RADBOUD UNIVERSITEIT NIJMEGEN

£ %
S F
>=% @)
1, &
Mine €

Trezor One side-channel analysis setup

BACHELOR THESIS COMPUTING SCIENCE

First Supervisor:
Author: Lejla Batina

Ellen Gunnarsdéttir :)
Second reviewer:

Lukasz Chmielewski

June 2020

Abstract

Hardware wallets were designed to keep cryptocurrencies safe in the
hands of their owners. However, not all hardware wallets seem to be
designed with the threat of these wallets in mind. They remain
appealing targets to criminals because of the great reward one might
come across when these wallets are "broken” (E.g. at current date,
25-06-2020, 1 Bitcoin equals about 8222 euros). In order to counter
these criminals and prevent those of ill intent from stealing
cryptocurrencies, it is extremely important to find vulnerabilities of
these hardware wallets before them. Then the vulnerabilities can be
patched before they are exploited. Furthermore, we might prevent
these same mistakes from being made again in the future. One of these
wallets is Trezor One from Satoshilabs. It is not only appealing
because of the vulnerable micro-processor they use, but also because of
its low price and open source repository. In this thesis we show how a
researcher might go about the first steps of performing a side channel
analysis on Trezor One. We first lay the groundwork for understanding
of these devices and the cryptography used by Bitcoin. Then we
establish communication with Trezor One and describe how to prepare
for a side channel attack.

Contents

[1__Introduction|

B Preliminarics
[2.1 Classical cryptography| . .

2.2 Mathematical preliminaries|

[2.2.1 Discrete logarithm problem|

[2.2.3 Elliptic curves| . .

[2.3 Elliptic Curve Digital Signature Algorithm (ECDSA).

[2.3.1 ECDSA signature generation|

[2.3.2 Scalar Multiplication| 0.

[2.4.1 Online Template Attack (OTA)

[4.2.2 trezor-firmware/legacy/makefile|

4.2.3 Upload firmware| .
E27 Toialze dovicd . .

B Verificationl

[5.1 Changing the default backup screenl

[5.2 trezorctl sign-message| . .
[5.3 Initial readings|

|6 Analysing the observed patterns|

7 Carrying out the analysis|
[7.1 Improvements|.
[7.1.1 Installing a Trigger|

[7.1.2 Automatic confirmation of signature generation|.

[7.1.3 Bash script|
[7.2 Extracting the private key|

I8 Mitigation|

9 Conclusions|

© © 000~~~ O O Ut ot 'S

©

10
11
12
12
12
12
13

13
13
13
14

15

18
18
18
19
19
19

20

20

1 Introduction

With cryptocurrencies in growing popularity over the years it is increasingly
important to ensure the safety of ones coins. In order to do so, the private key
associated with the wallet of the owner must be kept secret. This private key must
never be intercepted, for it is with this key that the owner of any cryptocurrency
verifies its ownership. To ensure the safety of the private key, hardware wallets
have been developed to store the key offline and carry out any computations that
involve it. This way, the key never leaves the hardware wallet.

One might think that the only way to exploit these wallets would be to find
errors and vulnerabilities in the software used to communicate with the wallet, or
in the firmware used by the hardware wallet itself. However, the computations
performed on the micro-processors of these devices make them susceptible to all
kinds of leakage such as power consumption leakage. This makes the wallets
vulnerable to side-channel power analysis attacks. To keep these devices safe, it is
important to constantly challenge their security, and find vulnerabilities before
those of malicious intent.

Contributions Ledger is a company that is dedicated to provide secure
hardware wallets and actively researches vulnerabilities of existing hardware
wallets. E.g. The Ledger Donjon team has successfully recovered a scalar using
side-channel analysis on the Trezor One hardware wallet from SatoshiLabs.

However, there seems to be little research on how to successfully communicate
with a device such as Trezor One, and how to bridge the gap between the setup
and the analysis itself. For this purpose, Ledger Donjon uses Lascalﬂ Lascar is a
tool developed by Ledger Donjon that communicates with the Trezor One device
(and other similar devices), stores the read traces, and processes them for the
attack.

In this thesis we look into how to make a setup for power analysis on Trezor
One with the intent of extracting the private key from the target device without
the use of a tool such as Lascar. We aim to present the necessary requirements for
such a setup, its practicality, and future improvements.

Structure First, we lay the necessary groundwork in the preliminaries, followed
by related work. Then, Section 4| gives a detailed description of how to build custom
binaries for Trezor One, and Section [o| verifies the success of these binaries. Section
[6] describes our side channel attack setup and our pattern analysis of the signature
generation. In Section [7] we look into how this setup can be used to extract the
private key, followed by a brief discussion on the mitigation of side channel attacks.

https://github.com/Ledger-Donjon/lascar

2 Preliminaries

2.1 Classical cryptography

As far as records go back, there has been need for secure and private
communication. Traditionally, people would use some sort of encryption to achieve
confidentiality. Encryption schemes change the original message using a shared
secret key e such that the message is illegible to someone that does not have access
or knowledge of the encryption key. Cryptosystems using the same key for
encryption and decryption are called symmetric ﬂ The problem with this
approach is that there is no given way to safely distribute and manage the keys.
This proves to be quite a challenge. [1]

