
Bachelor thesis
Computing Science

Radboud University

Infinite Omniscient Sets in
Constructive Mathematics

Author:
Ceel Pierik
s4806182

First supervisor/assessor:
prof. dr., J.H. Geuvers
h.geuvers@cs.ru.nl

Second assessor:
dr., W.H.M. Veldman

w.veldman@math.ru.nl

June 25, 2020



Abstract

We reprove some results concerning infinite sets that satisfy a certain om-
niscience principle that were first put forward by Escardó in [11]. We ac-
complish this by first introducing constructive mathematics and establishing
a simple Bishop-esque constructive framework. Within this framework, we
prove that N∞ the subset of all descending sequences in 2N, satisfies this om-
niscience principle and then we show how this can be generalised to many
other subsets of 2N. From the omniscience of N∞ we then prove some prop-
erties concerning strongly extensional mappings and compare these results
with Ishihara’s First Trick. Finally we generalise these properties to other
omniscient sets with mixed results.
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Chapter 1

Introduction

A distinctive feature of constructive mathematics is that propositions are
not either true or false a priori. Whereas in classical mathematics any
proposition has a truth value (sometimes we just do not know which one
yet), in a constructive setting we only consider a proposition true once we
have supplied a proof of the statement or false once we have shown that
the statement leads to a contradiction. Because we need any proof to be
a finite routine, it follows that, given an infinite set X and an arbitrary
predicate P on that set, we cannot in general decide whether P holds for
every element in X or not. Thus, a natural question to ask would be: ”For
which sets are we able to decide this?” That is: can we prove for arbitrary
P : ∀x ∈ X [P (x) ] ∨ ∃x ∈ X [¬P (x) ].

One way to answer this question is by introducing the omniscience prop-
erty, where a set is called an omniscient set if for any predicate on that set
we can decide if the predicate is true for all elements in the set or it is
false for at least one such element[11]. When we succeed in constructing a
function that finds the element for which it is false (if it exists), we call the
set searchable. In ”Infinite sets that satisfy the principle of omniscience in
all varieties of constructive mathematics”[11] Escardó shows that not only
finite sets satisfy this property. He first and foremost shows that N∞, the
set of infinite descending binary sequences, is omniscient and searchable. It
is important to note that he does this in a quite minimalistic constructive
setting, akin to Bishop mathematics. The paper continues by proving in-
teresting properties of N∞ using the omniscience property and it concludes
with an algorithm for constructing new omniscient sets.

In the present paper, we follow in the footsteps of Escardó’s work in [11].
Our main purpose is exploring the work of Escardó in [11] by establishing
a proper constructive framework in which to do so and that will assume no
prior knowledge of constructive mathematics. We will reprove the omni-
science of both N∞ and of the squashed sum, a construction that creates a
new set from existing omniscient sets. Furthermore, we look at properties of
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N∞ related to strong extensionality that are derived from the omniscience
of N∞. Our contribution here is an inspection into how far these properties
generalise to other omniscient sets using the case of N2∞, an instantation
of the squashed sum construct.

Other research focuses more on the computational aspects of searchable
sets, such as [13] and [12], that discuss how to perform exhaustive search
on searchable sets from type-theoretic and category-theoretic points of view.
This theory can be implemented quite easily in functional programming lan-
uages, as shown by [14] and its follow-up [15]. We will purely concentrate on
the ’bare’ mathematical aspects of omniscient sets. An example application
in this direction can be found in constructive reverse mathematics[9]. The
omniscience of N∞ has recently been used to prove that the Cantor-Schröder-
Bernstein theorem constructively implies the law of excluded middle[17].

In the next chapter, we will introduce constructive mathematics to those
unfamiliar with it and elaborate on certain notions that we will need in later
chapters. Chapter 3 formally introduces the concepts of omniscient and
searchable sets and illustrates this using our infinite set N∞. In Chapter
4 a way is shown to generalise the result of Chapter 3 to many other sets.
Finally, Chapter 5 discusses a variant of Ishihara’s First Trick[8] resulting
from the omniscience of N∞ and we try to slightly generalise these results
to other omniscient sets.
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Chapter 2

Preliminaries

This paper assumes a basic knowledge of classical first-order logic and set
theory. The following sections contain some basic notions, mostly related
to constructive mathematics, that the reader needs to be familiar with to
understand the chapter(s) following this one.

We start with some conventions regarding certain sets and sequences.

• In this paper, N starts with 0.

• For the set { 0, 1 } we will use the symbol 2.

• For any two sets X and Y , we use XY to mean the set of all functions
from Y to X: { f | f : Y → X }.

– In particular, any predicate p over a set X is an element of 2X :
it assigns a truth value to each element of the set X.

• Sets of infinite sequences of elements of a set X are written as XN: we
think of them as functions that map each ’position’ in the sequence to
an element of X.

– With the Cantor space we mean the ’canonical’ Cantor space of
infinite binary sequences and we will write it accordingly as 2N.

• We will write the n-th element of a sequence α as α(n).

• αn denotes the initial segment of length n of a sequence α: it is the
finite sequence of length n such that αn(m) = α(m) for all 0 ≤ m ≤
n− 1.

– We sometimes also use the notation β v α to mean that β is an
initial segment of α for a sequence α and finite sequence β.
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2.1 Constructive Mathematics

For those unfamiliar with constructive mathematics, we will try to give a
small introduction to its foundations.

Compared to classical mathematics, practitioners of constructive math-
ematics wield a stricter notion of what counts as a proof. to consider a
problem solved we must be able to explicitly produce a solution to said
problem. Consequently, a proof to a problem should contain a method to
explicitly compute a solution[1]. This method or algorithm should be a finite
and deterministic procedure[5]. In practice, this strictness mainly affects the
validity of classical ’existence proofs’: often the existence of a mathemati-
cal object is asserted by showing that assuming its non-existence leads to a
contradiction. These types of proofs do generally not include any method
to find the object whose existence is asserted. In constructive mathematics,
where ’there exists’ is equivalent with ’we can compute/construct’, this is
unacceptable[4].

Within the field of constructive mathematics, we can distinguish mul-
tiple schools of thought. We will briefly mention some of the more estab-
lished ones. These are, in chronological order of their first appearance:
Brouwer’s intuitionism, Markov’s recursive constructive mathematics, and
Bishop’s constructive mathematics. What follows is a thoroughly simplified
view that forgoes their respective philosophical underpinnings, but which
will suffice for the purpose of this investigation. We can consider both
intuitionism and recursive mathematics, as well as classical mathematics,
as extensions of Bishop’s constructive mathematics (see Figure 2.1) in the
sense that every correct proof of a proposition in Bishop’s mathematics is
also valid in any of these other schools of mathematics1. These ’extensions’
are mutually incompatible: each has theorems that can only be proven in
that particular variety and not in the other two (or Bishop’s mathematics).

For instance, the Cantor-Schröder-Bernstein theorem fails to be true in
any of the constructive varieties[17], even though it is a long-established
fact in classical mathematics. On the other hand, we can prove both within
intuitionism and recursive mathematics that every mapping from [0,1] to R is
pointwise continuous. This is clearly false classically and cannot be proven or
disproven in Bishop’s mathematics. Brouwer’s intuitionism includes original
principles that allow us to go even further and prove that every mapping
from [0,1] to R is uniformly continuous. This is however false in recursive
mathematics. On the other hand, Markov’s recursive mathematics adheres
to a strong constructive variant of Church’s Thesis which is linked to its
belief that constructive can be identified with recursive. This is incompatible
with intuitionism and it is not accepted in Bishop’s mathematics. Readers

1Even then, we note that such propositions can only be understood as statements that
each school interprets in its own way.
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Figure 2.1: Sketch of the relationship between the varieties of mathematics

are advised to consult [5] if they are interested in learning more about the
differences between these constructive varieties and how they contrast with
classical mathematics. For this paper we adopt a Bishop-esque setting,
without intuitionistic or recursive principles. We reiterate that everything
proven here will still be valid in those contexts.

2.2 Intuitionistic Logic

The first thing to note is that intuitionistic logic, despite its name, serves
as a basis for logic in all varieties of constructive mathematics; i.e., its rules
are valid in Bishop’s mathematics as well.

