
Bachelor thesis
Computing Science

Radboud University

Design and implementation of a stealthy
OpenWPM web scraper

Author:
Daniel Goßen
s4751051
d.gossen@student.science.ru.nl

First supervisor/assessor:
Dr. Ir. Hugo Jonker

hugo.jonker@ou.nl

Second supervisor/assessor:
Dr. Ir. Erik Poll

E.Poll@cs.ru.nl

April 5, 2020

mailto:d.gossen@student.science.ru.nl
mailto:hugo.jonker@ou.nl
mailto:E.Poll@cs.ru.nl

This page intentionally (almost) left blank

Abstract

OpenWPM [EN16] is a scraper framework designed to take privacy measurements on
the web, for example to investigate online tracking. Jonker et al. [JKV19] identified that
websites can detect web scrapers, and they found websites that behave differently to
web bots than to regular visitors, e.g. by omitting advertisements or videos. Currently,
it is not known in how far OpenWPM measurements are affected by web bot detection.
We analyze the stability of OpenWPM’s detectability to be a web bot, using the

fingerprint surface of Jonker et al. [JKV19] and by applying JavaScript template attacks
[SLG19]. Further, existing countermeasures such as user agent spoofing extensions and
FP-Block are investigated for their effectiveness to reduce OpenWPM’s detectability.
Focusing on JavaScript spoofing, we derive the most advanced method to overwrite

a revealing JavaScript object in order to minimize the risk of web bot detection. This
results in a stealthy version of OpenWPM such that it’s fingerprint is much less distin-
guishable from a regular web browser. Further, it is shown common browser extensions
spoofing JavaScript attributes are not robust against access inside (dynamically created)
iframes.
With the stealthy version, the reliability of previous OpenWPM studies can be ana-

lyzed. Further, future studies can benefit from more accurate results.

iii

Acknowledgment

Many thanks to my first supervisor Hugo Jonker for developing the idea of this thesis
and the helpful support throughout the whole project. Especially our discussions helped
to find the important essence of my experiments.
Further, thanks to Erik Poll for guiding me to Hugo Jonker as my first supervisor

in the beginning and Benjamin Krumnow for the detailed explanations in the starting
phase.
Finally, acknowledgments for the continuous support of my family and friends, par-

ticularly in times I had less motivation.

iv

Contents

1. Introduction 1

2. Background 4
2.1. Browser fingerprinting . 4
2.2. Web bots . 5
2.3. Web bot detection . 7

2.3.1. JavaScript template attack for web bot detection 7
2.3.2. Page deviations after detection . 8

2.4. Design of OpenWPM . 9

3. Related work 11
3.1. Browser fingerprinting . 11
3.2. Detecting web bots . 12
3.3. Fingerprinting prevention . 13
3.4. Browser extensions and their detectability 14

4. How stable is OpenWPM’s fingerprint surface? 15
4.1. Concept of stability . 15
4.2. Measurement setup . 16

4.2.1. Tweaks . 17
4.2.2. Influence of full instrumentation 18

4.3. Analysis of stability . 18
4.3.1. Different configurations and their fingerprint surface 18
4.3.2. Stability . 21
4.3.3. Conclusion . 21

5. Effectiveness of existing countermeasures 22
5.1. OpenWPM’s build-in countermeasures . 23
5.2. Effectiveness of typical Firefox extensions 25

5.2.1. The tool’s concepts and functionality 25
5.2.2. fingerprint2.js analysis . 26
5.2.3. Conclusion . 28

5.3. State-of-the-art countermeasure: FP-Block 2.0 28

v

Contents

6. Detectability of different JavaScript spoofing methods 32
6.1. Methodology . 32
6.2. About the webdriver attribute . 33
6.3. Spoofing methods . 34
6.4. Comparison of spoofing methods . 35
6.5. Conclusions . 38

7. Proof of concept implementation 39
7.1. The prototype . 39
7.2. Validation experiment . 41
7.3. Results . 42

8. Future work 46

9. Conclusions 48
9.1. Results and answers to research questions 48
9.2. Impact of results . 48

Bibliography 50

Appendices 55

A. Example fingerprint 56

B. Experiment environment 58

C. Firefox extensions: Page-, content- and background-scripts 59

D. Investigation of divergent window-sizes of OpenWPM 61

E. Spoofing detection in iframes 63
E.1. Results . 63

F. Technical details on spoofing the webdriver property 67

G. Effects of webdriver detection 73

vi

1. Introduction

Web scrapers are internet bots that automatically process data of websites, often on a
large scale. Jonker et al. [JKV19] showed that web scrapers can be detected by websites,
and that this detection may cause the site to send different content to the web scrapers
than to regular users. In particular, parts of websites, such as advertisements or videos,
were omitted in some cases.
The OpenWPM [EN16] scraper is a scraper framework designed to measure privacy,

such as tracking used in many online advertisements. OpenWPM is available since 2014
and has been used in at least 54 studies1. This shows the framework plays an important
role in research. Currently, it is not clear to which extent the measurements taken by
OpenWPM are affected by web bot detection.
Torres et al. [TJM15] introduced the fingerprint surface as the properties used to

fingerprint users. During this thesis, we will also adopt this term to find and classify
the differences between regular Firefox and OpenWPM by using their fingerprint surface
based approach [JKV19]. Moreover, we apply JavaScript template attacks [SLG19]
to extend the captured set of differences by a dynamic approach not depending on
predefined attributes. While this measurement combination was used before [Kru+], we
use it to determine the stability of identifying deviations across OpenWPM versions.
This work focuses on technical properties that differ, while not considering behavioral

web bot detection. In particular, we will investigate the following main research question:

How can we build a stealthy version of the web scraper framework OpenWPM
such that it is much less distinguishable from a regular web browser?

The main research questions leads to the following sub research questions:

• How stable are OpenWPM’s identifying properties across OpenWPM versions?

• What for countermeasures do already exist and what is their effectiveness?

• If existing countermeasures do not suffice, which method is suitable to reduce
OpenWPM’s detectability?

To the best of our knowledge, no previous study examined improving OpenWPM’s
stealthiness. But already as OpenWPMwas published, the authors realized bot detection

1https://webtap.princeton.edu/software/ (last visited on 01/20/2020)

1

https://webtap.princeton.edu/software/

1. Introduction

is a thread to the experimental results, so they added first countermeasures to the
platform [Eng+15].
While answering the research question, we devise a stealthy version of OpenWPM

which is much less detectable. The goal of this is to facilitate research into determining
to what extent OpenWPM results are reliable. Further, future studies measuring privacy
on the web could use the stealthier version to obtain more accurate results.
However, our goal is not a version of OpenWPM that is undetectable under all cir-

cumstances, but an improved version not detectable by common detection methods and
frameworks. If parties especially target OpenWPM, detection will probably always re-
main possible.

Contributions
The main contributions of our work are:

• An analysis for the stability of OpenWPM’s detectable properties.
Both the fingerprint surface by Jonker et al. [JKV19] and JavaScript template
attacks [SLG19] are considered.

• An investigation of existing countermeasures and their effectiveness.
This also reveals methods to improve state-of-the-art countermeasures such as FP-
Block [TJM15; CY19].

• A comparison of the detectability of different JavaScript spoofing methods.

• A stealthier implementation of OpenWPM that reduces its detectability by over-
riding a revealing JavaScript object.2

Thesis structure
The thesis is organized as follows: Chapter 2 presents the background about fingerprint-
ing, web bots and OpenWPM. Then, Chapter 3 discusses how our work compares to
previous work in the literature. Next, Chapter 4 measures the stability of OpenWPM’s
fingerprint surface that allows for web bot detection, using the fingerprint surface based
approach of Jonker et al. [JKV19] and JavaScript template attacks [SLG19]. In Chap-
ter 5, we analyze how effective OpenWPM’s own countermeasures, typical Firefox user
agent spoofing extensions and FP-Block can address OpenWPM’s detectability. Fur-
ther, Chapter 6 focuses on spoofing on the level of JavaScript, using the example of
OpenWPM’s webdriver attribute. Following, in Chapter 7, we derive and validate a
proof of concept implementation. Then, future work to be done in this area is given in
Chapter 8. Finally, Chapter 9 summarizes our research and concludes this thesis.

2This lead to a pending contribution (pull request) for the official OpenWPM framework, see https:
//github.com/mozilla/OpenWPM/pull/526 (last visited on 03/23/2020).

2

https://github.com/mozilla/OpenWPM/pull/526
https://github.com/mozilla/OpenWPM/pull/526

Availability
We publish our results and the stealthy version of OpenWPM.3

Ethical considerations
The question arises whether it is ethical to build a stealthy web scraper. As for this
research, only the JavaScript webdriver property is spoofed. We therefore argue the
risk of potential abuse is negligible when compared to the scientific interest.
However, this can be evaluated differently if a web scraper becomes almost unde-

tectable for all types of detection. Then, it needs to be weighted up whether running
such a scraper is accountable in the context of a particular study. It may be necessary
to not disclose the source code and share the software only with bona fide researchers
on explicit request.

3https://github.com/Flnch/ba-thesis-resources

3

https://github.com/Flnch/ba-thesis-resources

2. Background

This chapter first discusses the general concept of browser fingerprinting. Then, it elab-
orates why web bots need to become more advanced in order to resemble regular users.
This is followed by methods that can be used to detect web bots and common mea-
sures web servers take to counter web bots. Finally, the architectures of the OpenWPM
scraper gets discussed. The specific architecture should be kept in mind to find the
components that could contribute to OpenWPM detection.

2.1. Browser fingerprinting
Each human has a fingerprint that can re-identify him. In the context of web browsers,
the fingerprint contains properties and behavior of:

• the system,

• the browser,

• and the user [Dol19].

The Screen resolution of a laptop, e.g. 1920 × 1080, depicts a property of the system.
Compared to the usually immutable fingerprint of a human, a browser fingerprint and
its properties can change. Think of connecting your laptop to a video projector. At this
moment, the screen resolution and thereby the browser’s fingerprint changes.
Another example is canvas fingerprinting, where a specially crafted text is drawn

in the browser. Since graphic drivers work differently and browsers do not implement
canvas drawing in a standardized manner, the resulting image varies across devices. This
behavior of the browser is not static, too. A browser update can for example change the
canvas drawing engine.
An example of a collected fingerprint can be found in A. While single attributes for

themselves are seldom unique, the combination of enough attributes is it often well.

So why is fingerprinting used? In contrast to other techniques like cookies, fingerprinting
is interesting because it is possible to re-identify a user on later visits without the need
to store any information on the user side [Eck10].
On the one side, benign parties use fingerprinting for example to:

• Serve mobile phone users with a website version optimized for small screens;

4

2.2. Web bots

• Support online authentication with fingerprinting as additional factor (if a user
wants to log in from a unknown device, request another factor like e-mail confir-
mation for the login attempt);

• Prevent fraud such as bot generated fake accounts.

On the other side, fingerprinting can be used maliciously, for example as identifier to
track a user across websites, link his surf behavior and show him targeted advertisements.

2.2. Web bots
Web bots are programs that visit websites for a special goal, without the need for direct
user interaction. They can have several goals:

• The Googlebot visits internet websites and analyzes their content for keywords.
Based on the keywords, it builds a web index that allows searching in the opposite
direction: You enter a keyword and see websites that contain this keyword.

• The Linux program wget downloads content from a server.

• So called spambots collect publicly available e-mail adresses and send spam e-mails
to them.

Using the de facto standard1 robots.txt2, websites can specify which parts of their
website may be visited by web bots or not. While benign parties comply, actors can
simply ignore the robots.txt settings of a website because they are not enforceable.
While they visit websites, most web bots should behave realistically, especially for

web measurements. As modern web browsers constantly evolve, web bots need to go
along and have to support current web technologies such as JavaScript or HTML5. This
leads to web bots that get more close to actual browsers, for example PhantomJS3

(development mostly suspended since 2018), OpenWPM, Puppeteer or WebDriver.
This advanced web bots mostly rely on browser engines of regular web browsers. Their

engines can run in two different modes, as depicted in Figure 2.1a and Figure 2.1b:

1. Headful (HF) browser mode: This is the web browser version the reader com-
monly knows about. headful describes that there is a GUI and rendered content.
Further, full functionality like JavaScript etc. is supported.
The regular Firefox or Chrome instances a user runs are examples of headful
browsers.

1While used for around 25 years, robots.txt is no official standard. But there is a recent proposal to
the IETF, see https://tools.ietf.org/html/draft-koster-rep-01 (last visited on 01/20/2020).

2https://www.robotstxt.org/orig.html (last visited on 01/20/2020)
3https://phantomjs.org/ (last visited on 01/21/2020)

5

https://tools.ietf.org/html/draft-koster-rep-01
https://www.robotstxt.org/orig.html
https://phantomjs.org/

2. Background

2. Headless (HL) browser mode: In contrast, headless browsers do not implement
all features of a headful browser. In particular, there is no GUI and content is not
rendered on the screen. However, screenshots of the content can be exported.

This sort of browser is often used for automated testing during web development as
it is said headless browsers save performance. It is also used if no screen hardware
is available, for example on remote servers.

Chrome4 and Firefox5 both support a headless mode.

Further, it is possible to combine the advantages of both modes as shown in Figure 2.1c.
OpenWPM supported this setup in the past: A underlying headful version of Firefox
run in combination with the X virtual framebuffer (Xvfb) that replaces the actual screen
hardware by a virtual screen. This way, full browser functionality (a headful browser)
was combined with no screen output. However, this mode was removed from the project
but due to detectability issues it may be re-implemented6.

HF browser

Monitor

Live
feed

(a) Browser in headful mode.

HL browser

File

Take
screenshot

(b) Browser in headless
mode.

HF browser

Virtual screen
in RAM

Live
feed

File

Take
screenshot

(c) Headful browser in a
setup without monitor.

Figure 2.1.: Three different setups of web browsers.

4https://chromium.googlesource.com/chromium/src/+/lkgr/headless/README.md (last visited on
01/20/2020)

5https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Headless_mode (last visited on
01/20/2020)

6https://github.com/mozilla/OpenWPM/issues/504 (last visited on 01/20/2020)

6

https://chromium.googlesource.com/chromium/src/+/lkgr/headless/README.md
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Headless_mode
https://github.com/mozilla/OpenWPM/issues/504

2.3. Web bot detection

2.3. Web bot detection

Using techniques such as fingerprinting, web servers can distinguish between regular
users and web bots. Say a server receives a HTTP request with the user agent

Mozilla/5.0 (compatible; Googlebot/2.1;
+http://www.google.com/bot.html)↪→

Then, the request likely originates from a web bot, namely the Googlebot (or someone
impersonating the web bot). Behavior can also be evidence for a web bot [Chu+13], for
example the typing speed.

Moreover, the detection of automated browsers is more difficult [JKV19] than the
detection of simpler web bots such as wget. First, wget sends a revealing user agent like
Wget/1.13.4 (linux-gnu). Second, it is also detectable by the absence of JavaScript
functionality.
In general, especially in headful mode, automated browsers behave more like regular

users as they implement full browser functionality.

2.3.1. JavaScript template attack for web bot detection

Schwarz et al. [SLG19] developed a new method to find differences in browser envi-
ronments, called JavaScript template attack. It finds even small and undocumented
differences between JavaScript environments in an automated manner.
The main idea is to traverse the JavaScript prototype chain7. In JavaScript, it is not

possible to receive all objects of the current environment at once. However, all objects are
connected via the prototype chain that allow to access all their child and parent elements.
This concept can be compared with inheritance of other object oriented programming
languages like Java or C++. There is also the JavaScript DOM8 that specifies the
hierarchy of objects, with window on top. Therefore, starting to traverse the prototype
chain at window, it is possible to encounter all present properties.

Each run through the prototype chain is recorded in a template that afterwards can be
compared with each other. If the environment changed across recordings, the differences
in the templates indicate the actual differences between the browsers. So, for example
comparing a template of Firefox with that of Chrome, amongst others reveals a difference
in the toString() method:

7https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_
chain (last visited on 01/21/2020)

8https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model (last visited on
01/21/2020)

7

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model

2. Background

Browser Value of window.eval.toString()

Firefox "function eval() {\n [native code]\n}"

Chrome "function eval() { [native code] }"

JavaScript template attacks can thus be used to compare regular browser environments
with that of web bots / automated browsers. This reveals possible properties that allow
to identify web bots.
However, currently there is one limitation of JavaScript template attacks. They only

consider primitive types, that are numbers, strings and booleans. It is desirable to
further include functions, but information about their semantic is needed in order to
know how to call them correctly. Therefore, Schwarz et al. [SLG19] left this for future
work. Only functions without parameters, e.g. toString(), can be added manually to
the attack.

2.3.2. Page deviations after detection

Once a web bot is detected as such by a web server, the server can change its behavior
against the web bot. This can result in a deviated web page with an observable difference
[JKV19].
In general, server reactions can be classified as follows:

• Same content: The server responds with the regular content he would also serve
to a human visitor.