In Asymmetric cryptosystems there is no need for a shared secret. Asymmetric
cryptosystems rely on seemingly one-way-functions to ensure their security (e.g.
the difficulty of factoring integers into primes, and the discrete logarithm
problem). Using these functions, two keys are generated for every communicating
party: A private key and public key. Thus, deriving the private key from the
public key should be infeasible. In asymmetric cryptosystems the public key of the
receiver is used to encrypt the message. Then the only person able to decrypt the
message is the one in possession of the matching private key.|2]

A common analogy used to make this topic more understandable is thinking of
the private and public key as a physical key and lock. In order to exchange a
message, the receiver send his own lock (public key) to the sender. Then the
sender can use this lock to secure the message inside a box, and send the box to
the receiver. Finally, the receiver uses his own key (private key) to unlock the box.
This way, the receivers key never leaves him. Thus there is no way for an attacker
copy they key, or steal it. An attacker would have to find a way around the lock to
intercept the message.

In most cases, asymmetric cryptosystems are slower because they are
computationally more expensive, and consume more power than symmetric
systems. Hence, asymmetric systems are often used to securely exchange an
encryption key, that can then be used to carry on the conversation using a
symmetric system.

2.2 Mathematical preliminaries

The set of integers, denoted as Z, is a set comprised of zero, the positive whole
numbers, and their additive inverses. Thus, Z = {0,1,2,3,...} U {-1,-2,-3,...}.
The set of integers, 7Z, is a subset of QQ, thus in turn a subset of the real numbers R.

e 7* denotes the set of integers excluding the negative integers and zero,
zF={1,2,3,...}.

20ne can also have a separate key for decryption d in symmetric systems, but then the key d is
derived from e. Making the knowledge of e sufficient for decryption

e Let p be a prime number. Z,, denotes a cyclic group of order p — 1,
Zy={1,2,3,....,p — 1}.

e An integer r from Z, is a primitive root modulo a prime p if every nonzero
element of Z,, is a power of r[3].
2.2.1 Discrete logarithm problem

Let g be a primitive root mod p. For any integer I € Zy, there is an exponent e € Z,
such that

I =g°modp

Here, e is the discrete logarithm of I to the base g. With I, g, and p given, the
calculation of e (e = log,I) is considered to be difficult. There is no efficient
algorithm known for solving this problem[1].

2.2.2 Finite fields

Section 12.4, definition 3 in [3], describes a field as follows:

Let (S,+,-) be an algebraic system with two binary operations.
< 8,4+, > is called a field if:

1. (S,4+) is an abelian group
2. (S —{0},-) is an abelian group where 0 is the additive identity.

3. The operation - is distributative over the operation +.

A finite field is a field where the set S contains a finite number of elements.

2.2.3 Elliptic curves
The graph of an equation of the form
yvP=a3+ar+b

is an elliptic curve. The variables defined in this equation can be elements of a field
such as the real numbers R, the complex numbers C, or the rational numbers Q.
When it comes to cryptography, these variablies usually come from the finite field
Z:.12)

P

2.3 Elliptic Curve Digital Signature Algorithm (ECDSA)

Digital signatures make use of asymmetric cryptography to sign electronic
documents. They provide authentication to all parties and integrity of messages
sent. In some cases they can also provide non-repudiation. There are various
schemes, one of which is the Digital Signature Algorithm (DSA).

DSA was specified by the Federal Information Processing Standard (FIPS)
where they call it the Digital Signature Standard(DSS). The security provided by
DSA is based on the Discrete logarithm problem (DLP) in prime-order subgroups
of Z;, [4]. The Elliptic Curve Digital Signature Algorithm (ECDSA) is yet another
digital signature scheme, and a variation on DSA. Elliptic curves are often used in
cryptorgraphic situations because they offer great increases in speed without
compromising on security. They achieve this by using fewer bits, and thus require
smaller chips. Furthermore, they use less energy|2].

For ECDSA, one replaces the subgroup Z; with the group of points on an
elliptic curve E over a finite field. Hence, making the basis of the security for this
algorithm the elliptic curve discreet logarithm problem (ECDLP). ECDLP appears
to be harder to solve than DLP, making the strength-per-key-bit greater in elliptic
curve systems|4].

2.3.1 ECDSA signature generation

Given elliptic curve F, base point G, and multiplicative order of G as n. One can
generate an ECDSA signature with the following steps:

1. Select a cryptographically secure random integer & and compute:
(x1,91) = k x G (Where x is scalar multiplication)
Here, (x1,y1) represents a point on the curve.

2. r=x1 mod n

3. With message m. Choose an appropriate cryprographic hashing function H
and compute:
e = H(m)

4. With L, as the bit length of the group order n. Establish z as the L, left
most bit of e

5. With private key d. Compute:
s =k71(z +rd) (mod n)

The resulting signature is the tuple (r, s)[4].

2.3.2 Scalar Multiplication

In the ECDSA signature generation, we have to perform scalar multiplication.
There are various ways to implement this operation and the method chosen will
often rely on the type of hardware at hand. E.g. when there is only a small
amount of memory available, one might use the Width-w NAF method[5].
Numerous other approaches are defined in [6], such as the Montgomery ladder
algorithm.

The scalar multiplication performed in the signature generation of ECDSA is
an interesting target for side channel attacks. That is because by reading power
consumption leakage one can deduce the value of the aforementioned k. Then,
with the knowledge of k, the value of the private key (d) can be computed.

