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Abstract

Rootkits provide a collection of tools allowing for low level actions on a sys-
tem. With these capabilities, attackers can gain full access of a computer and even
modify the way the core system itself operates. Thereby, using advanced abilities
and persistence, attackers cause constantly increasing damages [1]. Current anal-
ysis focuses either on single rootkits as they are first detected or uses easy-to-spot
components such as userspace programs or virtual machines1.

This thesis explores an array of strategies used by rootkits to remain undetected
and identifies the relative popularity of those techniques amongst a set of recent
rootkit samples. A controlled environment based on physical machines was created
to mimic a real-world scenario as closely as possible. A variety of tools have been
built and adapted to stealthily collect data about changes the rootkit makes to
programs, the registry or system components, both on disk and in memory. This
data has been analyzed to provide statistics on the types of strategies used, which
provides a model of up to date rootkits that can further be used to inform detection
and prevention efforts by highlighting common vectors that need to be focused.

The diversity of rootkit strategies is faily low, most group around a few proof of
concept exploits. Attackers focus on stability, kernel changes have a higher chance
to cause problems later on, so rootkit authors tend to just focus on DLLs and other
less invasive strategies.

Keywords: malware; rootkit; windows; NT kernel; static; dynamic; stealth

Contributions:

• Catalog of techniques that can be used by rootkits to hide in the NT Kernel

• Quantification of usage of these techniques in current rootkits

• Implementation of tools allowing tests for and analysis of said techniques

1see Appendix D
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1 Introduction
Computers have permeated society to the point that it is impossible to imagine the
current world without them. From smart light bulbs to mobile phones and personal
computers, all the way up to large data centers, they perform instructions and process
data that impact and control parts of our lives. Computers perform a crucial role, be
it in the form of managing the stock market, scientific equipment or private compa-
nies. These wide capabilities attract attention. Malicious actors try to make computers
execute instructions that benefit the actor; instructions that are often detrimental to
the machines’ original purpose. Software used to illegally gain control over assets and
resources is called malware. Attacks of this kind are increasing [2] and it is expected
that cybercrime will cause global damages exceeding $6 trillion by 2021 [3].

Different types of malware exist to fulfill differing goals. Some, such as ransomware
encrypt important files and trade capital for their availability. Other kinds follow long
term strategies: Instead of immediately profiting off of a target, they produce a larger
benefit by compromising the system for a longer period of time. Cryptominers, for in-
stance, are a type of malware that use processing resources to generate cryptocurrencies,
which in turn can be exchanged for fiat value. The longer they are able to stay on a
machine, the more computing hours they are able to dedicate to the task. However, an
increase in CPU utilization also causes the system to become less responsive and heat
up, forcing authors of cryptominers to walk a tight rope between higher returns in the
short term and lower returns accumulating over a longer time.

Another family of malware, so-called Advanced Persistent Threats[4] is increasing
in popularity[5]. This type of malware does not seek profit directly. Instead, it lies
dormant and gathers personal data, important company assets and intel, which are
quietly extracted and sent to the attacker. Long term data is much more valuable than
a simple one time snapshot, so it is critical to make the machine and its owners believe
that nothing has occurred, such that the malware will not be found and removed.

Although some certainly can be, most sophisticated malware is not monolithic. Like
an animal, malware can be subdivided into distinct parts that serve specific functions,
such as legs that carry it to its destination or claws that cause destructive damages. In
the same manner, rootkits are not a type of malware in itself. Similar to camouflage,
they are an optional component used by a variety of malware to evade detection.

The crucial difference is that camouflage acts passively while rootkits hide using
active methods: like a parasite they burrow deep into the system and cause the detection
organs to go blind. They do this by modifying the kernel, the central part of an operating
system used to control the various tasks the machine needs to perform. Using these high
capabilities, rootkits are on an equal footing with the operating system itself and can
change the way the malicious code that accompanies them is handled.

Software can affect a computer in many ways. From fairly obvious results, such
as an increase in CPU usage and subsequently heat up to subtle changes in the way
external devices are handled or the way the operating system stores information about
its processes, different measures can be used to see whether a piece of software is running.
As a consequence, rootkits can not flip a proverbial hide-switch. They must choose which
aspects are regarded as important for detection, whether it is worth to counteract them
and how to do so if necessary. Given that there are many ways to solve a problem and
the fact that rootkits need to solve a multitude of them, there is at least a theoretical
potential for many strategies to be used, both in a single rootkit and when comparing
across their populace.

Unfortunately, it is difficult to protect against rootkit infections. The differing strate-
gies they use need to be remedied with tailored approaches, many of which come with
drawbacks and performance penalties. It is uneconomical to protect a house from threats
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that do not exist or are highly unlikely. In the same manner, a computer becomes less
useful the more such safety systems are implemented in it. While in-depth analyses of
individual rootkits exist and many such stealth techniques are described in the litera-
ture, little is known about their relative popularity. Without proper information about
the probability and severity of threats, risk management has a hard time making suit-
able decisions. Should a specific rootkit prevention approach come with, for example, a
detriment to performance of around ten percent, but for various reasons no rootkits ex-
ploit this particular weakness, it might be better to distribute resources elsewise. If the
opposite is true and it turns out that most rootkits use a very similar set of techniques,
a clear motivation for improved remedies and further focus on them has been created.

This thesis will try to provide such information. Briefly summarized, the questions
leading this thesis are as follows:

1. What are the detection methods a system uses to find malware?

2. How do rootkits circumvent them?

3. Which rootkits are most prevalent in the wild?

4. How can a certain detection method be identified in a rootkit attack?

5. How popular are these attacks in relation to each other?

To answer these questions, a selection of recently circulating rootkits has been executed
on physical machines to closely mimic a real world infection. A number of tests have
been created to identify certain strategies, which are subsequently quantified, as will be
explained in the following paragraphs.

1.1 Outline of thesis
The work done for this thesis, as shown in Figure 1, was conducted as follows: A number
of rootkit samples were obtained from multiple sources (Section 4.1). None of the files
used were older than 3 years, most were much younger. The majority of samples pay no
regard to the kernel, so a method for separating rootkits from other types of malware
was devised (Section 4.2). Related work has been consulted to find reported stealth
vectors (Section 4.3). Additionally, public, non-academic and my own analysis was
used to find additional noteworthy characteristics. For each of the possible vectors, a
test needed to be constructed in order to dynamically determine whether the vector in
question is used by the respective sample (Section 4.4). Due to the suspicious nature
of rootkits, low-impact kernel drivers had to be used. These tests were used in close
to real world conditions on physical machines (Section 4.5) and corresponding data was
collected (Section 4.6). Section 5 presents these findings.
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This thesis will be organized in the following manner: Section 2 will cover preliminary
information needed to follow the methodology. Section 3 introduces prior research done
in the field and provides a context for the contributions of this thesis in relation to similar
works. Section 4 explains the setup used and describes each step of this research. Section
5 presents and discusses the results obtained from the Methodology. Section 7 discusses
optional additions to this research and calls for further research to be conducted to
enhance or utilize these results. Finally, Section 8 ends the thesis by briefly summarizing
its findings.

1.2 Scope of thesis
To prevent potential confusion, we will briefly mention some aspects this thesis has
not set as a goal. Although identification of rootkits is conducted during the filtering
phase 4.2, these methods operate under the assumption that a well-known system with
a ground-truth good state, namely directly after a fresh installation, has been infected
by a piece of malware likely to be a rootkit. The context dynamic filtering needs causes
it to very likely be unsuitable to detect rootkits in real-world conditions, for example
on a corporation’s infected server or a personal machine. Other tools exist for such
purposes, both academic, e.g. “Raide: Rootkit analysis identification elimination”[6]
and commercial e.g. GMER[7] (incorporated into Avast[8], also available as stand-alone
free of charge) and others[9]–[11].

Further, this work does not serve a directly defensive purpose. Even if these tools
were to be used against their designations on a real-world system, they could neither
prevent nor repair an infection. Instead, this thesis tries to supply information to aid
these efforts. Because of this, directly malicious functionality is disregarded; the focus
lies only on rootkit functionality used for stealth. Both of the above named tools are
capable of removing a rootkit to some extent. Note, however, that a full reinstall should
the preferred option, as no operation within a compromised system can guarantee its
correctness.

Information about executing, active rootkits is collected in a controlled environment
relying as little on the infected operating system as possible. While antivirus products
could potentially adapt kernel drivers or other tools utilized here, the usage of below-
operating-system capabilities would complicate usage for the purpose of collecting in-
system information about rootkits.

Strategies a rootkit uses to hide are dependent on the environment the rootkit oc-
cupies. This work focuses on rootkits within the Windows New Technologies (NT)
Kernel2. Kernel rootkits targeting different operating systems, or non-kernel rootkits
such as usermode rootkits or rootkits attacking firmware, the hypervisor or the boot
sector are out of scope.

2first used in Windows NT 3.1 in 1993, later in Windows 2000 in 2000, Windows XP in 2001 and every
subsequent desktop version of the operating system
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2 Background

2.1 Rootkits
Rootkits are commonly defined as programs that establish a persistent and undetectable
presence on a computer. To some, this definition is problematic in two ways: Certain
good programs need to hide themselves from other components of the operating system
such that they may monitor or inhibit other malicious programs or behaviors without
the latter noticing their presence. Additionally, many of these programs make it difficult
to subvert or uninstall them, either by protecting their components in memory and on
disk or by frequently checking their integrity and replacing them if needed, just like a
rootkit would do. Examples of such software include antivirus engines or Digital rights
management (DRM) protectors3. If any tool used to hide code execution is called a
rootkit, such programs would be said to be rootkits or have rootkit components, while
proponents of an alternative definition argue that rootkits need to be inherently mali-
cious.
Second, so-called “user level rootkits” are programs that achieve the above goals of per-
sistence and undetectability, although to a lesser degree, without having to resort to root
privileges. Such software might for example load a malicious DLL into the memory space
of a user process, such as explorer.exe, in order to constantly run in the background4.
Generally, such programs are less sophisticated than their root level counterparts, as
they have little protection against scans that run at root level. Still, some manage to
evade detection, mostly due to novelty in their methods.
Within this thesis, a restrictive view of the word rootkit is chosen: Rootkits will be
defined as programs that gain root level access to the operating system in order to
compromise the system for a longer term in a way the user would consider malicious,
thereby including beneficial programs but excluding user level rootkits.

2.2 Rootkit evasion strategies
Since rootkits are oftentimes malicious or unwanted, they need to hide their footprint
from the user, antivirus engine and malware-detecting components of the operating
system. Many strategies exist to achieve this goal. They can be grouped into the
following categories:

2.2.1 Permission based

A rather simple but quick and proven way for malware to deny access to files are Win-
dows access control lists (ACL). Each file within the windows file-system has an owner
who is able to modify the ACL and a set of rights associated with a number of users.
Using these ACLs, access rights such as read/write/execute/modify ACL/etc can be
allowed or forbidden for any given file on a per user basis. Windows uses this feature
to protect critical system files, such as those present in System32. These kinds of files
are owned by a user called TrustedInstaller and may only be modified exclusively by
this entity, meaning that even system level users such as antivirus engines are not able
to modify such a file, as can be seen in Fig. 2. Malware can use the same strategy to
prevent access to its files. Note however that this method of protecting files is very ex-
plicit: the files are not hidden, they are simply inaccessible. While this may deter some
3often used to inhibit sharing of digital media, such as music, video and games. Sony famously used

one such rootkit to protect its music CDs[12]
4explorer.exe is constantly being executed and automatically restarted in case of a crash by winload.

