screen. So, if
mfactor = 0.60, the center pillar will take up 60%
of the screen, and the left and right pillars will each
take up 20%. Mirroring a workspace with this lay-
out activated will swap the positions and sizes of the
left and right pillars.

The pillar mode layout may for example be use-
ful when working with one or several programs with
an involved application interface (center pillar), and

multiple less demanding programs (left and right pil-
lars).

7.10.7 Column mode
Another layout not (intentionally) inherited by
kranewm from other window managers is the col-
umn mode layout.

Figure 7.15: Workspace in column mode

Like tile mode, this layout divides the tileable
area up into two panes, one for master clients and
the other for the stack. The only difference with
tile mode is that the master clients are tiled next
to each other, instead of on top of each other. All
workspace variables work the same on this layout as
on tile mode.

Column mode may be suitable when working
with programs that have (vertically) extensive ap-
plication interfaces.

7.10.8 Monocle mode
Monocle mode is a widely implemented layout
amongst modern list-based tiling window managers.
It essentially has all clients take up the entire tileable
area, stacked behind each other, like one large deck
(Section 7.10.4).

Figure 7.16: Workspace in monocle mode

This layout only responds to gap size. Gaps are

Max van Deurzen Page 62 of 79

Case Study in Top-Level Window Management Chapter 7. Implementation Product

added between the edges of the clients and the edges
of the screen.

Monocle mode is similar to having all clients
on the workspace in fullscreen mode, though
they are not actually to the clients as the
_NET_WM_STATE_FULLSCREEN atom is not set in the
_NET_WM_STATE property (Section 4.2).

Monocle mode may useful when working on a
small screen, or with programs with involved appli-
cation interfaces.

7.10.9 Center mode
The center mode layout was added independently
to kranewm. It was added with the intention to
serve as a distraction-free layout for programming
or for reading or writing prose, without the need to
manually arrange windows in such a way using the
floating state or floating mode.

The layout is similar to monocle mode, in that
all windows are stacked behind each other. The dif-
ference is that in center mode, a workspace’s clients
have a gap rendered between their left and right
edges and the edges of the screen.

Figure 7.17: Workspace in center mode

As with other layouts that respond to gap size,
increasing it decreases the size of the clients. Doing
so in this layout keeps the proportions of the clients
roughly the same.

7.11 Rules
A rule is a concept inherited from other window
managers, some of which are listed in Appen-
dices A and B (dwm, for instance). Rules are mostly
used as a last resort, to fine-tune the integration of a
window in the environment, or to correct some faulty
program behavior.

In its most basic form, a rule is a mapping from
a window’s class (Section 4.1.1) to a set of parame-
ters that alter the (initial) operating environment of
that window. Most window managers that imple-

ment both rules and workspaces (or a similar con-
cept) will allow the user to specify which workspace
a program’s windows should start on. If some kind
of floating state is supported, then a user will often
also be able to specify whether a program’s windows
should start in the floating state, or if they should
be arranged normally according to the active layout.

Because an application’s class is set on all of its
windows, and may therefore be too general to tar-
get with a rule, further distinction can be made by
allowing the user to specify an instance name (Sec-
tion 4.1.1) or title (Section 4.2.3) that must match
with a window. An instance name is a class name
that is set on a specific instance or window of a pro-
gram. The window belonging to the Hangouts ex-
tension for the Chrome browser, for example, will
have the same class as the main browser window,
but a different instance name. In this case, the
WM_CLASS property will be a list of two strings. Most
X programs have an option to customize a window’s
instance name, and often the title as well. The ter-
minal emulator xrvt-unicode, for example, can be
started with the -name NAME flag. Doing so will
add NAME to the WM_CLASS property of the resulting
window.

kranewm supports rules. Along with the previ-
ously mentioned rule-related functionality available
in other window managers (initial workspace and
floating state), kranewm offers the ability to perform
centering, autoclosing, and workspace hint blocking
on targeted windows.

In addition to the rules that target specific ap-
plications by class, kranewm implements global rules
that target any application that has a specific pre-
defined instance name or title set. A window with
the instance name kranewm:fw7c, for example, will
be put into the floating state on workspace 7, and
centered upon entering the environment. Any char-
acters after the kranewm: prefix represent flags that
relate to rule behavior. The following flags are sup-
ported.

flag description
f start the window in the floating state
c start the window centered
F start the window in the fullscreen state
a autoclose the window
n do not accept workspace hints for the win-

dow
wX set workspace hint for the window, where X

is in the range [0-9]

The order of flags does not matter. With these
rules, applications (and the users controlling them)
can themselves instigate rule application, without

Max van Deurzen Page 63 of 79

Case Study in Top-Level Window Management Chapter 7. Implementation Product

the need to configure the window manager. Global
rules are a feature added to kranewm independent
of other window manager implementations.

For each of the rule-related features unique to
kranewm, brief argumentation is provided.

7.11.1 Centering
It may sometimes occur that an application com-
pletely disregards the X environment, and spawns its
windows at the origin of the root window. That is,
whenever the application is run, its window appears
at the top-left corner of the screen. This can be an
inconvenience if not an annoyance to the user, and
for that reason the center parameter was added.

One might ask, why not automatically center all
windows that wish to spawn at the root window’s
origin? Some programs, such as Gimp, may create
multiple windows at once. The program’s combined
application interface might consist of three windows,
one of which represents a left pane, one a center
pane, and one a right pane. The program might in-
tend to spawn the left pane at the top-left corner of
the screen, and the right pane at the other end of
the screen, while neatly positioning the center pane
in the middle. The window manager is unable to pre-
dict this intended behavior, and can therefore never
make assumptions about a window’s requested po-
sition. A user who has experience with a program,
can, and to this end the center parameter can be
used.

7.11.2 Autoclosing
The autoclose parameter, when set, has two modes:
once and persistent. Any window matching the rule
will be closed immediately upon spawning, practi-
cally blocking it from the environment. Persistent
autoclose rules close the targeted window any time
it is encountered. Rules set to run once will only
close the window the first time it enters the environ-
ment; subsequent encounters will not be closed.

Persistent autoclose is useful to factor out win-
dows created by a program that may be considered
a hindrance or otherwise useless to the user. An ex-
ample of such a window is a browser pop-up, that
can be targeted by its title, or a dialog box being
created by an application to advertise a paid version
of the software. Ideally, the hindrance is avoided by
configuring the software itself. If nothing else seems
viable, autoclose functionality can be used.