Computing d:
With k given, we know that: s = k=1(z + rd) (mod n)

1. Multiply both sides with &
sk =z +rd (mod n)

2. Move z
sk — z = rd(mod n)

3. Divide by r
d = sk—z

2.4 Side Channel Attacks

Side channel attacks are carried out by acquiring information on the target
through the implementation of the system. For example by monitoring timing of
execution|[7], power consumption leakage, or EM leakage[8][9]. When finding
targets for side channel attacks, one can thus look into many aspects of the
system. An attacker can try to exploit the hardware itself, access to the system, or
software vulnerabilities that surface because the hardware type or system access is
not being considered.

Side channel attacks are most often made with some gain in mind. Therefore,
cryptographic operations are often targeted. Reading power consumption of a
device during cryptographic operations and interpreting the information gained, is
a technique called Simple Power Analysis (SPA)|10]. SPAs are often grouped into
two categories|11]:

e Vertical: Where multiple execution curves (power readings) from the target
device are analysed and compared to each other.

e Horizontal: Where a single execution curve from the target device will suffice.

2.4.1 Online Template Attack (OTA)

Template attacks are a type of side channel attack. When carrying out a template
attack, the attacker first gathers traces (e.g. power consumption readings) from a
device identical to the target device. These traces are called templates. Then the
attacker compares the templates to traces caught from the target device.

The template attack technique described in [6] is referred to as an Online
template attack. With the use of this technique, one can recover a complete scalar
from one power trace of a scalar multiplication that uses this scalar. This template
attack is not a typical template attack since no template building preprocessing
phase is needed. The templates are created after acquiring the target trace. In
order to carry out an online template attack, the attacker needs only limited
control of the device that is used to generate the templates. With the most
important assumption being the ability to choose the input point to a scalar
multiplication. When carrying out this attack, the attacker will build templates
using the same input point as the one used in the target trace. Then, for every
scalar bit, the attacker builds one template and compares it to the target trace. If
the part of the traces that correspond to the manipulated bit match, then the
scalar bit was true. If not then the bit needs to be flipped. Looking at every bit
separately, the attacker can deduce the whole scalar. Thus, with the use of these
templates there is only need for a single template trace per key bit.

2.5 Trezor One

Trezor One is a hardware wallet used to store cryptocurrency. This hardware wallet
supports the use of Bitcoin, one of the most well known cryptocurrencies. The
system used to safely make transactions for Bitcoin is an asymmetric cryptosystem
that uses Elliptic curve cryptography. During a signing process, the private key
stored on the wallet will be used for the scalar multiplication. The power leakage
throughout this procedure indicates the power consumption of the device. This can
be read and used to extract the private key by performing e.g. an Online template
attack|6).

3 Related work

This field of work is actively researched and the progress made is rapid. During my
work on this thesis multiple articles have been released on research with the same
goal in mind. That is, reveal and fix security vulnerabilities using side-channel
analysis. The most notable article would be the Side-Channel assessment of Open
Source Hardware Wallets [12] published by the Ledger Donjon team. In this
article, Ledger Donjon describes three side-channel attacks carried out on Trezor
One. With one of these attacking the PIN authentication mechanism (which lead
to a code patch that circumvents this attack), and two other side-channel attacks

that they used to recover a scalar. These latter attacks were not seen as threats to
Satoshilabs because the attacker would have to get past the PIN authentication to
carry them out. Hence, the scalar attacks have not been patched.

Next to the PIN, and scalar recovery, Ledger Donjon and Kraken Security Labs
have launched two successful attacks [13|[14] where they extract the seed stored on
the Trezor One devices using hardware attacks. This seed can be used to recover a
wallet, thus giving anyone in possession of it complete access to the funds on the
wallet. Kraken security labs blog post explains how they successfully extracted
seeds from Trezor One and Trezor Model T with only 15 min of physical access to
the device. They did this with high voltage glitching which lowers the read
protection level of the processor from RDP Level 2 to RDP Level 1. Then with
further voltage glitching they were able to access RDP Level 0 functions that
should not be available at RDP Level 1. This allowed them to dump flash memory;,
and simply brute-force the 1-9 digit PIN protection. This attack can not be
patched by a firmware update and is possible because of the type of processor used
on Trezor One and Trezor model T. Kraken security lab thus demonstrated that
the TM32-family of Cortex-M3/Cortex-M4 microcontrollers are not suited for the
storage of sensitive data, even if it is encrypted.

The blog post on the seed extraction done by Ledger Donjon was less specific
in its approach. However, the necessary materials needed to launch this attack
cost around $100, and the seed extraction takes only about 5 minutes. According
to Ledger Donjon, this attack can not be patched by a firmware update. A
complete hardware redesign is needed in order to fix the vulnerability that they
encountered on Trezor One.

Ledger Donjon states that there is only one mitigation: The use of a strong
passphrase of about 37 random characters.