• Restrict access: The client is asked to complete a CAPTCHA to proof he is
human or he needs to log in with a user account. Otherwise, he will not see the
actual web page.

This measure will hinder most web bots from seeing the actual content because it
is either impossible to circumvent them or the effort is too extensive.

• Alter/fake content: While the web server altered it, for the client it will look
as though he received the regular content. The web server may for example omit
advertisements, multimedia content or login forms, or show a different graphic.
Content may be faked completely when an entirely different site is served.

Generally, search engine crawlers such as the Googlebot punish maliciously devi-
ated websites, as this technique is used to improve search rankings.

Client-side, altered content is the most difficult to detect. Further, in the context
of web measurement studies, they may lead to tampered results if the difference is
not observed by the researchers.

8

2.4. Design of OpenWPM

• Block request: The server either does not respond at all or he responds with an
“access denied” message.

While the client does not receive the actual web page content, he can easily detect
the server refused him access.

2.4. Design of OpenWPM

OpenWPM is designed to perform large-scale measurements on the web by automated
scraping of websites [EN16]. To reach this goal, several components are put together
that can be assigned to different layers. A high level overview of the architectural design
and the interaction of OpenWPM’s different components is depicted in Figure 2.2 and
will be discussed in the following.

Task
Manager

Browser
Manager

Selenium
WebDriver Geckodriver Unbranded

Firefox WWW

Browser automation layer
Instrumentation layer

Data
Aggregator

1:n

Figure 2.2.: Architecture of OpenWPM, modification of [EN16; Kru+].

On top, the task manager is the controlling instance that manages parallel scraping.
One single task manager instance is responsible for all browser instances. It controls
the instrumentation layer that, in the end, is responsible to receive and record all data
encountered during website scraping. Like all “glue” components of OpenWPM, the task
manager is written in Python 3.
For each desired browser instance, the task manager starts a browser manager that

basically calls the next module and sets some settings. The browser manager is the bridge
between the task manager and browser driver. OpenWPM uses Selenium WebDriver as
browser driver.
W3CWebDriver9, or simply WebDriver, is a control interface to interact with browsers

in an automated manner. It is especially used for automated browser-testing and all
common browsers support it.

9https://www.w3.org/TR/webdriver/ (last visited on 01/21/2020)

9

https://www.w3.org/TR/webdriver/

2. Background

OpenWPM uses Selenium WebDriver10, that, on the other hand, is one particular
W3C WebDriver client. It is compatible with a variety of browsers such as Firefox and
Chrome. This opens the possibility to change the specific browser that OpenWPM uses.
However, OpenWPM officially only supports Firefox.
Selenium WebDriver, together with Geckodriver, forms the browser automation layer.

This layer is responsible for issuing commands to the web browser. While Selenium
WebDriver provides a Python 3 API to control the web browser, geckodriver (not to be
confused with Gecko) is a proxy in front of Firefox. It translates calls using the W3C
WebDriver protocol into calls of the Marionette protocol because instrumenting Firefox
is only possible using the Marionette protocol.
Next, the web browser Firefox receives the instrumentation commands and interacts

with the actual web pages. Not a regular version of Firefox but Firefox unbranded11 (a
form of Firefox Nightly) is used because OpenWPM includes unsigned Firefox extensions
(not to be confused with Firefox plugins [SN17]). A regular Firefox would refuse to install
unsigned extensions but the unbranded version allows to disable this signature check.
Finally, the data aggregator receives and stores the data of all instrumentation com-

ponents in a central log on disk.

10https://selenium.dev/documentation/en/webdriver/ (last visited on 01/21/2020)
11https://wiki.mozilla.org/Add-ons/Extension_Signing#Unbranded_Builds (last visited on

01/21/2020)

10

https://selenium.dev/documentation/en/webdriver/
https://wiki.mozilla.org/Add-ons/Extension_Signing#Unbranded_Builds

3. Related work

3.1. Browser fingerprinting

In the last decade, since Eckersley’s study [Eck10] introduced the term “browser fin-
gerprinting” as re-identifying browsers using their own properties, extensive research is
done for the impact of browser fingerprinting and techniques how to circumvent it. Over
time, researchers constantly identified new and more advanced techniques for identifi-
cation (e.g. [MS12; Mul+13; Ung+13; FE15; EN16; Ole+16; SN17; Sta+19]). In their
survey study, Laperdrix et al. [Lap+19] give an extensive overview of the whole research
area.

As browser fingerprinting is conducted on a wide scale, researchers try to scale up their
measurements using automated or semi-automated approaches. Therefore, Englehardt
and Narayanan [EN16] for example introduced their framework OpenWPM to perform
automated large-scale privacy measurements on websites. It allows visiting websites
and analyzing their behavior, for instance whether they perform a certain fingerprinting
technique, on a large scale. OpenWPM follows a modular design. It uses the browser
automation tool Selenium that serves a high level programming interface such that the
integrated Firefox browser can be exchanged. Section 2.4 discusses the design in more
detail. Because of the abstract design and OpenWPM’s active maintenance (since April
2019 by Mozilla), OpenWPM is used in at least 54 studies.1 In their study, Englehardt
and Narayanan point to the problem that web bot detection can possibly influence
results, but they reserve further countermeasures besides basic ones for future work
[Eng+15].

FPDetective by Acar et al. [Aca+13] is a similar framework. However, in comparison,
OpenWPM has the advantage that its instrumentation is more generic and does not
require modifications of the browser’s source code. Especially maintaining customized
browser source code is time expensive.2

1https://webtap.princeton.edu/software/ (last visited on 01/20/2020)
2FPDetective was last modified in December 2015, see https://github.com/fpdetective/

fpdetective (last visited on 04/04/2020).

11

https://webtap.princeton.edu/software/
https://github.com/fpdetective/fpdetective
https://github.com/fpdetective/fpdetective

3. Related work

3.2. Detecting web bots

Web bots are detected on different layers that can be divided into behavior- and property-
based detection [Dol19]. A property could be a version number, while the way the
hardware renders a text glyph is an example for behavior (see Section 2.1 for detailed
examples). This thesis only considers property-based detection to limit its scope.

Vlot [Vlo18] and, directly following from Vlot’s work, Jonker et al. [JKV19] focus on
the fingerprint surface to measure web bot detection. Therefore, they compare different
web bot fingerprints with that of regular browsers to determine the properties revealing
web bots.
Their analysis of the Alexa top 1 million shows that 12.8% of the scanned websites

are likely to use web bot detection. In particular, Jonker et al. found websites omitting
certain content such as advertisements or videos if accessed by a web bot. One encoun-
tered detection attribute is the JavaScript webdriver property which is spoofed in our
stealth OpenWPM prototype.
Further, we use their fingerprint surface measurement tool to inspect deviations caused

by OpenWPM (Chapter 4) and to inspect the detectability of different JavaScript spoof-
ing methods (Chapter 6). In addition to attributes derived by reverse analyzing com-
mercial fingerprinters, their measurement tool integrates fingerprint2.js3, an widely used
open source JavaScript framework for fingerprint generation that also contains various
fingerprint integrity checks.

Schwarz et al. [SLG19] propose their JavaScript template attacks to automatically find
divergent browser properties across different browser environments. Their method tra-
verses the whole JavaScript prototype chain. Hence, it considers all attributes accessible
via JavaScript. Details of the technique are explained in Subsection 2.3.1. We use tem-
plate attacks to compare the environments of a regular Firefox instance with that of
OpenWPM, as first done by Krumnow et al. [Kru+].

Tailored to OpenWPM, Krumnow et al. [Kru+] investigated in how far the framework
is detectable via fingerprinting and which components cause the detectability. They
consider both detection of OpenWPM as itself and as a web bot in general, using the
measurement frameworks by Jonker et al. [JKV19] and Schwarz et al. [SLG19]. Their
results show that OpenWPM headful is mainly detectable via screen resolution and
the navigator.webdriver DOM property, while OpenWPM headless offers a wider
detection surface. The detectability also grew significantly for both the headful and
headless mode while OpenWPM’s JavaScript instrumentation was activated.

3https://github.com/Valve/fingerprintjs2/tree/437c9636bede60e6441ee22445434067c8db93fe
(last visited on 04/04/2020)

12

https://github.com/Valve/fingerprintjs2/tree/437c9636bede60e6441ee22445434067c8db93fe

3.3. Fingerprinting prevention

Moreover, Krumnow et al. propose a detector specifically identifying OpenWPM as
OpenWPM (and not as a web bot in general). This detector is not applicable to our
research as we focus on OpenWPM being detected to be a web bot. In that sense, the
detector by Krumnow et al. is too severe as it only triggers for OpenWPM instances but
not if only indicators of a web bot are present.

3.3. Fingerprinting prevention

As fingerprinting turned out to be an effective and in-the-wild used technique to re-
identify users on the internet, researchers started investigating how to prevent or at
least weaken the effectiveness of fingerprinting.

Nikiforakis et al. [NJL15] propose PriVaricator that introduces randomness to the brows-
er’s fingerprint by spoofing fingerprint related browser properties. Therefore, they mod-
ified the browser’s source code because the approach of a JavaScript extension did not
work for both Firefox and Chrome.

A similar approach is taken by Laperdrix et al. [LBM17] who built a modified version
of Firefox called FPRandom. It also alters the browser’s source code.

Otherwise, FaizKhademi et al. [FZW15] developed FP-Guard that modifies fingerprint-
ing attributes by a combination of a browser extension and browser source code modifi-
cation.

Yet another approach is used in Blink by Laperdrix et al. [LRB15]. Blink uses virtu-
alization to generate a random browsing environment consisting of operating system,
browser, installed plugins etc. Therefore, this approach does not introduce inconsisten-
cies in the fingerprint as the fingerprint itself is not spoofed. However, this solution
certainly adds performance overhead.

Finally, Torres et al. [TJM15] introduce the Firefox extension FP-Block to prevent
fingerprint-based tracking. Compared to the previous solutions, FP-Block specifically
prevents tracking across websites while still allowing regular tracking. They distinguish
two forms of tracking: On the one hand, regular tracking only takes place inside the
tracker’s own website, while, on the other hand, cross-domain tracking also tracks across
different websites.
The authors argue that blocking regular tracking inside one page frequently breaks

functionality. They further state pure cross-site fingerprinting prevention reduces the
amount of privacy invading tracking to an acceptable minimum while maintaining page
functionality. This design is well suited for OpenWPM because its large-scale automated

13

3. Related work

crawls should not be traceable across websites.
In 2019, Cosijn and Yasko [CY19] released an improved version FP-Block 2.0. The

extension’s speed was enhanced by a new way of fingerprint generation that generates
all fingerprints at the first start of the extension. Further, the previous FP-Block version
introduced inconsistencies to the browser fingerprint. Cosijn and Yasko resolved bugs in
object, canvas and font fingerprinting along with conflicting properties inside generated
fingerprints.
Therefore, FP-Block is a comprehensive and complete state-of-the-art academic tool

to counter cross-site tracking. The generated fingerprint profiles are constructed such
that they form a coherent set of spoofed values. Equally important, the set of spoofed
attributes contains all major attributes used by in-the-wild fingerprinters.

3.4. Browser extensions and their detectability
Several academic and non-academic tools are developed as browser extensions to add
functionality to the browser. Examples include fingerprinting countermeasures, provid-
ing a dark mode for websites or user agent spoofing. However, researchers found websites
can detect presence of many extensions as they introduce observable differences.

Nikiforakis et al. [Nik+13] analyzed user agent spoofing extensions and found some are
detectable by an incomplete coverage of spoofed attributes or incoherent values leading
to impossible combinations. Further, they found the property order of DOM objects
such as navigator to be different between browser versions. Therefore, it is in principle
necessary to also spoof this enumeration behavior.

In a different setting, Storey et al. [Sto+17] hide DOM modifications by their ad blocker
by overwriting the global JavaScript toString function.

Starov and Nikiforakis [SN17] found that 9% of the sample of 10,000 browser extensions
can be detected as they leak information to the browser’s DOM. In a more recent work,
Starov et al. [Sta+19] analyzed Google Chrome extensions for “extension bloat”, that
are omissible page modifications not adding functionality. Extension bloat was present
in 5.7% of the tested extensions and increased the ability to fingerprint users.

Vastel et al. [Vas+18] used their prototype FP-Scanner to analyze state-of-the-art tech-
niques to counter fingerprinting and to which extent they introduce fingerprint inconsis-
tencies that enable detection. One detection feature is again the enumeration order of
the navigator object. However, they argue detecting that a fingerprinting countermea-
sure is applied does not necessarily improve the fingerprinting ability. This depends on
the type of leaked information.

14

4. How stable is OpenWPM’s fingerprint
surface?

Previous work measuring OpenWPM’s fingerprint surface, such as [JKV19] or [Kru+],
tested specific versions of OpenWPM and its corresponding software components. How-
ever, functionality and behavior changes during OpenWPM’s evolution and so can the
previously identified fingerprint surface of OpenWPM. A changed fingerprint surface can,
for example, render existing detection useless or introduce new identifying attributes.
Krumnow et al. [Kru+] looked into the stability of divergent properties across different
Geckodriver versions.
In this chapter, we extend their findings by repeating their measurements with a recent

version of OpenWPM showing the main findings are stable across major OpenWPM
versions. Thereby, we also check for potential new identifying deviations. The order of
attributes inside HTTP headers is newly found to be identifying, although comparison
with Krumnow et al. shows it is not stable across OpenWPM versions. Further, we
introduce a concept of stability with different stability levels to describe how stable a
fingerprint surface is.

4.1. Concept of stability
Before analyzing, we first define the concept of stability. In more detail, we investigate
the stability of the fingerprint surface identifying OpenWPM to be a web bot.
When speaking of stability, something can only be considered stable or unstable in

relation to a baseline. In our case, the previous findings of Krumnow et al. [Kru+]
form the baseline of OpenWPM’s fingerprint surface and our repeated measurements
are compared against those. That way, two different major versions of OpenWPM are
compared against each other.
For this comparison, and thus for testing stability, it is necessary to know technical

properties about both versions. This information is available by the fingerprint surfaces
captured by the measurement frameworks.
If we now compare two fingerprint surfaces on property level, different scenarios re-

garding stability are possible:

A fingerprint surface property with the same value for both measurements. In this
case, the property is stable. As an example, an (identifying) user agent string that stays

15

4. How stable is OpenWPM’s fingerprint surface?

the same would be stable.

A fingerprint surface property with a (partly) changed value between both measure-
ments. Here, two cases need to be distinguished:

1. If the different part is not essential for web bot detection, the property is still
considered stable. An (identifying) user agent string containing another version
number but otherwise staying the same would match this category.

2. If the different part is essential for web bot detection, two further sub-cases exist:

• In case both different values allow web bot detection, it is still considered
restricted stable. The attribute remains usable for web bot detection but only
in a restricted form as detecting parties would need to adopt their detection
criteria. An example of such a case would be a user agent string containing
the keyword “automated” instead of “web bot”.

• In case the deviation removes the ability for web bot detection, we have
a unstable property, e.g. when a user agent string removed the keyword
“automated”, or a identifying property is removed completely.

4.2. Measurement setup

This section describes our setup and necessary tweaks of the hybrid measurement ap-
proach by Krumnow et al. used to repeat their measurements. The approach uses both
the fingerprint surface measurement framework by Jonker et al. [JKV19] and JavaScript
template attacks [SLG19] to find the technical properties that are different from that of
regular Firefox.
The measurements are taken on a laptop with a new Ubuntu installation1. Both mea-

surement frameworks serve a local web page to capture configurations. Some measured
properties are hardware dependent (e.g. vendor, system architecture etc.) and not all
our results are stable across different machines, but this chapter leverages evidence that
all main identifying properties are stable.
OpenWPM can run in headless and headful mode, each with different activated mech-

anisms that log parts of the crawling process. JavaScript instrumentation for example
logs JavaScript calls and access to some fingerprint related properties. Therefore, to find
the divergent technical properties and their origin, we visit both test pages with different
configurations.
From Krumnow et al. [Kru+] it is already known that JavaScript instrumentation

is the only form of instrumentation contributing to OpenWPM’s fingerprint surface.
1For details about the configuration, see Appendix B.

16

4.2. Measurement setup

Therefore, we do not test each instrumentation on its own but only JavaScript instru-
mentation and all instrumentation components at once. Altogether, this results in the
following test configurations:

• Ê Regular Firefox (the baseline)

• OpenWPM headful

– Ë Without instrumentation

– Ì Only with JavaScript instrumentation

– Í With full instrumentation

• OpenWPM headless

– Î Without instrumentation

– Ï Only with JavaScript instrumentation

– Ð With full instrumentation

With the captured snapshots, we can compare configurations, especially the baseline
(Ê), against others.