Use cases for closing an application or window
only upon first encountering it are relatively niche.
The need for it may arise when working with pro-
grams that minimize to the system tray, and therein
behave inconsistently or cannot be properly config-

ured. Windows that close to the system tray do so
when receiving the WM_DELETE_WINDOW atom in the
WM_PROTOCOLS property (specified in the ICCCM,
Section 4.1.1), where normally this should (if prop-
erly implementing the ICCCM) lead to the window
being removed entirely from the environment. Many
programs that have system tray support will offer the
user the option to minimize to the system tray on
startup. A user can set up an autoclose rule to do
so even if such an option is not available to them.

7.11.3 Workspace hint blocking
The nohint parameter can be set in a rule to no-
tify the window manager that any matching win-
dows should not be listened to when requesting a
workspace to start on. Applications can use the
_NET_WM_DESKTOP (defined in the EWMH, Sec-
tion 4.2.3) property to signal to the window man-
ager that it wishes to start on a specific desktop
(by index). Usually, a window manager should not
make assumptions about the program making such
a request, and should obey.

The need for workspace hint blocking functional-
ity may arise when, for instance, programs that min-
imize to the system tray are gratuitous in workspace
signalling. Artha is an example of such a pro-
gram. The user may expect to be able to untray
the program from any workspace they are currently
on. Artha will, however, remember the workspace
it originally started on, and persistently request to
be started on that same workspace after each subse-
quent spawn. To prevent this from happening, the
user would use workspace hint blocking.

7.12 Process jumping
Process jumping is somewhat similar to rule spec-
ification (Section 7.11), in that both features tar-
get windows by class. It was added to kranewm
independent of other window manager implementa-
tions. Whereas rules manipulate window behavior
within the environment, process jumping allows the
user to move focus to any window that matches the
class specified. A process bind, which defines a key
binding while registering for processes with the class
specified to be traced by the window manager, has
the following form.

keysym mask class
XK_b Mod1Mask|ShiftMask → Firefox

This process bind would register the key binding
Alt Shift B . When the user activates the key
binding by pressing the corresponding keys, the last

Max van Deurzen Page 64 of 79

Case Study in Top-Level Window Management Chapter 7. Implementation Product

focused client with the class specified in the pro-
cess bind will be focused. If no such client exists,
nothing will happen. Process jumping works across
workspaces. That is, if workspace four is currently
active, and the last focused instance of Firefox is
on workspace one, the window manager switches to
workspace one and moves focus to the targeted win-
dow.

When attempting to process jump from a window
with the targeted class name (that is, the window be-
ing jumped from is the last focused window with the
targeted class name), focus will instead be directed
back to the client that was last jumped from.

7.13 Marking
Client marking is a concept inherited from Vim. The
text editor allows marks to be set at arbitrary posi-
tions in a file, such that it can be easily returned to
later. Similarly, marking a client in kranewm allows
directing focus back to it by use of a key binding.

Jumping to a marked client works across
workspaces. Like process jumping, when the cur-
rently focused client is the marked client, activating
the mark jumping key binding will move focus back
to the client that was previously jumped from. Say,
for instance, we mark a client on workspace one, ac-
tivate workspace four and subsequently jump to the
marked client, workspace one will be activated and
focus will be transferred to the corresponding client.
If from this client, we were to again activate the
mark jumping key binding, workspace four would be
activated and focus would be directed to the client
last jumped from. If the client that was last jumped
from no longer exists, nothing will happen after at-
tempting to jump back from the marked client.

7.14 Summary
kranewm is a list-based tiling window manager. That
is, it internally represents the windows it manages as
elements of an ordered list. Depending on the lay-
out applied and its order within this list, a window
will be given a fixed position and size on screen. Lay-
outs are predefined arrangement schemes, and the
user can switch between them dynamically, as they
see fit. kranewm offers ten layouts, including float-
ing mode, which is essentially an implementation of
the stacking window management paradigm. Fur-
thermore, there exist two states that are set on a
per-window basis. The floating state has a window
operate as if it were in floating mode, while the rest
of the windows remain tiled (if applicable) behind it.
The fullscreen state has the window take up the en-
tire tileable area of the screen.

The windows being managed by kranewm
are distributed amongst window groupings called
workspaces. Each workspace has a state associ-
ated with it, meaning several variables are kept track
of. The currently activated and previously acti-
vated layouts are stored, such that moving from
one workspace to another and back again does not
change the particular arrangement of the windows
on a workspace, and such that the toggling between
two layouts is made possible. Each workspace in-
dependently remembers the gap size, or the spacing
between windows and the edge of the tileable area,
and between windows amongst each other. It is also
stored whether or not a workspace has been mirrored
on a per-workspace basis. Of course, the number
of master clients and the size of the master area are
also part of the state.

Additionally, kranewm supports three categories
of window management actions pertaining to win-
dow manipulation. Inner-workspace focus move-
ments allow the user to transfer input focus from one
window to another. Inner-workspace window move-
ments allow windows to be rearranged in the ordered
list, or otherwise for a window’s size and position to
be changed manually by the user. Cross-workspace
window movements allow windows to move across
workspaces.

kranewm implements both the ICCCM and
EWMH almost fully. Only parts of these standards
deemed irrelevant, such as pager support, have been
left out.

To allow the user to have exact control over
an application’s windows, kranewm offers so-called
rules. Rules target a window by class, instance name,
or title, and automatically perform an action on a
window once it has been matched. A rule may have
a window spawn in floating mode, start on a specific
workspace by index, centered upon startup, (persis-
tently or only initially) autoclosed, or hint blocked.

Process binds are similar to rules, in that they too
target a window by class, instance name, or title. A
process jump moves input focus to the last focused
window matching the associated process bind, pos-
sibly across workspaces.

Lastly, kranewm implements window marking.
Marking a window allows the user to later move in-
put focus back to it without having to manually look
for it across workspaces.

As kranewm is keyboard-centric, all of the above-
mentioned features are accessible through use of con-
venient key bindings.

Max van Deurzen Page 65 of 79

Chapter 8
Related Work

There exist numerous open source implementations
of top-level window managers. While, to date, most
of them are built on top of the X Window System,
more and more are being developed for the more
modern alternative, Wayland. The window man-
agers showcased in Appendices A and B are examples
of X window managers. Sway [52], Way Cooler [53],
and Weston [33] are all Wayland window managers
(compositors).

