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Abstract

This thesis presents an analysis of Matrix’s key management. Matrix
is an end-to-end encrypted and decentralised application layer proto-
col, developed by The Matrix.org Foundation C.I.C. The protocol is used,
among other applications, to end-to-end encrypt messages in a decen-
tralised chat system. To date, Matrix is not equipped with a clear and
well-described overview on how keys enable end-to-end encryption in a
decentralised network. This thesis therefore describes how keys in Ma-
trix are established, used, stored, exchanged and verified. Moreover,
the analysis also explores the limitations of Matrix’s key management
and potential improvements.
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Chapter 1

Introduction

Nowadays, the internet is full of real-time centralised communication
services that specialise in a particular functionality. Some individuals
use a chat system because it has the best message encryption, while
others use a different one because it has better integration with certain
services. These broadly varying users’ needs create a fragmented user
base that is divided over a great number of chat systems. As a conse-
quence, it is a challenge for people to keep track of which contacts use
which chat systems. The comic of Figure 1.1 illustrates this issue:

Figure 1.1: Schematic example of the defragmentation of chat services,
taken from [38]
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To mitigate this issue, "Matrix" is created by The Matrix.org Foundation
C.I.C. [13]. Matrix is an end-to-end encrypted and decentralised applica-
tion layer protocol, that enables unifying all communication of these chat
services within one client using bridges and integration. Similarly to the
Internet Relay Chat protocol [40], Matrix makes use of the client/server
networking model. However, instead of the client being connected to a
centralised server, every Matrix user has their clients connected to their
own server. The server of a Matrix user is referred to as a “homeserver”.

The homeserver can connect to an application server that functions as a
bridge and form a “room” (see Figure 1.2). A room is a conceptual place
where a user can send and receive messages. As an example, in Figure
1.2, Alice’s client sent a message to her homeserver. Alice’s homeserver
can then, via the bridge, forward the message to a chat service (such as
Whatsapp and Telegram) and vice versa. A drawback is that messages
sent via the bridge are not end-to-end encrypted.

Figure 1.2: Schematic example of two rooms. One where Alice’s client is
able to exchange messages with Telegram, and the other with Whatsapp

Next to unifying communication services, The Matrix.org Foundation
C.I.C. also developed a chat system based on Matrix. This is illustrated
in Figure 1.3, where Alice, Bob and Charlie formed a room with their
homeservers instead of bridges. Alice’s client can send a message to
her homeserver. The homeserver then stores the message and sends a
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Figure 1.3: Schematic example of a room with Matrix users Alice, Bob
and Charlie

copy to Bob’s and Charlie’s homeserver. Bob’s and Charlie’s clients are
connected to their homeserver and can retrieve the message. Contrary
to rooms with bridges, rooms formed between Matrix users are able to
end-to-end encrypt their messages.

1.1 Research questions

End-to-end encryption in a decentralised network generally is a hard
problem. Many projects tried to implement this, e.g. Origin Messaging
[6], but failed due to overhead and scaling problems [19]. Matrix is one
of the few projects that implemented end-to-end encryption in a decen-
tralised network while avoiding overhead and solving scaling problems.
This leads to the main research question:

• How does Matrix manage keys to make end-to-end encryp-
tion of messages in a decentralised network possible?
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In other words, the main goal is to understand how keys are computed,
verified, exchanged, stored and used. This is not as easy as it sounds;
Matrix is a complex system and does not yet have a compact and self
contained overview of the key management.

Furthermore, this paper will also look at the shortcomings of Matrix’s
key management:

• What are the limitations of Matrix’s key management and
how can it be improved?

1.2 Structure

The structure of this thesis is as follows. In Chapter 2 the data formats,
cryptographic primitives and encoding used in Matrix is discussed. Chap-
ter 3 gives a high-level description of Matrix. Chapter 4 examines how
keys are managed in Matrix. Chapter 5 covers the related work. In
Chapter 6, the architecture and key management of Matrix is discussed.
Finally, Chapter 7 answers the research questions and recommendations
are made for possible future work.
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Chapter 2

Preliminaries

2.1 Data formats used in Matrix

The only data format that Matrix uses to exchange data, is JSON. JSON
is a text syntax that makes it possible to create data objects that consist
of key-value pairs [27]. As seen in the JSON example below, each object
is encapsulated by curly braces. Within this object, there are keys and
values that are separated by a colon (e.g. key:value). The data type of
the key has to be a string. A value can be one of either an object, number,
array, true, false, string or null. Each key-value pair is separated by a
comma. Matrix chose this format because it is easy to parse and human-
readable [3].

Example of a JSON object

1 {
2 "name" : "Example" ,
3 "author" : {
4 "name" : "John Doe" ,
5 "email" : "JohnDoe@example.com" ,
6 "contact" : [
7 {
8 " location" : " off ice " ,
9 "number" : 5729294

10 },
11 {
12 " location" : "home" ,
13 "number" : 3451483
14 }
15 ]
16 }
17 }
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2.2 Security principles

Security principles are guidelines to make a system secure. These are
discussed throughout the thesis when exploring the key management of
Matrix.

2.2.1 Forward secrecy

Forward secrecy ensures that when a key is compromised, previous es-
tablished keys are not compromised.

Figure 2.1: Forward secrecy, taken from [14]

2.2.2 Backward secrecy

Backward secrecy or post-compromise security ensures that if a key is
compromised, the keys computed afterwards remain uncompromised.

Figure 2.2: Backward secrecy, taken from [14]

2.2.3 Deniability

Deniability is often considered when designing key management. In
some cases, the construction and usage of a key to encrypt the message
can prove that participants were involved in a conversation. If key man-
agement has the property “deniability”, participants are able to deny
contents of their communication or the fact that they communicated.

2.2.4 Confidentiality

Confidentiality means that a sent message can only be read by the in-
tended receiver.
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2.2.5 Integrity

Integrity guarantees that a message has not been altered by an adver-
sary throughout the transmission.

2.2.6 Authentication

Authentication guarantees that the receiver of the message can verify
the sender.