For a full list of previous issues addressed by SatoshiLabs, one can check out the
security page on their Websiteﬂ

4 Customized binaries

In order to perform a side channel template attack, we need to be able to customize
the firmware. That is because we want to be able to set the point entering the scalar
multiplication, and carry out the signature generation at our own accord. In order
to successfully carry out the power analysis that we describe here, the following
prerequisites are assumed:

1. The target device has no PIN authentication (Or the attacker has a way around
the PIN).

3https:/ /trezor.io/security/

10

2. The attacker has physical access to the device long enough to trace a signature
generation. Assuming the attacker is prepared, 10 minutes should be sufficient.

Furthermore, due to the vast variety of cryptosystems and protocols out there. We
will be focusing on the cryptocurrency Bitcoin.

SatoshilLabs has an open source git repository of their ﬁrmwardﬂ which
corresponds to the firmware acquired on their website, and thus will (most likely)
correspond to the firmware used by the target device. With this repository you
can make builds for Trezor devices, and flash them on the wallet. Thus, this
repository will be the basis for our custom firmware that we can use to build
templates for a side channel attack.

In order to work with the repository, understanding must be built on its
structure and inner workings. To aid in this, it is beneficiary to look into the
history of this repository. Initially, there were two repositories. One for Trezor
One, and another for model T. These two repositories were later joined to form a
monoreposiory that builds binaries for both models. The main directory of the
monorepository includes these previously separated repositories in the directories
‘core’ and ’legacy’ for the model T, and Trezor One respectively. These directories
work on their own and one can build a binary for each model using only the
directory corresponding to their model. However, one will see that some of the
folders included in these directories also stand in the main directory. Further
inspection revieals that these folders are no duplicates but symbolic links to folders
found in the monodirectory. Thus if one wants to change something in these
folders, they should be aware of this link. Hence, we see that the main directory
includes shared resources of Trezor One, and model T in files such as ’crypto’
which includes code for all cryptographic operations. Next to shared resources, the
main directory includes a single build script that builds binaries for both models
with the most recent version of the monorepository.

The first step of the setup for a side channel attack on Trezor One is to clone
this repository using git. Then, with Docker installed, run the script build-docker.sh
to check if everything functions properly.

4.1 trezorctl

With working firmware on the Trezor One device, we need to be able to
communicate with the device and carry out instructions. For this purpose,
Satoshilabs has provided its users with the python library trezorctl. You can use
this library to communicate with Trezor One through terminal commands. This
library achieves this with the use of protocol buffers (protobuf), which serializes
the given commands and sends them through to the connected Trezor One device.

“https://github.com/trezor/trezor-firmvare

11

https://github.com/trezor/trezor-firmware
https://github.com/trezor/trezor-firmware

This library can be used to upload customized firmware to the device, and
generate signatures for given messages.

4.2 Custom Firmware

For carrying out a side channel attack we need to be able to customize the firmware.
However, the firmware is built in a way that protects it from someone accidentally
changing their firmware. Furthermore, the build script is configured to always pull
the most recent version of the monorepository from online. This is not what we want,
thus there are several changes that need to be made to build-docker.sh and trezor-
firmware/legacy/makefile (See Appendix for altered files) in order to successfully
build customized firmware from the local repository.

4.2.1 build-docker.sh

When trying to build custom firmware for the first time, you will come across an
error. That is because the build script is set to detect custom firmware and warn
users of the change. In order to allow custom firmware, 'MEMORY_PROTECT’
needs to be set to zero. Furthermore, the build script will build two binaries for
both models. As the attacker will be making many builds, it is advisable to
remove the code corresponding to the build of the model that is not being used.
This will speed up the build process significantly. Additionally, one might want to
remove the loop which allows for a normal build, followed by a bitcoin-only build,
and choose only one of the two.

Next, the docker image will need acess to the local repository to build the
binaries. This can be done with the following line:

—v PATH:/trezor —firmware \

Where PATH is the path to the local repository.

Lastly, within the docker script, all lines starting with git need to be replaced
with corresponding local actions (See Appendix for resulting script, and list of
changes).

4.2.2 trezor-firmware/legacy/makefile

The changes made here are minor. The last line updates all submodules of the git
repository to the most recent version, this could overwrite any changes that you
made. Therefore, we simply remove this line.

4.2.3 Upload firmware

After successfully building the custom firmware. This firmware needs to uploaded
to Trezor One. The custom made binaries built in the build script build-docker.sh
can be found in the folder trezor-firmware/build/legacy/firmware/ (unless this

12

path was altered in the build script). Then, the following commandline option can
be used to upload customized firmware to the device:

trezortctl firmware—update —f firmware.bin

(Make sure the device is in bootloader mod@.

4.2.4 Initialize device

After uploading firmware onto Trezor One, the device needs to be initialized. That
can be done at https://trezor.io/start/. With the wallet initialized you will be
able to access the BIP32 path of your device (It should look similar to the following
path: m/44’/0’/0’/0/0). This path is needed alongside the master seed to derive
the private and public key of a device.

5 Verification

We carried out two tests that verify our ability to modify the code and execute it
on the Trezor One device. Furthermore, we looked into the feasibility of reading the
power leakage through the plastic casing and analysed the patterns observed in the
readings.

5.1 Changing the default backup screen

After initializing the device, the device will tell you that it needs backup. This can
be observed in Figure [I] We altered the text displayed here by modifying the file
trezor-firmware/legacy/firmware/layout2.c. In this file we changed the string
"NEEDS BACKUP!” in line 294, to "B”. This change can be seen in Figure

This alteration demonstrates the success of building and uploading custom
firmware onto the Trezor One device. However, for carrying out a side channel
attack, we are interested in changing the code responsible for cryprographic
operations. Therefore, we conduced a second test.