TinyWM, a self-proclaimed exercise in minimal-
ism, is a small, minimal window manager implemen-
tation that demonstrates the basics of creating an X
window manager [54]. It only comprises around fifty
lines of C code, and lets the user move windows, re-
size them, raise them (pertaining to stacking order),
and move focus between them by moving the mouse
(which X supports by itself).

A window manager that has expanded upon the
basics implemented by TinyWM is SmallWM [55]. It
additionally supports iconification, layering, click-to-
focus, virtual desktops, and window-to-edge snap-
ping.

Furthermore, an informal yet interesting account
of the development process of an X window manager,
katriawm, has been written by Peter Hofmann [50].
The window manager’s code is also freely available.

The three aforementioned window managers do
not implement the ICCCM and EWMH standard pro-
tocols, whereas our window manager does. Most
window managers discussed in Appendices A and B
do implement them as well.

In addition, several catalogs exist that list win-
dow managers and their features. These catalogs
will often include links to pages that provide more
detailed usage and installation instructions. The
Arch Wiki provides such a catalog [56,57,58], and so
does Wikipedia [59]. More extensive surveys also ex-
ist, such as WikiBooks’ Guide to X11/Window Man-
agers [60]. Another such detailed survey is Giles Orr’s
Comprehensive List of Window Managers for Unix ;
in it, he includes accounts of his own experience with
each of the listed window managers [61].

A study similar to the one presented in this the-
sis has recently (2018) been done by Evan Bradley
towards his graduation from The Honors College at
Oakland University [62]. It describes a zoomable user
interface window manager for the X Window System
that aims to provide mechanisms for easily man-
aging a large number of windows. Additionally, a
brief discussion on other research interfaces is in-
cluded alongside a more extensive survey on X win-

dow managers, which, by his own account, provide
a substantial source for contemporary window man-
agement research. While his focus is also on the X
Window System and the various window manage-
ment techniques and technologies that have come
into existence as a result of it, it differs significantly
from this thesis in the development process and goal
of the product being presented.

Max van Deurzen Page 66 of 79

Chapter 9
Conclusions

This thesis has discussed the functioning of con-
temporary top-level window managers. We have
shown what common features window managers may
consist of, and which roles they assume in var-
ious system-level interactions. In particular, we
have argued about the window manager’s rights
and responsibilities, and we have shown the differ-
ent types of window managers that are in popular
use. It was found that commercial system software,
like Windows and macOS, mostly comprise a sin-
gle largely non-replaceable desktop environment, in
which stacking window management techniques are
employed. Systems in which the window manager
is a more distinct and replaceable component, like
those in the open source ecosystem, see its users
reaching for different types of window managers.
Next to stacking window managers, we speak of
tiling, compositing, and reparenting window man-
agers. Tiling window managers are popular amongst
power users—often developers and hobbyists—as
they have proven to be more efficient than their
stacking counterparts, though they are considered
harder to learn. We recognize two often applied
tiling window management techniques: list-based
and tree-based tiling. The former has the user dy-
namically activate so-called tiling layouts, or prede-
fined arrangement schemes, that automatically tile
the windows in use. The latter also has the windows
tiled automatically, though the user is offered more
control in fine-tuning their position and size. Com-
positing window managers alter the look and feel
of the graphical user interface by applying effects
and animations, while reparenting window managers
add a frame around application interfaces to, for in-
stance, display an application window’s title, or to
add buttons.

We have furthermore discussed the X Window
System, a network-transparent windowing system
that runs on a wide variety of machines. By im-
plementing standard protocols that define policy on
top of the X Window System, applications are given
a means by which they can communicate. Impor-
tantly, communication between the window manager
and other, regular applications is facilitated. Two
of the most widely implemented such standard pro-
tocols, the Inter-Client Communication Conventions
Manual (ICCCM) and the Extended Window Man-
ager Hints (EWMH), were also discussed. In the
future, window manager developers and users will
likely want to move to X’s more modern alternative,
Wayland. Notwithstanding, we argue X will remain

relevant, if only for compatibility reasons.
As a proof of concept, we have presented and dis-

cussed a complete C++ implementation of an ICCCM
and EWMH compliant top-level reparenting, tiling
window manager, built on top of the X Window Sys-
tem, using Xlib as client-side programming library. In
doing so, the process gone through to realize this im-
plementation was documented, as various Agile soft-
ware development concepts were applied throughout.
Specifically, we have assessed the Personal Extreme
Programming software development methodology, a
mix between regular Extreme Programming and the
Personal Software Process designed to guide a lone
developer through the development process. We
have found no particular issues in its approach, as
we were able to efficiently work on the product one
feature at a time, to process problems effectively,
and ultimately to finish the product in a timely and
successful manner.

Max van Deurzen Page 67 of 79

Bibliography
[1] Scheifler, R. W. and Gettys, J., (1990). The

X Window System. Software: Practice and Ex-
periment.

[2] Rosenthal, D. and Marks, S. W.,
(1994). Inter-Client Communication
Conventions Manual. Retrieved from
https://www.x.org/releases/X11R7.6/
doc/xorg-docs/specs/ICCCM/icccm.html.

[3] X Desktop Group, (2005). Extended Win-
dow Manager Hints. Retrieved from https:
//specifications.freedesktop.org/wm-
spec/wm-spec-1.3.html.

[4] Jeuris, S., Tell, P., Houben, S., and Bardram,
J. E., (2018). The Hidden Cost of Window
Management. CoRR. Retrieved from http:
//arxiv.org/abs/1810.04673.

[5] Myers, B. A., (1995). User Interface Software
Tools. ACM Transactions on Computer-Human
Interaction, 2(1):64–103.

[6] Myers, B. A., (2003). Graphical User Interface
Programming.

[7] Crow, D. and Jansen, B. J., (1998). Seminal
works in computer human interaction.

[8] Jansen, B. J., (1998). The Graphical User In-
terface: An Introduction.

[9] Harding, B., (1989). Windows and icons and
mice, oh my! The changing face of comput-
ing. In Proceedings 1989 Frontiers in Educa-
tion Conference, pages 337–342.

[10] Nye, A., (1994). X Protocol Reference Manual
(Fourth Edition), volume 0 of The Definitive
Guides to the X Window System. O’Reilly &
Associates.