2.3 Cryptographic primitives used in Matrix

Cryptographic primitives are low-level algorithms. These are the build-
ing blocks of cryptographic protocols. Therefore, to understand the key
management in Matrix, the individual components need to be under-
stood first.

2.3.1 Cryptographic hash functions

A hash function takes some arbitrary length string as input, and maps
it to a bit string of a fixed size. A cryptographic hash function is a hash
function that complies with the following properties [17]:

• Collision resistance, it is difficult to find inputs x1 6= x2 such that
H(x1) = H(x2).

• Pre-image resistance, given a hash value y, it is infeasible to find
any input x such that H(x) = y.

• Second pre-image resistance, given a value x1, it is computation-
ally hard to find a different input x2 such that H(x1) = H(x2).

A cryptographic hash function should be a one-way function. In other
words, when the output is computed from the input, it should be infeasi-
ble to invert it. An example of a cryptographic hash function is SHA-256
[21], which is used by Matrix.

2.3.2 HMAC

An example where Matrix uses SHA-256, is when computing the Hash-
based Message Authentication Code (HMAC). Generally, HMAC is used
to verify data integrity and authenticity of a message. However, it is
used by Matrix to advance keys. HMAC takes as input K, the key that
needs to be advanced and arbitrary input m. The key is XORed with
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“opad” and “ipad” before it is hashed. Opad and ipad are a block-sized
repeated value. Following Bellare et al. [32]:

HMAC (K,m) = H((K ′ ⊕ opad) ‖ H((K ′ ⊕ ipad) ‖ m))

K ′ =

H(K), if K is larger than the block size

K, otherwise.

2.3.3 HKDF

HKDF [31] is the abbreviation for Hash-based Key Derivation Function.
It is designed to take some source key and a salt as input, in order to
convert it to one or multiple cryptographic strong secret keys. HKDF
consists of two stages:

1. Extract,

2. Expand.

Extract

Using HMAC that has a salt and some input key material as input, a new
fixed-length key K is “extracted”. The length is determined by the hash
that is used:

K = HMAC (salt, key material).

Expand

To derive new keys from the extracted key, the key is “expanded” with a
KDF. It takes as input the extracted key K, a context string CS, a cryp-
tographic hash function H, and an integer L which implies the desired
length. The output is the desired key length:

KDF (K,CS,L) = H
(
K, (CS ‖ 0)

)
‖ H

(
K, (CS ‖ 2)

)
‖ · · · ‖ H

(
K, (CS ‖ L)

)
.

2.3.4 Cryptographic ratchets

Ratchets are chains of cryptographic primitives. A part or the whole
output of a cryptographic primitive is the input of another cryptographic
primitive (see Figure 2.3). Matrix utilizes this with HMAC or HKDF as
cryptographic primitive to indefinitely advance keys, while guaranteeing
forward secrecy.
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Figure 2.3: Example of a cryptographic ratchet

2.3.5 Curve25519

Curve25519 [9] is an elliptic curve with defined domain parameters. An
elliptic curve E over R is defined as a set of pairs (x, y) satisfying:

y2 = x3 + ax+ b.

Elliptic curves are non-singular, meaning that the curve has no cusps
or self-intersections [30]. This is useful because cryptographic opera-
tions (such as point addition and multiplication, see Figure 2.4) on the
curve require that every point on the curve has a unique derivative. A
function that is self-intersecting or has a cusp does not have a unique
derivation at that specific point. By using these cryptographic oper-
ations, Curve25519 is able to generate key pairs and, combined with
Diffie-Hellman shared secret keys (ECDH). Curve25519 defines the fol-
lowing domain parameters [9]:

• the prime number p = 2255 − 19,

• A finite field, Fp,

• Elliptic curve E, y2 = x3 + 486662x2 + x,
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• The base point and generator G ∈ E(Fp) with n = ord(G).

Generating key pairs with Curve25519

The private key is created by selecting a random integer d ∈ {1, . . . , n−
1}. By scalar multiplying (see Figure 2.4) the base point G with d, a new
point is computed [20]:

d ·G = Q.

The x-coordinate of point Q is used as the public key.

Figure 2.4: Example of scalar multiplication in an elliptic curve, taken
from [16]

Elliptic curve Diffie-Hellman

Assume Alice and Bob want to compute a shared key using ECDH. They
both create a key pair as described above. Let Alice key pair be (dA, QA)

and Bob’s key pair be (dB, QB). Alice then sends QA to Bob and Bob
sends QB to Alice. Alice computes the shared secret S by multiplying
her private key with Bob’s public key: dA · QB = S. Bob computes the
same shared secret S by multiplying his private key with Alice’s public
key:

dB ·QA = S.

Their shared secret key S is the same since:

dA ·QB = dA · dB ·G = dB ·QA.
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Figure 2.5: Schematic example of a computed shared secret between
Alice and Bob, taken from [10]

2.3.6 EdDSA and Ed25519

Edwards-curve Digital Signature Algorithm (EdDSA) is a public-key sig-
nature scheme, that defines parameters and operations to securely sign
data. The values of those parameters have to be chosen carefully for
a secure and efficient signature [29]. Bernstein, Duif, Lange, Schwabe
and Yang therefore researched which parameters result in a fast and se-
cure signature [8] and presented Ed25519, an instantiation of EdDSA.
Matrix uses Ed25519 to sign keys.

2.3.7 Triple Diffie-Hellman

To compute a shared key between two parties, Matrix uses triple Diffie-
Hellman over Curve25519. Assume Alice and Bob want to establish a
shared key using triple Diffie-Hellman [34]. First, they both have to cre-
ate an identity key pair I and a one-time key pair O using Curve25519.
They then send their public keys to each other. They are now able to
compute the shared key S, which consists of three different Curve25519
computations. First, Curve25519 is used with as input IA and OB, the
second time with OA and IB and the third time with OA and OB. All
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these three secret shared keys are then concatenated into key S.

S = ECDH (IA, OB) ‖ ECDH (OA, IB) ‖ ECDH (OA, OB)

Where each party uses its own private key and the remote party’s public
key.