5.2 trezorctl sign-message

It is important that we have some way of executing the signing procedure and
modifying it on our own accord. Therefore, we were interested in changing the code
in the file trezor-firmware/crypto/ecdsa. cﬂ However, this proved a challenge
since importing any additional libraries (e.g. a library that provides some sort of
output text) made the bootloader to big to fit in the device. In order to check that
the command ’sign-message’ from the trezorctl commands does indeed make use of

5https ://wiki.trezor.io/User_manual-Updating_the_Trezor_device_firmware__T1
5The legacy firmware crypto folder has an established symbolic link from to here

13

https://trezor.io/start/
https://trezor.io/start/
https://wiki.trezor.io/User_manual-Updating_the_Trezor_device_firmware__T1
https://wiki.trezor.io/User_manual-Updating_the_Trezor_device_firmware__T1

Figure 1: Backup screen - unaltered Figure 2: Backup screen - altered

the signing procedure, we used of one of the already included library called 'stdlib.h’.
This library includes the function ’abort()’ which causes an abnormal termination
of the program when called. We found out that including it within the function
‘ecdsa_sign_digest()’” would halt the program and render all other operation on the
device inoperable until the device was disconnected and the corresponding USB port
was set free. This shows us that ’sign-message’ does indeed arrive at that point in
the file. Meaning that we are able to reach this point using ’sign-message’ which in
turn gives us the power to execute any existing or customized code hereafter.

5.3 Initial readings

An image included in shows us the location of the processor within the device.
Thus, we were interested to see if it was possible to acquire the readings without
opening up the device. That is, gather the readings through the plastic.

We found that the positioning of the probe was crucial and that we obtained
better readings from the backside of the device. Several re-locations of the probe
might be needed to attain proper readings. However, it remains to be seen whether
the acquired traces are sufficient for the power analysis. If they turn out to be
insufficient then the approach described in can be taken.

In Figures [3] and [4 one can see the patterns we observed when carrying out the
command:

trezorctl sign—message —n "m/49°/0°/0°/0/0” ”hi”

14

These traces indicate that we were successful in reading through the plastic.

e cH3a

8
7
6
5
4
3
2
1
i

-1

-2

-3

-4

-5

-6

10 20 30 40 50 60 70 80 a0 100

Figure 3: Readings through plastic when running tezorctl sign-message

12 CH37

ki
0 £ 10 15 20 28 0 35 40 45

Figure 4: Processed readings through plastic when running tezorctl sign-message

6 Analysing the observed patterns

For our second round of readings we used the oscilloscope Waverunner 9804M-MS
from Teledyne lecroy, in combination with the probe RF-U 5-2 from LANGER
EMV-TECHNIK, and the low noise amplifier HD24248 from Riscure. Figure
depicts how these components were connected. We then configured a trigger on
the high amplitude of the signal on the Oscilloscope. This trigger signals when
the Oscilloscope should start to record its readings. With the probe positioned
against the backside of Trezor One, the signals read from the probe went through the
amplifier and on to the Oscilloscope. The oscilloscope then in turn sent its readings
through to the computer where we ran the program Inspector from Riscureﬂ

We expected similar results as the initial readings, but came to find that the
last spike was missing, and that the spikes appeared less prominent.

The missing spike can be explained by the used of a looping script during the
initial readings. This script repeated the signing command in every loop followed
by a short sleep. With the capture window too big we interpreted the pattern
incorrectly, and thought that this was part of the signing process. When in fact,
this is the beginning of a new signing process.

The reason behind the spikes being less prominent is not as easy to identify.
This might be the result of several factors:

"https://www.riscure.com/news/inspector-4-12-released /

15

Computer o Oscilloscope

Trezor One Probe Amplifier

h

Figure 5: Connections

e Positioning of the probe
e Firmware update [f

e The use of a different probe

For this round we were interested to locate where the scalar multiplication
takes place in the traces as this is a requirement for many side channel attacks,
such as OTA.

We first gathered new readings of the baseline, acquired by running the original
code using the aforementioned command. The command was carried out before the
readings started. This prompts the reader to either confirm or cancel the generation
of the signature. After this we verified that we read the lower frequency traces seen
at the begin of Figure[6] This lower frequency indicates some sort of waiting state on
Trezor One. With these readings established, we confirmed the signature generation
by pressing a button on the device. This would then be caught by a trigger that we
configured beforehand on the oscilloscope (see Figure @

Secondly, we carried out the signature generation with the firmware configured
to halt during the process as described in Section This resulted in the trace
seen in Figure

In this trace we observe neither of the two peaks, indicating that the process
was halted somewhere during or before the first peak in the baseline.