[11] Nye, A., (1994). XLIB Programming Manual
(Fifth Release, Third Edition), volume 1 of The
Definitive Guides to the X Window System.
O’Reilly & Associates.

[12] Nye, A., (1994). XLIB Reference Manual (Fifth
Release), volume 2 of The Definitive Guides to
the X Window System. O’Reilly & Associates.

[13] Wiki, (2008). Policy And Mechanism.
Retrieved from http://wiki.c2.com/
?PolicyAndMechanism.

[14] Ji, C., (2014). How X Window Managers
Work, And How To Write One. Retrieved
from https://jichu4n.com/posts/how-
x-window-managers-work-and-how-to-
write-one-part-i/.

[15] University of Waterloo. Painter’s Algorithm.
Retrieved from http://medialab.di.unipi.
it/web/IUM/Waterloo/node67.html.

[16] Waldner, M., Steinberger, M., Grasset, R., and
Schmalstieg, D., (2011). Importance-driven
Compositing Window Management. In Pro-
ceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’11, pages
959–968. ACM.

[17] Hutchings, D. R., Smith, G., Meyers, B., Czer-
winski, M., and Robertson, G., (2004). Display
Space Usage and Window Management Opera-
tion Comparisons Between Single Monitor and
Multiple Monitor Users. In Proceedings of the
Working Conference on Advanced Visual Inter-
faces, AVI ’04, pages 32–39. ACM.

[18] Zeidler, C., Lutteroth, C., and Weber, G.,
(2013). An Evaluation of Stacking and
Tiling Features within the Traditional Desktop
Metaphor.

[19] Bly, S. A. and Rosenberg, J. K., (1986). A
comparison of tiled and overlapping windows.
In ACM SIGCHI Bulletin, volume 17, pages
101–106. ACM.

[20] Kandogan, E. and Shneiderman, B., (1997).
Elastic Windows: evaluation of multi-window
operations. In Proceedings of the ACM SIGCHI
Conference on Human factors in computing sys-
tems, pages 250–257. ACM.

[21] Cohen, E. S., Smith, E. T., and Iverson, L. A.,
(1986). Constraint-Based Tiled Windows. In
IEEE Computer Graphics and Applications v6
n5, pages 35–45.

[22] Abler, A., (2016). Tiling Window Managers.
Retrieved from https://files.project21.
ch/LinuxDays-Public/16FS-Expert.pdf.

[23] OSDev.org, (2014). Compositing. Re-
trieved from https://wiki.osdev.org/
Compositing.

[24] Scheifler, R. W. and Gettys, J., (1990). The X
Window System, Version 11. Software: Prac-
tice and Experiment.

Max van Deurzen Page 68 of 79

https://www.x.org/releases/X11R7.6/doc/xorg-docs/specs/ICCCM/icccm.html
https://www.x.org/releases/X11R7.6/doc/xorg-docs/specs/ICCCM/icccm.html
https://specifications.freedesktop.org/wm-spec/wm-spec-1.3.html
https://specifications.freedesktop.org/wm-spec/wm-spec-1.3.html
https://specifications.freedesktop.org/wm-spec/wm-spec-1.3.html
http://arxiv.org/abs/1810.04673
http://arxiv.org/abs/1810.04673
http://wiki.c2.com/?PolicyAndMechanism
http://wiki.c2.com/?PolicyAndMechanism
https://jichu4n.com/posts/how-x-window-managers-work-and-how-to-write-one-part-i/
https://jichu4n.com/posts/how-x-window-managers-work-and-how-to-write-one-part-i/
https://jichu4n.com/posts/how-x-window-managers-work-and-how-to-write-one-part-i/
http://medialab.di.unipi.it/web/IUM/Waterloo/node67.html
http://medialab.di.unipi.it/web/IUM/Waterloo/node67.html
https://files.project21.ch/LinuxDays-Public/16FS-Expert.pdf
https://files.project21.ch/LinuxDays-Public/16FS-Expert.pdf
https://wiki.osdev.org/Compositing
https://wiki.osdev.org/Compositing

Case Study in Top-Level Window Management Bibliography

[25] X.Org Foundation. X - a portable, network-
transparent window system. Retrieved from
http://man.openbsd.org/X.7.

[26] X.Org Foundation. XOrgFoundation - X.Org
Foundation information. Retrieved from http:
//man.openbsd.org/XOrgFoundation.7.

[27] Høgsberg, K. The Wayland Protocol. Retrieved
from https://wayland.freedesktop.org/
docs/html/ch01.html#sect-Motivation.

[28] Manrique, D., (2001). X Window System Ar-
chitecture Overview. Retrieved from https:
//www.tldp.org/HOWTO/pdf/XWindow-
Overview-HOWTO.pdf.

[29] Massey, B. and Sharp, J., (2001). XCB: An X
Protocol C Binding.

[30] Nye, A. and O’Reilly, T., (1992). X Toolkit In-
trinsics Programming Manual (Third Edition),
volume 4 of The Definitive Guides to the X Win-
dow System. O’Reilly & Associates.

[31] Gettys, J. and Scheifler, R. W., (1985). Xlib –
C Language X Interface.

[32] Keith Packard, (1999). The Xft Font Library:
Architecture and Users Guide.

[33] Høgsberg, K., (2012). Documentation 1.3
Wayland.

[34] X Consortium. xterm - terminal emulator for X.
Retrieved from https://man.openbsd.org/
xterm.1.

[35] Khan, A. I., Qureshi, M., and Khan, U. A.,
(2012). A Comprehensive Study of Com-
monly Practiced Heavy & Light Weight Soft-
ware Methodologies. arXiv.

[36] Lee, N. and Madej, K. Disney Stories. Springer,
New York, NY.

[37] Beck, K., Beedle, M., van Bennekum, A.,
Cockburn, A., Cunningham, W., Fowler, M.,
Grenning, J., Highsmith, J., Hunt, A., Jef-
fries, R., Kern, J., Marick, B., Martin, R. C.,
Mellor, S., Schwaber, K., Sutherland, J., and
Thomas, D., (2001). Manifesto for Agile Soft-
ware Development. Retrieved from http://
www.agilemanifesto.org/.

[38] Larman, C. and Basili, V. R., (2003). Iterative
and Incremental Development: A Brief History.
Computer, 36(6):47–56.