4.2.1. Tweaks

Performing the measurements requires some tweaks of the affected components.
First, OpenWPM needs to be instructed to automatically enter information to the

measurement frameworks (such as typing the configuration name or clicking a button)
because the measurement frameworks are not designed for automation2.

Second, the Firefox version integrated in OpenWPM is only occasionally updated
and lacks behind. When comparing OpenWPM to regular Firefox, only differences
introduced by OpenWPM should be measured and no additional differences caused by
another Firefox version. Therefore, the same older Firefox version is taken as reference.
However, automatic updates of Firefox need to be disabled explicitly. Other than that,
the regular Firefox runs in standard settings.
Third, performing JavaScript template attacks for configuration Ì, Í, Ï and Ð at first

triggered OpenWPM timeouts because the various instrumentation components slowed
down the attack. It turned out the OpenWPM get command timed out although the get
function was already finished at the time the actual template attack begun. Increasing
the get command’s timeout fixed the problem.

2We reused code from StealthBot [JKV19] (https://github.com/bkrumnow/StealthBot/tree/
5f125c16ec9b9b17cefb1e90552fb49e88d658f1 (last visited on 02/07/2020)) to perform the neces-
sary automation steps.

17

https://github.com/bkrumnow/StealthBot/tree/5f125c16ec9b9b17cefb1e90552fb49e88d658f1
https://github.com/bkrumnow/StealthBot/tree/5f125c16ec9b9b17cefb1e90552fb49e88d658f1

4. How stable is OpenWPM’s fingerprint surface?

4.2.2. Influence of full instrumentation

Now, it is examined whether full instrumentation, as expected because of [Kru+], does
not lead to further detectable differences compared to exclusive JavaScript instrumen-
tation. Otherwise, we would need to consider each instrumentation component on its
own.
Therefore, both the template attack and fingerprint surface measurements of full in-

strumentation are compared to those with only JavaScript instrumentation, that is:

• Í ⇔ Ì for both measurement methods

• Ð ⇔ Ï for both measurement methods.

The comparison shows that full OpenWPM instrumentation does not add more de-
tectable differences than OpenWPMwith JavaScript instrumentation already does. Hence,
we can conclude the following forms of instrumentation do not introduce detectable dif-
ferences:

• HTTP instrumentation

• cookie instrumentation

• navigation instrumentation

• storage of all response bodies.

This confirms our expectations such that configuration Í and Ð do not need to be
considered anymore for further analysis.

4.3. Analysis of stability

To analyze the stability of OpenWPM’s fingerprint surface regarding web bot detection,
our results are compared to that of Krumnow et al. Both our results and the comparison
is depicted in Table 4.2, which will be discussed in the following.

4.3.1. Different configurations and their fingerprint surface

Table 4.2 shows our measurements of the four relevant OpenWPM configurations, along
the “expected” column that represent the values captured for a stand-alone Firefox
instance. The columns containing OpenWPM configurations only include a value if it
deviates from the baseline (stand-alone Firefox). In other words, the cells with content
represent OpenWPM’s fingerprint surface for web bot detection. For now, the coloring
is ignored until later.

18

4.3. Analysis of stability

Regarding the extent of deviations, the findings of Krumnow et al. [Kru+] are con-
firmed. In short, on the one hand, OpenWPM’s JavaScript instrumentation introduces
a handful of deviations on the JavaScript level. On the other hand, OpenWPM’s head-
less mode causes several deviations such as missing WebGL functionality or different
window-sizes. Details can be extracted from Table 4.2 or found in [Kru+].
However, we measured one new feature for OpenWPM detection: The position of the

referer attribute inside HTTP request headers is different, as depicted in Figure 4.1.
Firefox sends the referer field always after the connection field, while these two fields
are reversed for OpenWPM. RFC 7230 states the field order is not important3, but
it could nevertheless be used for detection. The corresponding method is called HTTP
fingerprinting. This deviation was present in all four configurations. Therefore, it cannot
be caused by OpenWPM’s instrumentation or the headless/headful modes. Inspecting
OpenWPM’s integrated Firefox and Geckodriver by running it stand-alone via Selenium
shows that the deviation is not present there. Thus, it needs to be caused by some
main OpenWPM Python component. Unfortunately, we were unable to locate the exact
source.

(a) HTTP request header of a Firefox instance.

(b) HTTP request header of an OpenWPM instance.

Figure 4.1.: Comparison of HTTP request headers between Firefox and OpenWPM.

3https://tools.ietf.org/html/rfc7230#section-3.2.2 (last visited on 02/12/2020)

19

https://tools.ietf.org/html/rfc7230#section-3.2.2

4. How stable is OpenWPM’s fingerprint surface?

Table 4.2.: Features of four different captured OpenWPM configurations, each compared
to regular Firefox. Only deviations with respect to the expected value (reg-
ular Firefox) are given. The cell color depicts the stability of this finding in
comparison to [Kru+]. The measurement method for each feature is given in
the left most column.

OpenWPM

Headful (HF) Headless (HL)

Method Feature Expected Ë No JS instr. Ì JS instr. Î No JS instr. Ï JS instr.

B
ot
h

navigator.webdriver false true true true true

window.jsInstruments undefined defined defined

window.instrumentFingerprintingApis undefined defined defined

Available resolution2 1299x741 1366x768 1366x768

WebGL support2 yes no no

FP
-

su
rf
ac
e1 HTTP request header: Position

of referer field in relation to
conncection field

after before before before before

Te
m
pl
at
e
at
ta
ck
s

window.j defined undefined undefined
Nr. of new objects on
navigator.languages.__proto__ 0 43 43

Nr. of native JS functions overwrit-
ten with logging 0 2223 2223

Nr. of divergent canvas window-size prop. 0 14 14 14 14

Nr. of divergent window window-size prop. 0 84 84 144 144

Nr. of removed window.wgl objects 0 11825 11825

Nr. of removed window.gl objects 0 892 892

• Stable fingerprint surface property
• Restricted stable fingerprint surface property
• Unstable fingerprint surface property

1 Using the fingerprint surface based framework BrowserBasedBotFP by Jonker et al. [JKV19].
2 Template attacks measure this more detailed on the JavaScript level, see the corresponding rows.
3 All on the objects window.canvas, window.sessionStorage and window.localStorage.
4 Krumnow et al. [Kru+] additionally measured a deviation of window.screen.height and window.screen.width.
5 Krumnow et al. [Kru+] measured 13 additionally removed window.wgl objects.

20

4.3. Analysis of stability

4.3.2. Stability
The coloring of the cells indicates the stability of each finding compared to Krumnow
et al. [Kru+]4, where green corresponds to stable, orange to restricted stable and red
to unstable fingerprint surface properties according to our concept of stability (see Sec-
tion 4.1). There are also further new and removed JavaScript properties and functions.
However, they are caused by Firefox updates and thus unrelated to OpenWPM detection.
They are not considered in this analysis.

From Table 4.2, it can be seen that most findings, such as the webdriver attribute
or overwritten functions for logging, remain stable. They are thus suited to detect
OpenWPM and will likely remain stable in the future.
Some window-size related properties are only restricted stable because they (can) differ

from machine to machine, but on the same machine they can be used to tell regular
Firefox and OpenWPM apart. Therefore, the window-size can only be used as criteria
for detecting OpenWPM if additional information about the client machine is known or
derived by another method.
Finally, the HTTP request header position is considered unstable because it was only

measured in our data but not in that of Krumnow et al. [Kru+]. Our tested version
of OpenWPM can be identified by this deviation, while it remains unclear whether this
will remain possible in the future.

4.3.3. Conclusion
All in all, the comparison of our repeated measurements with the findings of Krumnow
et al. [Kru+] shows the main features for OpenWPM detection can be considered stable.
Unfortunately, the newly identified revealing position of the HTTP referer attribute
needs to be considered unstable for the time being. Future work could repeat this
measurement for one of the following major OpenWPM versions to further increase the
confidence in stability.

4Krumnow et al. used OpenWPM with Firefox 68.0 and Geckodriver 0.24.0, while we used OpenWPM
with Firefox 70.0 and Geckodriver 0.24.0.

21

5. Effectiveness of existing
countermeasures

As shown in Chapter 4, it is possible to detect OpenWPM on basis of technical proper-
ties. This chapter investigates whether there already exists an easy solution to address
OpenWPM’s detection. We distinguish three different levels of countermeasures:

1. Build-in countermeasures;

2. Typical browser-extension countermeasures;

3. State-of-the-art countermeasures.

First, on the level of OpenWPM, its own countermeasures are analyzed. Their func-
tionality is already present in the program and thus can be used without additional
effort.
Second, we picked five of the most popular Firefox user agent spoofing extensions.

They change the browser’s fingerprint and are therefore analyzed using fingerprint2.js.
fingerprint2.js is the de facto open source fingerprinting utility. Here, we use it to check
for the integrity of the spoofed fingerprints.
Third, we investigate on the level of advanced anti cross-site tracking solutions. We

examine FP-Block 2.0 that, as already mentioned in Related work, depicts a state-of-
the-art academic measure against cross-site tracking. fingerprint2.js is similarly used
to check for fingerprint integrity. Moreover, the fingerprint surface based measurement
framework by Jonker et al. [JKV19] is used to capture deviations in the fingerprint
surface when FP-Block is added to the browser. This is completed by a JavaScript
template attack that works more abstract.

Testing countermeasures on each of these three levels shows they all have a positive
effect on OpenWPM’s detectability, but none provides the perfect, complete solution.
Even FP-Block 2.0, that is very effective to counter cross-site tracking but not hardened
against anti-tracking detectors, can be identified by websites.
Therefore, we conclude that a combined solution is necessary: FP-Block’s advanced

cross-site tracking countermeasures need to be combined with stealthy JavaScript spoof-
ing mechanisms. Such a solution is capable of defeating cross-site tracking while at the
same time not handling suspiciously on the level of JavaScript. To make the next step,
Chapter 6 analyzes JavaScript spoofing methods for the most handy one.

22

5.1. OpenWPM’s build-in countermeasures

5.1. OpenWPM’s build-in countermeasures
Currently, OpenWPM offers two measures against web bot detection:

1. Perform random actions on websites;

2. Start the browser with randomized attributes.

On the one hand, the first measure performs random mouse movements, random
scrolling and adds random delays between commands issued to OpenWPM. Such com-
mands include receiving an actual web page or typing in user credentials to a page. This
basic countermeasure addresses behavioral bot detection, so it does not help in our case
of property based detection.
On the other hand, the second countermeasure starts each browser instance with

a screen resolution and user agent randomly taken from predefined lists. Especially
defining the screen resolution is interesting, as Chapter 4 revealed that OpenWPM’s
resolution differs from that of stand-alone Firefox. The second countermeasure will be
investigated after the next paragraph.
Further, Firefox has a built-in tracking protection1 that blocks requests to URLs

Mozilla considers doing cross-site tracking. Unfortunately, this solution is currently not
usable in OpenWPM2. Anyway, it is questionable whether this measure would be useful
for OpenWPM crawls as it is not under the researchers control which URLs Mozilla
considers to be doing cross-site tracking.

We now turn to OpenWPM’s random attribute countermeasure in more detail. Actually,
it consists of two different measures.3
The first allows to manually overwrite the user agent string. Internally, this is done

by setting the Firefox configuration preference general.useragent.override. While
this perfectly allows to spoof the user agent, it is a special option provided by Firefox
only for a few fingerprint-related properties. Therefore, it is unfortunately not possible
to spoof arbitrary properties such as navigator.webdriver via the same method.
The second feature allows specification of (a set of) screen resolutions. Therefore, one

sets the random_attributes option and specifies a list of resolutions4. This possibility is
interesting as OpenWPM’s resolution differs from that of regular Firefox (see Chapter 4).
An analysis in Appendix D shows that the differences are caused by the operating

1https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Privacy/Tracking_Protection
(last visited on 02/07/2020)

2There are issues with Firefox’s telemetry service, see https://github.com/mozilla/OpenWPM/issues/
101 (last visited on 02/07/2020).

3It should be noted that the random resolution option is coupled with the user agent spoofing feature.
Alternatively, if a single static spoofed resolution is sufficient, one can set DEFAULT_SCREEN_RES in
deploy_firefox.py to the desired value.

4To be specified in screen_resolutions.txt.

23

https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Privacy/Tracking_Protection
https://github.com/mozilla/OpenWPM/issues/101
https://github.com/mozilla/OpenWPM/issues/101

5. Effectiveness of existing countermeasures

system’s skin, shadow effects etc. that behave differently for maximized and normal
windows, together with divergent sizes of newly spawned windows.
It is important to know the way OpenWPM defines the window size. A specification

inside screen_resolutions.txt internally defines 'screen_res'. However, this term
is somewhat misleading, as it actually sets the size of OpenWPM’s browser window not
including the window titlebar by the operating system. Figure 5.1 shows an example.
Further, if the defined resolution is greater than the usable free place on the display,
a window of the maximum possible size is spawned. Thus, under operating systems
such as Ubuntu that have a permanent side and top bar, the possible area for program
windows is smaller than the hardware screen resolution.

Figure 5.1.: An OpenWPM instance where the area defined by OpenWPM’s
'screen_res' setting is highlighted as a red box. In this example, the
specified resolution is 4000x3000, but the available resolution is smaller such
that OpenWPM only uses a 'screen_res' area of 1849x940. In terms of
JavaScript, the highlighted area has the dimensions window.outerWidth x
window.outerHeight.

In general, all decorations and skin differences of the window manager influence the
available area for windows: The existence and position of a title bar, side bar, window
borders, a status bar, vertical and horizontal scroll bars, task bar etc. All mainstream
operating systems at least contain bars of some type. Therefore, we argue it is suspicious
if the browser viewport of a desktop machine contains a common full screen display
resolution such as 1920x1080 or 1366x768. Thus, to make OpenWPM more stealthy, we

24

5.2. Effectiveness of typical Firefox extensions

propose to choose a common resolution and subtract some pixels in x and/or y direction
before using it for OpenWPM’s 'screen_res'. Then, all OpenWPM windows are of
this specified size and cannot be told apart from regular Firefox instances.

So, while being useful to influence OpenWPM’s window-size, the built-in countermea-
sures for web bot detection are not sufficient to hide OpenWPM’s fingerprint surface
beyond that. However, specifying OpenWPM’s window-size already improves the situa-
tion.

5.2. Effectiveness of typical Firefox extensions

To test standard Firefox extensions for their spoofing effectiveness, we choose five of
the most popular Firefox extensions from Mozilla’s extensions archive that spoof the
browser’s user agent. They are used by 8,700 up to 95,800 users. In the following, we
introduce the concept of each extension, compare their functionality and test them with
fingerprint2.js.

5.2.1. The tool’s concepts and functionality

Table 5.2 gives an overview of the chosen extensions.
Three extensions use the concept of randomizing the user agent. They allow to either

choose a new random user agent each time the browser is started or to change it in a fix
interval. Compared to special tools such as FP-Block, the tested extensions only use a
simple concept of randomization. FP-Block for example separates different fingerprint
profiles for each visited domain.
Next, all tested extensions spoof the user agent both inside the HTTP header and

inside the JavaScript window.navigator property. Only spoofing at one place would
immediately disclose the true user agent.
For a coherent fingerprint not only the user agent plays a role. Unfortunately, Ran-

dom User-Agent and User-Agent Switcher by Linder only spoof the user agent. Fortu-
nately, the remaining three extensions also spoof additional JavaScript properties such as
navigator.platform. This is important, as a user agent spoofing a Windows computer
combined with a Linux platform makes no sense and is suspicious.
Some extensions also contain further, advanced functionality. Chameleon for example

can spoof more HTTP header fields such as the source referer or it can prevent ETag5

tracking. However, here we investigate the standard features.
Finally, for Chameleon, two modes exist: A basic mode with less spoofing functionality

and a mode with active script injection. The latter injects a JavaScript content script

5https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag (last visited on 03/26/2020)

25

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag

5. Effectiveness of existing countermeasures

Table 5.2.: Comparison of five popular user agent spoofing extensions from the Firefox
extension archive.

Firefox spoofing extension

Information/functionality Ch
am

ele
on

1

Ra
nd
om

Us
er-
Ag
ent

2

UA
S b

y L
ind

er
3

UA
S b

y A
lex
and

er
Sch

lar
b4

UA
S a

nd
Ma

nag
er

5

Users6 8,903 8,723 95,820 90,851 74,958

Random user agent on browser start 3 3 3

Random user agent by time interval 3 3 3

Spoofs user agent in HTTP headers 3 3 3 3 3

Spoofs user agent in navigator 3 3 3 3 3

Spoofs additional navigator.* properties 37 3 3

(UAS = User-Agent Switcher)

1 https://addons.mozilla.org/en-US/firefox/addon/chameleon-ext/
2 https://addons.mozilla.org/en-US/firefox/addon/random_user_agent/
3 https://addons.mozilla.org/en-US/firefox/addon/user-agent-switcher-revived/
4 https://addons.mozilla.org/en-US/firefox/addon/uaswitcher/
5 https://addons.mozilla.org/en-US/firefox/addon/user-agent-string-switcher/
6 According to Mozilla’s extension archive (last visited on 03/26/2020).
7 Only with the setting that activates script injection.