8We did not yet have the altered build script at the time of the initial readings

16

10 20 30 40 50 60 70 80 90 100 110 120 130 140

Figure 6: Original code - baseline for second readings

Halted Code

*10 ms|
140 150

Figure 7: Halted code, with the use of abort()

Next, with a clean state we removed the call to ’scalar_multiply’ within
‘ecdsa_sign_digest()’, which results in a signing process without the scalar
multiplication. The trace from this operation can be observed in Figure

my No sc. n code

0 1D ms
0 10 20 30 40 50 60 70 60 40 100 110 190 130 140 150

Figure 8: No scalar multiplication

Here, we see that one of the initial peaks is no longer traced. Indicating that
the scalar multiplication can be observed in one of the two peaks. To confirm this,
we restored the call to ’'scalar_multiply’ and performed it twice, see Figure [9]

This last trace shows us that the second peak observed in the baseline
corresponds to the scalar multiplication. One can observe these traces zoomed in
on the second peak (the scalar multiplication), in Figures and From these
images, one can assume that the scalar multiplication takes place in one of the
blocks presented in Figure Finding the block that represents the scalar
multiplication could be accomplished by comparing two traces captured from the
same device where the only variance is the scalar itself.

17

my Double scalar multiplication code

] 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Figure 9: Double scalar multiplication

Oginal Code

410 420 430 440 450 460 470 480 440 500 510 520 530 540

Figure 10: Original code - zoom in on scalar multiplication

7 Carrying out the analysis

The setup described in the previous section is most likely sufficient for carrying out
a side channel attack such as OTA. That is because we have the ability to change
the point entering the scalar multiplication, and we do get characterized readings
through the plastic. However, there are several improvements that could be made
to this setup.

7.1 Improvements
7.1.1 Installing a Trigger

It is advisable to set up some sort of trigger for the oscilloscope within the
customized code. If the oscilloscope starts reading long before the targeted code is
executed then it will have read a lot of noise that needs to be cut out. If your
oscilloscope has sufficient memory, then this might not be a problem. However,
someone making use of oscilloscopes with limited memory will greatly benefit from
a trigger. Furthermore, with a trigger configured on the high amplitude of the
signal, the oscilloscope will sometimes miss the signature generation because of
variance in the leakage.

With a trigger included in the code, the analyst can also be sure of what the
traces read by the oscilloscope corresponds to within the code. See related work
[12] for an example of how a trigger can be installed.

18

Double scalar multiplication code

380 340 400 410 420 430 440 450 460 470 480 480 500

Figure 11: Double scalar multiplication zoom

7.1.2 Automatic confirmation of signature generation

With the current setup, one needs to confirm the generation of a signature with
a button click on the device. It would be advisable to look for this button click
within the code and make it automatic to speed up the process of template building.
Furthermore, if the device is not well secured during the tracing, then the button
click might cause disturbance in the readings. That is because the device might
move slightly due to the force of the button click.

7.1.3 Bash script

During the initial and second readings, we used a script that carried out the desired
trezorctl command followed by a sleep within a loop. Automating the process of
gathering the template traces and matching in a script would simplify and speed up
the analysis.

7.2 Extracting the private key

With a functioning setup, one would first have to gather the target trace. As
described earlier, the attacker would need physical access to the device long enough
to carry out a signature generation, or about 10 minutes. This should be enough
time to connect the Trezor device, secure it next to the probe, run the predefined
signature command, and re-position the probe for further readings if the initial
readings seem insufficient. When doing this, the attacker needs to make note of the
parameters used for the signature generation, so that he can match the point going
into the scalar multiplication on the templates.

Section describes how a private key can be computed with the knowledge
of the scalar. However, the targeted function 'point_multiply’ in ecdsa.c has already
been the subject of a side-channel attack [15] and has since then been patched
to protect against side-channel attack. Nonetheless, the Ledger Donjon team has
demonstrated that the countermeasure taken does not protect Trezor One from their
attack [12]. In this article they show how they retrieve a scalar from only one trace
of the execution of 'point_multiply’.

19

8 Mitigation

When it comes to the design of a device that handles sensitive data it is extremely
important to keep in mind the use of the device, and the access to the device.
There are many actions that can be taken to make the device less appealing, and
harder to break. Which in turn decreases the chance of a breach from someone of ill
intent. In order to mitigate side channel attacks, the designers of devices handling
sensitive data should keep up to date with cryptographic standards, use appropriate
hardware, and consider how appealing the device is to attackers.

Keeping up to date with the cryptographic standards for the cryptography used
on devices such as Trezor One is crucial for its success. Any vulnerabilities found
in the methods used on the device need to be patched promptly, because as soon
as they are found they can be exploited and pose a threat to every user. Users of
these devices should be alerted immediately of the threat, and the patched firmware
should be made available as soon as possible.

As seen in Section [B] the hardware itself also needs to be suited for sensitive
data. Every component handling this sensitive data needs to be capable of handling
it without being vulnerable to some sort of leakage. This can e.g. be achieved with
the use of components that are designed to handle sensitive data, or by shielding
the components from probes. Additionally, a device can be configured in such a
way that prying the device open will trigger a mechanism that wipes or corrupts
sensitive data.

Lastly, the appeal of the data stored on the device, and access to the device needs
to be kept in mind during design. For example, hardware wallets are extremely
appealing targets and thus will be targeted by attackers. This fact should motivate
the designers to protect the sensitive data on these devices from early on in the
design phase. This can be contrasted by e.g. a smart toothbrush. The data kept
on a smart toothbrush is less appealing to the average person, or group, and thus
there is less incentive for attackers to extract this data.