This makes it easy to inject a dll when explorer is first executed, kill the process and have it
restart with the malicious DLL.
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(automated) malware detection, such a protected file in an unusual place will certainly
attract the attention of any other sophisticated detection effort. Accessing such a file is
quite trivial. In most cases, an administrator can simply claim ownership of the file from
within the file explorer context menu. From there, any changes to the access control
list, such as enabling read and write permissions can be made. Alternatively, any API
call (those in kernel level) and any file system driver below the stage implementing the
access control check are not affected by such restricted permissions.

Figure 2: The failed attempt to rename kernel32.dll with system privileges

2.2.2 Direct code modification

This section excludes hooks and hotpatching, as they will be discussed in their own
sections.
Given that all code running on a system needs to be stored in memory before being
executed, rootkits may overwrite assembly instructions by accessing other processes
memory regions. In contrast to hooks and hotpatching, the goal is not to make small
changes to redirect control flow, but to change code in place. The focus of such a
technique may be simply to change a return value or invert a conditional jump; malware
may even change whole subroutines or functions. For example, a function used to
enforce a policy may be overwritten by one supplied by the attacker which simply grants
validation of all inputs regardless of policy. While simple, especially when used on files
on disk, this method is rarely used, given that issues regarding padding, available space,
etc. arise. A further complication is self-modifying code, such as encryption routines,
that may render the attacker-supplied code unusable.

2.2.3 Direct data modification

Similar to the above section, malware may modify data stored on disk or in memory.
Since this method does not suffer from many of the problems of the above method
(given that the amount of data that needs to be written to a file within a struct is more
forgiving to changes, such as moving a null-byte, or already has ample length for the
required data type), it is more common in practice. A popular example is a program
called CheatEngine, which scans memory regions of games for bytes storing information
about the game, such as health, remaining ammunition, experience points, selected slots,
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etc. In the same way, malware can scan memory for data structures of certain processes
(such as a to-scan list within an antivirus engine) and modify them to exclude itself or
redirect attention to other regions.

2.2.3.1 Direct kernel object manipulation

No clear boundaries between memory of processes in kernel mode exist, so an attack is
rather easy. Given that the operating system stores a large amount of data on a system
(such as running processes, memory pages, etc.) within kernel mode objects, a malicious
kernel driver modify said structures to hide the malware. While such modifications are
difficult to detect, given that the objects are still valid, drastic changes may cause the
operating system to become unstable or even cause a Blue Screen error message, resulting
in a system reboot.

2.2.4 Hooks

In contrast to direct code modification, the purpose of hooks is to patch code in order to
get notified on certain events or redirect code flow, often to malware supplied code. De-
pending on which kind of function pointer is overwritten or which method of redirecting
control flow is used, hooks may be categorized into the following sections.

2.2.4.1 Import Address Table (IAT)

Most code relies on external libraries and third party functions to run. Given that
these dependencies often overlap between different programs, it would be wasteful for
every program to contain its own copy of the needed external functionality. Because of
this, most programs are not compiled with their dependencies but instead dynamically
linked to them at runtime by the loader. Since the location of DLLs in memory changes
frequently, such programs contain a table of all required external functions together with
a pointer to them, which will be supplied to the program at run time. The table is of the
form jmp dword ptr ds:[addr] , where addr is the memory address of the external
function. Malware may overwrite an entry in this table to force the program to use a
different, malicious function from the one it desires. For example, a malware scanner
likely imports ZwReadFile in order to read and then scan files that may contain malware.
By modifying the entry of this function within the import address table, malware is able
to fully control the input given to the malware scanner via the malicious ZwReadFile-
clone, which may for example only return random data, empty files or predictable and
uninteresting data.
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Figure 3: The import table inside the kernel32.dll binary

Note that values in the Import Adress Table (IAT) can be double-checked by calling
GetProcAddress, a function which queries Export Adress Table (EAT) entries for the
required address, but which of course might also be compromised. Given that no EAT
hooks are present, a custom implementation of GetProcAddress may be considered
adequately secure.

2.2.4.2 Export Address Table (EAT)

Similar to the import address table, programs contain an export address table containing
pointers to functions they provide. This information is used by linkers in order to
populate the IATs of the programs wanting to import said functions. Malware may
overwrite these pointers to much the same effect as above. The main difference is that
an IAT hook is able to target a single function import within a single program, while an
EAT hook will affect all programs (that are loaded and linked after the hook is in place)
importing a specific function. According to MalwareTech [13], EAT hooks are rare.
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Figure 4: The export table inside the kernel32.dll binary, as rendered by IDA PRO

2.2.4.3 Interrupt Descriptor Table (IDT)

In addition to regular codeflow, software interrupts can occur at any time. Should a
certain event, like input from a peripheral device, a request to shut down the computer
or a software exception arise, the current execution state is suspended. A table in the
kernel, called the Interrupt Descriptor Table, contains addresses of interrupt routines.
Should, for example, interrupt 13h be triggered, the operating system jumps to the
address stored in the 13th (or 14th, if counting ordinals starts at 1) entry of the IDT,
a routine used to talk to drives. A rootkit can modify the addresses contained in this
table to execute every time one of these events occur.

2.2.4.4 System Service Dispatch Table (SSDT)

The System Serivce Dispatch Table (SSDT) is a table of pointers for various Zw/Nt
functions, that are callable from usermode. A malicious application can replace pointers
in the SSDT with pointers to its own code.

All pointers in the SSDT should point to code within ntoskrnl, if any pointer is
pointing outside of ntsokrnl it is likely hooked. It is possible a rootkit could modify
ntoskrnl.exe (or one of the related modules) in memory and slip some code into an
empty space, in which case the pointer would still point to within ntoskrnl. Functions
starting with Zw are intercepted by SSDT hooks, while those beginning with Nt are
not, therefore an application should be able to detect SSDT hooks by comparing Nt*
function addresses with the equivalent pointer in the SSDT.

A simple way to bypass SSDT hooks would be by calling only Nt* functions instead of
the Zw* equivalent. It is also possible to find the original SSDT by loading ntoskrnl.exe
(this can be done easily with LoadLibraryEx in usermode) then finding the export
KeServiceDescriptorTable and using it to calculate the offset of KiServiceTable within
the disk image (Usermode applications can use NtQuerySystemInformation to get the
kernel base address), a kernel driver is required to replace the SSDT.

2.2.4.5 SYSENTER_EIP

SYSTER_EIP is a variable containing the address of a legacy x86 function (usually
KiFastCallEntry) invoked whenever a context switch from user to kernel mode is per-
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formed. Hooking this function either with an inline hook or by overwriting its function
pointer enables malware to be notified of any such event. Given that user mode appli-
cations do not have adequate permissions to write their own context switching routine
and kernel mode drivers have no need for context switching, this kind of hook can not
be circumvented. It is however possible to implement a kernel mode driver that finds
the real pointer value and restores SYSENTER_EIP accordingly.

2.2.4.6 I/O Request Packet (IRP)

Each registered driver exposes a driver object within the kernel namespace. Among
others, this object contains a table of 28 function pointers, which may be uninitial-
ized/NULL that point to functions implementing interaction with the potential hard-
ware/kernel object the driver is controlling, such as reading or writing data. As no
boundaries exist in kernel memory space, drivers can overwrite each others IO request
function pointers. Unless the affected driver restores its own value or another driver has
stored the correct values before the hook occurred, it is not possible to restore such a
hook. A hook may be detected by realizing that the pointer points to an address outside
of the respective kernel drivers address space, but this does not protect from injecting a
malicious routine into a driver or switching functions within it. For circumvention, the
next lower driver in the stack may be used, which may also be compromised. Similar to
Section 2.3.3.

2.2.4.7 Hotpatching (Inline)

In contrast to previous hooks that changed stored pointers to functions, hotpatching
modifies the first few bytes of code to instruct the function to jump to another block
of code. Often, this behavior is not malicious, it allows the operating system to replace
certain functions with others that fit better into a given context without having to
update the relevant address in every importing program. Because of this, DLLs such
as kernel32 were often compiled with hotpatching support in x86 versions of windows.
This support is provided by a two byte no-op instruction that may be overwritten by
a jump statement, also occupying two bytes, that may easily be discarded. The CPP
compiler has a flag to enable such easy hotpatching [14].

Figure 5: A two byte no-op
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Note that two single byte no-ops might cause complications due to pipelining. x64
versions of windows do not use the equivalent instruction mov rdi, rdi5.
In cases where such hotpatching support is not provided, the bytes that need to be
overwritten would first have to be read and stored such that they can be replaced later.
By hooking the function at the beginning of execution, no half executed code can cause
weird behavior and the redirected-to function is able to read arguments from stack and
registers. The best way to protect against inline hooking and other forms of direct code
modification of DLLs is to obtain a legitimate copy of said DLL and compare both
versions. Windbg offers a feature that downloads a signed and authenticated DLL from
official Microsoft sources and compares it with a DLL loaded in memory.

Figure 6: The chkimg function of Windbg

Read more about this in the section about memory paging.

2.3 Rootkit evasion vectors
Being a program with associated data and code, which is eventually executed, a rootkit
will never be as invisible as a process that does not exist in the first place. This section
will introduce the most relevant traces a rootkit (or any program) will leave within an
operating system, how those traces are manifested and what a rootkit can or cannot do
in order to hide this kind of trace. The last point will be elaborated in much more detail
in the preceding Section 2.2.

2.3.1 Task manager/Process listing

The Windows Task Managers “Processes” and “Details” tabs provide a list of all pro-
cesses running on a computer, while the tabs “App History” and “Services” provide
analogous listings for apps and services, respectively. To avoid unnecessary duplica-
tions, only process listings will be focused on, as app and service listings are generated
in a very similar fashion.
5mov edi, edi would zero out the upper half of rdi on 64bit machines
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Figure 7: The Details tab of the Windows 10 Task Manager

Within the kernel, a data structure called PsActiveProcessList is used to contain
information, such as name, PID, permissions6, threads, etc, about all running processes
on a system. Using the function IoGetCurrentProcess, a pointer to a EPROCESS block,
which contains information about one of the processes, is returned. Such a struct con-
tains pointers to both the next as well as the previous entry of the dualy linked process
list, as visualized in Fig. 8. Using two simple modifications, a rootkit could change
the pointers of the block pre and succeeding it to skip its own block, as no (relevant)
garbage collection utility in the kernel exists to deallocate “clean up” this “removed”
entry. Interestingly, the Windows Scheduling Algorithm does not solely depend upon
traversing this structure, allowing even hidden entries to be allocated execution time.
However, like all DKOMs, this modification is rather unstable, especially when the op-
erating system fails to access a hidden processes block (i.e. to add/remove threads or
change permissions).
6An attack based on this structure to elevate a processes privilege level is possible, but requires the

attacker to already have kernel level access, so it is rather uninteresting
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Figure 8: The PsActiveProcessList datastructure [15].