The second thing to note when discussing intuitionistic logic is that logic
has a different place in constructive mathematics than it does in classical
mathematics. In classical mathematics, logic comes, in a certain sense, ’be-
fore’ mathematics and acts as a foundation for it. In a constructive setting
however, logic is just a part of mathematics. It is only descriptive: the rules
and interpretation of logical symbols are formulated to reflect what we con-
sider to be true based on our own (mathematical) intuition[5]. Nevertheless,
we will see that intuitionistic logic can be compared to standard logic quite
well from a proof-theoretic point of view.

A proposition is any meaningful statement. Here, meaningful means that
we have an idea of what a proof of the statement would look like and would
recognise a proof of the statement if we were presented with one[1]. Only
when we have (dis)proven a proposition, we will consider it true or false[5].
Just like in standard logic, we can use logical connectives and quantifiers to
form new propositions and predicates out of old ones. The ’standard’ way
to interpret or explain these symbols within constructive mathematics is the
so-called BHK-interpretation (after Brouwer, Heyting, and Kolmogorov)[18].
Following the remarks at the beginning of Section 2.1, it should not come
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as a surprise that some connectives are interpreted in a stricter sense.
Let P and Q be propositions, then:

• Having a proof of P ∨Q means we either have a proof of P or a proof
of Q. Unlike in standard logic, it is not enough to prove that P and
Q cannot both be false [ ¬ (¬P ∧ ¬Q) ] because this does not give us
a method to construct a proof for either one of them.

• Having a proof of P ∧Q means we have a proof of P and also a proof
of Q.

• Having a proof of P =⇒ Q means that we have a routine that, when
applied to a proof of P , produces a proof of Q.

• Having a proof of ⊥ is impossible; ⊥ (absurdity / contradiction /
falsum) has no proof. The concept of contradiction is considered a
primitive notion[16].

• The proposition ¬P is equivalent with P =⇒ ⊥. That is, having a
proof of ¬P means we can show that any (hypothetical) proof of P
leads to a contradiction.

• Having a proof of ∃xP (x) means we have a method to explicitly find
an x such that P (x) holds.

• Have a proof of ∀xP (x) we have a method to construct a proof of
P (x) for any x.

2.2.1 Principles of Omniscience

In essence, intuitionistic logic can be described as standard logic without
the Law of Excluded Middle or Principle of Omniscience (PO)

Definition 2.1 (PO).

For any proposition P , we can assert P ∨ ¬P .

While PO is a cornerstone and at the same time almost trivial fact of
classical logic, it is not accepted in constructive mathematics. Using the
interpretations of intuitionistic logic, one can see why - PO makes a not-so-
trivial statement: for any proposition P , we either can explicitly produce a
proof of P or we can show that P leads to a contradiction.

Note that constructive mathematics does not refute PO. It is just not
universally valid but remains so in a lot of cases. For example:

Theorem 2.2. ∀n ∈ N [n = 0 ∨ n 6= 0 ]

Without the validity of PO, this needs a proof.
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Proof. By mathematical induction: in the case that n = 0, then n = 0 (so
n = 0 ∨ n 6= 0). Now assume that for an arbitrary n ∈ N, we know whether
n = 0 or n 6= 0. In both cases n+ 1 6= 0. Thus, ∀n ∈ N [n = 0 ∨ n 6= 0 ].

For this proof to make sense, mathematical induction needs to be con-
structively valid. Fortunately, the principle of induction is perfectly ac-
ceptable within Bishop’s constructive mathematics (and any variant that
admits (potentially) infinite sets)[2]. This principle has been formalised
within Heyting Arithmetic (HA)[18]. HA has adopted the axioms of Peano
Arithmetic but uses intuitionistic logic instead of classical logic underneath
it. Within this formalization, Theorem 2.2 trivially follows from the induc-
tively defined natural numbers. An informal justification for the principle
goes as follows: assume that for a certain proposition P we have a proof
of P (0) and a proof of P (x) =⇒ P (x + 1), where the latter means that
we have a finite routine that produces a proof of P (x + 1) when applied
to a proof of P (x). Then we can prove P (n) for any natural number n
by starting with our proof of P (0) and our routine, followed by iteratively
applying modus ponens a finite number of times. For a more fundamental
philosophical justification, we refer to [6] and [10].

One of the consequences of not accepting PO, is that we can no longer
use the so-called ’proof by contradiction’: proving P by assuming ¬P and
showing this leads to a contradiction. Constructively, this does not produce
a method to actually find P . It only allows us to conclude ¬P =⇒ ⊥
or, equivalently, ¬¬P . This also immediately shows that the ’double nega-
tion elimination’ rule is invalid in constructive mathematics as well; for if
¬¬P =⇒ P were valid, it would then imply PO by modus ponens applied
to the valid ¬¬ (P ∨ ¬P ). More generally in constructive mathematics, we
see that negative statements are oftentimes weaker than their positive (clas-
sically equivalent) counterparts. For example: ∃xP (x) =⇒ ¬∀x¬P (x) is
valid, because when we can explicitly produce an x such that P (x) holds,
this contradicts the assumption that ∀x¬P (x); hence ¬∀x¬P (x). The
reverse implication does not hold however: just because we can show that
∀x¬P (x) is contradictory does not give us a method to find an x so P (x)
does hold.

Continuing the last example, we easily see that the reverse implication
does hold when x ranges over a finite domain. Because there are only finitely
many x to check, this constitutes to a finite routine for finding the element we
need to produce. In general, classically valid principles and proofs also hold
constructively when we restrict ourselves to finite mathematical objects.
Therefore, research into constructive mathematics has been concentrated
on infinite objects, usually through infinite sequences. In particular, we will
focus on the Cantor space 2N.

Aside from ’full’ PO, constructive mathematics recognises other princi-
ples of omniscience. We will use three of these, the Lesser Principle of Om-
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niscience (LPO), the Weaker Lesser Principle of Omniscience (WLPO),
and Markov’s Principle (MP).

Definition 2.3 (LPO).

∀α ∈ 2N [ ∀i ∈ N [α(i) = 1 ] ∨ ∃i ∈ N [α(i) = 0 ] ]

Definition 2.4 (WLPO).

∀α ∈ 2N [∀i ∈ N [α(i) = 1 ] ∨ ¬∀i ∈ N [α(i) = 1 ] ]

Definition 2.5 (MP).

∀α ∈ 2N [¬ (∀i ∈ N [α(i) = 1 ] ) =⇒ ∃i ∈ N [α(i) = 0 ] ]

As should be obvious from the name, PO implies LPO, which in turn
implies WLPO. Furthermore, LPO implies MP, while WLPO and MP
together imply LPO:

PO =⇒ LPO ⇐⇒ WLPO ∧ MP

Both LPO and WLPO are invalid in all types of constructive mathemat-
ics (and can even proven to be false within both intuitionistic and recur-
sive mathematics). MP on the other hand is a valid principle within
recursive mathematics, but invalid in most other schools of constructive
mathematics[5]. Proponents argue that the hypothesis of MP guarantees
we will find one. However, we have no prior bound on how long it will take
to find the element we need and therefore represents a type of unbounded
search. For proofs of the aforementioned implications, as well as an exten-
sive overview on the subject, we refer to [9]. Later on, we will prove the
invalidity of other statements by showing they are equivalent to one of these
principles.

2.3 Constructive Set Theory

In a similar vein as the rules for logic, constructive set theory contains some
stricter notions compared to its classical counterpart. Most of these should
not come as a surprise anymore after the previous sections.

In order to define a set, we must both give a method for constructing
members of this set and tell how we can show that two members of this
set are equal[5][1]. In other words, for each set we can explicitly produce
members of this set and each set comes with its own equality, which should
be an equivalence relation. This latter part is where constructive sets really
deviate from classical ones, as from a constructive viewpoint it is not clear
how equality statements (”x = y”) could be proven for two objects from
arbitrary sets[1]. Furthermore, to prevent constructions such as ”the set of
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all sets”, a set X can only contain objects that have been (or could have
been) defined before defining X[16][5]. As usual, we use x ∈ X to denote
that x is a member of the set X and x /∈ X that x is not.