9 Conclusions

We have demonstrated that the Trezor One device from SatoshilLabs can be
successfully setup for a side channel attack. This is made possible by their open
source repository, vulnerable micro-processor, and accessibility. Custom binaries
can be built to suit the needs of any type of attack, and uploaded to the device.
This is further aided by the trezorctl library which offers great variety in
communication with Trezor One. Furthermore, we were able to gather traces with
the use of an oscilloscope through the plastic of the device, and locate the scalar
multiplication within the traces. The setup described in this thesis can be further
improved by the installment of a trigger within the code, automated button
presses, and a bash script which carries out all commands needed for the analysis.

20

From reported attacks on Trezor One, we can see that the wallet is relatively
secure if the attacker does not have access to the device. This comes from proper
implementation of the asymmetric cryptography used by these devices. Alas,
Trezor One seems to lack in the security provided by the use of appropriate
hardware and physical protection of components on the board. Omne could also
contemplate the disclosure of the code as open source, because this makes the
device more vulnerable to attacks. On the other hand, open source code gives the
company credibility. With the code open source, users are able to verify that the
data is properly handled, and users can build trust for the company. Like with so
many other aspects in life, this is a balancing act and there is no right or wrong
when it comes to open source.

Future Work This setup can be used to carry out a side channel attack. The
next step would be to e.g. attempt to extract the scalar. This could be done by
analyzing the function that carries out the scalar multiplication. This function has
been patched to protect against side channel attacks. However, there are bound to
be overlooked aspects or mistakes when it comes to such young technology that is
a constant subject to change.

21

References

[10]

[11]

Johannes A. Buchmann. Introduction to cryptography. Springer, 2004.

Lawrence C. Washington. Elliptic Curves: Number Theory and Cryptography.
Chapman Hall/CRC, 2003.

Kenneth H. Rosen and Kamala Krithivasan. Discrete Mathematics and Its
Applications. McGraw-Hill Education, 2013.

Don Johnson, Alfred Menezes, and Scott Vanstone. “The Elliptic Curve
Digital Signature Algorithm (ECDSA)”. In: International Journal of
Information Security 1.1 (Aug. 2001), pp. 36-63. 1SSN: 1615-5262. DOTI:
10.1007/s102070100002. URL: https://doi.org/10.1007/s102070100002

Katsuyuki Okeya and Tsuyoshi Takagi. “The Width-w NAF Method Provides
Small Memory and Fast Elliptic Scalar Multiplications Secure against Side
Channel Attacks”. In: Topics in Cryptology — CT-RSA 2003. Ed. by Marc
Joye. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 328-343.

Lejla Batina et al. “Online template attacks”. In: Journal of Cryptographic
Engineering (Aug. 2017). 1sSN: 2190-8516. DOI: 10.1007/s13389-017-0171-
8. URL: https://doi.org/10.1007/s13389-017-0171-8.

Paul C. Kocher. “Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems”. In: Advances in Cryptology — CRYPTO
’96. Ed. by Neal Koblitz. Berlin, Heidelberg: Springer Berlin Heidelberg,
1996, pp. 104-113. 1SBN: 978-3-540-68697-2.

Jean-Jacques Quisquater and David Samyde. “ElectroMagnetic Analysis
(EMA): Measures and Counter-measures for Smart Cards”. In: Smart Card
Programming and Security. Ed. by Isabelle Attali and Thomas Jensen.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 200-210. ISBN:
978-3-540-45418-2.

Karine Gandolfi, Christophe Mourtel, and Francis Olivier. “Electromagnetic
Analysis: Concrete Results”. In: Cryptographic Hardware and Embedded
Systems — CHES 2001. Ed. by Cetin K. Kog, David Naccache, and
Christof Paar. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001,
pp. 251-261. ISBN: 978-3-540-44709-2.

Paul Kocher, Joshua Jaffe, and Benjamin Jun. “Differential Power Analysis”.
In: Advances in Cryptology — CRYPTO’ 99. Ed. by Michael Wiener. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1999, pp. 388-397.

Christophe Clavier et al. “Horizontal Correlation Analysis on
Exponentiation”. In: Information and Communications Security. Ed. by
Miguel Soriano, Sihan Qing, and Javier Loépez. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 46—61.

22

https://doi.org/10.1007/s102070100002
https://doi.org/10.1007/s102070100002
https://doi.org/10.1007/s13389-017-0171-8
https://doi.org/10.1007/s13389-017-0171-8
https://doi.org/10.1007/s13389-017-0171-8

[13]

[14]

[15]

Manuel San Pedro, Victor Servant, and Charles Guillemet. “Side-Channel
assessment of Open Source Hardware Wallets”. In: SSTIC (2019). URL:
https://www.sstic.org/2019/presentation/side_channel assessment_
hardware_wallets/.

KRAKENFX. Kraken IDentifies Critical Flaw in Trezor Hardware Wallets.
2020. URL: https://blog.kraken. com/post/3662/kraken-identifies-
critical-flaw-in-trezor-hardware-wallets/.

Karim Abdellatif, Charles Guillemet, and Olivier Hériveaux. Unfizable Seed
Extraction on Trezor - A practical and reliable attack. 2019. URL: https :
//donjon.ledger.com/Unfixable-Key-Extraction-Attack-on-Trezor/.

Jochen Hoenicke. FExtracting the Private Key from a TREZOR. 2018. URL:
https://jochen-hoenicke.de/crypto/trezor-power-analysis/.