[39] Juric, R., (2000). Extreme programming and
its development practices. In Proceedings of
the 22nd International Conference on Informa-
tion Technology Interfaces (Cat. No.00EX411),
pages 97–104.

[40] Humphrey, W. The Personal Soft-
ware Process (PSP). Technical Report
CMU/SEI-2000-TR-022, Software Engineer-
ing Institute, Carnegie Mellon University,
Pittsburgh, PA, (2000). Retrieved from
http://resources.sei.cmu.edu/library/
asset-view.cfm?AssetID=5283.

[41] Dzhurov, Y., Krasteva, I., and Ilieva, S., (2009).
Personal Extreme Programming: An Agile Pro-
cess for Autonomous Developers.

[42] Ambler, S., (2002). Agile Modeling: Effec-
tive Practices for eXtreme Programming and
the Unified Process. John Wiley & Sons, Inc.,
New York, NY, USA.

[43] Tomayko, J. E. and Herbsleb, J., (2003). How
Useful Is the Metaphor Component of Agile
Methods? A Preliminary Study.

[44] Hunt, A. and Thomas, D., (1999). The Prag-
matic Programmer: From Journeyman to Mas-
ter. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA.

[45] Chacon, S. and Straub, B., (2014). Pro Git.
Apress, Berkely, CA, USA, 2nd edition.

[46] Catch Org, (2019). Catch2: A modern, C++-
native, header-only, test framework for unit-
tests, TDD and BDD - using C++11, C++14,
C++17 and later (or C++03 on the Catch1.x
branch). Retrieved from https://github.
com/catchorg/Catch2.

[47] Allman, E., (2012). Managing Technical Debt.
ACM, 55(5):50–55.

[48] Sutter, H. and Alexandrescu, A., (2004).
C++ Coding Standards: 101 Rules, Guidelines,
and Best Practices (C++ in Depth Series).
Addison-Wesley Professional.

[49] Stroustrup, B. et al., (2019). C++ Core Guide-
lines: A set of tried-and-true guidelines, rules,
and best practices about coding in C++. Re-
trieved from https://github.com/isocpp/
CppCoreGuidelines.

[50] Hofmann, P., (2016). katriawm: The adventure
of writing your own window manager. Retrieved
from https://www.uninformativ.de/

Max van Deurzen Page 69 of 79

http://man.openbsd.org/X.7
http://man.openbsd.org/XOrgFoundation.7
http://man.openbsd.org/XOrgFoundation.7
https://wayland.freedesktop.org/docs/html/ch01.html#sect-Motivation
https://wayland.freedesktop.org/docs/html/ch01.html#sect-Motivation
https://www.tldp.org/HOWTO/pdf/XWindow-Overview-HOWTO.pdf
https://www.tldp.org/HOWTO/pdf/XWindow-Overview-HOWTO.pdf
https://www.tldp.org/HOWTO/pdf/XWindow-Overview-HOWTO.pdf
https://man.openbsd.org/xterm.1
https://man.openbsd.org/xterm.1
http://www.agilemanifesto.org/
http://www.agilemanifesto.org/
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=5283
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=5283
https://github.com/catchorg/Catch2
https://github.com/catchorg/Catch2
https://github.com/isocpp/CppCoreGuidelines
https://github.com/isocpp/CppCoreGuidelines
https://www.uninformativ.de/blog/postings/2016-01-05/0/POSTING-en.html

Case Study in Top-Level Window Management Bibliography

blog/postings/2016-01-05/0/POSTING-
en.html.

[51] LemonBoy, (2019). bar: A featherweight,
lemon-scented, bar based on xcb. Retrieved
from https://github.com/LemonBoy/bar.

[52] DeVault, D. et al., (2019). Sway. Retrieved
from https://swaywm.org/.

[53] Carpenter, P. et al., (2019). Way Cooler. Re-
trieved from http://way-cooler.org/.

[54] Welch, N., (2019). TinyWM. Retrieved from
http://incise.org/tinywm.html.

[55] Marchetti, C., (2019). SmallWM: Xlib win-
dow manager (at one time based on tinywm,
but SmallWM has long outgrown it). Retrieved
from https://github.com/adamnew123456/
SmallWM.

[56] Arch Wiki, (2019). List of window managers.
Retrieved from https://wiki.archlinux.
org/index.php/Window_manager#List_of_
window_managers.

[57] Arch Wiki, (2019). List of com-
posite managers. Retrieved from
https://wiki.archlinux.org/index.
php/Xorg#List_of_composite_managers.

[58] Arch Wiki, (2019). Comparison of
tiling window managers. Retrieved from
https://wiki.archlinux.org/index.php/
Comparison_of_tiling_window_managers.

[59] Wikipedia, (2019). Comparison of
X window managers. Retrieved from
https://en.wikipedia.org/wiki/
Comparison_of_X_window_managers.

[60] Wikibooks, (2019). Guide to X11/Win-
dow Managers. Retrieved from https:
//en.wikibooks.org/wiki/Guide_to_X11/
Window_Managers.

[61] Orr, G., (2019). The Comprehensive List of
Window Managers for Unix. Retrieved from
http://gilesorr.com/wm/table.html.

[62] Bradley, E., (2018). An Infinite-Pane, Zooming
User Interface Window Manager and Survey of
X Window Managers.

[63] Maglione, K. et al. wmii: A small, scriptable
window manager, with a 9P filesystem interface
and an acme-like layout. Retrieved from https:
//code.google.com/archive/p/wmii/.

[64] Garbe, A. R. et al. dwm: dynamic window
manager for X. Retrieved from https://dwm.
suckless.org/.

[65] Danjou, J. et al. awesome: a highly con-
figurable, next generation framework window
manager for X. Retrieved from https://
awesomewm.org/.

[66] Janssen, S., Stewart, D., and Creighton, J.
xmonad: a dynamically tiling X11 window man-
ager. Retrieved from https://xmonad.org/.

[67] Stapelberg, M. et al. i3: improved tiling wm.
Retrieved from https://i3wm.org/.

[68] Dejean, B. bspwm: a tiling window
manager based on binary space partition-
ing. Retrieved from https://github.com/
baskerville/bspwm.

[69] Wißmann, T. herbstluftwm: a manual tiling
window manager for X11 using Xlib and
Glib. Retrieved from https://herbstluftwm.
org/.