A claimed advantage of triple Diffie-Hellman, when comparing it to reg-
ular Diffie-Hellman, is that it guarantees deniability. Neither of the three
computations takes as input both the identity key of Alice and the iden-
tity key of Bob. This is to ensure that if, for example, the identity key
of Alice is compromised, Bob can deny that they established that key.
Another advantage is that the one-time key pairs can be deleted after
computing the shared secret, which makes it harder for an adversary to
compromise the shared secret.

2.3.8 AES in CBC mode

Once a proper cryptographic key has been constructed using the prim-
itives above, it still needs to securely encrypt the plaintext. To do this,
Matrix uses the Advanced Encryption Standard (AES) [15] in Cipher
Block Chain (CBC) mode [18]. Since AES is a block cipher which en-
crypts 16 bytes at a time, the plaintext m is split up into blocks of 16
bytes:

m0 ‖ m1 ‖ · · · ‖ mi−1 = m.

If the length of m is not a multiple 128 bits, the plaintext needs to be
padded. The type of padding that Matrix uses is PKCS#7 [26], which
adds padding in whole bytes. The value of the padded byte depends on
the number of bytes that are needed to be added:

01, if 1 byte needs to be padded.

02 02, if 2 bytes need to be padded.

03 03 03, if 3 bytes need to be padded.

...

k k . . . k k, if k bytes need to be padded.

As an example, take a 9 byte message string with a block size of 16
bytes:

m = AAAAAAAAAAAAAAAAAA.
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5 bytes need to be padded to make the message 16 bytes long. There-
fore, 5 bytes with the value 05 are padded to the string:

m = AAAAAAAAAAAAAAAAAA 05 05 05 05 05.

After padding is appended to the plaintext (if necessary), the plaintext
is split up into blocks of 16 bytes. The first plaintext block m0 is XOR-ed
with a random 16 byte Initialization Vector (IV) which results into a bit
string I0:

I0 = m0 ⊕ IV.

The AES block cipher then symmetrically encrypts the byte string I0
with a key k into a block of ciphertext c0:

c0 = AES (I0, k).

To compute the i-th input byte string it is not XOR-ed with the IV but
with the previous ciphertext:

Ii = mi ⊕ ci−1.

Computing the i-th block of ciphertext remains the same:

ci = AES (Ii, k).

The blocks of ciphertext are then concatenated back to one long cipher-
text so it can be sent via an unsecure channel to the intended recipients.

m0 m1

c0 c1

mi-1

ci-1ci-2

k k k

IV IV

AESke
y

output

message

AESke
y

output

message

AESke
y

output

message

Figure 2.6: Schematic example of AES in CBC mode
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2.4 Encoding

To encode keys and ciphertext, Matrix uses unpadded Base64. The bit
strings are split into blocks of 6 bits, and then converted to decimal.
Next, each decimal is converted to a character using the Base64 table:

Figure 2.7: Base64 table, taken from [5]
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Chapter 3

A high-level description of
Matrix

3.1 Architecture

3.1.1 Clients and servers

As previously mentioned, if a person wants to make use of Matrix, he/she
needs a client and a homeserver. The user is free to choose which client.
The user can prefer Riot, the client developed by The Matrix.org Foun-
dation C.I.C., but also third-party developed clients such as Quaternion,
Spectral and nheko Reborn [1]. The user needs to connect its clients
with its homeserver. A server is not able to immediately communicate
with a Matrix client. The server first needs to install “Synapse”. Synapse
is developed by The Matrix.org Foundation C.I.C. so that the Matrix pro-
tocol can refer to it as a homeserver. In other words, Synapse ensures
that data received and sent on the server, is handled correctly according
to the Matrix protocol. If a user does not own a server, the user is able
to make use of Matrix’s servers.

3.1.2 Users and device keys

To send messages through the client, a user account and a so-called
“device” are needed. As seen in Figure 3.1, each user is identified by:
@username:domain, where domain is the current homeserver that the
user uses.

If a user logs into a client for the first time on a client supported platform
(multiple web browsers, Linux, Windows, iOS, Android, etc.) it is regis-
tered as a “new device”. For this new device a set of keys is generated.
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Each device has a number of long-term keys and one-time keys. One of
the long-term keys consist of an Ed25519 fingerprint key pair, which is
used for signatures and key verification. The other long-term key pair
is a Curve25519 identity key pair used for shared secret key establish-
ment [2]. The one-time key pairs are made by using Curve25519, which
are also used for shared secret key establishment. The public part of
the key pairs is published to the homeserver using the client-server API
[45]. The private part of the key pairs remains on the client. These keys
are later on used to end-to-end encrypt (see Section 4.2).

3.2 Establishing a room

After the user has set up a client on a platform and connected it to its
homeserver the user can join or create rooms. Each room is identi-
fied by a unique room id, of the form !string:domain. The homeserver
of a Matrix user keeps track of which rooms the user participates in
and who the members are of that room. If a user sends a message
in the room, the user’s client sends the message along with the room
id to the homeserver. The homeserver checks who participates in the
room and forwards the message to the homeservers of those members.
The client of the other members can retrieve the message from their
homeserver. As an example, consider Figure 3.1. If Alice sends a mes-
sage in room !fwggEEwdw:matrix.org, the homeserver examines the
room id and sends it only to the corresponding recipients which is, in
this case, Charly’s and Dave’s homeservers. If Bob wants to join room
!fwggEEwdw:matrix.org, Alice, Charly or Dave can send an invitation
to the homeserver of Bob via their own homeserver. Bob’s clients re-
ceive the invitation from his homeserver. If Bob accepts the invitation,
he sends data to his homeserver that he accepts. The homeserver of
Bob then sends data of Bob’s approval to the other homeservers. Alice,
Charly’s and Dave’s homeservers read the data and know that Bob ac-
cepted their invitation. Bob is added as a member by the homeservers
to the corresponding room id.