(see also Appendix C) into each visited page. This allows more advanced spoofing, e.g.
for additional navigator objects besides userAgent.

5.2.2. fingerprint2.js analysis

To analyze how successful each extension spoofs the chosen user agent, we use the
commonly used open source tool fingerprint2.js to measure each extension while it is
added to OpenWPM. For simplicity, the output of fingerprint2.js attributes is truncated
at the 501st character. Further, besides Chameleon and its script injection mode, all
tools are tested in standard settings. The only modified setting is the user agent to spoof.
We choose Chrome on Windows as our desired user agent because the test machine runs
on Ubuntu with OpenWPM (and thus Firefox). A different platform and browser family
reveals most differences.

26

https://addons.mozilla.org/en-US/firefox/addon/chameleon-ext/
https://addons.mozilla.org/en-US/firefox/addon/random_user_agent/
https://addons.mozilla.org/en-US/firefox/addon/user-agent-switcher-revived/
https://addons.mozilla.org/en-US/firefox/addon/uaswitcher/
https://addons.mozilla.org/en-US/firefox/addon/user-agent-string-switcher/

5.2. Effectiveness of typical Firefox extensions

Results. The interesting fingerprint2.js test cases considering inconsistent spoofed val-
ues are depicted in Table 5.3.

Table 5.3.: fingerprint2.js analysis of the five popular user agent spoofing extensions from
the Firefox extension archive.

Firefox spoofing extension

fingerprint2.js integrity
check for...

OpenWPM
(desired) Ch

am
ele
on

Ra
nd
om

Us
er-
Ag
ent

UA
S b

y L
ind

er

UA
S b

y A
lex
and

er
Sch

lar
b

UA
S a

nd
Ma

nag
er

Languages – – – – – –

Resolution – – – – – –

Operating system – 1 faked faked – –

Browser – faked faked faked faked faked

– : This fingerprint information is not suspicious.
faked: fingerprint2.js detected this fingerprint information is faked respec-
tively not consistent with the full browser fingerprint.

(UAS = User-Agent Switcher)

1 Chameleon is only detected to fake the operating system if it runs without optionally activated
script injection.

None of the tested extensions triggers fingerprint2.js’s language or resolution integrity
test. This is expected as none of them changes the browser language (at least in standard
settings) or spoofs another resolution (also, at least not in standard settings).
However, three extensions are detected to lie about the operating system. Chameleon

suffers from this issue only with deactivated script injection. But Random User-Agent
and User-Agent Switcher by Linder are also detected. Considering their functionality,
this is explainable because they both do not spoof additional navigator properties
such as platform. Thereby, the inconsistency between the user agent and platform is
detected by fingerprint2.js.

27

5. Effectiveness of existing countermeasures

The last check for the browser integrity classifies all extensions as “faked”. How can
this happen? The problem lies in different implementations of the standard JavaScript
function toString across Firefox and Chrome. Therefore, a spoofed Chrome in an actual
Firefox can be revealed and vice versa. It may not be impossible but at least difficult
to spoof this correctly because the whole toString function would need to be spoofed.
Further details about this are mentioned in Section 5.3.

5.2.3. Conclusion

To get to the point, the more sophisticated extensions Chameleon, User-Agent Switcher
by Alexander Schlarb and User-Agent Switcher and Manager perform best. Interestingly,
this does not necessarily go along with their number of users. Anyway, the extensions
show how it is possible to spoof the user agent, and they thereby can reduce OpenWPM’s
detectability. Nevertheless, they represent no single solution because we also need to
consider cross-site tracking. Therefore, they need to spoof different identities not only
based on random intervals but using a more sophisticated method like FP-Block does.

5.3. State-of-the-art countermeasure: FP-Block 2.0

The academic state-of-the-art tool FP-Block 2.0 [TJM15; CY19] for countering fingerprint-
based re-identification is tested in how far it works in combination with OpenWPM.
Ideally, the extension helps to counter OpenWPM’s detection, specifically regarding
cross-site tracking.

General remarks. During our experiments with FP-Block 2.0, we noticed two interest-
ing things. First, by using FP-Block 2.0, queries for DOM attributes took much longer.
Instead of a few seconds, JavaScript template attacks, despite deactivated OpenWPM
instrumentation, took around two minutes. This enables timing attacks. However, the
focus of this thesis lies on property based detection.
Secondly, FP-Block 2.0 informs the user about the attributes it spoofs and blocks.

This happens by use of a message box that is injected to the page DOM, see Figure 5.4.
The problem is that this message can be detected by websites because it is part of the
page DOM. A solution is to disable “Show notifications” in the visual plugin settings or,
even better for automation, modify the DEFAULT_OPTIONS in the extensions source file
src/utils/constants.js to disable the option even before installing the extension.

Benefits. FP-Block’s big advantage is the creation of a huge number of different fin-
gerprint profiles that are all coherent but still not the same. In doing so, FP-Block
creates authentic fingerprint profiles because it considers many attributes to generate

28

5.3. State-of-the-art countermeasure: FP-Block 2.0

Figure 5.4.: Message FP-Block 2.0 shows and injects into the page DOM when it blocks
a page from reading attributes.

the profiles. That functionality compared with the clever approach to separate finger-
print profiles based on the visited domain makes it very useful to counter cross-site
tracking.

Integration problems. The current FP-Block 2.0 implementation is not suitably de-
signed to work together with OpenWPM. In OpenWPM, each website is visited by a
new and reset browser instance. Data is not preserved against browser instances. There-
fore, FP-Block would newly generate the list of fingerprints each time another website
is visited. Furthermore, FP-Block’s assignment of fingerprint profiles to domains is also
not preserved. Pages visited twice would not be visited with the same fingerprint profile
again.

fingerprint2.js analysis. fingerprint2.js is used to check FP-Block’s fingerprint integrity.
For some fingerprint profiles chosen by FP-Block 2.0, fingerprint2.js recognize that the
browser indicated by the user agent is spoofed. Looking into fingerprint2.js’s code shows
that the problem is the navigator.productSub property. With FP-Block 2.0, the prop-
erty is undefined, while for Chrome based browsers (e.g. Google Chrome or Opera) it
equals 20030107 and for Gecko based browsers (e.g. Firefox) it equals 201001016.
This is a problem of FP-Block 2.0, unrelated to OpenWPM. Fixing it is no easy task, as

fingerprint2.js also checks whether the product subversion is coherent with the toString
function behavior of the corresponding browser family. Previous work Nikiforakis et al.
[Nik+13] and Vastel et al. [Vas+18] already identified this detection method that Gecko
based browsers add two newline characters to the string representation of functions, while
Chrome based browsers do not add newline characters. A potential solution would be to

6https://html.spec.whatwg.org/multipage/system-state.html#dom-navigator-productsub (last
visited on 03/23/2020)

29

https://html.spec.whatwg.org/multipage/system-state.html#dom-navigator-productsub

5. Effectiveness of existing countermeasures

overwrite Function.prototype.toString with a JavaScript proxy that resembles the
printing style of the chosen fingerprint. Alternatively, for OpenWPM one could configure
FP-Block 2.0 such that it only generates fingerprint profiles with Firefox browsers. A
downside is this would shrink the available number of profiles drastically.
Spoofing a completely coherent set of attributes in general is a complex task because

of the deviating behavior and APIs across different browsers. Mulazzani et al. [Mul+13]
could already identify different JavaScript engines using Test2627 as JavaScript engines
behave differently to this test.

Fingerprint surface based analysis. The fingerprint surface based measurement frame-
work, without changing FP-Block’s standard settings, reveals differences between Open-
WPM headful and OpenWPM headful with FP-Block 2.0 (both with deactivated Open-
WPM instrumentation).
Several window keys originating from FP-Block 2.0 are added:

• key

• isHeightDetected

• isWidthDetected

• original_fillText

• original_strokeText

• original_toDataURL

• thisScriptElement

• detected

• generateNoise

• WebGLRenderingContext

Some of them, such as WebGLRenderingContext, are spoofed on purpose. In this ex-
ample, FP-Block 2.0 removes the ability to access WebGL and the information about
the system WebGL would otherwise reveal. Other keys such as thisScriptElement or
generateNoise are objects created for FP-Block’s functionality. They raise OpenWPM’s
detection surface.
Also, the order of properties of the window.navigator object is not preserved. Values

touched by FP-Block 2.0 are listed earlier. In Chapter 6, we solve similar spoofing of
OpenWPM’s webdriver attribute by using a JavaScript proxy for overwriting.

7https://github.com/tc39/test262 (last visited on 03/23/2020)

30

https://github.com/tc39/test262

5.3. State-of-the-art countermeasure: FP-Block 2.0

JavaScript template attack. Without changing the standard settings of FP-Block 2.0,
we perform a JavaScript template attack to compare OpenWPM headful and OpenWPM
headful with FP-Block 2.0 (both with deactivated OpenWPM instrumentation). In total,
3468 properties differ in a direct comparison. However, it is FP-Block’s functionality to
spoof and block certain values. Therefore, several of the 3468 differences are desired.
But there are also differences that make OpenWPM more suspicious. For example,

the string representation of the window.canvas.toDataURL function changes from

1 function toDataURL() { [native code] }

to

1 function() {
2 generateNoise(this);
3 var result = original_toDataURL.apply(this, arguments);
4 detected('localhost', 'Canvas To Data URL', 'toDataURL',

'block', result);↪→

5 return (result);
6 }

Several other functions are changed the same way.
Further, FP-Block 2.0 introduces several new DOM elements such as thisScript-

Element and its sub-properties that cause detectable deviations. However, they were
already discussed in the previous paragraph Fingerprint surface based analysis.

Conclusions. Summarizing, it is justified that FP-Block 2.0 is a state-of-the-art anti
cross-site tracking tool because of the extensive fingerprint profiles and their separation
based on visited domains. Unfortunately, a unmodified FP-Block cannot be reasonably
integrated to OpenWPM because each browser instance of OpenWPM is reset. It is also
detectable on the JavaScript level because it adds new objects to the page’s DOM and
changes existing ones.

We propose to modify FP-Block 2.0 such that it becomes usable in combination with
OpenWPM and to change its JavaScript spoofing methodology to become more sophis-
ticated. Chapter 6 finds the best JavaScript spoofing method for this purpose.

31

6. Detectability of different JavaScript
spoofing methods

As shown in Chapter 5, existing countermeasures for reducing OpenWPM’s detectability
are insufficient. In this chapter, we investigate how to spoof attributes on the level of
JavaScript without websites being able to recognize the attributes are tampered with.
OpenWPM contains the navigator.webdriver attribute that is widely used for web

bot detection [JKV19]. As encountered in Chapter 4, it is also a stable attribute. There-
fore, that attribute is investigated.

6.1. Methodology
Solving stealthy spoofing on the level of JavaScript has two advantages:

1. It allows spoofing of various JavaScript properties and is not related to a specific
one. Such a general method of spoofing can be reused in other projects such as
FP-Block to become more advanced against detectors of JavaScript tampering.

2. Specifically for OpenWPM, a JavaScript solution is much easier to maintain than
other possible measures such as source code modification and re-compilation of
Firefox.

To address stealthy JavaScript spoofing, this chapter investigates different methods
to spoof OpenWPM’s webdriver property. In this context, a spoofing method is a
variant how to overwrite an already existing JavaScript property, such as webdriver,
with another value. Therefore, the new option hide_webdriver is added to OpenWPM’s
Firefox instrumentation extension that, if enabled, additionally loads our JavaScript
content script1 into each visited web page. The content script contains the respective
JavaScript code responsible for spoofing.

In order to compare the stealthiness of the approaches, their modifications are mea-
sured using both the fingerprint surface based measurement framework by [JKV19]
(BrowserBasedBotFP) and JavaScript template attacks [SLG19]. Both measurement
methods can compare two captured browser environments against each other. For our
objective, a captured baseline environment – that of a regular Firefox instance – is
compared to OpenWPM and the different integrated spoofing methods.

1The concept of page- and content-scripts for Firefox extensions is described in Appendix C.

32

6.2. About the webdriver attribute

Each of the two measurement methods covers a separate aspect:

• BrowserBasedBotFP captures differences of fingerprinting attributes already known
to the literature, such as window keys or fields of the HTTP header.

• JavaScript template attacks find all static differences in the JavaScript environ-
ment. Thus, they not only cover properties one already suspects to be different, but
they allow for a more systematic approach. However, template attacks are neither
complete. They cannot recognize differences that need an explicit previous action,
such as needed for audio or canvas fingerprinting. In terms of Dolfing’s [Dol19]
taxonomy, behavior based fingerprinting methods are not captured by template
attacks.

This detailed and strict measurement criteria allow to be ahead in the arms race
between spoofing and anti-spoofing detection. At best, the found solution would render
anti-spoofing detection impossible at all, and not only set it one or two steps ahead.

6.2. About the webdriver attribute
In OpenWPM, the navigator.webdriver JavaScript property is set. It is defined inside
the W3C’s WebDriver working draft. It states the navigator.webdriver property
initially equals false and is set to true if “the user agent is under remote control”.2 In
other words, it is activated if a browser is automated.
As OpenWPM uses Selenium WebDriver to automate Firefox, this option is set. In

comparison, the webdriver attribute equals false for a regular Firefox instance.
In contrast to Firefox, Chrome handles the webdriver property in another way. There,

it is only defined in the true case and otherwise the DOM does not contain the property
at all (without browser automation JavaScript code would thus return undefined). Note
this behavior of Chrome does not follow the W3C working draft.

Other options to address the webdriver attribute for OpenWPM. Although this
chapter discusses how to spoof using a Firefox extension and JavaScript, we want to
sketch alternative approaches to modify OpenWPM’s webdriver property.
One could think a network proxy can forward all traffic but change traffic containing

the webdriver property. However, the property originates from the JavaScript level
executed inside the client’s browser. Hence, website’s JavaScript code can obfuscate or
even encrypt a message containing the read out value such that a network proxy cannot
detect or inspect the attribute anymore. Therefore, network proxies are no suitable
solution.

2https://www.w3.org/TR/2019/WD-webdriver2-20191124/#dom-navigatorautomationinformation-
webdriver (last visited on 01/28/2020)

33

https://www.w3.org/TR/2019/WD-webdriver2-20191124/#dom-navigatorautomationinformation-webdriver
https://www.w3.org/TR/2019/WD-webdriver2-20191124/#dom-navigatorautomationinformation-webdriver

6. Detectability of different JavaScript spoofing methods

A possible approach is to change and compile Firefox’s source code. Vlot [Vlo18]
did something similar by re-compiling the ChromeDriver (WebDriver implementation
for Chrome) to alter Chrome’s hard coded $cdc_asdjflasutopfhvcZLmcfl_ string that
identifies ChromeDriver driven browsers. For Firefox, only one line of code3 would need
to be adjusted such that false is returned in all cases:

1 bool Navigator::Webdriver() {
2 return Preferences::GetBool("marionette.enabled", false); //Here
3 }

Unfortunately, OpenWPM uses Firefox unbranded builds (as described in Section 2.4).
We tried to compile Firefox unbranded ourselves but this is not straightforward, the
compilation would need to be maintained in OpenWPM and adds a huge overhead to the
initial setup of OpenWPM. Still, compilation remains as last choice that could address
OpenWPM’s problem with the webdriver attribute.

6.3. Spoofing methods
To find suitable JavaScript spoofing methods, we performed a literature review and,
additionally, investigated how the five popular user agent spoofing extensions already
encountered in Section 5.2 and FP-Block implement spoofing.
The identified options to spoof the webdriver property are:

1. Use Object.defineProperty to overwrite the property. Storey et al. [Sto+17] for
example use this method to overwrite JavaScript’s universal toString function to
hide DOM modifications made by their ad blocker.

2. Use Object.prototype.__defineGetter__ to overwrite the property. This is the
predecessor of Object.defineProperty.

3. Set a JavaScript prototype for the webdriver property to overshadow the real
value.

4. Replace window.navigator with a JavaScript proxy that forwards all queries be-
sides that for webdriver to the original navigator object. JavaScript proxies are
designed to change the behavior of an existing object, while it remains impossible
to see the difference between the original and proxied version of the object4.