Alternatively, if protection from only user level detection is required, API functions
used to query processes may be hooked, such as the EnumProcesses function in ker-
nel32.dll [16].

2.3.2 Resource listings (CPU)

Even if a process is disguised using the above method, any running process will need
to use some CPU time. The Linux Operating system uses a program called time to
display the amount of time7 used by a process in user and kernel mode. Windows pro-
grams may handle similar functionality using APIpn calls enumerated on this page:
https://docs.microsoft.com/en-us/windows/win32/sysinfo/time-functions8. Since the
Windows Task Manager is not open-source, details about the exact way it implements re-
source listings remain unknown, at least for the scope of this thesis. To make a few specu-
lations, taskmgr.exe imports library functions such as GetProcessorSystemCycleTime,
which returns the time each cpu spend on deferred procedure calls (DPCs) and interrupt
service routines (ISRs)[17], so it may just provide a front end for deeper API routines9.
In principle, since it imports scheduled timers[19], it might implement more sophisti-
cated methods discussed below. Still, it is much more likely that timers are simply used
for regular updates of the GUI.
Of course, API functions can easily be modified or hooked, so the information provided
by them might not be reliable on an infected system. A more reliable against attacks
but much less precise way of measuring system usage can be achieved by programs de-
termining the values themselves solely based on their own execution. To give a trivial
example, an application might just consume all available CPU usage itself for a brief
period of time and compare the number of instructions it was able to execute every time-
period. To be slightly stealthier, imagine a server with m execution threads. Malware
7As well as other quantities such as IO Accesses, etc.
8lower half
9Another relevant function is GetSystemTimes[18]
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running on it may create a timestamps for every n higher-level, but fairly lightweight,
instructions carried out on a thread. If the spacing between two timestamps suddenly
increases, a heavy application has been started on that thread, which could possibly be
a malware scanner and it may be wise for the malware to lie low. To not consume too
many resources itself, an application might use a sleep call instead of executing instruc-
tions, the length of which will increase on overloaded systems. An improvement of this
overly simplistic and fairly obvious technique can be made by hooking/modifying other
programs, such as explorer.exe to see how regularly a certain repeating function, such
as redrawing the screen, is being executed. It may also look at related data, such as
CPU temperature (although that might be unreliable as well) or times of IO operations.

Figure 9: An excerpt of the Import Table of taskmgr.exe

2.3.3 File system

Depending on the kind of data the malware needs to access a filesystem for, two situa-
tions may be distinguished:

user/system data In this scenario, malware wants to tamper with data, which has
not been created by the malware and instead belongs either to the infected user or
operating system. First, consider write changes (such as overwrite, append, modify)
to files created by the user, examples of which are conducted by ransomware when
encrypting user files. Due to the nature of this kind of infection, the malware explicitly
makes itself known (which it has to, if it wants to collect ransom) and any stealth is
counterproductive. Because of this, this behavior is out of scope for this thesis.

The more interesting case concerns read access to user created files, for purposes
such as personal information gathering, or write access to programs, e.g. to infect a
web browser, and system files. In these cases, the malware needs to stay hidden to
prevent the user or the users’ antivirus from negating malicious changes or detecting
the infection. On a basic level, this can be achieved using hooks to API functions such
as ZwCreateFile, ZwCloseHandle, ZwReadFile and ZwWriteFile. Alternatively, the
file may be given restrictive access permissions such that it can not be accessed except
by the malware10. On a more in-depth level, Windows implements its filesystem using a
filesystem driver of the respective kind (usually NTFS for mass and exFAT/FAT32 for
flash storage). This driver may be interacted with by kernel-mode programs using the
filesystem control device object it exposes to the kernel namespace. Every physical disk
in the system is directly controlled via a driver responsible solely for the port/slot the
10Again, permission based approaches are not stealthy
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drive is inserted into. This port driver itself is only capable of sending and receiving bits
via said port and exposes an adapter device object for said port. This object is used by
another so called disk class driver, which understands the protocol used to communicate
with the given disk (SATA, SCSI, USB, etc) and is aware of intricacies of the drive
(min request block size, partition table size, command sequences, etc). This driver
exposes a disk device object, that may be used to raw access the drive using commands,
instead of the unprocessed and drive-specific bit-sequences understood by the adapter
device object. The driver one level above manages the partitions within a given disk by
processing the partition table located at the very start of a drive. It exposes multiple
objects, namely partition0, to provide full disk raw access (the difference to the disk
device object one layer below being that partition0 begins after the partition table and
its padding, and does not encompass the true whole drive) and partition1 to partitionN,
which give raw access to the drive space occupied by the respective partition. The
filesystem driver refers to these objects and creates volume device objects used by user
mode programs to interact with the given volume. In certain cases, additional drivers
used to hide parts of the disk are employed at various levels. An example of this on the
filesystem drive layer would be a software RAID whose filesystem driver hides parity
files. In other cases, whole partitions may be hidden (something similar to the Windows
boot-up partition, which may not be interacted with by user mode programs11). A
hardware RAID card works on an even lower level than a port driver by modifying bit
streams as they traverse between the drive and port driver.
In general, the deeper the level of the driver or API function that a rootkit hooks, the
more detection methods it is protected against. Unfortunately for the malware, lower
drivers force it to implement a lot of functionality itself, so it is assumed (by me) that
no rootkit would attempt to hook anything below a disk class driver.
Windows uses a feature called FastIO, which caches frequently accessed files to system
memory. In these cases, read and write operations are intercepted by the operating
system and changed to equivalent operations on the memory buffer containing the file.
This file is then later written to disk. Depending on the implementation of a disk
interception routine, FastIO may be problematic to a rootkit. If a rootkit hooks API
functions above the implementation of FastIO, such as ZwReadFile it can ignore this
feature. If it instead hooks into the filesystem driver stack at a lower level, such as
the disk class driver, the file on disk lags behind the memory buffer. Given that a
file has to be read from disk before being cached, the driver may still choose what
data to show. But given that FastIO may approve a write operation that the driver
would not, inconsistencies between the buffer and the file arise and blocked mem-to-
disk write requests may cause unwanted errors or even crashes or unexpected behavior
in applications unaware of the underlying FastIO protocol who did not implement a
backtracking procedure.

Figure 10: Storage device driver stack
11Although Windows does not truly hide them using a partition driver
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Figure 11: Example storage device driver stack based on SCSI

malware data In contrast to the scenario above, malware does not need to access files
created by the operating system or the user. Instead, it desires to store its own code or
data on the disk in a permanent fashion, be that to store accumulated data, configuration
settings or to persist during a reboot. In this case, the malware does not necessarily need
to use/implement the driver stack described above, since it does not require knowledge
of partitions, volumes and filesystems in order to store some data. While being able to
utilize these features is convenient, they need to either be implemented by the malware,
which is time-consuming and error-prone, or the malware is forced to use already present
higher level functions, which make it less stealthy. However, if there is no necessity to
use higher level storage concepts, the rootkit is able to hook lower level drivers, gaining
the benefit of staying hidden more easily, without much of the drawback of having to
implement these higher drivers itself. One procedure, first used by a rootkit called
TDL3 and later adopted by many more, is a so-called Hidden filesystem. When creating
a single primary partition using the Windows Installer, usually not the entire remaining
(non-occupied by partition table) disk is consumed but some space at the end, a few
tens of kilobytes, are left unallocated for padding or performance purposes12. Rootkits
can utilize this space, usually at the end of the raw disk, to store their own data by
writing to the disk itself. Depending on the way a rootkit chooses to implement its
hidden filesystem, it may either just write to this unallocated section directly using a
port driver, or it may create its own partition, or even register its own filesystem driver.
The latter case has the benefit that malware is able to (re)use common Windows API
functions for creating files, which eases malware development. In the first case, malware
may simply leave its data as is, in the hope of it being in such an unusual location
that no program would look for it. While this succeeds for user mode programs, it is
completely exposed to a raw access operation on the relevant part of the hard drive.
Because of this, many rootkits choose to not write to their space with raw operations,
12Depending on the type of drive used, unallocated zones can get even more interesting: Tape drives

contain large unallocated sectors at the ends of the tape, which could technically be written to,
but are left unallocated in software to attach the tape to its accessing mechanism. Some high
performance drives leave their innermost regions unallocated, since access times on a spinning disk
get much faster towards the edge of the drive. Many SSDs advise to only be filled up to a capacity
of around 80%, to enable smarter caching and moving of data. While Windows does not honor
this margin, it does indeed leave a small amount, but more than for hard drives of equal capacity,
of space unallocated on them.
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but instead use an actual filesystem implemented using higher level drivers. Oftentimes,
such a filesystem has added encryption functionality implemented within drivers to deter
raw disk scanning. In some cases, malware may choose to use already existing higher
level drivers, which makes its code more reliable but still enables it to remain stealthy
by obscuring the relevant device/partition object (e.g. using a random name such as
\Device\XXXXXXXXXXXXXXXXX, where X is a random digit). Additionally, it
needs to hook other drivers and API functions to further hide the presence of the hidden
filesystem, by returning a smaller disk size or intercepting raw read operations to the
hidden filesystem part of the drive. Malware may also modify these existing drivers
in such a way that they only access the hidden filesystem using a key passed to them
within a parameter, e.g. a write operation of (key|actual data), which gets intercepted
and modified by the required driver.

Figure 12: The contents of the primary drive before infection by a rootkit employing a
hidden file system

Figure 13: A high-level view of a disk infected by a hidden file system

2.3.4 Registry

Windows uses the registry to store information about DLLs loaded into any given pro-
gram, so a rootkit which adds a malicious DLL into that list can easily be detected.
That can be counteracted via real time DLL injection whenever a program is loaded
by hooking a system call. Given that most rootkits have, as the name suggests, root
level access to a system, many employ a kernel driver for additional capabilities. These
kernel-mode drivers are stored within a key inside the registry to be loaded when the
system starts and thus need to remain exposed inside the registry. The Windows API
function used to list subkeys of any given key is called ZwEnumerateKey. By hooking
this function, rootkits can hide their particular subkeys. Alternatively, if an antivirus
engine does not rely on said system call, but is loaded after and stopped before the
malware, the rootkit may remove its own registry keys as part of its startup routine
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(since kernel drivers are loaded earlier, during boot) and re-add them during the system
shutdown phase (e.g. by hooking IoRegisterShutdownNotification).
Yet another possibility: the kernel-mode function CmRegisterCallbackEx can be imple-
mented by a driver and is called whenever an access operation (read or write) is about
to be made by the registry. Being not only effective against basic discovery strategies
(e.g. simple enumeration similar to ZwEnumerateKey) but also against direct access of
the key via its full name by denying access to it. As discussed above, permission based
approaches may only deter naive detection efforts and are certainly not stealthy. How-
ever, instead of failing the CmRegisterCallbackEx procedure to deny access, malware
may instead forge an error stating that the requested key does not exist.
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3 Related Work
General information about Rootkits A short but limited overview of rootkits,
their history, abilities and usage can be obtained by referring to short summaries by
Kovah [20]–[22], Thompson [23], Rankin [24], Malwarebytes [25] and Microsoft [26]. Ries
[27] gives a detailed, although slightly out of date, overview of rootkits, their internal
design and functioning as well as their prevention, detection and removal. Additionally,
the article presents helpful software and proof-of-concept rootkits. Brendmo [28] gives
an introduction into the internals of the Windows 10 kernel.