As in classical set theory, we can construct new sets out of existing
ones. The key difference is that such constructions are only meaningful if
performed on two sets that have a common ’superset’ (and hence a common
equivalence relation). Otherwise, we have no way of comparing elements of
these sets. We define set inclusion of two sets X and Y as follows:

X ⊆ Y ⇐⇒ ∀α ∈ X ∃β ∈ Y [α = β ]

where = is the equality relation that was defined on Y . Using set inclusion,
we can define equality on the set level in the familiar way:

X = Y ⇐⇒ X ⊆ Y ∧ Y ⊆ X

Further, we can construct the intersection (∩) and union (∪) of two sets:

z ∈ X ∩ Y ⇐⇒ z ∈ X ∧ z ∈ Y

z ∈ X ∪ Y ⇐⇒ z ∈ X ∨ z ∈ Y

As the above definition makes clear, stating that an element is in a union
also means we can know in which one of the sets that makes up the union
it is. For relative set complements, let Y ⊆ X (as defined above). Then we
define the complement of Y in X, X \ Y , as follows:

X \ Y = {α ∈ X | ∀β ∈ Y [α 6= β ] }

2.3.1 Decidable equality

Even though every set comes equipped with its own equality (Section 2.3),
we do not demand that we must be able to prove the equality of two members
of said set. To wit, we must know what must be done to show equality
between two members, but we do not need to have a finite method to actually
do it for arbitrary members of the set. Sets that do have such a finite routine,
have what we call decidable equality.

Definition 2.6 (decidable equality). A set X has decidable equality when
∀x, y ∈ X [x = y ∨ x 6= y ].

Examples of such sets are finite sets2 and N. For the natural numbers
this follows with some extra work from Theorem 2.2.

Many other sets do not have this property however, and we will illustrate
this for 2N. First, we define equality between elements of 2N. A natural way

2Here, as in [2], we consider a set finite if there exists a bijection between that set and
a set N<n = { 0, 1, ..., n− 1 } for a certain n ∈ N.
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to do this is check for equality pointwise. So, for any two elements α and β
in 2N, we define

α = β ⇐⇒ ∀i ∈ N [α(i) = β(i) ]

A quick check confirms that this is indeed an equivalence relation. Now we
will show that this equality is not decidable.

Proposition 2.7. 2N does not have decidable equality.

Proof. Suppose 2N does have decidable equality. Let 1 ∈ 2N be the sequence
such that ∀i ∈ N [ 1(i) = 1 ]. Because we have decidable equality, we should
be able to decide whether α = 1 for any α ∈ 2N. Using our definition of
equality on 2N, this means we can decide for all α ∈ 2N if ∀i ∈ N [α(i) = 1 ]
or not. But this is WLPO, therefore we cannot accept that 2N has decidable
equality.

2.3.2 Apartness

So far, we have discussed the idea of equality on a set and we have casually
used the symbol for inequality ( 6=) in Theorem 2.2 and in our definition of
set complements. One might guess correctly that we used inequality as the
negation of equality:

x 6= y ⇐⇒ ¬ (x = y)

As we have mentioned before, in constructive mathematics negative state-
ments are oftentimes weaker than positive ones. We would therefore prefer
to have a positively formulated notion of two elements being distinct. Con-
structive mathematicians have found this stronger notion of inequality in
the apartness relation[19] [3]. We use # as the symbol for this relation (as
opposed to Bishop, who used 6= to mean apartness[2]) and read x# y as ’x
is apart from y ’. More precisely:

Definition 2.8. (apartness relation) a relation # on a set X is an apartness
relation if it has the following three properties for x, y, z ∈ X:

• ¬ (x#x) (irreflexive)

• x# y =⇒ y#x (symmetric)

• x# y =⇒ (z#x) ∨ (z# y) (co-transitive)

The complement of an apartness relation is an equivalence relation, so if
two elements are not apart, they are equivalent. This makes it immediately
clear why this is a suitable candidate for a positive version of inequality. We
call the apartness relation a tight apartness if the negation of apartness not
just means equivalence but actually implies equality:

• ¬ (x# y) =⇒ x = y (tightness)
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For sets that can be regarded as metric spaces, we have a standard way
to define apartness. First of all, a metric on a set is defined the same
constructively as it is classically[2]:

Definition 2.9 (metric). A metric d : X × X → R≥0 is a map on a
previously defined set X, such that for x, y, z ∈ X the following holds:

• d(x, y) = 0 ⇐⇒ x = y

• d(x, y) = d(y, x) (symmetric)

• d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality)

Given a metric d on a set X and x and y elements from this set, we then
define x# y ⇐⇒ d(x, y) > 0.

As an example, we will consider apartness on 2N in this way. Let d :
2N × 2N → Q≥0 be defined by

(α, β) 7→

0 if α = β

2−min{ i |α(i) 6=β(i) } else

First, we check that d indeed is a metric on 2N and then we show this
induces an apartness relation as defined above.

Proposition 2.10. d is a metric on 2N.

Proof. The property that d(α, β) = 0 ⇐⇒ α = β follows immediately from
our construction of d. Symmetry of d comes from the symmetric property
of equality (and, by extension, negation of equality) on any set. When we
keep in mind that the codomain of d has no negative numbers, the triangle
equality holds almost trivially in the case that α, β and γ are not all distinct.
If they are, we need to do a little more work.

The argument relies on the fact that N and Q have decidable equality.
For N we have seen this before and equality of elements a

b ,
c
d ∈ Q is defined

by a
b = c

d ⇐⇒ ab = cd. That this is decidable follows from decidability on
N.

Let j := min{ i | α(i) 6= β(i) }, k := min{ i | α(i) 6= γ(i) }, and l :=
min{ i | γ(i) 6= β(i) }. If k ≤ j or l ≤ j, then d(α, β) = 2−j ≤ 2−k = d(α, γ)
or d(α, β) = 2−j ≤ 2−l = d(γ, β) respectively. Particularly, in both cases
we have that d(α, β) ≤ d(α, γ) + d(γ, β). Finally, if j < k and j < l, then
α(j) = γ(j) and γ(j) = β(j). Thus, by the transitivity property of equality,
also α(j) = β(j). But this contradicts j, so this situation cannot happen.
Therefore, the triangle inequality holds for d and we conclude that d is a
metric on 2N.

Proposition 2.11. The relation defined by α#β ⇐⇒ d(α, β) > 0 is an
apartness relation on 2N.
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Proof. # is irreflexive, because d(α, α) = 0 by definition of d. Therefore,
¬ (d(α, α) > 0) and thus ¬ (α#α). # is symmetric because d is symmetric.
Finally, if α#β, then d(α, β) > 0. By the triangle equality we know for
any γ that 0 < d(α, β) ≤ d(α, γ) + d(γ, β). This allows us to conclude that
d(α, γ) > 0 ∨ d(γ, β) > 0 (and we can check which one because d(α, γ) and
d(γ, β) are in Q, which has decidable equality). This is equivalent to the
statement that α# γ ∨ γ#β. So # is co-transitive and therefore # is an
apartness relation on 2N.

Proposition 2.12. The apartness relation on 2N is a tight apartness.

Proof. First, we show that α#β ⇐⇒ ∃i ∈ N [¬ (α(i) = β(i)) ]. If α#β,
then d(α, β) > 0. In fact, d(α, β) = 2−i0 for some i0 ∈ N. For this i0,
α(i0) 6= β(i0) (because that is how we constructed d). Conversely, assume
that ∃i ∈ N [¬ (α(i) = β(i)) ]. Then in particular: ¬ (∀i ∈ N [α(i) = β(i) ]).
But this is equivalent to saying that α 6= β and therefore d(α, β) = 2−i > 0
for a certain i ∈ N. Hence, α#β.

Now we can prove tight apartness as follows: ¬ (α#β) =⇒ ¬ (∃i ∈
N [¬ (α(i) = β(i)) ]). This in turn means that ∀i ∈ N [¬¬ (α(i) = β(i)) ].
But α(i) and β(i) are elements of 2. This is a set with decidable equality,
and therefore we are allowed to say that ¬¬ (α(i) = β(i)) =⇒ α(i) = β(i).
Thus, ∀i ∈ N [α(i) = β(i) ]. In other words: α = β.
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Chapter 3

Omniscience & Searchability

We will first introduce the concepts of omniscience and searchability, certain
properties of sets, as introduced by Escardó[11].

Definition 3.1 (omniscience). A set X is called an omniscient set if
for any predicate on X we can decide whether the predicate holds for all
elements or fails to hold for some elements. More precisely, X is omniscient
if

∀(p : X → 2) [∀x ∈ X [ p(x) = 1 ] ∨ ∃x ∈ X [ p(x) = 0 ] ].