23

https://www.sstic.org/2019/presentation/side_channel_assessment_hardware_wallets/
https://www.sstic.org/2019/presentation/side_channel_assessment_hardware_wallets/
https://blog.kraken.com/post/3662/kraken-identifies-critical-flaw-in-trezor-hardware-wallets/
https://blog.kraken.com/post/3662/kraken-identifies-critical-flaw-in-trezor-hardware-wallets/
https://donjon.ledger.com/Unfixable-Key-Extraction-Attack-on-Trezor/
https://donjon.ledger.com/Unfixable-Key-Extraction-Attack-on-Trezor/
https://jochen-hoenicke.de/crypto/trezor-power-analysis/

10 Appendix

10.1 build-docker.sh
10.1.1 List
1. Set 'MEMORY_PROTECT" to zero.

2. (Optional) Remove code that builds the Trezor core binary file. We do not
need the .bin for the other device, thus we can remove it and the script will
run faster.

3. Give the docker image access to the local repository:

—v PATH:/ trezor —firmware \

Where PATH is the path to the local repository.

4. Remove all lines starting with g¢it, and replace their actions with corresponding
local actions (See appendix for resulting script)

10.1.2 Altered file

#!/usr/bin/env bash
set —e

if [7$1” = "—gcc_source”]; then
TOOLCHAIN_FLAVOR=src
shift

else
TOOLCHAIN FLAVOR=linux

fi

IMAGE=trezor —firmware—build . $STOOLCHAIN FLAVOR

TAG=${1:—master}
REPOSITORY=${2: —local}
PRODUCTION=$ {PRODUCTION: —1}
MEMORY_PROTECT=0

if ["$REPOSITORY” = ”local” |; then

REPOSITORY=file:///local/
else

REPOSITORY=https://github.com/$REPOSITORY/trezor —firmware. git
fi

24

docker build —t ”"$IMAGE” —build—arg TOOLCHAIN FLAVOR=$TOOLCHAIN FLAVOR ci/

USER=$(1ls —Ind . | awk ’{ print $3 }’)
GROUP=$ (ls —Ind . | awk ’{ print $4 }’)

mkdir —p $(pwd)/build/core $(pwd)/build/legacy
mkdir —p $(pwd)/build /core—bitcoinonly $(pwd)/build/legacy—bitcoinonly

build legacy
for BITCOIN.ONLY in 0 1; do

DIRSUFFIX=$ {BITCOIN.ONLY/1/—bitcoinonly }
DIRSUFFIX=$ { DIRSUFFIX /0/}

docker run —it \
—v $(pwd):/local \
—v $(pwd)/build /legacy” ${DIRSUFFIX}”:/build :z \
—v /home/ellen /trezor —firmware:/ trezor —firmware \
—env BITCOIN_ONLY="$BITCOIN_ONLY” \
—env MEMORY_PROTECT="$MEMORY _PROTECT” \
—user="3§USER:3GROUP” \
"$IMAGE” '\
/bin/sh —c 7\
cp —r /trezor—firmware /tmp/trezor—firmware && \
cd /tmp && \
cd trezor—firmware/legacy && \
In —s /build build &&
pipenv install && \
pipenv run script/cibuild && \
mkdir —p build /firmware && \
cp firmware/trezor.bin build/firmware/firmware.bin && \
cp firmware/trezor.elf build/firmware/firmware. elf”

done
10.2 trezor-firmware/legacy /makefile
ifneq ($(EMULATOR),1)

OBJS += startup.o
endif

25

OBJS += buttons.o
OBJS += common. o
OBJS += flash .o
OBJS 4= layout.o
OBJS 4= oled .o
OBJS += rng.o

ifneq ($(EMULATOR),1)
OBJS 4= setup.o
endif

OBJS 4= util.o

OBJS 4= memory.o

OBJS += supervise.o
ifneq ($(EMULATOR),1)
OBJS += timer.o

endif

OBJS += usb_standard .o
OBJS += usb2l_standard.o
OBJS 4= webusb.o

OBJS += winusb.o

OBJS += gen/bitmaps.o
OBJS += gen/fonts.o

libtrezor.a: $(OBJS)
include Makefile.include
libtrezor .a:
@printf 7 AR $@\n”
(Q)(AR) rcs %@ $°

.PHONY: vendor

vendor :

26

	Introduction
	Preliminaries
	Classical cryptography
	Mathematical preliminaries
	Discrete logarithm problem
	Finite fields
	Elliptic curves

	Elliptic Curve Digital Signature Algorithm (ECDSA)
	ECDSA signature generation
	Scalar Multiplication

	Side Channel Attacks
	Online Template Attack (OTA)

	Trezor One

	Related work
	Customized binaries
	trezorctl
	Custom Firmware
	build-docker.sh
	trezor-firmware/legacy/makefile
	Upload firmware
	Initialize device

	Verification
	Changing the default backup screen
	trezorctl sign-message
	Initial readings

	Analysing the observed patterns
	Carrying out the analysis
	Improvements
	Installing a Trigger
	Automatic confirmation of signature generation
	Bash script

	Extracting the private key

	Mitigation
	Conclusions
	Appendix
	build-docker.sh
	List
	Altered file

	trezor-firmware/legacy/makefile