Books providing an exploration of rootkits and the kernel A technical hands-
on guide to building a rootkit is presented by Hoglund and Butler [29] in their book
Rootkits: Subverting the Windows kernel. While their work is a great starting point for
understanding the attacker’s point of view and gaining a complete view of a rootkit’s
codebase, some approaches are unfortunately dated. A guide to kernel exploitation by
Perla and Oldani [30] explores the internal workings of both the Linux and NT ker-
nel from the perspective of an attacker. It is a valuable guide to both detecting the
usage of and finding new stealth strategies of kernel rootkits. Blunden [31] provides a
complete guide on rootkits. His book covers a high-level and societal view on rootk-
its, strategies for forensics, counter-forensics and counter-counter-forensics, explains the
necessary tools, hardware and software systems and guides the reader through the func-
tioning of a system from the boot process to loading a program. The Rootkit arsenal:
Escape and evasion in the dark corners of the system covers design, stealth, forensic
evasion and exploit strategies from the point of a malicious rootkit author. Matrosov,
Rodionov, and Bratus [32] wrote the most recent book focusing on rootkits. While it
only dedicates its starting chapters to kernel rootkits and then moves on to extensively
cover bootkits, it provides detailed analyses of past boot- and rootkits, guides the reader
through their analysis with hands-on explanations and real samples and gives them his-
toric and design-related context. Rootkits and bootkits: reversing modern malware and
next generation threats bridges the gap from strategies presented in older works to those
employed by current day samples.

Works similar to this thesis The following sections are dedicated to four works
regarded closest to what is proposed in this thesis and their differences to this work.
They include a Masters thesis from 2011: “A comparative analysis of rootkit detection
techniques” by Arnold [33]. It, too, analyzes stealth techniques of rootkits. However,
instead of studying their usage in a representative and large sample of current rootkits,
Arnold’s thesis uses these techniques to aid detection of a small sample of well-known
rootkits13 by proper commercial detection engines. Although the goal and setup is
different our works overlap in certain parts of the methodology. As Arnold [33] points
out regarding earlier works: “many of the current rootkits have significantly evolved to
use different techniques than previous versions, and are actively subverting many of the
detectors that are available [...] so the relevancy of the results is questionable” ([33], p.4).
One of these overlapping parts is the collection of data: “Finally, once a system was
infected with a rootkit, a kernel mode debugging session was performed using either the
Microsoft Kernel Debugger (KD.exe) or Windbg.exe to analyze the changes to internal
Windows OS structures” ([33], p.19). This thesis emphasizes the stealth of its data
collection methods. Using easy to spot tools like WinDBG[34] would likely result in
undesired behavioral changes by current rootkits.
13Although less famous in 2011, these rootkits had already been analyzed. In contrast, the rootkits in

this thesis are largely unknown or treated as unknown due to lack of clear classification by malware
vendors.
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The second work is called “A Brief Survey on Rootkit Techniques in Malicious
Codes.”[35]. It is similar to the third work “A Catalog of Windows Local Kernel-mode
Backdoor Techniques” by Skape and Skywing [36] with the main difference being that
it is newer but less extensive. Both categorize a number of techniques used by rootkits,
many of which can be used for stealth purposes. They provide countermeasures and
discuss these methods but do not regard whether or how frequently these methods are
used by attackers. While it is true that some of these techniques can be mitigated, an
overhead is required to ensure this security. Knowing which areas need additional pro-
tection and which techniques to focus on provides an additional edge. Given the relative
age of both papers, the conclusion “Likewise, when these techniques are eliminated, new
ones will be developed, continuing the cycle that permeates most adversarial systems.”,
presented in Skape and Skywing [36], p.25, is especially relevant. Similar categorizations
of rootkit methods [37]–[39] and their prevention [40]–[42] exist.

The fourth work is a Bachelors thesis by Padakanti [43]. It analyzes functions hooked
by a number of open source rootkits in order to group them into families. The goal of
the thesis is to improve rootkit detection. In contrast to this thesis, their work is based
on a single strategy of kernel rootkits and does not explore these characteristics in a
wider, representative rootkit population.

Hasanabadi, Lashkari, and Ghorbani [44] and an earlier work by Muthumanickam
and Ilavarasan [45] model the attacker-defender relationship using Game Theory. Simi-
lar to this thesis, they point out that protecting against rootkits requires tradeoffs and
decisions, which in turn require information about rootkit strategies. Via the mathe-
matical field, they inform on selecting an appropriate focus for detection and prevention
efforts.

Existing rootkit detection methods Existing rootkit detection and prevention ef-
forts, excluding few exceptions, either focus on individual components or properties of
rootkits, utilize machine learning or are VM-based. Summaries of these methods [46],
[47] highlight these common approaches. Amongst the first class, detection based on
finding hooks[48]–[50], measuring performance impact[51]–[54], direct kernel object ma-
nipulation [55]–[57], API calls [58], process execution fingerprints [59], hidden files [60]
The second class includes usage of anomaly detection in memory artifacts [61]. Tian,
Ma, Jia, et al. [62] use machine learning to identify rootkits based on data collected
using virtualization. The third class is formed by papers such as J. Cui, H. Zhang, Qi,
et al. [63], which can find process blocks in memory samples collected on VMs. The
same technique should be applicable for physical machines, although collection of mem-
ory samples is less straightforward. Grimm, Ahmed, Roussev, et al. [64] find variants of
kernels of multiple initially identical VMs to revert changes made by rootkits. Yan, Luo,
Feng, et al. [65] use virtualization to enforce protected memory. Korkin [66] expand on
the idea by adapting a hypervisor to ensure integrity and confidentiality of allocated
kernel memory. Ahmed, Richard, Zoranic, et al. [67] check the integrity of function
pointers in the heap. Hua and Y. Zhang [68] detect rootkits using memory forensics via
virtual machine introspection. Korkin [69] discuss attack on Windows kernel to access
exclusively opened files and solves the issue by jailing kernel mode drivers in isolated
memory regions via the tool MemoryRanger. Lengyel, Kittel, Webster, et al. [70] point
out that virtual machine introspection based approaches come with their own risks and
may not be representative.

A recent paper by the name of “Nighthawk: Transparent System Introspection from
Ring-3” by Zhou, Xiao, Leach, et al. [71] addresses the common weakness of collecting
data about rootkits from within an infected system. It, instead, uses the Intel Manage-
ment Engine[72] to collect data. Note, however, that this approach does indeed offer
protection against tampering by kernel rootkits but is not impervious against other va-
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rieties[73]–[78]. Similarly, Soltani, Seno, Nezhadkamali, et al. [79] discuss architecture,
protocol, type of infection, communication interval, attacks and evasion techniques of
real bootkits in the wild and criticize the lack of research focusing on actual samples.

Other papers such as Tsaur [80] and Tsaur and Y.-C. Chen [81] provide proof of
concept implementations of rootkits undetected by preceding tools.
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4 Methodology
The research question was answered by the following seven steps. First, recent malware
samples were obtained (Section 4.1). From them, rootkits were filtered out (Section
4.2). It is beyond the scope of this thesis to completely analyze the functions and
intricacies of every rootkit. Instead, certain possible attack vectors a rootkit could
attack were selected (Section 4.3). Tests were developed to check if these vectors were
targeted (Section 4.4). Then, rootkits were executed on physical machines while tests
were running (Section 4.5). The execution traces collected were further analyzed to
determine the outcome of the tests (Section 4.6). Lastly, the data was quantified (Section
4.7).

4.1 Dataset collection
VirusTotal [82] provided a selection of non-specific malware samples via an academic
agreement enabling downloading for the period of six months, starting on 2019–08–27.
A total of 486216 such samples, accompanied by reports in json format, ranging from
October 2017 to May 2019 were contained in the academic repository during the available
time. Samples were grouped into a number of categories, each in its own encrypted 7z
archive. The full list of these categories can be viewed in Appendix A.

As indicated, some of these categories were assumed to not contain rootkits, or
contain rootkits with such low density as to be irrelevant. Non-Windows malware was
disregarded as well.

Through a separate academic agreement, 129344 non-specific malware samples were
obtained from GData[83] in the period from October 2019 to January 2020. No grouping
exists for these files. As the detection names are unsuited14 for identification, all samples
have been used for the next step.

Further, samples obtained from VirusShare [84] and Osman Arif [85] were used for
testing, but are not included in the results of this thesis.

4.2 Filtering for rootkits
The remaining malware samples were analyzed statically using specific patterns, i.e.
certain word or byte sequences. Using a tool called Yara [86], these patterns have been
logically combined to filter out unlikely candidates for rootkits. A repository containing
such rules for specific malware as well as general malware classes, such as rootkits, has
been used[87].

In the subsequent step, resulting malware samples were executed in a live environ-
ment similar to 4.5 to determine whether they load a kernel driver. It is assumed that
all rootkits are unable to modify the kernel directly without such a driver. A snapshot
of a known good version of Windows10 was used. First, a list of loaded kernel drivers
was obtained via a program called Kernel Mode Drivers Manager by NoVirusThanks,
as shown in Figure 14. Next, the relevant file was executed, loaded or opened. After a
period of five minutes, another list of kernel drivers and their signatures were made. If
no changes of any sort (date, name, signature) occurred, the file was classified to not
be a kernel rootkit and discarded. In addition to checking for a loaded kernel mode
driver, the kernel memory region was compared to a known good state. This method
was implemented via an automatic batch script by opening the Drivers Manager, taking
a screenshot and uploading it to a remote Debian machine in the same network to check
for changes in the list of displayed drivers.
14at least according to my knowledge

25



Figure 14: A list of Windows Kernel Drivers.

4.3 Identifying vectors to analyze
As listed in Section 3, previous papers have provided extensive overviews of existing
strategies. Based on information obtained from rootkit reports and both published and
self-conducted disassemblies, these strategies were selected based on their suspected
relevance. It is assumed that an attacker already has full access on the system, so
privilege escalation or memory corruption attacks with the goal of executing code were
disregarded. Further, we only focus on hiding code, not data. While rootkits can
implement covert channels, it is assumed that they only become relevant if the easier to
detect processes that act on the data are hidden as well; a suspicious process remains a
threat regardless of whether it appears to handle data.

The following potential targets were selected as an answer for how rootkits could
continuously execute code in a hidden manner15:

Processes Rootkits need to hide the execution of code in some form. Processes,
instances of a program, are the common way to execute code, so we assume rootkits
might have an interest in hiding them. While processes provide simple and autonomous
execution, they are also fairly heavy and thus easier to detect. Windows Services [89],
a form of background process similar to Linux daemons, are included in this section.

Threads Processes may have one or more threads which execute concurrently. While
every thread is managed by a parent process, it is not sufficient to merely scan for
suspicious processes. Using a technique called thread injection, malware can attach a
thread to an unsuspecting otherwise harmless running program and does not need to
maintain a process. This injected thread can then be hidden.