If Alice, for example, wants to have a one-on-one conversation with Bob,
she can create a new room. One of Alice’s clients generates a new room
id and sends it to her homeserver. The homeserver now associates the
room only with Alice. She can invite Bob to her newly established room
by sending data about the room from her homeserver to Bob’s home-
server. Similarly to the above, Bob can accept the invitation and Alice’s
homeserver and Bob’s homeserver correspond the new room id with the
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members Alice and Bob. If Alice sends a message in the room, her client
sends the message along with the room id to her homeserver. Her home-
server then forwards the message to Bob’s homeserver. Bob can retrieve
the message from the server by using his client.

Figure 3.1: A schematic example of two rooms. One with Alice, Charly
and Dave and the other with Dave and Bob
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3.3 Message communication flow

To go into more detail of how messages are exchanged between users,
we continue with the example where Alice and Bob establish a room.
Assume Alice wants to send a message to Bob. Alice first sends her mes-
sage to her homeserver via the HTTP PUT protocol. Alice’s homeserver
stores the message and “federates” (see Section 3.4.2) the message to
Bob’s homeserver. Bob’s homeserver receives and stores the message.
By using a long-polling HTTP GET request [43], Bob is able to retrieve
Alice’s message [3]. Say Alice wants to read the message she sent on her
desktop on a new device, her iPhone. Alice logs into her mobile client,
and the client sends a GET sync request to her homeserver. The server
processes this request and if it is approved, the server sends the room’s
past messages and state events. See Figure 3.2.

Figure 3.2: Schematic architecture of a sent message and a sync request

3.4 Communication data

3.4.1 Events

As seen in 3.2, a message from the client is sent to the homeserver
among other data including the room id. This is needed by the home-
server to be able to forward the message to the other members of the
room. Matrix formats this data as a JSON object, so that the homeserver
can easily parse the room id, the message and other necessary data. Ma-
trix refers these JSON objects that are exchanged between client and
homeserver, and also between homeservers as an “event”. Matrix splits
these events into two types:

• Message event, data that users use to converse with one another.
Some examples are a chat message or a VoIP call.
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• State event, data that creates a room or updates information about
a room. This information is needed by the homeserver to authen-
ticate events received from a client, and to forward events to the
members of the room. Examples are: an invite for a room, a change
to the room’s name or a banned member.

Each event has a content and a type field. The type field determines
which extra fields are required. Take for example Figure 3.3 which is a
message event in an end-to-end encrypted room. The type of the room is
m.room.encrypted. The type of the event is a message in an end-to-end
encrypted room. This event requires to specify:

• An algorithm, the algorithm that is used to encrypt the message
which is in this case Megolm (explained in Section 4.2.3).

• A ciphertext, an encrypted message that the sender wants to send
to the other members of the room. How this is constructed is ex-
plained in detail in Section 4.2.

• The device_id, this specifies which device the sender used.

• The sender_key, the public identity key of the device.

• The session_id, the session_id specifies which Megolm session has
been used.

• The origin_server_ts, the timestamp of when the event was sent by
the sender’s homeserver.

• The sender, which is the Matrix identification of the sender.

• Unsigned, this field is not going to be signed by the homeserver
(more information about signing in Section 3.4.2) since it needs to
be edited by other homeservers. An example here is the age pa-
rameter, this tells in milliseconds how long it took between sending
and receiving the event which will change in transit.

• An event_id, the identification of the event.

• The room_id, the specified room this message has to be sent to.

21



Figure 3.3: Example of a message event in an end-to-end encrypted
room

When a client changes the room name, a state event is sent to the home-
server. Take for example Figure 3.4, which changes the room name
from “Test conversation” to “Hello world!”. This event has a lot of fields
in common with the message event. However, it does require some dif-
ferent fields:

• name, the room’s new name.

• state_key, tells the server to interpret this event as a state event.

• replace_state, the previous state that is being replaced.

• prev_content, the previous room’s name.

• prev_sender, the Matrix identification of the sender of the previous
event.

Note that the content of state events is never encrypted, not even in an
end-to-end encrypted room. This is because the homeservers need to
know about the current state of the room, so it is up to date with the
current members, name changes, ban list, etc.
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Figure 3.4: Example of a state event in an end-to-end encrypted room

3.4.2 Verifying events

Whenever a homeserver receives an event from the client, it is not im-
mediately distributed to the other homeservers in the room. To ensure
authenticity and integrity of the event when sharing the event, the home-
server hashes and signs the event. First, the content of the event is
hashed using SHA-256 and appended to the event. After the hash, the
whole event (excluding the “unsigned” field) is signed by the homeserver
using its private Ed25519 key. The signature is then appended to the
event. It is then sent to the other homeservers in the room. This process
of synchronizing events with other homeservers is called “federation”.
In this way every homeserver in the room is up to date with the current
state of the room, and clients are able to retrieve new messages from
the homeservers.

When a homeserver receives an event from a remote server, it verifies
the event before a client is allowed to retrieve the event. If the event fails
one of the following checks below, the homeserver determines whether
it is dropped, redacted or rejected [42]:

• If it is not a valid JSON event, otherwise it is dropped.

• The signature check, otherwise it is dropped

• The hash check, otherwise it is redacted.
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• Authorisation rules based on the event’s auth events, otherwise it
is rejected.

• Authorisation rules based on the state at the event, otherwise it is
rejected.

• Rules based on the current state of the room, otherwise it is re-
jected.

If the event passes the checks above, the signature and hash are stripped
from the event. The homeserver then waits until the client requests the
event.

Authorisation rules

Authorisation rules are the rules of the room that the participants of
the room can define. The creator of the room is the admin and he/she
can change the power levels of other participants. Depending on the
power level, some actions can be taken. Examples of these actions are
redacting events of other members, or banning them. Homeservers,
therefore, check if the action of the event from the member complies
with their power level.

Redacting

Once an event has been federated to the other servers in the room, it is
impossible to delete that event. With redacting, all the JSON keys that
are not required by the protocol are stripped off. In that way, the client
can receive the redacted event but not see the contents.