For X = N, predicates are just elements of 2N and we see that this state-
ment is equivalent to LPO, so N is not omniscient. Every finite set however
is of course omniscient: for every predicate we can just check whether it holds
for each element. And classically every set is trivially omniscient because of
PO.

Definition 3.2 (selection function). A selection function for X is an
ε : (X → 2)→ X satisfying

∀p : X → 2 [ p(ε(p)) = 1 =⇒ ∀x ∈ X [ p(x) = 1 ] ].

So ε finds, for each predicate p, an element x ∈ X for which the predicate
does not hold (p(x) = 0), if it exists. A set X is searchable if there is a
selection function for X.

As with omniscience, every set is searchable classically by using the ax-
iom of choice. Intuitively, sets are searchable constructively if we can con-
struct such a choice function that we get for free classically. Since the axiom
of choice implies PO (Diaconescu’s theorem), it makes sense that every
searchable set is an omniscient set. It easily follows from how the selection
function is constructed:

Lemma 3.3. A searchable set is an omniscient set.
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Proof. Let X be a searchable set with selection function ε. For an arbitrary
predicate p on X, p(ε(p)) equals 0 or 1; we know which one because 2 has
decidable equality. If p(ε(p)) = 1, then ∀x ∈ X [ p(x) = 1 ] by definition of
ε. If p(ε(p)) = 0, then ∃x ∈ X [ p(x) = 0 ]: just take x = ε(p).

3.1 Omniscience of N∞
The set N∞ is the subset of the Cantor space containing all descending
sequences; more precisely: N∞ = {α ∈ 2N | ∀i ∈ N [α(i+ 1) ≤ α(i) ] } and it
has elements n = 1n0ω and ∞ = 1ω. The main purpose of this section will
be showing that N∞ is omniscient by proving the following theorem:

Theorem 3.4 (N∞ is searchable). The set N∞ is searchable with the
functional ε : (N∞ → 2)→ N∞ defined by

ε(p)(i) = min{ p(n) | n ≤ i }

Before we can do that however, some work must be done first. Problems
arise that are related to the structure of N∞. While similar to N, we will
soon see that we cannot just identify it with N plus an extra point added
at infinity. To immediately show that specifically the element ∞ will be
troublesome for us, we start with the following simple statement.

Proposition 3.5. If ∀α ∈ N∞ [α 6=∞ =⇒ ∃n ∈ N [α = n ] ], then MP.

Proof. First of all: α 6= ∞ just means that ¬ (∀i ∈ N [α(i) = 1 ]). If
∃n ∈ N [α = n ], then ∃m ∈ N [α(m) = 0 ]: take m = n. Thus, if we were
to assert that α 6= ∞ =⇒ ∃n ∈ N [α = n ], then ¬ (∀i ∈ N [α(i) = 1 ] =⇒
∃i ∈ N [α(i) = 0 ]. In other words, it would imply MP.

The problem is that N∞ does not have decidable equality: we cannot
in general decide if an arbitrary element in N∞ is equal to ∞. Escardó[11]
illustrates this through a trio of statements that relate it (as a set) to the
set N = {n | n ∈ N }, which we will restate and then give proof of below
(Proposition 3.6). This then motivates the construction further in this sec-
tion, which will allow us to make a step in the proof of Theorem 3.4 for which
we would otherwise need decidable equality. For now, recall the meaning of
LPO (Definition 2.3), WLPO (Definition 2.4), and MP (Definition 2.5).

Proposition 3.6. We have the following equivalencies:

1. LPO ⇐⇒ N∞ = N ∪ {∞}

2. WLPO ⇐⇒ N∞ = N∞ \ {∞} ∪ {∞}

3. MP ⇐⇒ N∞ \ {∞} = N

15



Proof of 3.6.1. (⇒) Let α ∈ N∞. Assuming LPO, we know that either
∃i ∈ N [α(i) = 0 ] or ∀i ∈ N [α(i) = 1 ]. In the first case, α = n, for some
n ≤ i. Therefore, α ∈ N ⊆ N ∪ {∞}. In the second case, α = ∞. Thus,
α ∈ {∞} ⊆ N∪{∞}. Conversely, let α ∈ N∪{∞}. In both cases, α ∈ N∞.

(⇐) Let α ∈ N∞. Because N∞ = N ∪ {∞}, we know that ∃β ∈ N ∪
{∞} [α = β ]. Hence ∃β ∈ N [α = β ] or ∃β ∈ {∞} [α = β ]. In the former
case, β = n, for some n ∈ N, and so ∃i ∈ N [β(i) = 0 ]. In the latter case,
β =∞ and thus ∀i ∈ N [β(i) = 1 ]. But this is exactly LPO.

Proof of 3.6.2. (⇒) Let α ∈ N∞. Assuming WLPO, we know that either
∀i ∈ N [α(i) = 1 ] or ¬∀i ∈ N [α(i) = 1 ]. In the first case, α = ∞ and so
α ∈ {∞} ⊆ N∞ \ {∞} ∪ {∞}. In the second case, we know that {∞}
only contains one element, ∞, which is exactly the element such that ∀i ∈
N [∞(i) = 1 ] and therefore it is immediately obvious that α 6=∞ and thus
α ∈ N∞ \{∞} ⊆ N∞ \{∞}∪{∞}. Conversely, let α ∈ N∞ \{∞}∪{∞}.
In both cases, α ∈ N∞.

(⇐) Let α ∈ N∞. Because N∞ = N∞ \ {∞} ∪ {∞}, we know that
∃β ∈ N∞ \ {∞} ∪ {∞} [α = β ]. Hence ∃β ∈ N∞ \ {∞} [α = β ] or
∃β ∈ {∞} [α = β ]. In the former case, β 6= ∞, which is equivalent
to stating that ¬∀i ∈ N [β(i) = 1 ]. In the latter case, β = ∞ and so
∀i ∈ N [β(i) = 1 ]. But this is exactly WLPO.

Proof of 3.6.3. (⇒) Let α ∈ N∞ \ {∞}. Then α 6=∞, so ¬∀i ∈ N [α(i) =
1 ]. By MP, this means that ∃i ∈ N [α(i) = 0 ]. This in turn means that
α = n, for some n ≤ i. Thus α ∈ N. Conversely, let α ∈ N. Then α = n for
some n ∈ N, and it immediately follows that α ∈ N∞ \ {∞}.

(⇐) Let α ∈ N∞ \ {∞}. Then α 6= ∞. The result then follows from
Proposition 3.5.

We recognise that N∞ and N∪ {∞} are not identical, but they are still
remarkably similar: it is ’just’ an issue of decidability. To see exactly how
similar (and to give it a name), Escardó[11] introduces the following concept:

Definition 3.7 (full subset). For any set X, a subset Y of X is called full
if the complement of Y in X is empty.

This is equivalent to a differently formulated concept originally intro-
duced by Brouwer[7]:

Definition 3.8 (congruent sets). Two sets are congruent if either set
cannot have an element that the other does not have.

This concept deals exactly with these issues where sets are not identical
but cannot be distinguished either. Heyting[16] proves the following:

Proposition 3.9. Let X be a set and Y a subset of X. Then X and
X ′ = Y ∪ (X \ Y ) are congruent.
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Proof. Since X ′ ⊆ X, X ′ does not have an element that X does not have.
Now suppose x is an element of X but not of X ′, then x is in particular
not an element of Y . Therefore, x must be an element of X \ Y . But that
means that x is an element of X ′, contradicting our assumption. So there
does not exists such element x.

By taking X = N∞ and X ′ = N∪{∞}, we now easily see that these are
congruent sets. Similarly, Escardó proves that N ∪ {∞} is a full subset of
N∞. Even though this already follows from the above proposition we shall
restate it here because its argument relies more on the structure of N∞,
which is what has so far caused our problems in the first place. The lemma
will also be useful on its own later.

Lemma 3.10. ∀α ∈ N∞ [∀n ∈ N [α 6= n ] =⇒ α =∞ ].

Proof. Let α ∈ N∞ and assume the antecedent is true. Now suppose α(i) =
0 for some i ∈ N. Then (by definition) α = n for some n ≤ i, contradicting
our assumption. So α(i) must be equal to 1. This is true for any i ∈ N, so
∀i ∈ N [α(i) = 1) ]. In other words: α =∞.