The corresponding code and technical details are discussed in Appendix F.
3https://searchfox.org/mozilla-central/rev/5e830ac8f56fe191cb58a264e01cdbf6b6e847bd/

dom/base/Navigator.cpp#1973-1975 (last visited on 01/28/2020)
4https://exploringjs.com/es6/ch_proxies.html#sec_detect-proxies (last visited on 01/30/2020)

34

https://searchfox.org/mozilla-central/rev/5e830ac8f56fe191cb58a264e01cdbf6b6e847bd/dom/base/Navigator.cpp#1973-1975
https://searchfox.org/mozilla-central/rev/5e830ac8f56fe191cb58a264e01cdbf6b6e847bd/dom/base/Navigator.cpp#1973-1975
https://exploringjs.com/es6/ch_proxies.html#sec_detect-proxies

6.4. Comparison of spoofing methods

6.4. Comparison of spoofing methods

Table 6.1 compares the results of the four spoofing methods. At best, no feature would
be detected for a spoofing method.

Table 6.1.: Comparison of the detectability of different JS spoofing methods.
Detected feature

Spoofing method Inc
orr
ect

ord
er
of

na
vi

ga
to

r p
rop

ert
ies

Mo
difi

ed
na

vi
ga

to
r.

_l
en

gt
h

Ne
w Ob

je
ct

.k
ey

s(
na

vi
ga

to
r)

De
fin
ed

na
vi

ga
to

r.
__

pr
ot

o_
_.

we
bd

ri
ve

r

Un
nam

ed
wi

nd
ow

.n
av

ig
at

or
fun

cti
ons

1

Desired (regular Firefox) – – – – –

Object.defineProperty 32 3 ?3 – –

Object.prototype.__defineGetter__ 3 3 3 – –

Object.setPrototypeOf – – – 3 –

JavaScript proxy – – – – 3

3: Feature detected
– : Feature not detected

1 The JavaScript proxy method causes 20 native window.navigator functions
to become anonymous functions, that is they lose their function names but
functionality is preserved.

2 For enumerable = true, the order of the webdriver property is altered.
Otherwise, for enumerable = false, it is not enumerated at all. This is
also considered to be of wrong order.

3 For enumerable = false, Object.keys(navigator) is empty. Otherwise,
it does contain the additional webdriver key.

Object.defineProperty method. The defineProperty method increments the _length
property of navigator by 1. Experiments comparing regular Firefox with spoofed
OpenWPM show that for each property overwritten using Object.defineProperty(),
window.navigator._length is incremented by 1 – irrespective of the number of times
each unique property was overwritten. So, if one overwrites userAgent 10 times and

35

6. Detectability of different JavaScript spoofing methods

webdriver 2 times, the _length property will only be incremented by 2.
Further, while it is possible to rewrite this _length property, e.g. by using define-

Property, JavaScript template attacks can still reveal the value of the original _length
property because they traverse the DOM’s prototype chain.

A further problem of defineProperty is that it distorts the enumeration order of the
navigator object by listing modified properties first, as illustrated in Figure 6.2.

navigator

doNotTrack

webdriver

permissions

maxTouchPoints

clipboard

hardwareConcurrency

...

...

(a) Sub-tree of OpenWPM’s DOM in stan-
dard settings.

navigator

doNotTrack

webdriver

permissions

maxTouchPoints

clipboard

hardwareConcurrency

...

...

(b) Sub-tree of OpenWPM’s DOM with
spoofed webdriver property (using the
defineProperty or __defineGetter__
method).

Figure 6.2.: Comparison of navigator sub-trees of OpenWPM’s DOM, with and without
spoofing of the webdriver attribute.

While research shows the property order in JavaScript is not reliable in each case5,
in our tests the modified attribute is always listed first. It could thus be used to detect
the modification. Vastel et al. [Vas+18] for example used the navigator order to de-
tect different browsers. Unfortunately, it is impossible to directly change the order of
JavaScript properties. But it is possible to redefine all other navigator properties too,
without changing their actual value. That way the original order could be restored. How-
ever, even then this method still remains detectable as it causes the navigator._length
property to be incremented by 1.

5https://stackoverflow.com/questions/5525795/does-javascript-guarantee-object-property-
order/ (last visited on 01/30/2020)

36

https://stackoverflow.com/questions/5525795/does-javascript-guarantee-object-property-order/
https://stackoverflow.com/questions/5525795/does-javascript-guarantee-object-property-order/

6.4. Comparison of spoofing methods

Moreover, defineProperty alters whether webdriver is an enumerable JavaScript prop-
erty. Without spoofing, an enumeration of navigator contains the webdriver property
but it is not listed in Object.keys(navigator).

On the one side, with defineProperty’s option enumerable = true, the spoofed
webdriver is still regularly enumerated. However, Object.keys(navigator) then con-
tains the key webdriver.
On the other side, enumerable = false prevents the new key in Object.keys(navigator).

However, webdriver then is not enumerated anymore for navigator. Interestingly,
in that case window.navigator._length is still incremented. Therefore, it cannot
be that an incremented _length corresponds one-to-one with the keys contained in
Object.keys(navigator).
Anyway, both enumerable = true and enumerable = false cause detection.

Object.prototype.__defineGetter__ method. This method is detectable by the
same three characteristics as the defineProperty method. Only the option enumerable
is not applicable. __defineGetter__ always adds a new key to Object.keys(navigator).

Object.setPrototypeOf method. Compared to defineProperty and __defineGetter__,
the prototype overwrite does not cause their previous three issues. However, it neces-
sarily sets window.navigator.__proto__.webdriver because that is how prototype
overwrites work. In comparison, for regular Firefox, __proto__ is not defined on
navigator.webdriver at all.

As window.navigator.__proto__.webdriver can be directly accessed and it is not
necessary to do so via the prototype chain (e.g. using template attacks), this form of
spoofing the navigator.webdriver attribute is easy to detect.

JavaScript proxy method. Finally, the JavaScript proxy transform 20 native navi-
gator functions into anonymous functions. In other words, they lose their function
name whereas all functionality stays the same. The difference is detectable by using the
toString function on the affected functions such as vibrate:

1 function vibrate() { [native code] } // In regular Firefox
2

3 function () { [native code] } // Same function, but in
OpenWPM with navigator being a proxy↪→

This happens as we explicitly need to clone a set of functions (such as vibrate) into
the proxy’s scope because they otherwise brake functionality of more complex web pages
that for example embed videos. For instance, advertisements and videos otherwise did
not work on https://www.reddit.com/r/videos/. They caused several errors such as
the following:

37

https://www.reddit.com/r/videos/

6. Detectability of different JavaScript spoofing methods

1 TypeError: 'javaEnabled' called on an object that does not implement
interface Navigator.↪→

We found no way to clone these functions correctly to the page scope without them
loosing their name.

6.5. Conclusions
The two most promising solutions are the prototype overwrite and the JavaScript proxy
because they are least detectable.
On the one side, using the prototype overwrite has the advantage that it certainly

does not break functionality and it is less complex. However, it is easy to detect as the
identifying window.navigator.__proto__.webdriver property is set.
On the other side, the proxy variant is detectable by JavaScript template attacks but

therefore more powerful as it also allows implementing more complex spoofing logic.
Unfortunately, combining two or more of the presented spoofing methods is neither a

suitable solution as this only adds up the detectable features while not removing any of
them.

38

7. Proof of concept implementation

In this chapter, a prototype of the JavaScript proxy method derived in Chapter 6 is
implemented in OpenWPM to spoof its webdriver property. We additionally extend
the prototype with Alexander Schlarb’s countermeasure against un-spoofed attribute
leakage, as will be described below. The combined prototype version led to a pending
contribution (pull request) for the OpenWPM framework.1

The proof of concept implementation serves two purposes. On the one side, it shows
that the prototype works outside our used measurement tools. On the other side, it
points out whether spoofing OpenWPM’s webdriver property is relevant in practice.

7.1. The prototype

The main component of the prototype is a JavaScript proxy that replaces the DOM’s
original navigator object. It is the most stealth JavaScript spoofing method investigated
in Chapter 6. Its core functionality is given by the code below:

1 if (prop === "webdriver") {
2 return false;
3 } else {
4 let value = Reflect.get(origNavigator, prop); // Get value that

would be returned by the regular navigator object↪→

5 if(typeof(value) === "function") {
6 // Explicitly clone functions to make them work in the proxy
7 }
8 return value;
9 }

Whenever navigator’s webdriver property is queried, a spoofed value of false is
returned (OpenWPM’s standard webdriver value is true, as described in Section 6.2).
Otherwise, the query is forwarded to the original navigator object. The omitted code
in line 6 is necessary to explicitly bring functions of the original navigator object into
the proxy’s scope. Otherwise, the function calls may fail, as described in Section 6.4.

1https://github.com/mozilla/OpenWPM/pull/526/ (last visited on 03/23/2020)

39

https://github.com/mozilla/OpenWPM/pull/526/

7. Proof of concept implementation

The detailed code can be found in Appendix F. Besides glue code necessary for the
proxy to work in a Firefox extension, it additionally contains a countermeasure against
access to the un-spoofed webdriver property if it is accessed in iframes.

The problem with iframes. During study of the five popular user agent spoofing ex-
tensions from Section 5.2, we came across an interesting discussion in the forum of User-
Agent Switcher by Alexander Schlarb2. They pointed out that values are not spoofed
inside iframes. The only reference to this problem we identified in the literature is the
work of Raschke and Küpper [RK18]. Raschke and Küpper analyzed canvas fingerprint-
ing and therefore needed to overwrite JavaScript APIs. They copied functionality from
the Firefox and Chrome extension Canvas Defender to overwrite the APIs such that
they are also overwritten in iframes. However, Canvas Defender ’s development seems
to be suspended.3

In Appendix E, we conduct an experiment that uses Alexander Schlarb’s tests to see
whether the other four popular user agent spoofing extensions contain measures against
the leakage of un-spoofed properties inside iframes. The experiment shows the coun-
termeasures by User-Agent Switcher by Alexander Schlarb work fairly well. Therefore,
as a first step, we added his countermeasure against the iframe leak to our spoofing
method. But further research needs to be done how to best counter the problem of
iframes. We found discussions that show some users were already aware of this problem
back in 20154. Also, other extensions such as CanvasBlocker by kkapsner5 implemented
specific countermeasures, too6.

The problem with window.open(''). In the same forum discussion, a second prob-
lem attracted our attention. Permitted browser pop-ups enable access to the original
property value. How does this work?
JavaScript allows to open a new window. The reference to the new window can be

used to access its attributes. For example, the JavaScript command
window.open('').navigator.webdriver returns the webdriver value out of the new
window’s scope.
Unfortunately, the property is not spoofed in this new window and the original value

is revealed. We could not identify why this happens. A new about:blank page is
2https://gitlab.com/ntninja/user-agent-switcher/-/issues/9 (last visited on 03/23/2020)
3The extension was last updated in 2017. For Firefox, at the 9th and for Chrome at the 11th of July (see

https://addons.mozilla.org/en-US/firefox/addon/no-canvas-fingerprinting/ and https:
//chrome.google.com/webstore/detail/canvas-defender/obdbgnebcljmgkoljcdddaopadkifnpm
(last visited on 04/02/2020)).

4https://github.com/dillbyrne/random-agent-spoofer/issues/309 (last visited on 04/02/2020)
5https://addons.mozilla.org/de/firefox/addon/canvasblocker/ (last visited on 04/02/2020)
6https://github.com/kkapsner/CanvasBlocker/blob/master/lib/iframeProtection.js (last vis-
ited on 04/02/2020)

40

https://gitlab.com/ntninja/user-agent-switcher/-/issues/9
https://addons.mozilla.org/en-US/firefox/addon/no-canvas-fingerprinting/
https://chrome.google.com/webstore/detail/canvas-defender/obdbgnebcljmgkoljcdddaopadkifnpm
https://chrome.google.com/webstore/detail/canvas-defender/obdbgnebcljmgkoljcdddaopadkifnpm
https://github.com/dillbyrne/random-agent-spoofer/issues/309
https://addons.mozilla.org/de/firefox/addon/canvasblocker/
https://github.com/kkapsner/CanvasBlocker/blob/master/lib/iframeProtection.js

7.2. Validation experiment

opened and injection should happen to it, too. But even in the browser console of the
opened page, the webdriver property is not spoofed. In comparison, the property is
well spoofed inside a manually opened new window (via Ctrl+N or the menu) that also
opens about:blank.

In regular Firefox, the default setting prevents pop-ups, so this method does not work.
However, OpenWPM deviates from this setting and allows pop-ups by default7.
Our stealthy prototype of OpenWPM addresses this issue and sets the standard setting

to disallow pop-ups8, which resolves this issue for OpenWPM.

7.2. Validation experiment
First of all, the prototype is only tested for OpenWPM in headful mode. We suspect
the closer to a headful browser OpenWPM becomes, the more the performance also
resembles that of a headful browser. Hence, it is not affordable to focus on improving
OpenWPM in headless mode because this in the end will require re-implementing headful
browser functionality. In Section 9.2, we describe a way it is nevertheless possible to run
our improved headful version under headless circumstances, combining both advantages.

Ideally, the stealth prototype would be validated automatedly. Our concept included
using Vlot’s [Vlo18] scanner to identify all Tranco top 10,000 pages [Le +19] that access
the webdriver property. That pages should be visited automatedly by regular and
stealth OpenWPM. Differences would be encountered by comparing the screenshot of
both crawls. However, especially the automation turned out to be the bottleneck. The
screenshots could not be compared in a satisfying quality and did not capture differences
that occur during manual surfing.

Hence, we manually address the validation in the first place. As starting point, we have to
find websites that change their behavior for an activated webdriver property. Very few
could be derived by analyzing the screenshots of the “failed” automated experiment. To
find additional ones, we conducted internet discussions dealing with webdriver spoofing.
There, the authors often list example pages where they encountered problems with being
detected.

7This seems to originate from Selenium, see https://github.com/SeleniumHQ/selenium/blob/
8a0691f55df5868b518e0f53c3c90b6251607dd4/third_party/js/selenium/webdriver.json#L28
(last visited on 01/30/2020).

8See https://github.com/Flnch/OpenWPM/commit/4ca525ca0200765f3d4a70a23d15516c2498344e
(last visited on 01/30/2020)

41

https://github.com/SeleniumHQ/selenium/blob/8a0691f55df5868b518e0f53c3c90b6251607dd4/third_party/js/selenium/webdriver.json#L28
https://github.com/SeleniumHQ/selenium/blob/8a0691f55df5868b518e0f53c3c90b6251607dd4/third_party/js/selenium/webdriver.json#L28
https://github.com/Flnch/OpenWPM/commit/4ca525ca0200765f3d4a70a23d15516c2498344e

7. Proof of concept implementation

The pages suspected to trigger on the active webdriver property are manually visited
with:

1. Normal Firefox;

2. Regular OpenWPM in headful mode without its instrumentation;

3. Our spoofing prototype in headful mode without OpenWPM’s instrumentation.

First, we manually surf to the pages using normal Firefox to observe their ordinary
behavior. Second, the pages are manually observed with OpenWPM without our spoof-
ing modification to show that they trigger web bot detection in some way, for example
by showing a CAPTCHA. Third, we use our OpenWPM prototype to manually visit the
same pages to show that the web bot detection does not occur if the webdriver property
is spoofed.
All three stages of the experiment are documented by screenshots. Between them, a

cool-down time of several hours is added to exclude other types of fingerprinting as cause
for different observed behavior. This helps as websites exclude detected bots and other
types of website visitors often only temporarily. Additionally, each stage is performed
from an internet connection with a new IP address.
Finally, we tested that our prototype does not interfere with common websites where

it should cause no difference. Therefore, we manually inspected ordinary websites by
surfing on them with our prototype. We encountered no unintended side effects.

7.3. Results
In the following, we present pages that were found to trigger web bot detection with a
present webdriver property but that behave ordinary if visited with a spoofed webdriver
property. Pages suspected in doing so but where we found no evidence are omitted.
Table 7.1 shows the different types of deviating behavior we encountered that our

prototype can prevent for the found pages by spoofing the webdriver property. They
are introduced with examples for each category. Further screenshots can be found in
Appendix G.

Site access blocked. This category contains pages that block accessing them if webdriver
is present. Some pages detect this instantly on their start page, while others only start
to block after a few sub pages are visited. Figure 7.2 shows an example of the type of
messages shown in such cases.

Site access blocked (with CAPTCHA for un-block). Similarly to the previous cat-
egory, access to the page is blocked. However, this pages allow the visitor to proof he
is human by completing a CAPTCHA. An example is given in Figure 7.3. Regarding

42

7.3. Results

Table 7.1.: Types of deviating behavior that regular OpenWPM encounters and our pro-
totype prevents.

sites

Regular OpenWPM Stealth OpenWPM

Pages visited in total 14 14

Type of deviating behavior

Site access blocked 6 0
Site access blocked (with CAPTCHA for un-block) 3 0
Login only with CAPTCHA 3 0
Other deviating behavior 2 0

CAPTCHAs, Sivakorn et al. [SPK16] showed that Google reCAPTCHA considered user
agents of outdated browsers to be suspicious. In such cases, the system requested the
visitor to solve a CAPTCHA, while otherwise forwarding him without solving one.