Max van Deurzen Page 70 of 79

https://www.uninformativ.de/blog/postings/2016-01-05/0/POSTING-en.html
https://www.uninformativ.de/blog/postings/2016-01-05/0/POSTING-en.html
https://www.uninformativ.de/blog/postings/2016-01-05/0/POSTING-en.html
https://github.com/LemonBoy/bar
https://swaywm.org/
http://way-cooler.org/
http://incise.org/tinywm.html
https://github.com/adamnew123456/SmallWM
https://github.com/adamnew123456/SmallWM
https://wiki.archlinux.org/index.php/Window_manager#List_of_window_managers
https://wiki.archlinux.org/index.php/Window_manager#List_of_window_managers
https://wiki.archlinux.org/index.php/Window_manager#List_of_window_managers
https://wiki.archlinux.org/index.php/Xorg#List_of_composite_managers
https://wiki.archlinux.org/index.php/Xorg#List_of_composite_managers
https://wiki.archlinux.org/index.php/Comparison_of_tiling_window_managers
https://wiki.archlinux.org/index.php/Comparison_of_tiling_window_managers
https://en.wikipedia.org/wiki/Comparison_of_X_window_managers
https://en.wikipedia.org/wiki/Comparison_of_X_window_managers
https://en.wikibooks.org/wiki/Guide_to_X11/Window_Managers
https://en.wikibooks.org/wiki/Guide_to_X11/Window_Managers
https://en.wikibooks.org/wiki/Guide_to_X11/Window_Managers
http://gilesorr.com/wm/table.html
https://code.google.com/archive/p/wmii/
https://code.google.com/archive/p/wmii/
https://dwm.suckless.org/
https://dwm.suckless.org/
https://awesomewm.org/
https://awesomewm.org/
https://xmonad.org/
https://i3wm.org/
https://github.com/baskerville/bspwm
https://github.com/baskerville/bspwm
https://herbstluftwm.org/
https://herbstluftwm.org/

Appendix A
List-based Tiling Window Managers
There is a whole host of tiling window managers currently available, many of which are list-based. We will
shortly discuss several of the more popular amongst them here. Whenever it is mentioned that a window
manager is ICCCM or EWMH compliant (Chapter 4), we mean a subset of these standards is implemented.
All of them principally target Linux or other Unix-based platforms, and are open source.

A.1 wmii

wmii [63] (for window manager improved 2), is a reparenting, non-compositing list-based tiling window
manager for X (interfaced with Xlib) that partially complies with the ICCCM and EWMH standards. It
supports classic stacking and tiling window management with extended keyboard, mouse, and filesystem
based remote control. It replaces the workspace paradigm with a tagging approach, in which every client
is assigned one or more tags that it belongs to (Figure A.1, bottom left). wmii’s look and functionality is
heavily inspired by acme, a text editor and graphical shell.

Figure A.1: wmii with two columns and four active tags

The default configuration uses key bindings derived from those of the vi text editor. Extensive configu-
ration is possible through a virtual filesystem that uses the 9P filesystem protocol, similar to that offered by
the Plan 9 from Bell Labs operating system. Every window, tag, and column is represented in the virtual
filesystem, and windows are controlled by manipulating their file objects.

Configuration is done through a script that interfaces the virtual filesystem. This approach, leveraging
remote procedure calls, allows for many different configuration styles, including those in the plan9port
(which is a port of Plan 9 from Bell Labs libraries and applications to Unix-like operating systems) and the
bourne shell (bash).

wmii includes a keyboard-based menu program used to spawn external programs, called wimenu, that
features history and programmable completion. There is built-in multi-monitor support using Xinerama.

Max van Deurzen Page 71 of 79

Case Study in Top-Level Window Management Appendix A. List-based Tiling Window Managers

A.2 dwm

dwm [64] (for dynamic window manager, not to be confused with Windows’ DWM) is a non-reparenting,
non-compositing list-based tiling window manager for the X Window System. It uses Xlib as client-side
programming library, and acts largely in accordance with ICCCM and EWMH. It manages windows in tiled,
stacked, and fullscreen layouts. Layouts can be applied dynamically by the user, such as to optimize the
environment for the applications in use and the problems at hand. A floating state can be toggled on a
per-window basis, making it possible for some windows to be in a tiled layout, while others are floating in
front of them. dwm is lightweight and fast; it is written in C, with a stated design goal of keeping the code
base under 2000 source lines of code. It provides multi-head support for XRandR and Xinerama.

Figure A.2: dwm in stack mode, with a floating xclock window

Configuring dwm is done by editing its source code; it has no configuration interface. This is also the
only way to add custom layouts, though there are optional patches that can be applied, made available by
the community.

dwm has influenced the development of several other list-based tiling window managers, including
awesome (Section A.3) and xmonad (Section A.4).

Similar to wmii’s approach (Section A.1), windows are grouped by tags. Each window can be assigned
one or multiple tags. Selecting a tag displays all windows with this tag (see Figure A.2, tag numbers in the
top left), and multiple tags can be selected at once. By default, dwm draws a single-pixel border around
windows to indicate the focus state.

Each screen contains a status bar that displays the available tags, the currently active layout, the title of
the focused window, and the text read from the root window name property (Section 3.13 and Chapter 4).
In the status bar, above the title of the focused window, an empty square indicates that that window is in
the floating state, and a filled square indicates that the window is in fullscreen mode. No square means
that the window is tiled along the active layout. The selected tags are indicated with a different color. The
tags of the focused window are indicated with a filled square in the top left corner. If one or more windows
has been assigned to a tag that is not currently selected, an empty square is displayed to the top left of
the tag number.

Max van Deurzen Page 72 of 79

Case Study in Top-Level Window Management Appendix A. List-based Tiling Window Managers

A.3 awesome

awesome [65] is a highly customizable dwm derivative that implements the XDG Base Directory, XEmbed,
Desktop Notification, System Tray and EWMH standards. Its core is written in C, and it has a configuration
and extension system written in Lua. It is therefore often referred to as a (self-proclaimed) framework
window manager. awesome was originally a dwm fork, but was later ported from its Xlib interface to
XCB. It has since also become a reparenting window manager, though it still shares many characteristics
with dwm, such as list-based tiling and layouts based on the master-client paradigm, the floating state,
and tags. It aims to be extremely small and fast, yet extensively customizable. As with dwm, it makes it
possible for the user to manage windows with the use of the keyboard.