The following lemma about full subsets is what is going to allow us to
circumvent the need for decidable equality on N∞.

Lemma 3.11. Let C be a full subset of some set X, and let Y be a set with
decidable equality. If a function f : X → Y is constant on C, it is constant
on X.

Proof. Let f(c) = y for all c ∈ C, and suppose that f(x) 6= y for some x ∈ X.
Because functions are extensional, this means that x 6= c for all c ∈ C. This
contradicts that C is a full subset of X. Because Y has decidable equality,
we can conclude that f(x) = y for every x ∈ X.

We are now ready to prove the omniscience of N∞.

Proof of Theorem 3.4. ε(p)(i) is point-wise defined as min{ p(n) | n ≤ i }.
It is clear then that ε(p) is once again an element of N∞. Now we just need
to confirm that p(ε(p)) = 1 =⇒ ∀α ∈ N∞ [ p(α) = 1 ] for all predicates on
N∞. So, let p be an arbitrary predicate such that p(ε(p)) = 1.

Suppose ε(p) = n for some n ∈ N. Then p(n) = p(ε(p)) = 1 by assump-
tion. ε(p) = n also means that ε(p)(n) = 0 and ε(p)(i) = 1 (∀i ≤ n), by
definition of ε, which means that p(n) = 0. We have arrived at a contradic-
tion and must conclude that ε(p) 6= n. Applying Lemma 3.10, this means
that ε(p) =∞.

ε(p) =∞ implies that p(∞) = p(ε(p)) = 1 by our assumption. Further-
more, it also means that ε(p)(i) = 1 for every i ∈ N. Then by our definition
there does not exist an i for which there is an n ≤ i such that p(n) = 0. In
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other words, ∀n ∈ N [ p(n) = 1 ]. Now we know that ∀α ∈ N [ p(α) = 1 ] and
we know that ∀α ∈ {∞} [ p(α) = 1 ].

Taken together, we know that ∀α ∈ N ∪ {∞} [ p(α) = 1 ]. However, by
lack of decidable equality we do not know in which ’case’ we are for a general
element of N∞. Luckily, p has a constant value on N ∪ {∞}, a full subset
of N∞. And because the set 2 is decidable, we can apply Lemma 3.11 to
conclude that p(α) = 1 for all α ∈ N∞.
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Chapter 4

Squashed sums

Suppose we have a certain number of searchable subsets of the Cantor space.
Escardó shows that their squashed sum is once again searchable. For this
construction we will rescale each subset and we must first confirm that this
will not affect searchability.

Lemma 4.1. Let X and Y be sets, f : X → Y some function and suppose
X is searchable with selection function ε. Then f(X) is searchable.

Proof. We construct the selection function εf as follows:

εf (p) = f(ε(p ◦ f)).

p ◦ f is again a predicate on X and therefore can be searched. The resulting
x ∈ X, found by ε, is then associated with the corresponding element in Y
by f .

Definition 4.2 (squashed sum). Let Xi be searchable subsets of 2N (for
i ∈ N). We then construct their squashed sum

∑
i∈N

Xi as follows: first we pre-

fix every member of every set Xi with 1i0, creating new disjoint searchable
sets 1i0Xi. Then we define membership of the squashed sum as follows:

α ∈
∑
i∈N

Xi ⇐⇒ ∀n ∈ N ∃β ∈
⋃
i∈N

1i0Xi [αn = βn ]

So, a sequence α is in the squashed sum if every initial segment of α is also
the initial segment of some element in the union of Xi.

This squashed sum is again a subset of 2N. Next, we will see that this
set is equivalent to the closure of

⋃
i∈N

1i0Xi in the metric space 2N.

Definition 4.3 (open ball[18]). For a set X with a metric d (recall Defi-
nition 2.9), x ∈ X and r ∈ R, we call

U(r, x) := { y ∈ X | d(x, y) < r }

the open ball of x with radius r.
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Definition 4.4 (closure[18]). For a set X with a metric and Y ⊆ X, we
define the closure Y of Y as follows:

Y := {x ∈ X | ∀r > 0∃y ∈ Y [ y ∈ U(r, x) ] }

where U(r, x) is the open ball as defined in Definition 4.3.

Proposition 4.5. The squashed sum
∑
i∈N

Xi coincides with
⋃
i∈N

1i0Xi, the

closure of
⋃
i∈N

1i0Xi in 2N, using the metric as in Proposition 2.10.

Proof. β ∈ U(r, α) ⇐⇒ d(α, β) < r ⇐⇒ 2−min{ i |α(i)6=β(i) } < r ⇐⇒
min{ i | α(i) 6= β(i) } > log2

1
r ⇐⇒ min{ i | α(i) 6= β(i) } ≥ dlog2

1
r e,

where dlog2
1
r e means log2

1
r rounded up to the nearest integer. Define r∗ :=

dlog2
1
r e. Continuing, min{ i | α(i) 6= β(i) } ≥ r∗ ⇐⇒ βr∗ = αr∗.

So, using Definition 4.4,
⋃
i∈N

1i0Xi = {α ∈ 2N | ∀r > 0 ∃β ∈
⋃
i∈N

1i0Xi [β ∈

U(r, α) ] } = {α ∈ 2N | ∀r > 0 ∃β ∈
⋃
i∈N

1i0Xi [βr∗ = αr∗ ] }. That this is

equivalent to
∑
i∈N

Xi follows from the fact that r∗ →∞ as r → 0.

An alternative definition of the squashed sum is used in [11], where it is
claimed that this is also equivalent to the closure of

⋃
i∈N

1i0Xi in 2N. Hence,

we get the following result.

Corollary 4.5.1. ∀α ∈
∑
i∈N

Xi [ ∀n ∈ N [ 1n0 v α =⇒ α ∈ 1n0Xn ] ].

It would however again be LPO to assert that
∑
i∈N

Xi =
⋃
i∈N

1i0Xi∪{∞}

because of problems with decidability. And in a similar vein as with N∞,
this will cause issues in proving searchability. Luckily, we can apply the
same trick here as we did then. First a small result:

Lemma 4.6. ∀α ∈ 2N [∀n ∈ N [ 1n0 6v α ] =⇒ α =∞ ].

Proof. For arbitrary i ∈ N, if α(i) = 0 then 1n0 v α for some n ≤ i. This
contradicts our hypothesis, so α(i) = 1 for all i ∈ N and thus α =∞.

Now we will use the above result to show that
⋃
i∈N

1i0Xi ∪ {∞} is a full

subset of
∑
i∈N

Xi.

Lemma 4.7. ∀α ∈
∑
i∈N

Xi [ ∀i ∈ N [α /∈ 1i0Xi ] =⇒ α =∞ ].
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Proof. By definition of the squashed sum, if α ∈
∑
i∈N

Xi and 1n0 v α for

some n, then ∃β ∈
⋃
i∈N 1i0Xi [α(n + 1) = β(n + 1) ]. Then by Corollary

4.5.1, α ∈ 1i0Xi. But we assumed this is not the case, so we know that
1i0 6v α for any i ∈ N. It follows from Lemma 4.6 that α =∞.

The main idea for our selection function for the squashed sum is that we
combine the existing selection functions of our known searchable sets into a
single construction. We formalise this as follows.

Definition 4.8 (filter function). Let Xi ⊆ 2N (with i ∈ N) be searchable
sets, each with their own selection function εXi . Furthermore, let ε1i0Xi

be
the selection function for the prefixed set 1i0Xi, constructed from εXi as in
Lemma 4.1. Let Y be the squashed sum of the Xi (as in Definition 4.2). We
define its filter function ζ : (Y → 2)→ 2N by ζ(p)(i) = p(ε1i0Xi

(p))

Lemma 4.9. Let ζ be as in Definition 4.8. Then for any predicate p we
have

1n0 v ζ(p) ⇐⇒ p(ε1n0Xn(p)) = 0 ∧ ∀i < n [ p(ε1i0Xi
(p)) = 1 ].

Proof. 1n0 v ζ(p) if and only if n(n+ 1) = ζ(p)(n+ 1). This is the same as
saying that ζ(p)(n) = 0 and ζ(p)(i) = 1 for all 0 ≤ i < n. The conclusion
then follows by the definition of ζ.