DLLs DLLs provide library functions to be used by other programs. While a function
can be directly executed using RunDLL.exe, they are usually loaded by other programs
15While rootkits could use existing vulnerabilities such as buffer overflows to execute code, these attacks

rely on previous exploits and are easier to detect
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as needed. Malware could execute code in a benign process without having its own
process or thread by changing one of these internal functions. Additionally, it could
change the functionality of Windows DLLs like kernel32.dll and thereby modify the
way the system is supposed to work.

System functionality Given that a rootkit is assumed to have kernel access, it can
not just tamper with code executed through a program but also with code executed
directly by the system. The functioning of memory allocation (e.g. via malloc), program
scheduling, or the way the system enters ring 0 (e.g via the SYSENTER fast system call)
as well as other system calls might be compromised in some way.

Exceptions and Interrupts Exceptions and interrupts provide a way to temporarily
suspend a program and continue execution at a pre-defined other function. Usually, this
is used to handle higher priority applications, recover from unexpected program flow or
alert about the inability to continue the problematic execution. Rootkits might hijack
this functionality to run their own malicious code instead.

IRPs Interactions with devices are implemented via device drivers. A program that
wants to make a request to a device constructs an empty I/O request packet and sends
it to the corresponding top level driver. This driver does not necessarily have to directly
access the device; it forwards the request to a lower driver until the device itself is
reached. Then, the packet is filled with the requested data and processed one after
another by each driver in the stack until the cleaned up data is passed to the requesting
application. Should a rootkit add another driver into the stack or modify an existing
one, it could execute arbitrary code.

The rootkits kernel driver Note that the original kernel driver loaded by the rootkit
does not strictly classify as a means to execute hidden code, for reasons described in
Appendix E. Briefly summarized, a kernel driver is not hidden. In addition, kernel
drivers do not offer the flexibility of regular processes and may cause the system to
become unstable or even crash, both of which are undesired effects for malware that
should not be detected. It is assumed that rootkits only use their kernel driver for what
is absolutely necessary and use some of the above means to execute further code.

4.4 Experiment setup
Two kernel drivers were created for the purposes of stealthily collecting memory from
a physical machine and observing modified IRPs. To obtain memory samples, a kernel
mode driver to read the PhysicalMemory device provided by Windows was used. A
simple regularly scheduled file copy operation was used to dump the memory contents
to a file on disk [90]. The IRP driver was implemented as a simple device driver that
also copies the IRP content to disk[91], [92]16.

4.5 Executing rootkits
A physical machine running Windows 1903 equipped with an A12-9700p r7, 8GB DDR3
RAM and a 256GB SSD. This disk was completely wiped after each execution. Since
this paper only analyzes kernel mode rootkits but not bootkits, a wiping of the disk was
deemed sufficient. The device was connected to both the internet and a local Debian
machine that served as a PxE boot and a ftp server. Via network boot, a verified
16Implementation details can be found at https://github.com/emysliwietz/kernel_drivers
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iso of Windows 1903 including a registry tweak to enable remote command execution
(RemoteApps) and disabled Windows Updates, Windows Defender and User Account
Control was installed on the machine. This iso also already contained the memory
kernel driver. Once booted up, 5 minutes after the machine would reply to a ping from
the Debian server, a xfreerdp command was used to copy an executable rootkit sample
and a batch script to the machine. This script then executed the rootkit sample, waited
for 10 minutes and restarted the machine from disk in order to allow it to load the kernel
driver. Once booted up the second time and after giving Windows another 5 minutes
to settle, a memory sample was taken by the driver. This sample was then uploaded to
the Debian remote, the disk was wiped and Windows was installed again via PxE.

Before executing any rootkits, this setup was performed five times without executing
any rootkit in order to obtain known good states.

4.6 Collecting data
For each of the targets listed in Section 4.3, a reliable method had to be found to
determine whether a given kernel rootkit uses them. This section explains how this
decision has been made.

Processes To find processes, Volatility has been run on the full memory image taken
after installation of the rookit. The plugin psxview compares of other volatility plugins,
such as psscan, which identifies processes by the tag of the memory pool (POOL_HEADER).
pslist iterates over the linked list of EPROCESS blocks given by PsActiveProcessHead
as described in Section 2.3.1. All processes in Windows (unless modified by a rootkit) are
listed by id in a table called PspCidTable. The kernel function PsLookupProcessByProcessId
is used to determine whether a given process exist (e.g. to reuse the process id). Fur-
ther, when Windows boots up, it executes the client/server runtime subsystem
(csrss.exe), which in turn starts other processes and creates or destroys threads. In
theory, this process should have handles to the pid of every other process. This is queried
by the csrss plugin. A discrepancy between the output of these plugins has then been
analyzed manually.

Given that the execution environment is controlled, the list of benign processes
is already known (some irregularities may occur based on background tasks Windows
decides to execute, but discrepancies are minimal) Any additional processes are also
suspicious. A rootkit might use a technique called Process hollowing to deallocate a
running benign process and use the memory space for it’s own purpose. Such a process
would still be managed under the old name. As counteraction, the memory space of
all processes has been compared to a known good state. Moreover, similar filtering has
been done for services using svcscan.

Threads Similar to processes, threads have been found in the memory image via
the threads plugin, which enumerates the ETHREAD (or KTHREAD) linked list. Again,
the list of expected threads is known, but might have slight inconsistencies over multi-
ple runs. Since there are a lot more active threads then there are processes, multiple
memory snapshots in a good state have been combined to compile a list of benign
threads. This volatility plugin implements a number of tags, such as ScannerOnly,
which detects unlinked threads, AttachedProcess, which detects threads attached to
other processes, OrphanThread, which is able to find system threads that do not have
a corresponding loaded module (because it has likely been unlinked), DKOMExit, which
detects inconsistencies created by tampering with information stored about a given
thread, such as its exit time and HideFromDebug, which filters for threads that explic-
itly say they do not want to have debuggers receive events created by this thread via
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NtSetInformationThread.
Suspicious threads have been investigated manually via volshell.

DLLs DLLs included in the LDR_DATA_TABLE_ENTRY linked list have been extracted for
each running process from memory using the plugin dlllist with an offset specified by
the previous psxview run. malfind and ldrmodules have been used to find additional
dlls hidden through other means.

Two stages have been used to identify hooks:
First, the dlls were dumped via dlldump and compared to a good copy via binary

diffing. Should the DLL not differ (except for missing sections due to problems caused
by dumping the dll), it was considered unaffected by the rootkit. If they do differ, a
python script in a headless ghidra setup was used to dissassemble all functions in the
affected region. The output was dumped into a file for manual analysis.

Second, should a change in the dll have occurred as determined by binary diffing,
the dll was again analyzed via volatility. We chose for this order as dumping and
binary diffing happened to be more efficient than running the following plugins for the
given samples. From the literature it was implied that Import Hooks were the most
common in malware, so the entire interrupt descriptor table was dumped via impscan
and compared to a known good state. The common way to analyze other types of hooks
is provided by the apihooks plugin. However, the output of this tool is rather extensive
and would have been unwieldy to use for a larger sample size of rootkits. Instead, a new
recently presented plugin called hooktracer produces more accessible output ??. Since
the exact purpose of these hooks is not the main focus of this paper, this plugin suffices
to determine their existence. Note that hooktracer is only designed for userspace, so
apihooks was still used in certain cases.

System functionality As described in 2.2.4.4, rootkits may perform direct kernel
object modification in order to hide. To detect this, the Global Descriptor Table, re-
sponsible for storing information about memory segments has been dumped via the gdt
plugin and inspected for oddities. The contents of the GDT are not necessarily static,
so a known good state can be used for reference but not for direct comparison.

For the ssdt, a volatility plugin with the same name was used. While there are at
least two reserved such descriptor tables, we only analyzed the native and win32k one.
While a rootkit could install hooks in these tables, it would also need to implement
functionality for them, as they are currently unused, so it would in essence only hook
itself.

Additionally, a rootkit could install a callback to a system event, such as the creation
of a new process which the rootkit could then load a dll into or attach a thread to.
Callbacks were exported via the callbacks plugin and could be compared to a known
good state.

Exceptions and Interrupts The interrupt descriptor table was analyzed as above
using the idt plugin in verbose mode to include a dissassembly. It, too, could be
compared to a known good state.

IRPs It is infeasible for the scope of this thesis to listen to every single I/O re-
quest packet that is being send, but a rootkit could still hide functionality by swal-
lowing, changing the contents of or redirecting a packet. This was detected using a four
stage process: First, all loaded drivers and devices were exported via driverlist and
devicetree. Given that each selected rootkit installs a kernel driver, there always was
at least one driver to analyze. All non-suspicious regular drivers were also included in
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the next step. Next, driverirp in verbose mode was used to see which major functions
are implemented. If a function was redirected to a valid other driver or implemented
as expected in the case of regular driver as known from an uninfected scan, it was dis-
regarded. If the legitimacy of the implementation was unknown or the redirection to
another driver not obvious, the IRP kernel mode driver described in Section 4.4 was
inserted into the driver stack to collect IRPs handled the suspicious major functions,
once in the good and once in the infected state. Should the major function exist both
in the good and the infected state and no difference could be detected, the apparent
change was discarded.

4.7 Quantification of data
The 62 analyzed rootkit samples can be organized into the following families. For
reference to the respective hash associated with an ID, consult Appendix B.

1-4: Wapomi

7-11: Winnti

14-19: Zusy

26: CheatEngine

27: Sofacy

32-34: Mimikatz

39: Shadowhammer

43-44: Nimnul

47-50: MSILPerseus

53-58: Bladabindi

The remaining 29 samples are unclassified. The above steps where carried out for each
sample. Most of those samples tend to use relatively few strategies. If a certain strategy
is used, this will be noted in the following Section 5. This thesis explores what strategies
tend to be the most popular. Detailed descriptions of the way a sample uses a given
method are out of scope. Should a given method not be explicitly mentioned, it was not
used by the respective sample.
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5 Evaluation
The following section groups the largest families of rootkits used in this thesis, namely
those with more than three samples present, into their own paragraphs, as the similarities
between them are extensive. These families are already known, so documentation from
malware databases could be used to compare our findings. The remaining rootkits have
been grouped together into a single block.

5.1 Wapomi
Wapomi, as documented by Trendmicro [93], is a fairly old malware sample already
known in 2014. During the last six years, many variations of it have surfaced. The four
samples included here seem to have added a rootkit component to the virus. Wapomi
spawns a process called uninstall.exe as a child of csrss.exe, as is common in Win-
dows17. Samples 1 and 3 make an effort to hide the process, by unlinking the relevant
EPROCESS block in the kernel. While this suffices to hide in the TaskManager process
listing, a regular antivirus should be able to trivially identify the hidden process via
csrss, as described in Section 4.6. All other samples of this family do not appear to
hide a process or threat. The uninstall.exe file is copied to every attached storage
device. Wapomi then creates an AUTORUN.INF file to execute itself automatically once
the drive is inserted. The spawned process does not implement harmful functionality
itself, instead it downloads and executes additional code from a remote server.

Sample 2 and 3 change the appmgmts.dll file. This DLL controls Application Man-
agement, which is responsible for installing and uninstalling processes according to the
Group Policy. Both samples overwrite the installation routine by a stub, thereby en-
abling any user to install programs, regardless of administrator access.