Login only with CAPTCHA. These pages show CAPTCHAs on their login pages.
While this is not unusual and some websites always require this to prevent spam, the
tested pages of this category only do so if the webdriver property is present. All pages
use reCAPTCHA by Google that seems to trigger on this property. Figure 7.4 depicts
an example.

Other deviating behavior. Here, we encountered behavior not fitting into the previous
three categories. stubhub.com does not block anything, but the site loads its content
delayed by 10 to 30 seconds. Regular surfing is almost impossible as you need to wait
this time after each click. On the same network but with a different machine and for
our prototype, this behavior did not occur.

The other page is google.com. For normal Firefox and our prototype, logging into a
Google account works without problems. For regular OpenWPM however, one is not
permitted to log in with the message shown in Figure 7.5.

43

stubhub.com
google.com

7. Proof of concept implementation

Figure 7.2.: Blockage on controller.com.

(a) First, it is stated the page is “temporar-
ily down for maintenance”.

(b) After refreshing the page, a block mes-
sage with CAPTCHA is shown.

Figure 7.3.: Blockage with offered CAPTCHA on pepboys.com.

44

controller.com
pepboys.com

7.3. Results

(a) Entered credentials for login. (b) Before the wrong credentials are
checked for correctness, one needs to
solve a CAPTCHA.

Figure 7.4.: CAPTCHA for login on redbubble.com.

Figure 7.5.: Prevented login on google.com.

45

redbubble.com
google.com

8. Future work

OpenWPM framework. Our work shows OpenWPM can be revealed by the deviated
position of the referer attribute inside HTTP request. Future research needs to in-
vestigate whether this detection feature remains stable over time. If this is the case,
possible solutions to restore the original attribute order include a network proxy or
Firefox extension modifying the headers.
With the current stealth version of OpenWPM, it is still possible to access the un-

spoofed value of the webdriver property if accessed by a specifically crafted dynamic
iframe (see Section 7.1). As some other spoofing or blocking extensions also deal with
that problem, it may be possible to find a more advanced method to be completely
robust against value disclosure via iframes.
Further, this thesis focused on property based web bot detection. However, behavioral

detection analyzing OpenWPM’s actions can similarly disclose the browser to be a web
bot, for example by the speed information is entered to input fields. There is potential
to further improve OpenWPM’s stealthiness in this area.

Studies using OpenWPM. The most covert form to run stealth OpenWPM with
webdriver spoofing is in headful mode with an explicitly adjusted window size. Previous
studies using the OpenWPM framework can be repeated in this setting to measure the
extent web bot detection influenced the results of the original studies. Moreover, future
research can benefit from the stealth version to reduce the risk that web bot detection
influences its results.

Improving FP-Block. Current FP-Block 2.0 can be improved to become more ad-
vanced.

On the one side, FP-Block does not spoof the navigator.productSub property but
blocks it. Therefore, fingerprint2.js’s integrity check triggers and reports a spoofed
browser. This can easily be fixed by spoofing the correct value for productSub, which
actually is a constant for each different browser family.
However, fingerprint2.js then still might report a spoofed browser as Firefox and

Chrome based browsers behave differently when printing a function by calling its toString.
It needs to be researched for the best approach to change the behavior of the toString
function accordingly to the spoofed browser family. Overwriting it is possible but it is
difficult to do so without being able to detect the alteration.

46

On the other side, FP-Block’s way of spoofing DOM properties can be improved.
Although it is not the main objective of FP-Block to be robust against every anti-spoofing
detector, using JavaScript proxies can already reduce detection via template attacks. It
needs to be checked whether this also helps to hide the DOM objects introduced by
FP-Block against template attacks. Further, we did not find a complete solution for the
access of un-spoofed attributes via (dynamic) iframes. This still needs to be investigated
in more depth.

47

9. Conclusions

9.1. Results and answers to research questions

Analyzing the stability of OpenWPM’s fingerprint surface showed the main identifying
properties that allow detecting OpenWPM, such as the webdriver property, are stable
across major OpenWPM versions. We also confirm the findings of Krumnow et al. [Kru+]
that both the headless mode and OpenWPM’s JavaScript instrumentation introduce
most detectability. With the position of the referer HTTP header field, a new but yet
to be considered as unstable detection method was found.
Existing measures against detection turned out to be able to improve OpenWPM’s

detectability but no exclusive solution was capable of solving the problem entirely. We
also revealed possible flaws in existing user agent spoofing extensions and FP-Block
[TJM15; CY19], considering their spoofing methods and the possibility to access un-
spoofed values via (dynamically created) iframes.
While we focused on spoofing at the level of JavaScript to remove detection by the

webdriver property, we found JavaScript proxies being the most advanced and stealthy
solution. Unfortunately, a small detection surface remains even for this method.

Finally, we implemented a stealthy version of OpenWPM that addresses the webdriver
property by overriding the DOM’s navigator object with a JavaScript proxy. Manu-
ally validating the stealthy version on actual websites shows it successfully spoofs the
property. Further, the webdriver property turned out to be the determining factor for
several manually discovered pages whether they classify a visitor as web bot or not.
Concluding, our new stealthy version is certainly less distinguishable from a regular web
browser.

9.2. Impact of results

OpenWPM. Iframes can reveal the un-spoofed value of JavaScript properties (see Sec-
tion 7.1). This also applies to OpenWPM’s instrumentation extension, but in another
context. There, inside (dynamically created) iframes, websites can execute JavaScript
calls without OpenWPM detecting and logging this. This could also be used by websites
to silently detect an OpenWPM visitor.
Further, future studies using OpenWPM should be aware that OpenWPM’s JavaScript

instrumentation increases the framework’s detectability a lot.

48

9.2. Impact of results

Also, we advise the authors of future studies to always use OpenWPM in headful mode.
First, general opinion on the internet is that the headless mode does not save many
resources. Second, even if no display hardware is present, e.g. in cloud computations or
for remote servers, one can use the functionality of XVFB1 or Xdummy/Xpra2 to run a
X server with the graphical output being rendered virtually in memory.

FP-Block. For certain spoofing configurations, fingerprint2.js can detect that FP-Block
modified browser attributes. This infers all websites using fingerprint2.js can possibly
identify the presence of spoofing measures for FP-Block users. This information can for
example be used as additional fingerprinting attribute. The problem should be fixed
as fingerprint2.js represents the de facto standard open source fingerprinting framework
commonly used.
Although it is not the extension’s aim to be robust against anti-spoofing detectors,

our work showed techniques how FP-Block’s spoofing methods can be improved by
more advanced spoofing methods such as JavaScript proxies that complicate spoofing
detection. Further, if detection of un-spoofed values via (dynamically created) iframes
becomes more popular, websites could access the original value of all spoofed properties.
Therefore, it is reasonable to already prevent leakage through iframes.

Browser fingerprinting. As discussed for FP-Block, also all other spoofing extensions
(e.g. user agent spoofers but also academic tools) should address the problem with (dy-
namically created) iframes (see Section 7.1) as it allows to access the un-spoofed values.
The extensions otherwise even become more finerprintable as detected spoofing can be
used as additional fingerprinting attribute, and the true values for spoofed attributes are
revealed.
However, from the perspective of fingerprinting parties, it is advised to access the

visitor’s fingerprinting properties inside (dynamically created) iframes to increase the
chances of receiving the true values.

1X virtual frame buffer, see for example https://kovyrin.net/2007/10/01/how-to-run-gui-
programs-on-a-server-without-any-monitor/ (last visited on 04/05/2020)

2The software packet is called xserver-xorg-video-dummy, see for example https://techoverflow.
net/2019/02/23/how-to-run-x-server-using-xserver-xorg-video-dummy-driver-on-ubuntu/
(last visited on 04/05/2020).

49

https://kovyrin.net/2007/10/01/how-to-run-gui-programs-on-a-server-without-any-monitor/
https://kovyrin.net/2007/10/01/how-to-run-gui-programs-on-a-server-without-any-monitor/
https://techoverflow.net/2019/02/23/how-to-run-x-server-using-xserver-xorg-video-dummy-driver-on-ubuntu/
https://techoverflow.net/2019/02/23/how-to-run-x-server-using-xserver-xorg-video-dummy-driver-on-ubuntu/

Bibliography

[Aca+13] Gunes Acar, Marc Juarez, Nick Nikiforakis, Claudia Diaz, Seda Gürses,
Frank Piessens, and Bart Preneel. “FPDetective: Dusting the Web for Fin-
gerprinters.” In: Proceedings of the 2013 ACM SIGSAC Conference on Com-
puter & Communications Security. CCS ’13. event-place: Berlin, Germany.
New York, NY, USA: ACM, 2013, pp. 1129–1140. isbn: 9781450324779. doi:
10 . 1145 / 2508859 . 2516674. url: https : / / doi . acm . org / 10 . 1145 /
2508859.2516674 (visited on 10/01/2019).

[Chu+13] Zi Chu, Steven Gianvecchio, Aaron Koehl, HainingWang, and Sushil Jajodia.
“Blog or block: Detecting blog bots through behavioral biometrics.” en. In:
Computer Networks 57.3 (Feb. 2013), pp. 634–646. issn: 1389-1286. doi:
10.1016/j.comnet.2012.10.005. url: http://www.sciencedirect.com/
science/article/pii/S1389128612003593 (visited on 12/09/2019).

[CY19] Siebren Cosijn and Nataliya Yasko. “FP-Block 2.0: preventing browser fin-
gerprinting.” BA thesis. Open University of the Netherlands, July 19, 2019.
url: http://www.open.ou.nl/hjo/supervision/2019-fpblock2-bsc-
thesis.pdf (visited on 12/03/2019).

[Dol19] Rik Dolfing. Research Internship: Towards a fingerprint surface. Research
internship. Mar. 2019. url: http://www.open.ou.nl/hjo/supervision/
2019-rick.dolfing-msc-internship-report.pdf (visited on 12/15/2019).

[Eck10] Peter Eckersley. “How Unique Is Your Web Browser?” en. In: Privacy En-
hancing Technologies. Ed. by Mikhail J. Atallah and Nicholas J. Hopper. Lec-
ture Notes in Computer Science. Berlin, Heidelberg: Springer, 2010, pp. 1–
18. isbn: 9783642145278. doi: 10.1007/978-3-642-14527-8_1. (Visited on
01/03/2020).

[EN16] Steven Englehardt and Arvind Narayanan. “Online tracking: A 1-million-site
measurement and analysis.” In: Proceedings of ACM CCS 2016. 2016. url:
http://randomwalker.info/publications/OpenWPM_1_million_site_
tracking_measurement.pdf (visited on 09/16/2019).

[Eng+15] Steven Englehardt, Chris Eubank, Peter Zimmerman, Dillon Reisman, and
Arvind Narayanan. “OpenWPM: An automated platform for web privacy
measurement.” Manuscript. Mar. 15, 2015. url: https://senglehardt.
com/papers/openwpm_03-2015.pdf (visited on 10/01/2019).

50

https://doi.org/10.1145/2508859.2516674
https://doi.acm.org/10.1145/2508859.2516674
https://doi.acm.org/10.1145/2508859.2516674
https://doi.org/10.1016/j.comnet.2012.10.005
http://www.sciencedirect.com/science/article/pii/S1389128612003593
http://www.sciencedirect.com/science/article/pii/S1389128612003593
http://www.open.ou.nl/hjo/supervision/2019-fpblock2-bsc-thesis.pdf
http://www.open.ou.nl/hjo/supervision/2019-fpblock2-bsc-thesis.pdf
http://www.open.ou.nl/hjo/supervision/2019-rick.dolfing-msc-internship-report.pdf
http://www.open.ou.nl/hjo/supervision/2019-rick.dolfing-msc-internship-report.pdf
https://doi.org/10.1007/978-3-642-14527-8_1
http://randomwalker.info/publications/OpenWPM_1_million_site_tracking_measurement.pdf
http://randomwalker.info/publications/OpenWPM_1_million_site_tracking_measurement.pdf
https://senglehardt.com/papers/openwpm_03-2015.pdf
https://senglehardt.com/papers/openwpm_03-2015.pdf

Bibliography

[FE15] David Fifield and Serge Egelman. “Fingerprinting Web Users Through Font
Metrics.” en. In: Financial Cryptography and Data Security. Ed. by Rainer
Böhme and Tatsuaki Okamoto. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 2015, pp. 107–124. isbn: 9783662478547. doi: 10 .
1007/978-3-662-47854-7_7. (Visited on 01/04/2020).

[FZW15] Amin FaizKhademi, Mohammad Zulkernine, and Komminist Weldemariam.
“FPGuard: Detection and Prevention of Browser Fingerprinting.” en. In:
Data and Applications Security and Privacy XXIX. Ed. by Pierangela Sama-
rati. Lecture Notes in Computer Science. Cham: Springer International Pub-
lishing, 2015, pp. 293–308. isbn: 9783319208107. doi: 10.1007/978-3-319-
20810-7_21. (Visited on 01/04/2020).

[JKV19] Hugo Jonker, Benjamin Krumnow, and Gabry Vlot. “Fingerprint Surface-
Based Detection of Web Bot Detectors.” en. In: Computer Security – ES-
ORICS 2019. Ed. by Kazue Sako, Steve Schneider, and Peter Y. A. Ryan.
Lecture Notes in Computer Science. Springer International Publishing, 2019,
pp. 586–605. isbn: 9783030299620. doi: 10.1007/978-3-030-29962-0_28.
(Visited on 09/17/2019).

[Kru+] Benjamin Krumnow, Hugo Jonker, Stefan Karsch, and Marko van Eeke-
len. Fingerprint-basierte Detektion zum Untergraben von auf OpenWPM-
basierenden Privatsphären- und Sicherheitsscannern. Work in progress (avail-
able from authors).

[Lap+19] Pierre Laperdrix, Nataliia Bielova, Benoit Baudry, and Gildas Avoine. “Browser
Fingerprinting: A survey.” In: arXiv:1905.01051 [cs] (May 2019). arXiv:
1905.01051. url: http://arxiv.org/abs/1905.01051 (visited on 09/13/2019).

[LBM17] Pierre Laperdrix, Benoit Baudry, and Vikas Mishra. “FPRandom: Ran-
domizing Core Browser Objects to Break Advanced Device Fingerprinting
Techniques.” en. In: Engineering Secure Software and Systems. Ed. by Eric
Bodden, Mathias Payer, and Elias Athanasopoulos. Lecture Notes in Com-
puter Science. Cham: Springer International Publishing, 2017, pp. 97–114.
isbn: 9783319621050. doi: 10.1007/978-3-319-62105-0_7. (Visited on
01/04/2020).

[Le +19] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej
Korczyński, and Wouter Joosen. “Tranco: A Research-Oriented Top Sites
Ranking Hardened Against Manipulation.” In: Proceedings of the 26th An-
nual Network and Distributed System Security Symposium. NDSS 2019. Feb.
2019. doi: 10.14722/ndss.2019.23386. (Visited on 02/17/2020).

51

https://doi.org/10.1007/978-3-662-47854-7_7
https://doi.org/10.1007/978-3-662-47854-7_7
https://doi.org/10.1007/978-3-319-20810-7_21
https://doi.org/10.1007/978-3-319-20810-7_21
https://doi.org/10.1007/978-3-030-29962-0_28
http://arxiv.org/abs/1905.01051
https://doi.org/10.1007/978-3-319-62105-0_7
https://doi.org/10.14722/ndss.2019.23386

Bibliography

[LRB15] Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry. “Mitigating Browser
Fingerprint Tracking: Multi-level Reconfiguration and Diversification.” In:
2015 IEEE/ACM 10th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems. ISSN: 2157-2321. May 2015, pp. 98–
108. doi: 10.1109/SEAMS.2015.18. (Visited on 01/05/2020).

[MS12] Keaton Mowery and Hovav Shacham. Pixel Perfect: Fingerprinting Canvas
in HTML 5. 2012. url: https://hovav.net/ucsd/papers/ms12.html
(visited on 01/03/2020).

[Mul+13] Martin Mulazzani, Philipp Reschl, Markus Huber, Manuel Leithner, Sebas-
tian Schrittwieser, and Edgar Weippl. Fast and Reliable Browser Identifi-
cation with JavaScript Engine Fingerprinting. Presented at Web 2.0 Secu-
rity & Privacy 2013. SBA Research, 2013. url: https://publications.
sba - research . org / publications / jsfingerprinting . pdf (visited on
01/04/2020).

[Nik+13] Nick Nikiforakis, Alexandros Kapravelos, Wouter Joosen, Christopher Kruegel,
Frank Piessens, and Giovanni Vigna. “Cookieless Monster: Exploring the
Ecosystem of Web-Based Device Fingerprinting.” In: 2013 IEEE Symposium
on Security and Privacy. ISSN: 1081-6011. May 2013, pp. 541–555. doi:
10.1109/SP.2013.43.