Now we have everything we need to prove that our construction of the
squashed sum is once again a searchable set.

Theorem 4.10. Let Xi ⊆ 2N (with i ∈ N) be searchable sets, each with their
own selection function εXi. Let Y be their squashed sum (as in Definition
4.2) and ζ its filter function (Definition 4.8). Then Y is searchable with the
functional ε : (Y → 2)→ Y defined by

ε(p)(i) = 0 ⇐⇒ ∃n ≤ i [ 1n0 v ζ(p) ∧ ε1n0Xn(p)(i) = 0 ]

Proof. Let p : N∞ → 2 be such that p(ε(p)) = 1. Suppose 1n0 v ε(p)
for some n ∈ N. For this n we have that 1n0 v ζ(p) and thus ε(p)(i) =
0 ⇐⇒ ε1n0Xn(p)(i) = 0 because that is how ε is defined. Therefore
ε(p) = ε1n0Xn(p). By assumption this means that p(ε1n0Xn(p)) = 1. But
1n0 v ζ(p) also means that p(ε1n0Xn(p)) = 0 by Lemma 4.9, so we have a
contradiction and must conclude that there is no n such that 1n0 v ε(p).

Lemma 4.6 now gives us that ε(p) =∞ and therefore p(∞) = p(ε(p) = 1
by assumption. That ε(p) = ∞ also means that ζ(p) = ∞ and it follows
from Lemma 4.9 that p(α) = 1 for every α ∈

⋃
i∈N

1i0Xi.

In general, we can now conclude that ∀α ∈
⋃
i∈N

1i0Xi ∪ {∞} [ p(α) = 1 ].

Because
⋃
i∈N

1i0Xi ∪ {∞} is a full subset of Y (Lemma 4.7), we can once
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again invoke Lemma 3.11 to conclude that p(α) = 1 for any α ∈ Y . We
conclude that our constructed ε is a selection function for Y and therefore
Y , the squashed sum of the Xi, is searchable.

Now that we have proven that squashed sums of searchable sets are once
again searchable, we can look at certain concrete instantiations of these
sums.

Firstly, when we take Xi = { 0 } for all i ∈ N, we get
∑
i∈N

Xi = N∞. Next,

we introduce larger sets of descending sequences.

Definition 4.11 (sets of descending sequences). For any n ∈ N, we
define

Nn∞ = {α ∈ { 0, 1, ..., n }N | ∀i ∈ N [α(i+ 1) ≤ α(i) ] },

the set of all descending sequences in nN.

Figure 4.1: Visualisation of the sets N∞, N2∞ and more generally N(n+1)∞.
The main branch of N(n+1)∞ has countably many copies of Nn∞.

Proposition 4.12. If Xi = N∞ for every i, the squashed sum
∑
i∈N

Xi is

equivalent to N2∞.

Proof. We can either prefix each set Xi with 2i instead of 1i0 in our construc-
tion of the squashed sum, or we can construct a function f :

∑
i∈N

Xi → 3N by

f(α)(i) =

2 if ∀n ≤ i [α(n) = 1 ]

α(i+ 1) else
.

We can repeat this construction and take Xi = N2∞ to create searchable
set N3∞ and more generally we see that the set N(n+1)∞ is searchable as the
squashed sum of Xi = Nn∞ for all i. This aligns with the idea that we can
think of these sets of descending sequences as highly structured branching
trees. When we start producing a sequence in Nn∞ we can at each step
produce an n or branch off into a copy of N(n−1)∞; see Figure 4.1.
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Chapter 5

Strong Extensionality in
Omniscient Sets

A function is extensional if it preserves equality: if a is equal to b then
f(a) is equal to f(b) for any extensional function f and any a and b in the
domain of f . Constructively, equality has a counterpart in apartness (see
subsection 2.3.2) and consequently there is a useful property that describes
that a function preserves apartness.

Definition 5.1 (strong extensionality). A function f is strongly exten-
sional if f(x) # f(y) implies that x# y for all x and y.

5.1 Strong extensionality in N∞
We start with a simple result that gives an alternative characterisation of
strong extensionality for predicates on N∞.

Lemma 5.2. For p : N∞ → 2, p is strongly extensional ⇐⇒ ∀α ∈
N∞ [ p(α) 6= p(∞) =⇒ α#∞ ].

Proof. Remember that for decidable sets (such as 2) inequality and apart-
ness coincide. It follows that if p is strongly extensional, the condition
certainly holds. Conversely, let p(α) 6= p(β). Then also p(α) 6= p(∞) or
p(β) 6= p(∞) because of the co-transitivity of apartness on 2. Suppose
p(α) 6= p(∞) (the case p(β) 6= p(∞) is exactly similar). Then α#∞ and
therefore α#β or ∞#β, this time by co-transitivity of apartness on N∞.
In the first case we are done and in the second case we have that both α
and β are of the form n for some n ∈ N, say α = a and β = b, because they
are both apart from∞. We cannot have that a = b because then α = β and
therefore p(α) = p(β) (because all functions are extensional), which contra-
dicts our assumption. So, a 6= b and consequently α#β. So, p(α) 6= p(β)
implies that α#β for all α, β ∈ N∞.
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Escardó[11] introduces the following lemma that is a consequence of the
omniscience of N∞:

Lemma 5.3 (Ishihara’s First Trick for N∞). For all strongly extensional
predicates s on N∞,

∀n ∈ N [ s(n) = s(∞) ] ∨ ∃n ∈ N [ s(n) 6= s(∞) ]

Proof. Let s be an arbitrary strongly extensional predicate. The omniscience
of N∞ states that ∀p : N∞ → 2 [∀α ∈ N∞ [ p(α) = 1 ] ∨ ∃α ∈ N∞ [ p(α) =
0 ] ]. We can then plug in the predicate p0 := α 7→ s(α) = s(∞) for p.
We then get that ∀α ∈ N∞ [ s(α) = s(∞) ] ∨ ∃α ∈ N∞ [ s(α) 6= s(∞) ]. If
for every element α of N∞ the equality s(α) = s(∞) holds, then it holds
in particular for all α of the form n, which are elements of N∞ for each
n ∈ N. If on the other hand we have an element α such that s(α) 6= s(∞),
then α#∞ because s is strongly extensional (and inequality and apartness
coincide on 2). Then there is an i ∈ N such that α(i) = 0 and that means
α = n for some n ≤ i. Taking both cases together, we can conclude that
∀n ∈ N [ s(n) = s(∞) ] ∨ ∃n ∈ N [ s(n) 6= s(∞) ].

Escardó[11] then claims that Lemma 5.3 is the essence of Ishihara’s First
Trick, which is the following statement[8]:

Lemma 5.4 (Ishihara’s First Trick). Let (X, dX) be a complete metric
space, (Y, dY ) a metric space, f : X → Y strongly extensional and (xi)

∞
i=0 a

sequence in X converging to x. Then we have for all b > a > 0 that:

∀i [ dY (f(xi), f(x)) < b ] ∨ ∃i [ dY (f(xi), f(x)) > a ]

We can motivate this as follows: we know that for metric spaces being
apart is equivalent to having a strictly positive distance, and strong exten-
sionality gives that if dY (f(xi), f(x)) > a (so f(xi) # f(x)), then dX(xi, x) >
c for some c > 0. For α, β ∈ N∞, this is the same as there being an index i
such that α(i) 6= β(i). For apartness from ∞, this even simplifies to there
being an i such that α(i) = 0. Picking a and b can then be seen as choosing
how much of the sequences we are willing to inspect (say αna) to try and
find this i. Then either we find an i < na and can conclude that α and β
are apart or we do not and cannot conclude apartness so far. It is true for
arbitrary a and b, which means that we can decide whether α is apart from
∞.

In [8] this trick then gets generalised to the following statement, from
which the original trick can be derived.

Proposition 5.5 (Ishihara’s generalised First Trick). Let (X, dX) be
a complete metric space, P and Q subsets of X such that P ∪ Q = X and
x ∈ X such that ∀y ∈ X [x 6= y ∨ y /∈ Q ]. Then for each sequence (xi)

∞
i=0

in X converging to x:

∀i [xi ∈ P ] ∨ ∃i [xi ∈ Q ]
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Like the original trick, Escardó translates this proposition to a version
that is applicable to N∞. Instead of converging sequences he uses strongly
extensional mappings. The following lemma shows why this works.