All four samples attack mswsock.dll18. The Microsoft Windows Socket DLL enables
access to network sockets. The functions TransmitFile, AcceptEx, GetAddressByNameW
were altered. Unfortunately, documentation for this DLL is sparse and reverse engineer-
ing its functionality is out of scope for this thesis. Given that Wapomi downloads online
code, we assume these alterations were made to hide this network traffic or enable it to
pass through a firewall.

5.2 Winnti
Winnti, described in 2013 by Trendmicro [95], is a trojan which drops and executes an
internally contained DLL file. The differences between the five samples are due to dif-
ferent encryption algorithms used to obscure the file. Sample 10 uses a different internal
DLL while all other samples do not seem to differ significantly. Winnti executes the
extracted DLL using rundll32.exe. The spawned process in unlinked in the EPROCESS
list for all samples.

5.3 Zusy
A recently documented [96] trojan called Zusy was first spotted around 2018. It is
a dropper, it contains an internal file called windefender.exe which it extracts and
executes. Samples 16 and 18 do not appear to use any stealth techniques, while the
other instances of this family hide their EPROCESS blocks.
17compare to the init process in Linux
18The fourth sample tends to follow Trendmicro [94]
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5.4 Mimikatz
The 2019 trojan Mimikatz [97] drops a PowerShell script. It opens network interfaces
and tries to connect to various network addresses to send and receive files. In all three
samples analyzed, the execution of the script was not hidden. Mimikatz starts a number
of scheduled tasks19. Samples 32 and 33 did not hide any of those processes, while 34
unlinked the processes from the EPROCESS structure and the header-list. One of these
services is itself a PowerShell command powershell -ep bypass -e base-64 string.
It is unclear why this command is hidden while the original script was not.

A number of network addresses are accessed to brute-force SMB servers from a
stored word-list. Sample 33 made significant changes to Network.dll. The function
NetValidatePasswordPolicy is overwritten by a stub. Should Mimikatz gain access
to an SMB server, it creates a user called k8h3d. The given function is used to check
the provided password for minimum requirements, Mimikatz overwrites this function to
use a simpler password for its backdoor account. The functions NetUserEnum, used to
enumerate user accounts on a server and NetUserGetInfo, which provides information
on a user, have been overwritten as well. The precise alterations have not been tested,
but it is assumed Mimikatz changes these functions to hide its new account. Other
functions, such as NetUserGetGroups, can still be used to gain information about the
new account, although it needs to be known by name before. For the same reason,
NetUseAdd and NetUseEnum have been modified as well. These functions are responsible
for adding and enumerating network connections.

All three samples of Mimikatz modify the svhost.exe file. The service host exe-
cutable manages Windows services20, such as the Windows firewall, the updating service
and the Bluetooth daemon. The change made by sample 32 and 34 regards the service
scheduler, it has been adapted to schedule tasks at half the usual frequency. 33 instead
includes a check for the word “Defend” in the process title and does not schedule the
service if a match is found, presumably to disable the Windows Defender antivirus.

5.5 MSILPerseus
MSILPerseus [98] is a 2015 trojan. Samples 47, 48 and 50 hide the EPROCESS block of a
process spawned with a random name, while sample 49 does not seem to use any stealth
techniques.

5.6 Bladabindi
Bladabindi is a 2013 remote access trojan developed by a group named Sparclyheason[99].
Bladabindi extracts an internal executable file named after a random non-critical Win-
dows process. Samples 53 and 56-58 hide the EPROCESS block of this process, while the
remaining samples instead hollow out and take over the real process.

Then, Bladabindi tries to scan for usernames and passwords contained in files. The
regular Windows functions CreateFile, ReadFile and LocalAlloc are modified by all
samples. In the case of ReadFile, this allows Bladabindi to read files even if they
are currently written to by other programs. The reasons for changing CreateFile
and LocalAlloc are less clear. The malware likely stores files such as screenshots and
keylogger data on disk before sending it to a remote server, although this has not been
observed.

All samples make changes to winuser.h. The RAWINPUT structure stores information
about keyboard and mouse input. It, as well as WM_INPUT, a notification for a program
19processes that run in regular intervals
20similar to Linux daemons
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that new input is available, are slightly changed to re-route input towards the malicious
process instead. Bladabindi likely implements a key and mouse logger this way.

A number of other functions are overwritten as well. Samples 54, 56 and 57 over-
write GetDC, a function to take a screenshot. Whenever some other application takes a
screenshot, Bladabindi takes a copy of it. For likely the same reason, 56 and 58 modify
the functions OpenClipboard, EmptyClipboard and SetClipboardData.

All collected data is send to a command and control server. All samples except for 57
modify winnetwk.h, an API for Windows networking. WNetGetResourceInformationW
provides information on the owner of a given network resource. Bladabindi changes this
function to hide its own network usage. The NETINFOSTRUCT structure is modified to
set the member dwStatus to the fixed value ERROR_BUSY, likely to deter other processes
from attempting to close the connection.

Sample 55 strips checksums from usb IRP requests by replacing them with zeros.
While the reason for this is unknown, it might possibly be used to convey some kind of
hidden message or simply the presence of the rootkit on the system.

5.7 Remaining samples
A full list of techniques used by all remaining samples can be found in Appendix C.
The trend to use an internal process became slightly less important, only 7 unclassified
samples use this method for process execution, while 20 rootkits use threads for code
execution: Of those 19 processes, seven used EPROCESS block hiding, while twelve hol-

DLLs 20
threads 20
processes 19
I/E-Tables 3
descriptor tables 0
IRPs 0

Figure 15: Rootkits using method of code execution

lowed an existing process, reversing the trend of the rootkit families described above.
Nine processes removed their headerlist entry, three removed the csrss pointer, while
six removed their pcpcid trace. Changed DLLs have less overlap:

comsvcs.dll COM+ devices 3
rpcrt4.dll Remote procedure calls 3
shlwapi.dll Light shell API 3
winnetwk.h Networking 3
msvbvm60.dll Visual Basic VM 2
shell32.dll Shell 2

Figure 16: DLLs changed by more than one rootkit

The DLLs changed by the analyzed samples are somewhat unusual. While most
of them, like comsvcs.dll and winnetwk.h are expected, the first one for spreading
malware to attached devices and the second one for secure network communication,
other important DLLs, such as user32.dll, responsible for tasks related to a logged in
user, are left untouched.
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6 Discussion
As enumerated in Section 4.7, about half of all rootkits analyzed belong to a known
family with more than two instances. The cause of this trend might be due to the
provided data sets. Alternatively, the methodology for selecting rootkits might not have
been sufficiently random, since the focus has been on finding a number of rootkits, not
necessarily finding a diverse number of rookits. Still, the observation remains striking.
Should it reflect an underlying trend in wild rootkits, which it to some extend certainly
does, it seems to indicate that the population of active rootkits is not all that large. Quite
possibly, a principle similar to the Pareto distribution applies, where a large fraction
of active rootkits belong to a small fraction of families, although this thesis does not
include this claim within its scope.

Of course, these observations as well as all further points are not free from bias.
Rootkits pride themselves with being hard to detect, yet in order for me to be able to
analyze the sample, it had to have been detected and cataloged by one of my sources.
Antivirus companies tend to use signatures to find malware, it is easier for them to detect
already known malicious programs. Infection numbers where not provided, neither by
GData or VirusTotal. Although implausible, in theory, it might be possible that a
single rootkit sample is responsible for most real-world infections. Some rootkit families,
although large, might not be relevant. In addition, a sample size of 62 rootkits is certainly
not representative, the high rate of grouping might just be a statistical fluke.

Section 5 shows that most categorized rootkits tend to be older. Should it be repre-
sentative, the innovation rate of rootkits would not be very high. While this thesis does
not include research on the profitability of rootkits, the results hint that the return of
investment for a potential attacker is higher when copying and slightly modifying exist-
ing malware code instead of writing a new sample from scratch. Based on the threat
encyclopedia used in Section 5, some of the sample families also include members that
do not implement kernel functionality. It is conceivable that authors adapt existing
code to include small rootkit features, possibly to extend the lifespan of old malware by
reducing detectability.

Regarding the research question itself, the results indicate that changing the kernel is
difficult. Delicate changes, such as direct kernel object manipulation or modification of
jump tables cause a system to become unstable. Although rootkits using these advanced
features are very hard to detect on a working system, a blue-screen will certainly alert
administrators to investigate. The time needed to develop, test, and ensure stability of
delicate kernel changes is likely not worth the increase in stealth.

Targeting the EPROCESS, ETHREAD, headerlist and process hollowing have been the by
far most popular strategies. They are fairly easy to implement and provide the desired
result of increased stealth without affecting system performance or stability. While not
difficult to detect for antivirus engines, the relative ubiquity of documentation on these
techniques likely implies that implementation source code is widely circulated, making
its cost to utility calculation very favorable.

A large percentage of rootkits focused on simple and fairly non-intrusive changes,
such as overwriting DLL functions. Interestingly, there do not seem to be any common
functions that are overwritten. Likely, malware authors look at their specific use case,
such as not to modify too much, which increases chances for detection. Possibly, changes
here are not pre-made, like in the case of EPROCESS blocks, but implemented by the
malware authors themselves. DLL code is much simpler than kernel code, malware
authors presumably have some level of familiarity with it.

An unexpected trend was the large emphasis on network functions. There seems to
be a need to bypass on-host firewalls and not appear in traffic logs. Two potential causes
exit: Either, firewalls such as the one included in Windows are fairly competent and
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require malware authors to bypass them, or the indented audience for malware targeting
are not just private individuals but also corporations who utilize more extensive network
controls.

This observation, in turn, allows making predictions about commonly installed an-
tivirus engines. If most systems use these scans, rootkits would need to hide better.
Given that there is inconsistency and a certain sloppiness in the way rootkits hide, for
example by unlinking their EPROCESS but not their csrss entries21, most targets likely
rely on no or very rudimentary antivirus engines.

Rootkits tend to favor simple techniques for hiding, the kind that has been around
for longer and is well documented. It is unclear whether this is due to the education
level of rootkit authors, many of which likely entered the profession because of economic
hardship, or due to a return on investment calculation. Every change made on a system
needs time to develop, adds additional complexity for maintaining the software and in-
creases the overall footprint. Attackers might be hesitant to include higher level features
or a large number of features for these reasons, instead focusing on the bare minimum.

Malware comes in iterations, once detected, authors make small changes and try
again. Additional rootkit features can be included in later iterations, to get a head
start for generating profit by releasing the malware earlier. Should the first iteration
turn out to be easy to detect, including a large number of rootkit features might be
devastating. The samples will likely be analyzed quickly and the features included in
signature detection, nullifying previous development work.

Most rootkits follow previous proofs of concept by researchers. Most stealth tech-
niques have been first demonstrated in an academic context before wild rootkits adapted
them. Presumably, authors of commercial rootkits for targeting individuals work alone
or in small teams, leaving little room or resources for innovation. While this implies that
most wild rootkits will never be truly surprising, it seems to be sufficient for generating
profits.