Figure 3.5: Example of a redacted message event in an encrypted room

24



Rejecting

If a user wants to invite another user but is not allowed to because only
the admin is authorized to do that, the state event is rejected by partic-
ipating servers in the room. Unlike a redacted event, the client is not
able to retrieve a rejected event.
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Chapter 4

Key management in Matrix

4.1 Verifying clients

Assume Alice and Bob want to have a private encrypted conversation
with each other. Before establishing shared secret keys between Al-
ice’s and Bob’s clients, the users have the option to verify each other
clients to prevent impersonation by an adversary. Manually comparing
the Ed25519 fingerprint keys is possible but can lead to human errors
since these are 43 character long Base64 strings. To make it less prone
to these errors, Matrix implemented Short Authentication String (SAS)
verification [2]. The verification protocol only verifies the fingerprint
keys, because if the fingerprint key is verified, the identity key can be
verified. This is achieved when a client sends the device keys to another
client. The client signs the identity key with the fingerprint key so that
the receiver can verify the identity key. The verification protocol goes as
follows:

1. Alice and Bob meet by using an out-of-band channel, this can be
done by meeting physically or a VoIP (voice over IP) call.

2. They communicate with each other which devices they want to ver-
ify.

3. Alice’s client starts by sending a m.key.verification.start event. This
event contains information about Alice’s device which key agree-
ment protocols (most of the time Curve25519), message authenti-
cation codes (most of the time HKDF SHA-256), hash algorithm (of-
ten SHA-256) and SAS methods (Decimal or Emoji) it understands.

4. Bob’s client receives the event and chooses which key agreement
protocol, hash algorithm and SAS method are going to be used (see
Section 4.1.1).
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5. Bob’s client generates a key pair (Kprivate
B ,Kpublic

B ) using Curve25519.

By using the chosen hash algorithm, Bob hashes Kpublic
B , which re-

sults into HB.

6. Bob’s client creates a new m.key.verification.accept event. This
event contains Bob’s chosen algorithm, protocol and method. Bob
also adds the hash HB so that later on, Alice can verify that Bob
has sent the correct Kpublic

B and not a different key sent by a man-
in-the-middle. Bob’s client sends the event to Alice’s device.

7. Now Alice’s client generates a key pair (Kprivate
A ,Kpublic

A ) using Curve-
25519. Alice device sends to Bob’s device a m.key.verification.key
event. This event only contains Kpublic

A .

8. Bob’s client receives the event with Kpublic
A and replies with an-

other m.key.verification.key event but this time with his own Kpublic
B .

9. Alice’s client receives the event with Kpublic
B and verifies if the hash

of Kpublic
B matches with HB.

10. Using their private key Kprivate and the other party’s public key,
Alice and Bob are now able to compute their shared secret key S

using ECDH.

11. Using their S and their SAS method, the SAS is computed (see
Section 4.1.1).

12. If the SAS of Alice and Bob are similar, they both calculate a HMAC
with the public part of their device’s fingerprint key and S as input.
Then Alice and Bob create a m.key.verification.mac event. This
event contains the computed HMAC and is sent to the other party.

13. The receiving party checks if the HMAC is the same as the HMAC
with as input the remote device’s key and S. If they are the same
then the devices are verified.
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The event exchange of verifying the devices between Alice and Bob is as
follows:

Alice's desktop client Bob's iOS client

m.key.verification.start

m.key.verification.accept

m.key.verification.key

m.key.verification.key

m.key.verification.mac

m.key.verification.mac

Figure 4.1: Schematic event exchange of Alice and Bob devices when
verifying (Alice’s and bob’s homeservers only forward the messages and
are therefore abstracted from this diagram)

4.1.1 Computing the SAS

There are two methods to generate a SAS, by using decimals or emojis.
Older devices that do not support emoticons use decimals for the veri-
fication. Both use HKDF with as key material the shared secret S. The
input parameter of the HKDF is not a salt, but a string based on the Ma-
trix and device id of the start and accept events. The number of bytes
the HKDF needs to output depends on the SAS method.

SAS method: decimal

This method takes 5 bytes from the output of the HKDF identified by:
B0, B1, B2, B3 and B4. With these 5 bytes, 3-bit strings of 13 bits are
computed from arbitrary chosen bitwise operations:

• first bit string: (B0 � 5 | B1 � 3) + 1000.

• second bit string:
(
(B3 & 0x3F )� 7 | B4 � 1

)
+ 1000.
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• third bit string:
(
(B3 & 0x3F )� 7 | B4 � 1

)
+ 1000.

One thousand is added to each bit string so that when converting the
bits to decimal no padding is needed. These three decimal numbers are
compared with the numbers of the other device. If they are similar, the
above verification protocol continues.

SAS method: emoji

This method takes 6 bytes from output of the HKDF. The first 42 bits are
split into 7 groups of 6 bits. Each group is converted to an emoji. These
7 emojis are then compared to the emojis of the other device. When
corresponding, the above verification protocol continues.

4.2 End-to-End message encryption and authen-
tication

Encrypting and authenticating a message makes use of two different
cryptographic ratchets.

• Olm ratchet [33] (heavily based on the double ratchet algorithm
[35]), see Section 4.2.1.

• Megolm ratchet [25], see Section 4.2.3.

First, an Olm ratchet is established between two users to create a secure
channel. If that succeeds and for example Alice wants to send a message
to Bob, Alice constructs a Megolm session (single ratchet). Alice then
encrypts the Megolm session with the produced Olm key and sends the
encrypted session to Bob. Bob receives Alice’s Megolm session and de-
crypts it. Alice encrypts her message with the Megolm key and sends
the encrypted message to Bob. Since Bob has Alice’s Megolm ratchet,
he is able to retrieve the key that Alice used to encrypt the message.
Bob decrypts the message and can read the content.

4.2.1 The Olm algorithm (double ratchet algorithm)

If Alice and Bob want to talk to each other via Matrix they use their gen-
erated device keys. These are the identity key pairs, IA and IB, and the
one-time key pairs OA and OB. The secret shared key S is computed by
triple Diffie-Hellman (see Section 2.3.7).