Lemma 5.6. Let X be a complete metric space and let (xi)
∞
i=0 be a sequence

in X converging to l. Then the sequence can be extended to a strongly
extensional map f : N∞ → X with f(∞) = l.

Proof. For every α ∈ N∞ we construct a converging sequence yα = (yi)
∞
i=0

in X inductively as follows:

y0 = x0 and yi+1 =

xi+1 if α(i) = 1

yi if α(i) = 0
.

For an example of this construction, see Figure 5.1. It follows that
y∞ = (xi)

∞
i=0. Each of these yα converges to a certain lα; for α = n, lα = xn.

Now we define our map f as follows: f(α) = lα. We see that f(∞) =
l∞ = l, as required. Furthermore, it is an extension of our original sequence
by identifying n ∈ N∞ with n ∈ N.

Figure 5.1: Example of sequence construction for α = n

Furthermore, we do not require X to be a complete metric space anymore
because we are not considering sequences and it suffices to require that X
has tight apartness. Finally, its subsets P and Q are now assumed to be
disjoint. This restriction is necessary to avoid the need for the axiom of
choice[11].

Proposition 5.7 (Ishihara’s generalised First Trick for N∞). Let X
be a tight set, P and Q disjoint subsets of X such that P ∪Q = X and f :
N∞ → X a strongly extensional map such that ∀y ∈ X [ y# f(∞) ∨ y /∈ Q ].
Then:

∀n ∈ N [ f(n) ∈ P ] ∨ ∃n ∈ N [ f(n) ∈ Q ]

Proof. Define p as the predicate p on X with p(y) = 0 ⇐⇒ y ∈ Q. Because
f(∞) is by definition not apart from itself, this means that p(f(∞)) = 1
and thus ∀y ∈ X [ y# f(∞) ∨ y /∈ Q ] ⇐⇒ ∀y ∈ X [ y# f(∞) ∨ p(y) =
p(f(∞)) ] ⇐⇒ ∀y ∈ X [ p(y) 6= p(f(∞)) =⇒ y# f(∞)) ]. This is
particularly true for all elements of X that can be written as f(α) for some
α ∈ N∞. Now we get ∀α ∈ N∞ [ p(f(α)) 6= p(f(∞)) =⇒ y# f(∞) ] and
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consequently the predicate s : N∞ → 2 defined by s = p ◦ f is strongly
extensional by Lemma 5.2. Lemma 5.3 then gives that ∀n ∈ N [ s(n) =
s(∞) ] ∨ ∃n ∈ N [ s(n) 6= s(∞) ]. In the first case s(n) = 1 for all n ∈ N and
therefore f(n) is not in Q and by assumption it is then in P . In the second
case there is some f(n) such that p(f(n)) = s(n) = 0 so f(n) ∈ Q.

5.2 Strong extensionality in N2∞

We will now try to see if we can prove Ishihara’s trick from the omniscience
of N2∞ instead of N∞. Recall that N2∞ is the subset of all descending
sequences of 3N, and therefore has the following elements:

∞ = 2ω, n∞ = 2n1ω, and nm = 2n1m0ω.

Furthermore, we use N2∞(n) to mean the subset {α ∈ N2∞ | α(n) 6= 2∧∀i <
n [α(i) = 2 ] }.

An immediate difficulty compared to N∞ is that where N∞ only had one
’infinite element’, N2∞ has infinitely many of those: ∞ and n∞ for every
n ∈ N. We therefore cannot just replace N∞ with N2∞ in the formulation of
Lemma 5.3 and achieve the same result. We can however prove the following
derived lemma, which has a somewhat weaker conclusion.

Lemma 5.8 (Ishihara’s First Trick for N2∞). For all strongly extensional
predicates s on N2∞,

∀α ∈ N2∞ [ s(α) = s(∞) ] ∨ (∃n ∈ N [ ∃α ∈ N2∞(n) [ s(α) 6= s(∞) ]∧
(∀β ∈ N∞ [ s(2n : β) = s(n∞) ] ∨ ∃m ∈ N [ s(nm) 6= s(∞) ]))

Proof. Omniscience of N2∞ gives that ∀α ∈ N2∞ [ s(x) = s(∞) ] ∨ ∃α ∈
N2∞ [ s(α) 6= s(∞) ]. The first case is as we want it, and for the second case
we have α#∞ by the strong extensionality of s. So, x ∈ N2∞(n) for some
n ∈ N. Now we have ∀α ∈ N2∞ [ s(α) = s(∞) ] ∨
(∃n ∈ N [ ∃α ∈ N2∞(n) [ p(α) 6= p(∞) ].

We can further distinguish within the second case. Let sn : N∞ → 2 be
defined by sn(β) = s(2n:β); these are again strongly extensional. By omni-
science of N∞, we know that ∀β ∈ N∞ [ sn(β) = sn(∞) ] ∨ ∃β ∈ N∞ [ sn(β) 6=
sn(∞) ]. In the latter case strong extensionality gives us that β#∞ so
β = m for some m ∈ N. Putting it all together yields the desired result.

For the generalised version, we will need two things: an equivalent of
Lemma 5.2 and checking whether we can extend Cauchy sequences to strong
extensional maps on N2∞. For the latter, we can use the same construction
as in Lemma 5.6 but instead define yi+1 = xi+1 if α(i) = 2 and yi+1 = yi
else. In order to do more justice to the two-dimensional structure of the set,
we can also extend double sequences to strong extensional maps on N2∞.
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Lemma 5.9. Let X be a complete metric space and let (xi,j)
∞
i,j=0 be a double

sequence in X such that for all n ∈ N(xn,j)
∞
j=0 converges to ln and (xi,0)

∞
i=0

converges to l. Then the sequence can be extended to a strongly extensional
map f : N2∞ → X with f(∞) = l and ∀n ∈ N [ f(n∞) = ln ].

Proof. For every α ∈ N2∞ we construct a converging sequence yα = (yi)
∞
i=0

in X inductively as follows:

y0 = x0,0 and yi+1 =


xi+1,0 if α(i) = 2

xn,i−n if α(i) = 1 and α ∈ N2∞(n)

yi if α(i) = 0

.

Note that we know that if α(i) = 1 for some i ∈ N then ∃n ≤ i [α ∈
N2∞(n) ]. For an example of this construction, see Figure MISSING. It
follows that y∞ = (xi,0)

∞
i=0 and yn∞ = (xn,j)

∞
j=0. Each of these yα converges

to a certain lα; for α = nm, lα = xn,m.
Now we define our map f as follows: f(α) = lα. We see that f(∞) =

l∞ = l and f(n∞) = ln∞ = ln, as required. Furthermore, it is an extension
of our original double sequence by identifying nm ∈ N2∞ with (n,m) ∈
N× N.

Figure 5.2: Example of yα construction from (xi,j)
∞
i,j=0 for α = nm

Finding an equivalent of Lemma 5.2 is more problematic, as can be seen
in the following lemma.
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Lemma 5.10 (Naive translation of Lemma 5.2). Let p : N2∞ → 2. If
∀α ∈ N2∞ [ p(α) 6= p(∞) =⇒ α#∞ ] =⇒ p is strongly extensional, then
LPO.

Proof. Let p be a predicate for which the condition holds, and take α, β ∈
N2∞ such that p(α) 6= p(β). We try to show that α#β. By co-transitivity,
we know that p(α) 6= p(∞) ∨ p(β) 6= p(∞). Without loss of generality,
assume p(α) 6= p(∞). Then by assumption we conclude that α#∞. By
co-transitivity, we know that α#β ∨ ∞#β. In the first case we are done,
so assume the second.

Since both α and β are apart from ∞, we know that α ∈ N2∞(n) and
β ∈ N2∞(m) for some n,m ∈ N. If n 6= m, α#β and we are done. If n = m
we have problem: we cannot check if α = n∞ or β = n∞, this is LPO.

Lemma 5.2 works because we can decide equality of every two elements
in N that are apart from∞. In the case of N2∞ we still have all the elements
n∞ to contend with. This leads us to the following alternative lemma with
a stronger hypothesis.