Naturally, this finding leads into a question of ethics. As shown in Section 1, rootkits
cause a lot of damages, some of which could surely be prevented by not publishing new
academic rootkits or parts of their implementation. This thesis does not take position
on this issue. However, it itself is questionable: malware authors looking for ways to
stand out might use it as a starting point. Although the thesis does not discuss the ease
of detection of the presented strategies, a high emphasis on one of them by the analyzed
samples hints to either a relative obscurity of that strategy or a very high chance of
detection when using it.

Of course, none of the presented techniques are novel, malware authors likely already
know them and are able to obtain much greater insight than this thesis provides. While
this thesis is undoubtedly of some value to rootkit authors, if only to know what their
competitors are doing, the benefit provided by further research to hone in on the few
strategies used by rootkits outweighs this cost. Knowing about these strategies and
their popularities in wild rootkits allows for improvements of antivirus engines, hopefully
reducing the general number of rootkits.

21which wouldn’t cause too much more overhead
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7 Future Work
The arms race between malware authors and analysts is constantly advancing, so it is
questionable how relevant the findings presented in this paper will be in the future. As
researchers focus more on the most widely used stealth vectors, malware might shift
to other known hiding methods. Given the complexity of an operating system, new
methods to hide may be discovered and abused. Of course, future updates to Windows
could change kernel functionality and both make some methods obsolete as well as open
up new possibilities for rootkits. It is further possible that rootkits will shift from mostly
targeting Windows to other operating systems and kernel structures.

It is difficult to determine how representative the findings of this paper are to the
larger population of both recently written as well as currently circulating rootkit samples.
Antivirus companies have deeper insight into malware that is currently being detected
on real systems, and could therefore make stronger claims in this regard. A larger sample
size from a large number of sources and the analysis of more rootkits would also provide
results closer to the real distribution.

The collection and analysis steps still rely on manual guidance and intervention.
Automated approaches might be used instead to build a pipeline capable of compiling
information about a number of stealth vectors for any given binary. Such a solution
would work in much the same way as this paper analyzed rootkits but in a single
integrated package such as a web-service. Such a product would make it easier to
integrate the methods outlined in this paper into other related work. Potentially, every
sample uploaded to VirusTotal or similar services could be analyzed in this way, giving
researchers and software providers much wider and more up to date insight into rootkit
trends.

As discussed in Appendix ??, the method to separate rootkits from other malware
is not perfect. Some rootkits that only briefly execute and then leave their kernel driver
unloaded have not been identified in this paper. Potentially, the same method but with
more frequent checks for loaded kernel drivers might catch additional samples, but we
deem this to be unlikely for reasons described in the appendix. The combination of
custom build tools using complementing for the purpose of identifying kernel rootkits is
preferred and would help to ensure a more representative dataset.

Emphasis has been placed on a stealthy collection of data, but it is still potentially
possible for rootkits to notice the presence of kernel mode drivers. Lower-than-operating-
system methods to obtain memory samples, for example through a hypervisor would
eliminate the chance of rootkits changing their behavior because of the presence of
unknown drivers. A solution using the i2c [100] serial bus was planned for this paper
but ultimately abandoned due to issues regarding the availability of needed hardware
and the resulting time constraints. Using this technology, the memory control unit could
potentially be directly accessed through the Intelligent Platform Management Interface
[101] and would be untraceable to rootkits. As this method was not physically explored,
we cannot make claims about its suitability for this research.
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8 Conclusion
Rootkits are made to generate profit. While many possible stealth strategies exist, every
change made to the kernel is a liability. Rootkits are meant to hide, an unstable system
alerts attention. Therefore, rootkit authors favor stability over complexity. Too many
changes, even if each one of them increases stealth on its own, might have unpredictable
side effects. Attackers choose to use the least amount of features to be sufficient, both
to save on development time and to maximize profits. Intellectual property laws do
not apply to already illegal rootkits. Authors copy known and trusted changes, such
as process hiding, and stay away from more complicated, riskier and less documented
features. This trend reverses on a non-kernel level. Changing DLL functionality is still
risky, but malware authors are likely more familiar with the code base. Tailored changes
can be made in-house, suited to a given rootkit, instead of simply adapting existing code
as is done for kernel changes. Malware goes through iterations, additional features may
be added later on. Circulating malware is not necessarily a finished product, prototypes
and forks of other projects exist as well. Rootkit families group together and implement
similar functionality. Subtle differences between code are uncommon, malware instead
tends to remove or add certain features one at a time. Of course, these results have
been obtained with a relatively small sample size of current rootkits. It is left to future
research to validate the relevancy of these findings or to document changes rootkits
might make. As antivirus engines get more powerful, it is to be expected that rootkits
follow.
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A List of Categories obtained from VirusTotal
VirusTotal provided a zip archive with many categories of malware. Some of them have
been used to filter for rootkits, while other have been discarded. The following table
briefly describes all families and whether they were a part of this thesis:

Category Description Used
2018-06-miners Cryptominers No
7ZIP 7z archives Decompressed
ACE ACE archives (legacy) No
Android android apps No
Apple software
package

MacOS software No

ASF Microsoft ASF encoded videos No
BMP Bitmap images No
BZIP BZIP archives No
C++ C++ source code Scanned for inline asm, function-

s/routines associated with rootkits
C C source code See above
CAB Cabinet archives Decompressed
COFF Unix executables No
Debian Package Debian (Linux) software No
DOS COM MSDOS scripts No
DOS EXE MSDOS executables Yes
DZIP NN compressed archives No
ELF Unix executables No
Email Email backups and attachments Yes
Flash Adobe flash No
Fortran Fortran source code No
GIF Animated image format No
Google Chrome
Extension

Browser extensions No

GZIP GZIP archives No
Hangul Word
Processor docu-
ment

Korean documents No

HTML HTML documents No
iPhone iOS apps No
ISO image disk images Yes
JAR Java executables Yes
Java Java source code Scanned for functions/routines as-

sociated with rootkits
Java Bytecode Java byte Yes
JPEG image files No
Linux RPM
package

RedHat (Linux) software No

Mach-O Apple executable format No
Macintosh Disk
Image

MacOS disk images No

MIDI sound files No
Mozilla Firefox
Extension

browser extensions No
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mp3 audio files No
MP4 video files No
MS Excel
Spreadsheet

tabular documents (VisualBasic
macros)

No

MS PowerPoint
Presentation

presentations (VisualBasic macros) No

MS Word Docu-
ment

text documents (VisualBasic
macros)

Network capture Package capture files No
Office Open XML
Document

text documents No

Office Open XML
Presentation

presenations No

Office Open XML
Slide Show

presenations No

Office Open XML
Spreadsheet

tablular documents No

Outlook Email backups and attachments Yes
PalmOS PDA software No
Pascal Pascal source code No
PDF PDF documents Yes
Perl Perl source code No
PHP PHP source code No
PNG image files No
PostScript PostScript documents No
Python Python Source Code No
RAR RAR archives Yes
Rich Text For-
mat

text documents No

Shell script Unix scripts No
TAR TAR archives No
Text text files No
TrueType Font Fonts Yes
unknown various Yes
Win16 EXE 16bit MS executables No
Win32 DLL 32bit MS libraries Yes
Win32 EXE 32bit MS executables Yes
Windows In-
staller

MS software Yes

Windows short-
cut

MS shortcut files No

XML XML documents No
ZIP ZIP archives Yes
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B List of Samples
In total, 62 samples were identified as rootkits and further analyzed. Given the differing
naming conventions of antivirus engines, the author included a best guess to identify the
rootkit, if possible. This guess need not always be acurate. All samples used have been
uploaded to VirusTotal22, refer to the SHA-256 hash for further information. Multiple
versions of the same rootkit family were included. In most cases, changes tend to be
rather small, although some of them, i.e. Wapomi changed their behaviour between
versions. For easier reference in the main thesis body, every sample has been assigned
an ID, which carries no further significance. GData seems to use the detection name
GenericKD to refer to kernel drivers. Since GData has not released any insight into
their naming scheme, this observation remains speculative. The following samples are
presented in no particular order.

ID SHA-256 Best
guess of
classifi-
cation

1 0ee76f971a666ca9f77f456a1493da1129fac9e40ca929040967e43f37e61777 Wapomi
2 124510769217fa8bd249e115438850714c9d70db0f607bdae6dc3f3f5bac0d8c Wapomi
3 c2781cd83f7178dccb76835e4b27bdcc789cb8470270e2576596ddd1f4a3e61e Wapomi
4 95c4d6f12e50e5f58c35c3df6dc031d32631096d6a2381725981a2e79335ec59 Wapomi
5 dafacefe134cf66f1213bded7af2ac8ea7a23d8f6c655842ed4d18c147e7673b ?
6 60cbb8bd1e20e998ec43710347c81cf9908f532386fba8b67534a7cf68eb6f54 ?
7 243e73ecb5ad479d4469baa8564aff89cd25a70de6cdc9e87817ddad2f315db3 Winnti
8 28810d2bba6b1fd8f1a6d2311e471f5723027bac1f0fb67108cc47f51c66c446 Winnti
9 8e12446077573842d0f22b1eecf470081652b1c12d84eedfdaaeeda2287d08fd Winnti
10 44a8846db20acc12af7c4d69f0d2bf2a20a29fbf6e7c0962631ed65b42487661 Winnti
11 b3882d96d300ce7664b1e90df1a919c45e2061b5729463ff588e0534bd1456a3 Winnti
12 d1468fe1caba5ce27f4c3e93c76081c17e709d5ed2df7916db72a28990aa1ef2 ?
13 69e966e730557fde8fd84317cdef1ece00a8bb3470c0b58f3231e170168af169 ?
14 89a2dfd11302952582f662df52eb782c0d86276a87a8c8bb845475f94b92af02 Zusy
15 a25f4b8b96f5f6ed734568eba9ae1aeea0fbf8f4b178d61d9bce64caead3d965 Zusy
16 0b921f2820c78f1e755f6a5e2e2e49e0a8b1d26f9e91e8bfc001c829fa207630 Zusy
17 3071875f2dd48b58f0ee708e5151bac2beb179672185a5210ea7023da0764d4e Zusy
18 0f7d3c7c5629810980b1b166c2fa9a5e44ce39d85df77930f60271adb55fb877 Zusy
19 75913f8871592331f96163952fea7fbdbbfd26fe88a152dc5db3084c7de4fbb0 Zusy
20 df935bfbd5b701eda758b780769c09be5d52e02d9c02ecdf934b321cbb285a72 ?
21 47633ca9e319d89a2abc44c5195c47531e94032a8b3b1e8f32f8dd51f315ae5f ?
22 2df7e28dc521f7a4a1538d8baf4523cfd478256be15f88feb944bae6f484721e ?
23 530ba7074523aa39d813e087e4b99bb005b9316db61ebcae0cbaee189ede1934 ?
24 0ede60d715c33a35684e80458d7b70ff987c0519767d51c56e4a30219b33cc84 ?
25 e204164ca564c612ff65261d187f8fb0cfe8482176f2adb2ef5a2a08b43ae199 ?
26 12ea61a67604c939ab7378764a768acc40118fab3a2035c79cad47fe03904e71 CheatEngine
27 25ff92ed61208513c0aec27cd3b4864f8f4604960a58d59310ec64a8706fb6f1 Sofacy
28 ac55ab499121685f81fff55bd39b855555e0490f5ed68aae93f864d403fa8666 ?
29 ef62be4e92283a790ae872e36e659fa2db7c1d30867e34ba06c3d4f780bb5384 ?
30 c242bf7553b3b3a2672183bb9c57fa06357d5740152401fb0819b50f461b0983 ?
31 505c8a348169e544a9f96c754e701fd8cb0648501a36849a9109868d8c045e4f ?
32 ff855ef9b9eaedc47f23d9e6d7db972fe09ddd8ba9fe8ba2eb7574703bc481b6 Mimikatz
33 1f3448353ff7980d1ae8fbfea09fdcd7471f8101cb4df30d6c117639da34e9f3 Mimikatz