The 256 bit root key, R0 and the first 256 bit chain key is computed using

29



HKDF with SHA-256 as the hash function. It takes as input: 32 bytes of
zeroes as salt, “OLM_ROOT” as context string, key S and wanted output
length in bytes, which is 64.

R0 ‖ C0,0 = HKDF (0, S, “OLM_ROOT”, 64)

Advancing a root key makes use of the HKDF as well. It takes as in-
put: the previous root key Ri−1 as a value for the salt, a shared secret
generated by Curve25519 taking as input the current ratchet key Ti and
the previous Ti−1, the context string “OLM_RATCHET” and the wanted
output length of 64 bytes.

Ri ‖ Ci,0 = HKDF (Ri−1, ECDH (Ti−1, Ti) , “OLM_RATCHET”, 64)

A message key and an advanced chain key can be computed using HMAC
and the current chain key.

Creating a message key: Mi,j = HMAC (Ci,j , “\x01”) .
Advancing the chain key: Ci,j = HMAC (Ci,j−1, “\x02”).

Where i is the number of Diffie-Hellman ratchet iterations and j the
number of times the sending or receiving ratchet iterated.

Using the message key, an AES_KEY, IV and HMAC_KEY can be gen-
erated using HKDF:

AES_KEY i,j ‖ HMAC _KEY i,j ‖ AES_IV i,j = HKDF (0, Mi,j , “OLM_KEYS”, 80) .

With the AES_KEY, IV and HMAC_KEY, a Megolm session can be en-
crypted and authenticated using AES-256 in CBC mode. Figure 4.2
gives a schematic overview on how Alice computes keys to encrypt her
Megolm session and to decrypt Bob’s Megolm session.
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Figure 4.2: schematic diagram of the Olm protocol
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4.2.2 Signing one-time keys

The one-time keys that are used in the Triple-Diffie Hellman (see Sec-
tion 2.3.7) can be signed. This is not mentioned when defining the Olm
algorithm because signing the one-time keys has both advantages and
disadvantages. Assume Alice wants to establish an Olm session with
Bob and have their device keys verified. Alice requests Bob’s keys and
Bob’s homeserver sends his public identity key IpublicB and Opublic

B to Alice.
When the one-time key is unsigned, Alice does not know if the one-time
key is actually from Bob from some adversary. A “weak forward secrecy
attack” is then possible [34]. Meaning that an adversary can decrypt
the first sent messages until a message is send back. Assume Eve is a
man in the middle between Bob and the server (this is possible because
the client-server API supports a HTTP connection). If Bob uploads the
public keys, Eve can replace Bob’s unsigned one-time key Opublic

B with

her own Opublic
E . Alice will receive IpublicB and Opublic

E . With these keys she
computes:

S = ECDH
(
IprivateA , Opublic

E

)
‖ ECDH

(
Oprivate

A , IpublicB

)
‖ ECDH

(
Oprivate

A , Opublic
E

)
.

If Eve wants to compute the same key S, she has to calculate:

S = ECDH
(
IprivateB , Opublic

A

)
‖ ECDH

(
Oprivate

E , IpublicA

)
‖ ECDH

(
Oprivate

E , Opublic
A

)
.

If Eve compromises Bob’s identity key she can decrypt Alice’s Megolm
sessions and consequently, decrypt Alice’s messages meant for Bob until
Bob decides to send a message to Alice. If Bob sends a message back he
also sends the public part of his ratchet key Ti which is used to advance
the root key. Eve can’t access Bob’s private ratchet key and is therefore
unable to continue to compromise keys any further.

If Bob’s one-time key Opublic
B is signed with Bob’s long term private fin-

gerprint key then Eve is not able to replace Opublic
B . This is due to the fact

that Eve does not have Bob’s private key to sign her one-time key since
it is stored on Bob’s client. However, the downside of signing Bob’s pub-
lic one-time key is the lack of deniability [24]. If Alice hands over the
transcript between her and Bob and her identity key to a third party, she
can prove that Bob genuinely is Bob in the transcript. Alice can prove
this as follows:

If Bob wants to send an encrypted message to Alice, he first has to
send an encrypted Megolm session to Alice. To encrypt the session,
he has to be able to generate a key from the shared key S which con-
tains his signature. Bob sends the encrypted session to his homeserver.
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Figure 4.3: Potential scenario where bob’s one time key is not signed

Bob’s homeserver then signs the encrypted session with its Ed25519
key BHS . After appending the signature, Bob’s homeserver sends it to
Alice’s homeserver. Alice can now prove that she received a signed en-
crypted Megolm session from Bob’s homeserver. She can also prove
that the encrypted Megolm session is constructed with a key from Bob’s
signed one-time key, as shown in Figure 4.4. Without the signed one-
time key Bob could still deny the transcript because Bob could say that
it was another client or device connected to his server that he did not
know of.

Figure 4.4: Schematic diagram of the encrypted and signed Megolm
session

Since there are both advantages and disadvantages when signing the
one-time key, Matrix has left this option to the client developers. Riot,
the client developed by The Matrix.org Foundation C.I.C., has chosen to
sign the one-time keys [44].

4.2.3 The Megolm algorithm

Creating a Megolm session starts by generating a random 1024 bit string
Ri, where i is the number of times the ratchet value has iterated. This bit
string can be divided into four 256 bit strings Ri,j , where j ∈ {0, 1, 2, 3}.
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These values are advanced as follows:

Ri,0 =

H0

(
R224(n−1),0

)
if ∃n|i = 224n,

Ri−1,0 otherwise,

Ri,1 =


H1

(
R224(n−1),0

)
if ∃n|i = 224n,

H1

(
R216(m−1),1

)
if ∃m|i = 216m,

Ri−1,1 otherwise,

Ri,2 =



H2

(
R224(n−1),0

)
if ∃n|i = 224n,

H2

(
R216(m−1),1

)
if ∃m|i = 216m,

H2

(
R28(p−1),2

)
if ∃p|i = 28p,

Ri−1,2 otherwise,

Ri,3 =



H3

(
R224(n−1),0

)
if ∃n|i = 224n,

H3

(
R216(m−1),1

)
if ∃m|i = 216m,

H3

(
R28(p−1),2

)
if ∃p|i = 28p,

H3 (Ri−1,3) otherwise.

where:

H0(A) = HMAC (A, “0x00”),

H1(A) = HMAC (A, “0x01”),

H2(A) = HMAC (A, “0x02”),

H3(A) = HMAC (A, “0x03”).