Figure A.3: awesome with a single window in fairv layout

awesome supports inter-process communication through D-bus, text styling in its status bar with pango,
and it offers multi-monitor support for XRandR, Xinerama and even Zaphod mode (single-display screen
sharing).

As opposed to dwm, awesome enables the user to have different layouts active on different tags. On
one tag, the user may have its windows in the floating state, while a tiled layout is active on another.

As can be gleaned from Figure A.3, awesome’s aesthetic is quite similar to that of dwm. It has a status
bar with its tag set, currently active layout, window titles, and an area for arbitrary text rendering.

A.4 xmonad

xmonad [66] is a non-reparenting, non-compositing list-based tiling window manager similar to dwm. It is
written in Haskell, and abides by most of the conventions in the ICCCM and EWMH.

Quoting from the haskell xmonad package description: “By utilizing the expressivity of a modern
functional language with a rich static type system, xmonad provides a complete, feature-rich window
manager in less than 1200 lines of code, with an emphasis on correctness and robustness. Internal properties
of the window manager are checked using a combination of static guarantees provided by the type system,
and type-based automated testing. A benefit of this is that the code is simple to understand, and easy to

Max van Deurzen Page 73 of 79

Case Study in Top-Level Window Management Appendix A. List-based Tiling Window Managers

modify.”
As is with most tiling window managers, xmonad allows the user to control windows using solely the

keyboard, rendering the mouse strictly optional. A principle of xmonad is predictability: the user should
know in advance precisely the window arrangement that will result from any action. Whereas wmii, dwm
and awesome employ tags, xmonad has workspaces—which it calls virtual screens—that allow the user
to organize the windows of currently running programs. Workspaces retain their active layout, number of
master clients, and master factor.

Figure A.4: xmonar with xmobar, and three windows in stack mode

xmonad can be extensibly configured with Haskell. As opposed to dwm, layouts for Haskell’s tiling
algorithm can also be defined in Haskell configuration files. Even so, a recompilation of the binary is still
required for any changes to take effect. Multi-monitor support is offered for Xinerama.

Out of the box, xmonad is quite bare-bones. Like most other tiling window managers, it has key
bindings in place for spawning a terminal emulator, for navigating between windows, for changing layouts,
for incrementing and decrementing the number of master clients, for increasing and decreasing the master
factor, for toggling the floating state for the focused window, for swapping windows’ positions in the list,
for moving windows to different workspaces, and for changing the active workspace. A popular addition to
xmonad is xmobar, a lightweight, text-based status bar also written in Haskell (see Figure A.4).

Max van Deurzen Page 74 of 79

Appendix B
Tree-based Tiling Window Managers
Tree-based tiling window managers are much more flexible than their list-based counterpart (Section 2.2.3
and Appendix A). Instead of having fixed layouts that are defined before the user even begins using the
windows in them, tree-based tiling allows for custom layouts to be set up on the fly. As we shall see,
different window managers handle this in quite differing ways, but one thing remains the same: the tree
as the underlying data structure. We will discuss several of the more popular tree-based window managers
here. Whenever it is mentioned that a window manager is ICCCM or EWMH compliant (Chapter 4), we
mean a subset of these standards is implemented. All of them principally target Linux or other Unix-based
platforms, and are open source.

B.1 i3

i3 [67] is a reparenting, non-compositing tree-based tiling window manager for X that was originally inspired
by wmii (Section A.1). i3 is targeted at advanced users and developers, and has stated design goals of
having well readable, well documented code, offering more flexible layouts using the tree as a data structure,
implementing different modes (like in vim; for example, in resize mode, other key bindings are active than
are in normal mode), implementing an inter-process communication interface, and not being bloated or
fancy.

i3 is written in C, and interfaces with X using XCB. It supports tiling, stacking and tabbing modes, and
allows the user to switch between them dynamically. It implements both the ICCCM and EWMH.

Figure B.1: i3 with 7 self laid out tiled windows

i3 is configured by editing a plaintext file. This makes the window manager customizable without
knowledge of programming. The contents of this file can be parsed and applied while the window manager
is running (that is, the user can instruct the window manager to reload its configuration on demand).

Windows are stored in a general tree (such as those brought up in Section 2.2.3), in which dividers
(called split containers) define either a horizontal or vertical arrangement of the windows under it. In

Max van Deurzen Page 75 of 79

Case Study in Top-Level Window Management Appendix B. Tree-based Tiling Window Managers

Figure B.1 we have mimicked the layout presented in Section 2.2.3.
Like other window managers that are EWMH compliant, i3 can be used in conjunction with external

status bars, docks, and program launchers. The developers of i3 offer a status bar, called i3status, that is
enabled by default. Of course, if the user so wishes, this can be changed through the configuration file.

B.2 bspwm

bspwm [68] (for binary space partitioning window manager) is a non-reparenting, non-compositing tiling
window manager for X that represents windows as the leaves of a full binary tree. It only responds to X
events, and the messages it receives on a dedicated socket. In fact, it is so bare-bones that it does not even
handle keyboard or mouse input itself; an external program (such as sxhkd) is required to configure and
conveniently interact with the window manager. The external input handler is set up to command bspwm
using bspc, the window manager’s client program used to configure it, and to send it instructions. bspwm
implements the ICCCM and EWMH, and offers multi-monitor support for XRandR and Xinerama.

Whereas i3 (Section B.1) uses a general tree to represent its windows and is therefore capable of evenly
partitioning the window space amongst an arbitrary amount of windows, bspwm’s splits only allow for two
constituent partitions. In particular, this means that every internal node has exactly two children.

Figure B.2: bspwm with 7 self laid out terminal emulator windows

Figure B.2 shows a best attempt to mimick the layout we achieved with i3 in Figure B.1. Because we
can only have local arrangements with two containers (being either a divider or a window), we do not have
exactly the same amount of flexibility we have in tree-based tiling window managers that employ general
trees. The terminal emulators’ prompts each denote their window’s width and height ratio relative to the
width and height of the screen, respectively. As can be seen, the window in the top-left has a width of
30% of that of the screen, while the two partitions next to it to the right (which appear to be its siblings,
but are not), have an accumulative width of 70%, or 35% each. Ideally, like in our i3 example, each would
have the same width of 33%. Here is the tree that effectuates the shown layout on screen.