[NJL15] Nick Nikiforakis, Wouter Joosen, and Benjamin Livshits. “PriVaricator: De-
ceiving Fingerprinters with Little White Lies.” In: Proceedings of the 24th In-
ternational Conference on World Wide Web. WWW ’15. Florence, Italy: In-
ternational WorldWideWeb Conferences Steering Committee, 2015, pp. 820–
830. isbn: 9781450334693. doi: 10.1145/2736277.2741090. url: https:
//doi.org/10.1145/2736277.2741090 (visited on 01/04/2020).

[Ole+16] Łukasz Olejnik, Gunes Acar, Claude Castelluccia, and Claudia Diaz. “The
Leaking Battery.” en. In: Data Privacy Management, and Security Assur-
ance. Ed. by Joaquin Garcia-Alfaro, Guillermo Navarro-Arribas, Alessan-
dro Aldini, Fabio Martinelli, and Neeraj Suri. Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2016, pp. 254–263. isbn:
9783319298832. doi: 10 . 1007 / 978 - 3 - 319 - 29883 - 2 _ 18. (Visited on
01/04/2020).

[RK18] Philip Raschke and Axel Küpper. “Uncovering Canvas Fingerprinting in
Real-Time and Analyzing Its Usage for Web-Tracking.” en. In: Workshops
der INFORMATIK 2018 - Architekturen, Prozesse, Sicherheit und Nach-
haltigkeit. Ed. by Christian Czarnecki, Carsten Brockmann, Eldar Sultanow,
Agnes Koschmider, and Annika Selzer. Köllen Druck+Verlag GmbH, 2018,
pp. 97–108. isbn: 9783885796794. url: http://dl.gi.de/handle/20.500.
12116/17237 (visited on 04/01/2020).

52

https://doi.org/10.1109/SEAMS.2015.18
https://hovav.net/ucsd/papers/ms12.html
https://publications.sba-research.org/publications/jsfingerprinting.pdf
https://publications.sba-research.org/publications/jsfingerprinting.pdf
https://doi.org/10.1109/SP.2013.43
https://doi.org/10.1145/2736277.2741090
https://doi.org/10.1145/2736277.2741090
https://doi.org/10.1145/2736277.2741090
https://doi.org/10.1007/978-3-319-29883-2_18
http://dl.gi.de/handle/20.500.12116/17237
http://dl.gi.de/handle/20.500.12116/17237

Bibliography

[SLG19] Michael Schwarz, Florian Lackner, and Daniel Gruss. “JavaScript Template
Attacks: Automatically Inferring Host Information for Targeted Exploits.”
en. In: Proceedings 2019 Network and Distributed System Security Sympo-
sium. San Diego, CA: Internet Society, 2019. isbn: 9781891562556. doi: 10.
14722/ndss.2019.23155. url: https://www.ndss-symposium.org/wp-
content/uploads/2019/02/ndss2019_01B-4_Schwarz_paper.pdf (visited
on 09/15/2019).

[SN17] Oleksii Starov and Nick Nikiforakis. “XHOUND: Quantifying the Finger-
printability of Browser Extensions.” In: 2017 IEEE Symposium on Security
and Privacy (SP). San Jose, CA, USA: IEEE, May 2017, pp. 941–956. isbn:
9781509055333. doi: 10.1109/SP.2017.18. url: http://ieeexplore.
ieee.org/document/7958618/ (visited on 01/03/2020).

[SPK16] I’m not a human: Breaking the Google reCAPTCHA. Black Hat Asia 2016.
Black Hat. 2016. url: https : / / www . blackhat . com / docs / asia - 16 /
materials/asia-16-Sivakorn-Im-Not-a-Human-Breaking-the-Google-
reCAPTCHA-wp.pdf (visited on 01/04/2020).

[Sta+19] Oleksii Starov, Pierre Laperdrix, Alexandros Kapravelos, and Nick Niki-
forakis. “Unnecessarily Identifiable: Quantifying the Fingerprintability of
Browser Extensions Due to Bloat.” In: The World Wide Web Conference.
WWW ’19. San Francisco, CA, USA: Association for Computing Machinery,
2019, pp. 3244–3250. isbn: 9781450366748. doi: 10.1145/3308558.3313458.
(Visited on 01/05/2020).

[Sto+17] Grant Storey, Dillon Reisman, Jonathan Mayer, and Arvind Narayanan.
“The Future of Ad Blocking: An Analytical Framework and New Tech-
niques.” In: arXiv:1705.08568 [cs] (May 2017). url: http://arxiv.org/
abs/1705.08568 (visited on 01/21/2020).

[TJM15] Christof Ferreira Torres, Hugo Jonker, and Sjouke Mauw. “FP-Block: Us-
able Web Privacy by Controlling Browser Fingerprinting.” en. In: Computer
Security – ESORICS 2015. Ed. by Günther Pernul, Peter Y A Ryan, and
Edgar Weippl. Lecture Notes in Computer Science. Springer International
Publishing, 2015, pp. 3–19. isbn: 9783319241777. doi: 10.1007/978- 3-
319-24177-7_1. (Visited on 09/17/2019).

[Ung+13] Thomas Unger, Martin Mulazzani, Dominik Frühwirt, Markus Huber, Sebas-
tian Schrittwieser, and Edgar Weippl. “SHPF: Enhancing HTTP(S) Session
Security with Browser Fingerprinting.” In: 2013 International Conference
on Availability, Reliability and Security. ISSN: null. Sept. 2013, pp. 255–261.
doi: 10.1109/ARES.2013.33. (Visited on 01/04/2020).

53

https://doi.org/10.14722/ndss.2019.23155
https://doi.org/10.14722/ndss.2019.23155
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_01B-4_Schwarz_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_01B-4_Schwarz_paper.pdf
https://doi.org/10.1109/SP.2017.18
http://ieeexplore.ieee.org/document/7958618/
http://ieeexplore.ieee.org/document/7958618/
https://www.blackhat.com/docs/asia-16/materials/asia-16-Sivakorn-Im-Not-a-Human-Breaking-the-Google-reCAPTCHA-wp.pdf
https://www.blackhat.com/docs/asia-16/materials/asia-16-Sivakorn-Im-Not-a-Human-Breaking-the-Google-reCAPTCHA-wp.pdf
https://www.blackhat.com/docs/asia-16/materials/asia-16-Sivakorn-Im-Not-a-Human-Breaking-the-Google-reCAPTCHA-wp.pdf
https://doi.org/10.1145/3308558.3313458
http://arxiv.org/abs/1705.08568
http://arxiv.org/abs/1705.08568
https://doi.org/10.1007/978-3-319-24177-7_1
https://doi.org/10.1007/978-3-319-24177-7_1
https://doi.org/10.1109/ARES.2013.33

Bibliography

[Vas+18] Antoine Vastel, Pierre Laperdrix, Walter Rudametkin, and Romain Rouvoy.
“FP-Scanner: The Privacy Implications of Browser Fingerprint Inconsisten-
cies.” In: Proceedings of the 27th USENIX Security Symposium. Baltimore,
United States, Aug. 2018. url: https://hal.inria.fr/hal- 01820197
(visited on 12/10/2019).

[Vlo18] Gabry Vlot. “Automated data extraction; what you see might not be what
you get.” MA thesis. Open University of the Netherlands, July 5, 2018. url:
http://www.open.ou.nl/hjo/supervision/2018-g.vlot-msc-thesis.
pdf (visited on 11/12/2019).

54

https://hal.inria.fr/hal-01820197
http://www.open.ou.nl/hjo/supervision/2018-g.vlot-msc-thesis.pdf
http://www.open.ou.nl/hjo/supervision/2018-g.vlot-msc-thesis.pdf

Appendices

55

A. Example fingerprint

There is no exhaustive list of properties and behavior that can be used for browser fin-
gerprinting. To show an example of an actual fingerprint, Table A.1 lists the information
fingerprint2.js collected for a Google Chrome instance on a specific machine.

Table A.1.: Fingerprint of a Google Chrome instance, generated by fingerprint2.js. Very
long hashed values are truncated by “...”.

Property Value(s)

userAgent Mozilla/5.0 (X11; Linux x86_64)
AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/78.0.3904.108 Safari/537.36

webdriver not available

language en-US

colorDepth 24

deviceMemory 8

hardwareConcurrency 8

screenResolution 1280, 1024

availableScreenResolution 1280, 1024

timezoneOffset -60

timezone Europe/Berlin

sessionStorage true

localStorage true

indexedDb true

addBehavior false

openDatabase true

cpuClass not available

platform Linux x86_64

56

Table A.1 (continued): Fingerprint of a Google Chrome instance, generated by finger-
print2.js. Very long hashed values are truncated by “...”.

Property Value(s)

plugins Chrome PDF Plugin, Portable Document
Format, application/x-google-chrome-pdf,
pdf, Chrome PDF Viewer, application/pdf,
pdf, Native Client, application/x-nacl,
application/x-pnacl

canvas canvas winding:yes, canvas
fp:data:image/png;base64, iVBORw...

webgl data:image/png;base64, iVBORw...

webglVendorAndRenderer Intel Open Source Technology Center~Mesa
DRI Intel(R) UHD Graphics (Whiskey Lake
3x8 GT2)

adBlock false

hasLiedLanguages false

hasLiedResolution false

hasLiedOs false

hasLiedBrowser false

touchSupport 0, false, false

fonts Andale Mono, Arial, Arial Black, Comic
Sans MS, Courier, Courier New, Georgia,
Helvetica, Impact, Tahoma, Times, Times
New Roman, Trebuchet MS, Verdana

audio 124.04344884395687

57

B. Experiment environment

Our first idea was to analyze OpenWPM’s detectability inside a Ubuntu virtual ma-
chine. However, we wanted to exclude the virtualization as source of disruption in our
measurements. Therefore, if not explicitly indicated, all experiments are performed on
the dedicated machine described in Table B.1.

Table B.1.: Specification of the environment for the How stable is OpenWPM’s finger-
print surface? chapter.

Type Component Description

H
ar
dw

ar
e CPU Intel® Core™ i5-2430M CPU 2.40GHz x 4

Architecture 64-bit

RAM 4 GB

So
ftw

ar
e

OS Ubuntu 18.04.3 LTS x86_64

Regular Firefox (baseline) 70.0

Firefox unbranded 70.0

Geckodriver 0.24.0 (2019-01-28)

Python 3.6.9

Selenium WebDriver (Python) 3.141.0

58

C. Firefox extensions: Page-, content- and
background-scripts

When dealing with Firefox extensions, JavaScript code is executed at three locations:

1. Background scripts,

2. content scripts,

3. page scripts.

The three script types run in different scopes that, per default, are separated from
each other such that modifications remain in one script. Their relation is depicted
in Figure C.1. When modifying the DOM in a Firefox extension, it is important to
propagate the modification to the page scope that website scripts get to see. An example
follows.
If a user opens a website, the browser loads the requested web page and its resources

such as HTML or JavaScript. Scripts provided by websites are called page scripts. They
have access to the page DOM.
Now, suppose a Firefox extensions wants to modify the page DOM, for example over-

write document.title. If it injects a content script that overwrites document.title
into the web page, nothing seems to happen. This is caused by content scripts been
considered more privileged code (Firefox extensions are under the user’s control while
websites can contain arbitrary JavaScript). In this regard, Firefox introduced the Xray
vision1 that basically separates two versions of the DOM such that DOM modifications
by page scripts are invisible for content scripts and vice versa.
Background scripts have no access to the DOM at all (they contain functionality that

an extension runs the whole time, mainly extension logic that needs to be preserved
across different pages).
So, the first attempt of a content script well overwrote document.title, but only in

the scope of the content script itself. Website/page scripts still saw an unmodified DOM.
However, with explicit commands, content scripts of an extension can share objects to
the page DOM (exportFunction() respectively cloneInto()) and also access object of
it (.wrappedJSObject).

1https://developer.mozilla.org/en-US/docs/Mozilla/Tech/Xray_vision (last visited on
02/03/2020)

59

https://developer.mozilla.org/en-US/docs/Mozilla/Tech/Xray_vision

C. Firefox extensions: Page-, content- and background-scripts

Page script

Page DOM

Content script

Copy of initial
page DOM

Read /
modify

R
ead using

.
w

r
a

p
p

e
d

J
S

O
b

j
e

c
t

Ex
po

rt
to

 u
si

ng

 /
e

x
p

o
r

t
F

u
n

c
t

i
o

n

c
l

o
n

e
I

n
t

o

Read /
modify

Web page

Firefox extension

Background script

Runs in
background

D
ef

in
es

 a
nd

in
je

ct
s

Figure C.1.: Simplified overview of JavaScript execution for Firefox extensions.
Background- and content-scripts are controlled by the extension, while page
scripts are already contained in a web page.

60

D. Investigation of divergent window-sizes
of OpenWPM

In headful mode, OpenWPM’s window size deviates from that of regular Firefox (see
Table 4.2). This will be investigated in this section. We will not further investigate
headless mode, where deviations of the window size are caused by the availability of the
full screen resolution.

Comparing the JavaScript template attack measurements captured in Chapter 4, the
main diverging JavaScript properties are:

• window.innerWidth: Width of the browser viewport, that is the part where the
actual content is rendered, including possible vertical scrollbar;

• window.innerHeight: Height of the browser viewport, that is the part where the
actual content is rendered, including possible horizontal scrollbar;

• window.outerWidth: Width of the whole browser window;

• window.outerHeight: Height of the whole browser window, but without the ti-
tle bar of Ubuntu that contains the window title “Mozilla Firefox” respectively
“Nightly” (also see Figure 5.1).

All other window-size related JavaScript properties are linked to these or dependent on
the position of the window that can change.

To find the exact source of the deviations, we analyze the browser sizes in a new Ubuntu
18.04 LTS virtual machine with a screen resolution of 1366x768. There, we use the
JavaScript template attack framework to measure the JavaScript environment of a reg-
ular Firefox instance and OpenWPM in order to compare them.
We notice a behavioral difference between the startup of Firefox and OpenWPM.

• Behavior of regular Firefox:
– Per default opens as maximized window with a full program dimension of

1293x741.
– The standard smaller window (by moving the maximized window it becomes

smaller automatically) has a dimension of 1156x691.

61

D. Investigation of divergent window-sizes of OpenWPM

• Behavior of OpenWPM:
– Per default opens as full-size window (not maximized) with a full program

dimension of 1293x741.
– If manually maximized, the program dimension is still 1293x741, but in

JavaScript the window.innerHeight and window.outerHeight properties
are incremented by two pixels. This originates from 2 pixels less shadow
effects by the Ubuntu skin if the window is (truly) maximized and not only
of full screen size.

– Only after manual maximizing and de-maximizing the window, it resizes to
a standard smaller window. Then, the program dimension is 1156x662, but
it is not preserved across spawned OpenWPM instances.

Conclusions. In this experiment, Firefox and OpenWPM do not differ in their resolu-
tion if both windows are maximized, but OpenWPM does not maximize its window by
default but only spawns it as full-size window. Therefore, a difference of a few pixels is
measured, caused by window shadow effects.
Furthermore, this experiment could not reproduce the larger deviations found in Chap-

ter 4. It is suspected that using the test system’s browser before running the experiment
changed its behavior to spawn Firefox not maximized but in a standard window. During
the experiment, we also encountered Ubuntu to not always handle the window-sizes the
same way. Sometimes, windows suddenly spawned maximized and directly thereafter
not.
So, more in general, default spawned windows do not necessarily share the same

window dimensions across programs. Further, all kinds of windows effects, such as
shadows, can lead to differences.

62

E. Spoofing detection in iframes

During research for JavaScript spoofing and methods that still allow to reveal the orig-
inal, un-spoofed value, we identified advanced countermeasures by the extension User-
Agent Switcher by Alexander Schlarb. It ships along with a list of different tricks that
can be used to potentially access the original value of JavaScript properties.1 They are
based on the use of static and dynamic iframes. On their basis, we crafted a slightly
modified test page to check whether the four other popular Firefox extensions that spoof
the browser’s user agent (investigated in Section 5.2) can deal with iframes in another
way. Additionally, FP-Block is tested to see whether it can be improved.

Setup. For each extension, the test page is visited with Firefox Nightly 70.02 to de-
termine the navigator.userAgent property. It is checked for the userAgent because
it is modified by all extensions while no extension modifies webdriver. Before each
measurement, the browser is restarted and all browser history is cleared. Further, if not
denoted otherwise, the extensions run in standard settings, but with a manually chosen
user agent profile. The extension Chameleon is tested in both standard setting and with
activated script injection, where the spoofing measures are more advanced.