As seen above, during the first 28 − 1 iterations only the 256 bit string
Ri,3 is advanced, the other parts remain at their initial value. Every 28

iterations, first Ri,3 is reseeded from Ri,2 and then Ri,2 is advanced. Ev-
ery 216 iterations, first Ri,3 and Ri,2 are reseeded from Ri,1 and then Ri,1

is advanced. Every 224, first Ri,3, Ri,2 and Ri,1 are reseeded from Ri,0

and then Ri,0 is advanced.

After advancing the ratchet values, they are concatenated back into a
1024 bit string which will be used as a message key Mi.

Mi = Ri,0 ‖ Ri,1 ‖ Ri,2 ‖ Ri,3

Using HKDF with as input the 1024-bit message key and a zero-string of
32 bytes as salt, the cipher key, MAC key and IV can be derived.
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When the developers initially designed Megolm they used reseedings
so that a Megolm session could be used indefinitely. However, when the
NCC Group conducted a security audit on Megolm, they warned for the
lack of backward secrecy [7]. To help mitigate this problem, a Megolm
session rotates every 100 iterations or after 1 week [45]. Consequently,
the algorithm does not make use of the reseeds and only relies on the
advancing 256 bit Ri,3 when generating new keys. See Figure 4.5 for a
schematic overview of the Megolm ratchet.
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Figure 4.5: Schematic diagram of the Megolm protocol
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4.2.4 The protocol for encrypting and authenticating a mes-
sage

Assume Alice and Bob want to communicate with each other via Matrix.
They first verify each other’s public fingerprint key using SAS verifica-
tion (see Section 4.1). If successful, they compute a key to end-to-end
encrypt and authenticate a message as follows:

1. Alice’s and Bob’s clients first generate a one-time key pair using
Curve25519 (see Section 2.3.5): OA and OB.

2. Alice and Bob publish the public part of their identity key pair
I (signed with their fingerprint key) and one-time key generated
keys to their homeserver.

3. Alice wants to connect to Bob so she requests Bob’s public keys.

4. Bob sends Alice IpublicB and Opublic
B .

5. Using IprivateA , Oprivate
A , IpublicB , Opublic

B and triple Diffie-Hellman (see
Section 2.3.7) she computes the shared secret S.

6. Alice then uses S, the context string and a salt to compute the root
key R0 and chain key C0,0:

R0 ‖ C0,0 = HKDF (0, S, “OLM_ROOT”, 64).

7. With C0,0 she can compute the first message key:

M0,0 = HMAC (C0,0, “\x01”) .

8. The 256 bit AES key, 256 bit HMAC key, and 128 bit AES IV are
derived from the message key:

AES_KEY0 ,0 ‖ HMAC _KEY0 ,0 ‖ AES_IV0 ,0 = HKDF (0, M0,0, “OLM_KEYS”, 80) .

9. Alice then constructs her Megolm session which consists of three
parts:

• a 32 bit counter, i,

• a newly computed Ed25519 key pair, K,

• a ratchet Ri, which consists of four 256 bit values, Ri,j where
j ∈ {0,1,2,3}.
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Alice encrypts i, K and Ri with the AES key and AES IV from the
Olm session. She also creates a ratchet key pair TA so Bob and
Alice can advance the root key later on. Then the encrypted text,
chain index, T public

A , IpublicA and Opublic
A is sent to bob.

10. When Bob receives T public
A , IpublicA and Opublic

A , Bob is able to go
through steps 5-9 and compute the same symmetric AES key to
decrypt Alice’s Megolm ratchet, counter and key pair.

11. Bob creates his own ratchet key pair TB. Bob uses T public
A and

T private
B to construct a new shared secret using Curve25519. To

advance the root key and to create a new chain key the HKDF is
used with as input the previous root key and the new constructed
shared secret:

R1 ‖ C1,0 = HKDF
(
R0, ECDH

(
T private
B , T public

A

)
, “OLM_RATCHET”, 64

)
.

12. Using the newly computed chain key, C1,0, Bob computes a new
chain and message key in the same way Alice did.

13. With the new message key Bob derives the 256 AES key, 256 bit
HMAC key, and 128 bit AES IV.

14. Bob now initializes randomly 1024 bits to create a Megolm session
and encrypts this session with the AES key and IV, authenticated
by the 256 bit HMAC key.

15. Bob sends his encrypted text, chain index and T public
B to Alice so

she can decrypt it.

16. Since they now have their own and each other Megolm session
they can encrypt and authenticate their messages and send it to
each other via an unsecure channel.

4.2.5 Complexity of encrypted group chats

Sessions are created lazily. That means that only when a client wants
to send a message it creates its own Megolm session. If N devices are
talking in an encrypted room with N devices then there are N(N − 1)/2

Olm sessions because every device in the room has to create an Olm
session with any other device in the room. There are also at least N

Megolm sessions, since every device has its own Megolm session to en-
crypt their messages with. If only M devices write messages out of the
N devices in an encrypted room then there are N ·M +M(M −1)/2 Olm
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sessions and at least M Megolm sessions.

Olm sessions can also be reused. If Alice and Bob are talking to each
other in multiple rooms the same Olm session can be used.

4.3 Key sharing and key backup

Say Alice is talking to Bob via her desktop client. She logs into the Riot
app on her mobile phone for the first time. Alice is not able to read the
conversation on her mobile between her and Bob since she uses a new
and unverified device. She may want to have access to the messages
she has sent via her desktop client. If so, she can request keys from her
desktop client by sending a m.room_key_request to all her other devices
in the room. If the desktop client receives that message and it wants to
share the keys with her mobile phone, the keys can be exported via Olm.