Max van Deurzen Page 76 of 79

Case Study in Top-Level Window Management Appendix B. Tree-based Tiling Window Managers

H 30%–70%

V 30%–70%

1 V 50%–50%

2 3

H 50%–50%

4 V 50%–50%

7 H 50%–50%

5 6

A new window can be added above, below, to the left, or to the right of a window. By default, both
windows will take up 50% of the designated window space. For example, if we were to add a window below
window 4 in Figure B.2, window 4 will take up the top half of the screen, and the new window will take up
the bottom half. Split ratios can be adjusted; in our example, we can specify that we want a split’s new
partition to take up 70% of the window space. So, by adding a new window below window 4, we get that
window 4 then takes up 30% of the screen, and the new window 70%.

Besides manual splitting, bspwm also has automatic mode, in which windows are laid out along a
predefined layout, comparable to the approach in list-based tiling.

B.3 herbstluftwm

herbstluftwm [69] is a non-reparenting, non-compositing tree-based tiling window manager for X. It is
written in C++, and it interfaces with X through Xlib and GLib. herbstluftwm incorporates a list-based
tiling scheme within the partitions at the leaves of the tree. It is much like bspwm (Section B.2) in that
its underlying data structure is a full binary tree.

Figure B.3: herbstluftwm with 4 frames and 12 windows

Max van Deurzen Page 77 of 79

Case Study in Top-Level Window Management Appendix B. Tree-based Tiling Window Managers

herbstluftwm’s arrangement policy is based on frames that are split into subframes, which can be split
again, or filled with windows. Frames are arranged in a tree-based, user-determined manner, whereas
the windows within frames are arranged along a layout, like those seen in list-based tiling. By default,
herbstluftwm has four layouts: vertical, horizontal, max, and grid. The first two partition the frame in
equal parts along the height or width of the frame respectively, the third gives each window in the frame
the size of that frame (comparable to monocle mode in list-based tiling schemes), and the fourth divides
the frame up into equally sized blocks horizontally and vertically.

Consider Figure B.3. We have four frames (top-left, bottom-left, center, and right), which are not
children of the root, and therefore not all siblings (as this is not possible, for a binary tree is used to
represent them). Instead, the frame in the center and the frame to the right are actually subframes of
a frame that is top-level. The same holds for the two frames to the left. The subframe in the top-left
contains four windows that are arranged in the grid layout. The subframe below it contains three windows,
and it has the horizontal layout active. The subframe in the center is arranged along the vertical layout,
and the subframe to the right actually contains three windows, of which only one is visible, due to the fact
that the max layout is active in it.

herbstluftwm supports multiple monitor-independent tags (which it also calls workspaces or virtual
desktops) that can be added or removed at runtime; each tag has its own layout, and retains its layout
upon switching tags. The window manager can be configured and controlled at runtime through IPC calls
by using herbstclient, a separate program used to send it commands, similar to bspwm’s bspc.

Max van Deurzen Page 78 of 79

Appendix C
X.Org Foundation Distribution
Programs provided in the core X.Org Foundation distribution include [25]:

program name(s) description
xterm a terminal emulator
twm a window manager
xdm a display manager
xconsole a console redirect program
xmh a mail interface
bitmap a bitmap editor
appres, editres resource listing/manipulation tools
xauth, xhost, and iceauth access control programs
xrdb, xcmsdb, xset, xsetroot, xstd-
cmap, and xmodmap

user preference setting programs

xclock and oclock clocks
xfd a font displayer
xlsfonts, xwininfo, xlsclients, xdpy-
info, xlsatoms, and xprop

utilities for listing information about fonts, windows, and displays

xwd, xwud, and xmag screen image manipulation utilities
x11perf a performance measurement utility
bdftopcf a font compiler
xfs, fsinfo, fslsfonts, fstobdf a font server and related utilities
Xserver, rgb, mkfontdir a display server and related utilities
xclipboard a clipboard manager
xkbcomp, setxkbmap, xkbprint,
xkbbell, xkbevd, xkbvleds, and xkb-
watch

keyboard description compiler and related utilities

xkill a utility to terminate clients
xfwp a firewall security proxy
proxymngr a proxy manager to control them
xfindproxy a utility to find proxies
libxrx.so and libxrxnest.so web browser plug-ins
xrx an RX MIME-type helper program
xrefresh a utility to cause part or all of the screen to be redrawn

Max van Deurzen Page 79 of 79

	Introduction
	Window Management
	Windowing systems
	Graphical user interface
	Display server
	Widget toolkits

	The window manager
	Responsibilities
	Stacking
	Tiling
	Compositing
	Reparenting

	The X Window System
	History
	Client-server architecture
	System model
	Core protocol
	Client-side libraries
	Graphical environment
	Resources and identifiers
	Messages
	Events

	Color
	Graphics operations
	Images
	Text
	Exposures

	Fonts
	Input
	Properties and atoms
	The X window manager
	Wayland
	Architecture

	Policy in X
	ICCCM
	Client properties
	Window manager properties

	EWMH
	Non-ICCCM features
	Root window protocol definitions
	Client window protocol definitions

	Agile Software Development
	Agile Manifesto
	Extreme Programming
	Personal Software Process
	Personal XP

	Implementation Process
	The planning game
	Small releases
	Metaphor
	Simple design
	Testing
	Refactoring
	Pair programming
	Collective ownership
	Continuous integration
	40-hour week
	On-site customer
	Coding standard

	Implementation Product
	Design
	Reparenting
	Workspaces
	Sidebar and struts
	Key bindings
	Mouse bindings
	General usage
	Terminal
	Program launching
	Closing clients

	Window states
	Floating state
	Fullscreen state

	Window manipulation
	Inner-workspace focus movement
	Inner-workspace window movement
	Cross-workspace window movement

	Layouts
	Floating mode
	Tile mode
	Stick mode
	Deck modes
	Grid mode
	Pillar mode
	Column mode
	Monocle mode
	Center mode

	Rules
	Centering
	Autoclosing
	Workspace hint blocking

	Process jumping
	Marking
	Summary

	Related Work
	Conclusions
	List-based Tiling Window Managers
	wmii
	dwm
	awesome
	xmonad

	Tree-based Tiling Window Managers
	i3
	bspwm
	herbstluftwm

	X.Org Foundation Distribution