E.1. Results

All extensions succeed in spoofing the property when it is accessed the standard way by
querying window.navigator.userAgent in page scope. However, inside both static and
dynamic iframes, the userAgent property is not spoofed immediately but delayed such
that the original value can be extracted first. This is caused by Firefox that only allows
content script injection to empty iframes on a later stage than for regular pages3.
The results of the detailed iframe test cases are depicted in Table E.1. The table

shows that all tested extensions leak the unaltered user agent in some test cases. In the
following, the table is discussed in more detail.

1Alexander Schlarb’s test list, which our test page is based up on, can be found at https://gitlab.
com/ntninja/user-agent-switcher/-/issues/9#note_194036885 (last visited on 03/23/2020).

2In standard settings, besides deactivated automatic Firefox updates and deactivated Firefox extension
signing check.

3https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/manifest.json/
content_scripts (last visited on 01/30/2020)

63

https://gitlab.com/ntninja/user-agent-switcher/-/issues/9#note_194036885
https://gitlab.com/ntninja/user-agent-switcher/-/issues/9#note_194036885
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/manifest.json/content_scripts
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/manifest.json/content_scripts

E. Spoofing detection in iframes

Table E.1.: Test under which circumstances it is still possible to read out the un-spoofed
navigator.userAgent attribute of five popular user agent spoofing exten-
sions and FP-Block 2.0. The list of access methods is based on Alexander
Schlarb’s tests.

Firefox spoofing extension1

JavaScript access method Ch
am

ele
on

(st
and

ard
)

Ch
am

ele
on

(sc
rip
t in

jec
tio
n)

Ra
nd
om

Us
er-
Ag
ent

UA
S b

y L
ind

er

UA
S b

y A
lex
and

er
Sch

lar
b

UA
S a

nd
Ma

nag
er

FP
-Bl

ock
2.0

2

Standard access – – – – – – –

Static iframe (window[0]) – # # #

Static iframe (window.frames[0]) – # – #

Static iframe (.contentWindow) – # – #

Dynamic iframe (window[1]) # # #

Dynamic iframe (window.frames[1]) # – #

Dynamic iframe (.contentWindow) # – #

Dynamic nested iframe (.contentWindow) – #

– navigator.userAgent successfully spoofed respectively the un-
spoofed value could not be read.

Un-spoofed value of navigator.userAgent could be read, but only
if this access happened immediately (and not in a later stadium in
JavaScript).

 Un-spoofed value of navigator.userAgent could be read, independent
of access time.

1 The extensions are the same as in Table 5.2 (page 26). See there for their corresponding links to
Mozilla’s extension archive.

2 FP-Block 2.0’s main focus is not to be robust against advanced JavaScript methods to receive
un-spoofed values, which should be kept in mind when comparing it against other extensions.

64

E.1. Results

FP-Block 2.0’s situation. It should be highlighted that FP-Block’s focus lies on gen-
erating and leveraging consistent and complete fingerprint profiles. Therefore, FP-Block
is not made robust against fingerprint spoofing detectors (that are specifically tailored
to recognize spoofing visitors). Nevertheless, the test results allow improving FP-Block’s
manner of JavaScript spoofing to improve its capabilities.
So what do the results show? Unsurprisingly, spoofing succeeds for both immediate

and delayed access if the property is accessed in the standard manner. But for imme-
diately accessed static as well dynamic iframes, the value is not spoofed at all. For
delayed access, spoofing succeeds at least for static iframes. This means it is possible to
receive the original, un-spoofed value using the appropriate tricks. Therefore, we suggest
improving FP-Block’s method of spoofing, albeit that is not FP-Block’s main focus.

Standard tools. Two extensions attract attention because they only successfully spoof
for standard access: Chameleon (standard) and Random User-Agent. They do not per-
form more advanced JavaScript attribute overwriting such as injecting a content script.
It should be noted Chameleon has a more advanced mode of operation measured sepa-
rately.
Further, depending on the spoofing method, extensions fail in different test cases.

Each “#” in Table E.1 denotes a case where only immediate access has a problem and
delayed access not. So overall, delayed access of the user agent property performs better
than immediate access. Several extensions inject JavaScript content scripts to each page
to allow for more advanced spoofing. With delayed access, these scripts had enough
time to do their work. By design, it is not possible to enforce that the scripts injected
by extensions are always loaded before page scripts.
Moreover, spoofing measures taken by the extensions sometimes seem to work solely

for dynamically created iframes (such as for UAS and Manager), while other extensions,
such as UAS by Linder, only deal with static iframes. When the user agent is instantly
accessed, all but UAS by Alexander Schlarb are not capable to spoof it inside dynamically
created iframes.
The two best performing extensions are Chameleon (with script injection) and UAS

by Alexander Schlarb. They both inject an advanced content script to also spoof the
user agent for iframes in most cases. However, even they are not capable of spoofing the
user agent for all access methods. A simple combination of them is unfortunately not
possible.
Alexander Schlarb’s extension contains the most sophisticated countermeasures. It

monitors all added iframes and triggers a previously defined property such that they
are spoofed immediately, too. Unfortunately, access via window[0]/window.frames[0]
still cannot be prevented as only one array index at a time can be overwritten and the
number of indices is unlimited.

65

E. Spoofing detection in iframes

Conclusions. First, the analysis shows none of the tested standard extensions is capable
of spoofing JavaScript properties perfectly. Not astonishing is the fact that User-Agent
Switcher by Alexander Schlarb turned out to be one of the better extensions, as the
tested access methods originate from the author of this extension.
Second, instantly accessed dynamic iframes pose a problem to the majority of the

extensions. Therefore, we propose that browser fingerprinting in general should always
query the value of JavaScript properties inside dynamic iframes to detect spoofing and/or
get their original values.

66

F. Technical details on spoofing the
webdriver property

Here, the JavaScript code of the four methods presented in Section 6.3 is given and, if
applicable, further technical details are discussed. Their strengths and weaknesses are
reviewed in Section 6.4.
To prevent complexity, we use window.eval(...) at some places to avoid bother-

ing with page and content script scopes. This command directly executes the given
JavaScript code in the page scope.

The four methods work as follows:

1. Object.defineProperty method:

1 window.eval("Object.defineProperty(navigator, 'webdriver',
{enumerable: true, value: false});");↪→

This is the way currently proposed to redefine properties1.
Alternatively, one can use:

1 window.eval("Object.defineProperty(navigator, 'webdriver', {
get() {return false;} });");↪→

As with enumerable: false, this alternative version is not measurable using
Object.keys(navigator). However, window.navigator._length is still incre-
mented and webdriver is missing completely when navigator is enumerated (e.g.
printed in the console or read by BrowserBasedBotFP).

2. Object.prototype.__defineGetter__ method:

1 let funcPageScope = exportFunction(() => {
2 return false;
3 }, window.wrappedJSObject);

1See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/
Object/__defineGetter__ (last visited on 01/30/2020)

67

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/__defineGetter__
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/__defineGetter__

F. Technical details on spoofing the webdriver property

4 Object.prototype.__defineGetter__.call(window.navigator.wrapped c

JSObject, "webdriver",
funcPageScope);

↪→

↪→

This is the deprecated method used prior to Object.defineProperty. It is still
supported by all major browsers1.

3. Object.setPrototypeOf method:

1 window.eval("const newProto = Object.getPrototypeOf(navigator);
Object.defineProperty(newProto, 'webdriver', {enumerable:
true, value: false}); Object.setPrototypeOf(navigator,
newProto);");

↪→

↪→

↪→

This sets a prototype on navigator that overshadows the actual value of the
webdriver property.

4. JavaScript proxy method:
A JavaScript proxy replaces the original navigator object. Then, it resembles the
behavior of the original navigator object except spoofing another value for the
navigator.webdriver property. The following code2 additionally deals with the
iframe problem discussed in Section 7.1.
Note the code contains an Object.prototype.__defineGetter__ statement to
overwrite navigator with the JavaScript proxy. In Section 6.4, __defineGetter
caused detection in form of a new key on navigator. The same does not happen
here, so no new navigator key is added to window because navigator is already
a key of the window object by default.
Lines 45-47 are responsible for the 20 window.navigator functions that lose their
names.

1 /**
2 * This code to spoof values of the `window.navigator` object using a

JavaScript proxy is based on:↪→

3 * User Agent Switcher, copyright © 2017 – 2019 Alexander Schlarb
(https://gitlab.com/ntninja)↪→

4 * For the used part see:
https://gitlab.com/ntninja/user-agent-switcher/blob/6aacc15ed6651317776f7 c
abb3a85d6f34fc1a254/content/override-navigator-data.js

↪→

↪→

5 *

2The code is also available on GitHub, see Chapter 1.

68

6 * This program is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.

↪→

↪→

↪→

7 *
8 * You should have received a copy of the GNU General Public License along

with this program. If not, see <http://www.gnu.org/licenses/>.↪→

9 */
10

11 /**
12 * Set of all object that we have already proxied to prevent them from being

proxied twice.↪→

13 */
14 let proxiedObjects = new Set();
15

16 /**
17 * Convenience wrapped around `cloneInto` that enables all possible cloning

options by default.↪→

18 */
19 function cloneIntoFull(value, scope) {
20 return cloneInto(value, scope, {
21 cloneFunctions: true,
22 wrapReflectors: true
23 });
24 }
25

26 /**
27 * Spoof `navigator` by overwriting the `navigator` of the given (content

script scope) `window` object with a proxy, if applicable.↪→

28 */
29 function spoofNavigator(window) {
30 if (!(window instanceof Window)) { // Not actually a window object
31 return window;
32 }
33

34 let origNavigator = window.navigator.wrappedJSObject; // `navigator` of
the page scope↪→

35 if (proxiedObjects.has(origNavigator)) { // Window was already shadowed
36 return window;
37 }
38

39 let spoofedGet_PageScope = cloneIntoFull({
40 get: (target, prop, receiver) => {
41 if (prop === "webdriver") {
42 return false;
43 } else {
44 let value = Reflect.get(origNavigator, prop);

69

F. Technical details on spoofing the webdriver property

45 if(typeof(value) === "function") { // Bind functions like
`navigator.javaEnabled()` to the orginal object in the
page scope to allow them to execute

↪→

↪→

46 let boundFunc = Function.prototype.bind.call(value,
origNavigator); // `value` is used as `this` to call
the `bind` function that creates a copy of
`Function.prototype` that always runs in the `this`
context `origiNavigator`

↪→

↪→

↪→

↪→

47 value = cloneIntoFull(boundFunc, window.wrappedJSObject);
48 }
49 return value;
50 }
51 }
52 }, window.wrappedJSObject); // The `get` function, defined in privileged

code (that is here in the extension / content script), is cloned into
the target scope (that is the web page / `window.wrappedJSObject`)
and thus accessible there. The return value is the reference to the
cloned object in the defined scope.

↪→

↪→

↪→

↪→

53

54 let origProxy = window.wrappedJSObject.Proxy;
55 let navigatorProxy = new origProxy(origNavigator, spoofedGet_PageScope);
56

57 proxiedObjects.add(origNavigator);
58

59 let returnFunc_PageScope = exportFunction(() => {
60 return navigatorProxy;
61 }, window.wrappedJSObject);
62 // Using `__defineGetter__` here our function gets assigned the correct

name of `get navigator`. Additionally its property descriptor has no
`set` function and will silently ignore any assigned value. – This
exact configuration is not achievable using `Object.defineProperty`.

↪→

↪→

↪→

63 Object.prototype.__defineGetter__.call(window.wrappedJSObject,
"navigator", returnFunc_PageScope);↪→

64 return window;
65 }
66

67 /**
68 * Override `navigator` with the given data on the given page scoped `window`

object if applicable. This will convert the given `window` object to
being content-script scoped after checking whether it can be converted at
all or is just a restricted accessor that does not grant access to
anything important.

↪→

↪→

↪→

↪→

69 */
70 function spoofNavigatorFromPageScope(unsafeWindow) {
71 if(!(unsafeWindow instanceof Window)) {
72 return unsafeWindow; // Not actually a window object
73 }
74

75 try {

70

76 unsafeWindow.navigator; // This will throw if this is a cross-origin
frame↪→

77

78 let windowObj = cloneIntoFull(unsafeWindow, window);
79 return spoofNavigator(windowObj).wrappedJSObject;
80 } catch(e) {
81 if(e instanceof DOMException && e.name == "SecurityError") {
82 // Ignore error created by accessing a cross-origin frame and

just return the restricted frame (`navigator` is inaccessible
on these so there is nothing to patch)

↪→

↪→

83 return unsafeWindow;
84 } else {
85 throw e;
86 }
87 }
88 }
89

90

91 spoofNavigator(window);
92

93 // Use some prototype hacking to prevent access to the original `navigator`
through the IFrame leak↪→

94 const IFRAME_TYPES = Object.freeze([HTMLFrameElement, HTMLIFrameElement]);
95 for(let type of IFRAME_TYPES) {
96 // Get reference to contentWindow & contentDocument accessors into the

content script scope↪→

97 let contentWindowGetter = Reflect.getOwnPropertyDescriptor(
98 type.prototype.wrappedJSObject, "contentWindow"
99).get;

100 contentWindowGetter = cloneIntoFull(contentWindowGetter, window);
101 let contentDocumentGetter = Reflect.getOwnPropertyDescriptor(
102 type.prototype.wrappedJSObject, "contentDocument"
103).get;
104 contentDocumentGetter = cloneIntoFull(contentDocumentGetter, window);
105

106 // Export compatible accessor on the property that patches the navigator
element before returning↪→

107 Object.prototype.__defineGetter__.call(type.prototype.wrappedJSObject,
"contentWindow",↪→

108 exportFunction(function () {
109 let contentWindow = contentWindowGetter.call(this);
110 return spoofNavigatorFromPageScope(contentWindow);
111 }, window.wrappedJSObject)
112);
113 Object.prototype.__defineGetter__.call(type.prototype.wrappedJSObject,

"contentDocument",↪→

114 exportFunction(function () {
115 let contentDocument = contentDocumentGetter.call(this);
116 if(contentDocument !== null) {

71

F. Technical details on spoofing the webdriver property

117 spoofNavigatorFromPageScope(contentDocument.defaultView);
118 }
119 return contentDocument;
120 }, window.wrappedJSObject)
121);
122 }
123

124 // Asynchrously track added IFrame elements and trigger their prototype
properties defined above to ensure that they are patched (This is a
best-effort workaround for us being unable to *properly* fix the
`window[0]` case.)

↪→

↪→

↪→

125 let patchNodes = (nodes) => {
126 for(let node of nodes) {
127 let isNodeFrameType = false;
128 for(let type of IFRAME_TYPES) {
129 if(isNodeFrameType = (node instanceof type)){ break; }
130 }
131 if(!isNodeFrameType) {
132 continue;
133 }
134

135 node.contentWindow;
136 node.contentDocument;
137 }
138 };
139 let observer = new MutationObserver((mutations) => {
140 for(let mutation of mutations) {
141 patchNodes(mutation.addedNodes);
142 }
143 });
144 observer.observe(document.documentElement, {
145 childList: true,
146 subtree: true
147 });
148 patchNodes(document.querySelectorAll("frame,iframe"));

72

G. Effects of webdriver detection

This section shows further examples caused by webdriver detection encountered in
Chapter 7.

Figure G.1.: Blockage on alitalia.com.

Figure G.2.: Blockage on autotrader.com.

73

alitalia.com
autotrader.com

G. Effects of webdriver detection

Figure G.3.: Blockage on farmandfleet.com.

Figure G.4.: CAPTCHA for login on ebay.com.

74

farmandfleet.com
ebay.com

	Introduction
	Background
	Browser fingerprinting
	Web bots
	Web bot detection
	JavaScript template attack for web bot detection
	Page deviations after detection

	Design of OpenWPM

	Related work
	Browser fingerprinting
	Detecting web bots
	Fingerprinting prevention
	Browser extensions and their detectability

	How stable is OpenWPM's fingerprint surface?
	Concept of stability
	Measurement setup
	Tweaks
	Influence of full instrumentation

	Analysis of stability
	Different configurations and their fingerprint surface
	Stability
	Conclusion

	Effectiveness of existing countermeasures
	OpenWPM's build-in countermeasures
	Effectiveness of typical Firefox extensions
	The tool's concepts and functionality
	fingerprint2.js analysis
	Conclusion

	State-of-the-art countermeasure: FP-Block 2.0

	Detectability of different JavaScript spoofing methods
	Methodology
	About the webdriver attribute
	Spoofing methods
	Comparison of spoofing methods
	Conclusions

	Proof of concept implementation
	The prototype
	Validation experiment
	Results

	Future work
	Conclusions
	Results and answers to research questions
	Impact of results

	Bibliography
	Appendices
	Example fingerprint
	Experiment environment
	Firefox extensions: Page-, content- and background-scripts
	Investigation of divergent window-sizes of OpenWPM
	Spoofing detection in iframes
	Results

	Technical details on spoofing the webdriver property
	Effects of webdriver detection