22by third parties
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34 d19fb6c9b4d7b5ad3002ead50046e8999a80c95d863d647f57c8ca9ce104bd45 Mimikatz
35 d90aa414598046171ec6217a37d66797f1326fd4291bc2096e8c01a21c4a7d1c ?
36 9822e2055f8497ca24610bc34a29ffa2297a1980d2e2cddbd7c97c999cab722f ?
37 30d8b1272a764d0ad45442017256f43237ec813ce508da3bdb7e55de18374e1f ?
38 6733975e736f554dffb8cacc196160f6157d5b9b704ac017cb6a78488aa35576 ?
39 c2f4b5180fc4b351ec07b9d9bb745dade135e58dcfdeb96f6156684b68e80d2a ShadowHammer
40 ff22856d7fa4d982f5587a8a60b421fc9129470aab79287db28b5cc04e6eac4b ?
41 b11d8aa43f0343572c4c7c9cb7acd416d8b17e4ed322d07df0c1ae5cc23c3625 ?
42 c1e9a7d295731eab65bd6a371d885e0ad14553c79ced4a0a2aaa7d5fbdf0cadc ?
43 46b9a583ae9d0e403b6c8dfb19cb3cfbe455a32a5cffc33d8ae4c8fb44632d41 Nimnul
44 337ac7115411094d4ec42c43b11df2355473423ef48dd5a87976b53fd10c35d0 Nimnul
45 25a3eb871341cb91845a6e3fa5991cafddedc72a6638c810ea79278e94a12a53 ?
46 9b345259e76a48fb927101cecbd664fe7babb74dbb49b213e33cc737dcdb8ad7 ?
47 03a17d89936a37e43bf5ddcf477d914ac156268c672900bd2a64e1835e7bd3a8 MSILPerseus
48 7dea3ff5e383d70c4788661964f0f16900faa129f93fdc7e8bb84ecce6c0ec41 MSILPerseus
49 24b69fdface2ac9f9f9c31743ae628859355ed45b5b7a92f97eaf1bbb6aa5504 MSILPerseus
50 ac865bf57c99b7d95a8f8c9b143e4abb54d897e66ae97a86b0927e6f9e80c3bb MSILPerseus
51 c88504b4641e9798a300a203d2277100220babcb141c7abb6e88bafcdeaddf4a ?
52 b3691c3193077bf43dfd48f4b30a234a3ad02c3c74a185685ebd8a1fa096524d ?
53 070b88ec36f26bbe31c15baba7fa6608ecee0670c38df6e68f7b128b62bdc67d Bladabindi
54 a6e41d32e6807b13f546e29c8b4ee330157ee0174e216b1a07a37f6435734af3 Bladabindi
55 008ed01c46a66448de3c3eb7ae79953266371adbfe015bbf9ba65236e9ac6174 Bladabindi
56 0a76b32f57452e3121164c8ad1cd3060d386562586f87d99c3549c34efcb98f5 Bladabindi
57 0f622c328a2a04614b3e8f3267f91c771a5b0c527f0a8e0e0ca53250911464db Bladabindi
58 3925f2cedb3ca31ff8defc630e9b7a502cade5b677b596e09eade562da7c63c9 Bladabindi
59 dafacefe134cf66f1213bded7af2ac8ea7a23d8f6c655842ed4d18c147e7673b ?
60 a2c1e614395a02f8db2bb93719aaa490b6a75db000cb6e92eda0113886d653c7 ?
61 b4b74f8abd41806679ff85777cdded1dceaef0c0759156b105279b4a8f2f4cdb ?
62 c092db06e52a5477e2fb6093ae93ce2d8355389fd599381a22218b3eda30263d ?
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C Unclassified malware evaluation
A summary of changes made by every unclassified malware sample:

5

• Orphan thread

• Changes to winnetwk.h

• Changes to rpcrt4.dll

• Changes to shell32.dll

6

• Unlinks ETHREAD block

• Orphan thread

12

• Unlinks EPROCESS block

• Removes headerlist entry

• Changes to winnetwk.h

13

• Process hollowing

20

• Process hollowing

• Removes csrss entry

• IAT hook in msvbvm60.dll

• Changes to kernel32.dll

21

• Process hollowing

22

• Unlinks EPROCESS block

• Unlinks ETHREAD block

• Removes headerlist entry

• Removes csrss entry

• Removes pcpcid entry

• IAT hook in comsvcs.dll

• Changes to shlwapi.dll

• Changes to crypt32.dll

• Changes to system32.dll

23

• Nothing

24

• Process hollowing

• Changes to winnetwk.h

• Changes to shlwapi.dll

25

• Unlinks EPROCESS block

26

• Unlinks EPROCESS block

• Removes headerlist entry

• Process hollowing

27

• Unlinks ETHREAD block

• Orphan thread

28

• Orphan thread

• Removes pcpcid entry

• Changes to ntdll.dll

• Changes to rpcrt4.dll

29

• Process hollowing

• Unlinks ETHREAD block
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30

• Unlinks ETHREAD block

• Changes to rpcrt4.dll

31

• Unlinks EPROCESS block

35

• Unlinks EPROCESS block

• Removes headerlist entry

36

• Process hollowing

• Removes headerlist entry

• IAT hook in comsvcs.dll

37

• Unlinks ETHREAD block

• Orphan thread

38

• Unlinks EPROCESS block

• Removes pcpcid entry

39

• Unlinks ETHREAD block

• Removes headerlist entry

40

• Orphan thread

41

• Unlinks ETHREAD block

42

• Process hollowing

• Removes headerlist entry

43

• Nothing

44

• Unlinks ETHREAD block

• Changes to ws2_32.dll

45

• Process hollowing

• Removes headerlist entry

• Removes pcpcid entry

46

• Process hollowing

• Removes headerlist entry

• Orphan thread

• Unlinks ETHREAD block

51

• Hook on raw input data interrupt

• Changes to winnetwk.h

52

• Unlinks ETHREAD block

47

• Process hollowing

• Changes to LogiLDA.dll

• IAT hook in comsvcs.dll

• EAT hook in comsvcs.dll

• Changes to shlwapi.dll

59

• Unlinks ETHREAD block

60

• Hook on raw input data interrupt

• Removes csrss entry

• Removes pcpcid entry

• Changes to shell32.dll
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61

• Unlinks ETHREAD block

• Changes to advapi32.dll

• IAT hook in msvbvm60.dll

62

• Process hollowing

• Hook on shutdown interrupt

• Removes pcpcid entry
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D The case against VMs
Given the low level implementation of the features being used by rootkits, it must be
assumed that rootkit authors posses an in-depth understanding of lower level system ar-
chitecture and system internals. Because of this, rootkit authors are likely also capable
of subverting a hardening VM guide that can be found relatively easily via a web search
As the evaluation of a VM hardening script has shown [102], even after applying all mit-
igations, VMs still expose three times as many indicators of being a virtual environment
as physical machines do. Virtual machines also mask themselves using generic hardware
and predictable specifications (generic CPU model, standard memory bandwidths, etc),
which provide clues about the platform not being physical. Furthermore, the majority of
related work uses virtual machines. The usage of physical machines explores the lesser
known path.
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E Kernel drivers and their use as a selection criteria
for rootkits

Detecting a loaded kernel driver has been used as the final method to separate rootkits
from other malware. The following section will discuss this choice.

Windows represents a kernel driver using a structure called DRIVER_OBJECT. In it,
information about the driver, the devices that are supported and the main functions used
to control it are provided. Additionally, an indirect member called KLDR_DATA_TABLE_ENTRY
contains additional information, including the entry point of the driver (PVOID EntryPoint)
as a void pointer. Drivers are initialized by calling their DriverEntry routine and may
chose to provide an Unload routine[103].

As previously discussed, a kernel rootkit per definition has kernel access. This access
can be realized either through a driver provided by the rootkit or an exploit in the
existing Windows kernel or an unrelated third party kernel driver which happens to be
loaded. For the purpose of this paper, the possibility of a zero day in the NT kernel
exploited by already detected rootkits is deemed as exceedingly unrealistic. As the
Windows image used for tests is minimal and does not contain additional kernel drivers
besides those shipped with a default Windows installation, there are no third party
drivers that could be exploited for kernel access. A kernel rootkit, not a bootsector or
firmware rootkit, both of which are out of scope, thus has to load a kernel driver that
has not been there before and thereby increase the number of loaded modules.

In principle, the software used to list all loaded drivers might not detect the additional
driver, for one of three reasons:

1. A bug specific to the software causes it not to find certain drivers

2. The malware knows about the software and actively subverts it before loading a
kernel module

3. The rootkit hides its own kernel module such that the software does not list it

Given that the software is proprietary, option one could indeed happen, but assuming
the rootkit does not actively hide, it would be very unlikely for any one drivers loading
procedure to differ significantly enough from those of other drivers to trigger such a
bug. We perceived this risk to be small enough to accept it. In principle, the issue will
persist but can be made even smaller by using a second or a third method for listing
kernel drivers, but no guarantees for completeness can be made unless a formally verified
implementation is presented.

Similarly, the second possibility is valid but highly unlikely. To our current knowl-
edge, no malware using this trick has been observed. A slightly more probable approach
for malware upon finding that the software is present might be to decide they are in a
monitored environment and not install the kernel module. However, the software was
only copied to the machine after the initial reboot, meaning that the kernel driver was
already loaded before the malware could make any decision based on the existence of
the software. While the malware could sit dormant and listen for this exact program
until a certain number of restarts has occurred, we deemed this extremely improbable
and accepted the risk.

The remaining possibility is similar. While a rootkit could potentially implement a
kernel driver with significant differences, for example an initialization routine other than
DriverEntry, by instructing the linker, a kernel driver is only useful if it can interface
with the kernel. It is conceivable that the driver of a rootkit is not described though a
DRIVER_OBJECT structure but in a custom struct accessed via some custom bridge, but
then that bridge needs to communicate with the kernel. A kernel driver can theoretically
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be obscured to a point that its purpose is completely unrecognizable, but some part of
it needs to be loaded via standard means for it to serve any function. Since the purpose
of a driver does not matter for our purposes and the number of loaded drivers does not
change, our solution may still be used.

Another potential problem might be a rootkit that goes further than hiding. Assume
a rootkit that loads a driver, which immediately performs some functions and promptly
unloads itself, all in the span of a few milliseconds. While the usefulness of such a rootkit
is debatable as it could not hide changing malware, it would be falsely classified as not
a rootkit by our method.

Note that this work does not focus on providing a completely accurate method for
finding all kernel rootkits in a given malware population.
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