Lemma 5.11 (Lemma 5.2 for N2∞). For p : N2∞ → 2, p is strongly
extensional ⇐⇒ ∀α ∈ N2∞ [ p(α) 6= p(∞) =⇒ α#∞ ] ∧ ∀n ∈ N [ ∀α ∈
N2∞(n) [ p(α) 6= p(n∞) =⇒ α# n∞ ] ].

Proof. If p is strongly extensional, the condition is an automatic consequence
of it. Conversely, let α, β ∈ N2∞ and assume p(α) 6= p(β). We have to show
that α#β. By co-transitivity, we know that p(α) 6= p(∞) ∨ p(β) 6= p(∞).
Without loss of generality, assume p(α) 6= p(∞). Then by assumption we
conclude that α#∞. By co-transitivity, we know that α#β ∨ ∞#β. In
the first case we are done, so assume the second.

Since both α and β are apart from ∞, we know that α ∈ N2∞(n) and
β ∈ N2∞(m) for some n,m ∈ N. If n 6= m, α#β and we are done. If
n = m, then knowing that p(α) 6= p(β) and using co-transitivity gives us
that p(α) 6= p(n∞) ∨ p(β) 6= p(n∞). Without loss of generality, assume
p(α) 6= p(n∞). Then by assumption α# n∞ and again by co-transitivity
β#α ∨ β# n∞. In the first case we are again done and in the second case
we know that α = np and β = nq for some p, q ∈ N. If p = q we have
α = β and hence p(α) = p(β) by extensionality of p, which contradicts that
p(α) 6= p(β). Thus, p 6= q and accordingly α#β.

The above lemmas then culminate in the following generalised version
of Ishihara’s First Trick. Compared to the Proposition for N∞, we need a
stronger hypothesis and have a weaker conclusion because of the changes
made in Lemma 5.11 and Lemma 5.8, respectively.

Proposition 5.12 (Ishihara’s generalised First Trick for N2∞). Let
X be a tight set, P and Q disjoint subsets of X such that P ∪ Q = X and
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f : N2∞ → X a strongly extensional map such that ∀y ∈ X [ (y# f(∞) ∧
∀n ∈ N [ y# f(n∞) ]) ∨ y /∈ Q ]. Then:

∀α ∈ N2∞ [ f(α) ∈ P ] ∨ ∃n ∈ N [ ∃α ∈ N2∞(n) [ f(α) ∈ Q ] ]

Proof. Define p on X such that p(y) = 0 ⇐⇒ y ∈ Q. Because f(∞) is by
definition not apart from itself, this means that f(∞) /∈ Q so p(f(∞)) = 1.
The condition on f reduces to ∀y ∈ X [ (y# f(∞) ∧ ∀n ∈ N [ y# f(n∞) ]) ∨
p(y) = p(f(∞)) ], which is equivalent to ∀y ∈ X [ p(y) 6= p(f(∞)) =⇒
(y# f(∞) ∧ ∀n ∈ N [ y# f(n∞) ]) ]. This is then in particular true for all
f(α) ∈ X. By Lemma 5.11, the predicate s : N2∞ → 2 defined by s = p ◦ f
is strongly extensional. Then Lemma 5.8 gives us that ∀α ∈ N2∞ [ s(α) =
s(∞) ] or ∃n ∈ N [∃α ∈ N2∞(n) [ p(α) 6= p(∞) ]. In the first case s(α) = 1
for all α ∈ N2∞ and therefore f(α) is not in Q and by assumption it is then
in P . In the second case there is some f(α) (with α ∈ N2∞(n) for some
n ∈ N) such that p(f(α)) = s(α) = 0 so f(α) ∈ Q.
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Chapter 6

Discussion

We have seen that N∞ is an omniscient set: for any predicate on N we can
decide whether there is an element for which the predicate does not hold.
We have shown this by constructing a selection function that finds one such
element in N∞ if it exists. The squashed sum, a way to create a new set out
of countable (not necessarily distinct) omniscient sets, is again omniscient.
Furthermore, the squashed sum produced by taking N∞ for every omni-
scient set turns out to be equivalent to 22∞, the set of descending sequences
in { 0, 1, 2 }, and we can iterate this procedure to generate omniscient sets
equivalent to Nn∞ (descending sequences in { 0, 1, ..., n }). From the omni-
science of N∞ we were able to prove interesting properties related to strongly
extensional mappings. The most important of these is a proposition that
captures the essence of Ishihara’s First Trick[8]. We have then investigated
whether we can generalise this to other infinite omniscient sets by finding a
suitable version of this proposition for N2∞.

Since omniscience of N is LPO, it is somewhat surprising that we can
conclude it for the similar N∞. It is even more surprising when we consider
the roadblock caused by the subtle difference between N∞ and N ∪ {∞}:
asserting they are equal is LPO. In [11] this was solved in a profound way
by introducing full subsets (in our case N ∪ {∞}) that allowed us to con-
clude something about the larger set (N∞). This exact same technique is
then again useful when proving that the squashed sum is searchable. We
think that in the original article the necessity of this construction and more
specifically what exactly it solves is somewhat underexposed and we have
therefore tried to make this more explicit.

The squashed sum allows us to prove omniscience for larger subsets of
2N which can then be identified with other sets (such as N2∞. However, the
appealing properties of N∞ discussed in Section 5.1 do not readily transfer
to these larger sets. The variant of Ishihara’s First Trick is derived from the
omniscience of N∞, but that is not the only reason why N behaves so well
because we see in Section 5.2 that a lot more work has to be done to reach
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similar results for N2∞. When comparing these sets, a glaring difference
is that N only has one ’infinite element’. This makes the set constructively
easier to handle because oftentimes we can use∞ as a special case and all the
other elements can be easily compared. N2∞ on the other hand has infinitely
many ’infinite elements’, which causes us to violate different principles of
omniscience more easily. This observation suggests that potential omniscient
sets with a finite number of ’infinite elements’ would more easily acquire the
properties proven for N, but this requires more research.

The difficulties in proving similar properties for N2∞ as for N∞ in Sec-
tion 5.2 have mostly resulted in lemmas and propositions with stronger
hypotheses and/or weaker conclusions then their counterparts. This makes
them immediately less valuable and not as generally usable. This is most
clearly visible in the analogue of Ishihara’s generalised First Trick for N2∞
(Proposition 5.12. Whereas in the version for N∞ (Proposition 5.7) we re-
quire our strongly extensional map f : N∞ → X to be such that ∀y ∈
X [ y# f(∞) ∨ y /∈ Q ], in Proposition 5.12 we need the map such that
∀y ∈ X [ (y# f(∞) ∧ ∀n ∈ N [ y# f(n∞) ]) ∨ y /∈ Q ]. We suddenly require
knowing whether elements are apart from (infinitely) many fixed elements
instead of just one. This is a consequence of the aforementioned differences
between these two sets. We do suspect however that we can slightly weaken
this condition. The reason we need it in the first place is because halfway
through the proof of Proposition 5.12 we want to invoke Lemma 5.11. The
current condition allows us to do that, but it concludes something that is
stronger than what we actually require for the lemma. Unfortunately we
have so far not succeeded in finding an alternative weaker condition that is
strong enough for our purposes.

At the same time, it is also not clear that our version of Ishihara’s (gen-
eralised) First Trick for N2∞ and the accompanying lemmas are the most
appropriate ones. We used the version(s) for N∞ as a starting point and
modified it to create a statement about N2∞. There might be a more natural
extension of the original Ishihara’s (generalised) First Trick to the set N2∞
(and more generally, Nn∞) that captures the essence of the trick and also
takes into account the structure of the particular set.

Furthermore, we used N2∞ as an example to see whether the behaviour
of N∞ transfers well but we would like to see how this goes for more general
Nn∞ or other squashed sums. The lemmas and propositions proposed for
N2∞ in Section 5.2 seem to be quite easily adaptable to Nn∞ but this needs
further investigation. A further investigation into the behaviour of squashed
sums compared to N∞ should then also discuss Ishihara’s Second Trick,
which we did not touch upon here but is discussed with regards to N∞ in
[11].

Finally, in a broader sense more research is needed towards other infinite
omniscient sets. We now know of N∞ and we can generate (infinitely many)
new ones using the squashed sum construction, but these are all (equivalent
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to) subsets of 2N. Much less is known about other types of omniscient sets,
with different internal structures. Getting more insight into these sets can
reveal more common properties of omniscient sets.
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