When a Matrix user logs out of his/her client, all the Megolm sessions
and device keys are discarded. This is due to the fact that if an ad-
versary steals the device, the adversary is not able to retrieve the keys
unencrypted from the storage of the device. Therefore, if a Matrix user
wants to backup his/her Megolm sessions before logging out, the user
can export the Megolm sessions from the client to a file. The file is
encrypted using a new password that the user supplies:

1. The Megolm sessions are encoded as a JSON object, see Figure 4.7
for more information.

2. The user generates a password to compute two 256 bit keys using

K ‖ K ′ = PBKDF2 (HMAC -SHA-512,password, S,N, 512)

where:

• N is the number of rounds, where N ≥ 100000,

• S is a random 128 bit salt,

• 512 is the length of the output key,

• K is the AES-256 key,

• K ′ is the HMAC-SHA-256 key.

See Figure 4.6 for more information.

3. Serialize the JSON object as a UTF-8 string and encrypt it using
the key that AES-CTR-256(IV, K) produces. Here, IV is a random
128 bit string.
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4. Concatenate the encrypted JSON object C, S, IV , N and the value
of HMAC -SHA-256(K ′, C, IV,N).

5. Encode the above string with Base64.

6. Prepend the resulting string with “—–BEGIN MEGOLM SESSION
DATA—–” and append the “—–END MEGOLM SESSION DATA—–”.
The file is now ready to exported and can be imported by other
devices that use Matrix.

Salt       HMAC-SHA-512

Password

ke
y

input
       HMAC-SHA-512ke

y

input
      HMAC-SHA-512ke

y

input

output output output

Password Password

N times

K || K'

Figure 4.6: Schematic diagram of pbkdf2, based on [36]

Figure 4.7: Key export format, taken from [2]
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Chapter 5

Related Work

The topic of key management in decentralised chat services has been
researched before. However, how the keys are managed and with what
purpose differs immensely between each decentralised chat service. One
of the researched decentralised chat services is ChronoChat [46]. In
contrast to Matrix, ChronoChat is based on Named Data Networking
(NDN). NDN makes it possible to route data based on name instead of
IP address by binding the name and content of every packet through a
digital signature [47]. The network architecture of NDN enables to have
peer to peer communication and can be run serverless [46]. However,
the downside is that the key management of ChronoChat only focuses on
public key authentication and lacks end-to-end encryption, it is therefore
not comparable with Matrix.

Matrix has also been compared to other centralized end-to-end encrypted
chat services in terms of security and user experience [37], [28]. The
papers define cryptographic properties and verify whether the chat ser-
vices meet them. They also propose how Matrix can improve security
by introducing two-step verification and screen security (not allowing
screenshots of the chat messages).
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Chapter 6

Discussion

When examining the key management of Matrix, it became evident how
Matrix realises a secure and scalable end-to-end encryption in a decen-
tralized network. However, there still exist areas for further enhance-
ment. Some of these areas are currently in development by The Ma-
trix.org Foundation C.I.C.

6.1 Improvements to Matrix that are currently in
development

6.1.1 Traffic data vulnerabilities

The key management in Matrix makes it possible to securely end-to-end
encrypt the contents of a message. The encryption guarantees confiden-
tiality, integrity and forward secrecy [7]. However, this does not directly
mean that the communication flow between Matrix users is secure. As
seen in Figure 3.3, a lot of unencrypted traffic data is sent along with
the encrypted message. Sirius, a project created by Europol, researched
what the European Intelligence services found the most important type
of data [4]. The report concluded that traffic data is significantly more
interesting to research for European intelligence services, than the ac-
tual content.

As seen in the message and state events, traffic data disclose a lot about
the Matrix users. Server timestamps, room identification, the time of
how long the message has been in transit (age), device identification,
the sender of the event is all unencrypted. As a result of the architec-
ture of Matrix, this unencrypted traffic data is necessary and cannot
simply be omitted, because homeservers need to verify these events and
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keep track of the state of the room.

Due to the unencrypted traffic data, Matrix is very susceptible for traffic
data analysis. To solve this, Matrix is working on a peer-to-peer network
architecture [22] which includes "The Loopix Anonymity System" [41].
It provides cover traffic (dummy traffic) and poisson mixing (delaying
messages randomly).

6.1.2 Cross signing

Another disadvantage of the key management in Matrix is the number of
times devices have to be verified. For N devices in a room there needs
to be N(N − 1)/2 device verifications to verify the whole room. That
means to verify all devices in a room with 10 Matrix users that have
2 devices each, would require 20(20 − 1)/2 = 190 verifications. This is
time consuming, and many users criticize Matrix for this [23]. To solve
this issue, the Matrix developer team has been working on implement-
ing cross-signing since December 2018 [12]. It is based on a proposal
made by one of the developers [11].

The idea is that each user has three key pairs:

• A “self-signing” Ed25519 key pair to sign their own devices.

• A “user-signing” Ed25519 key pair to sign master keys of other
users.

• A “master” Ed25519 key pair for identification and signing their
self-signing and user-signing key pairs.

The public part of the keys is then published to the homeserver so that
the other party is able to retrieve them. Assume Alice and Bob want to
verify their devices with each other. Just like the current device veri-
fication, they meet with each other via an out-of-band channel such as
physically or a VoIP call. With SAS (see Section 4.1.1) they verify each
other’s master keys. Alice’s and Bob’s devices can then trust each other
when:

• Alice and Bob’s master keys have signed their own user-signing
and self-signing keys.

• Alice and Bob’s self-signing keys sign their own devices.

• Alice and Bob sign with their user-signing key the other party’s
master key (see Figure 6.1).
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Figure 6.1: Schematic example of the cross signing proposal, taken from
[11]

6.2 Recommendations for improving key manage-
ment in Matrix

There were 2 areas identified of the key management in Matrix, where
The Matrix.org Foundation C.I.C. is not yet working on, nor has a pro-
posal to improve it. These are recommendations to make the key man-
agement of Matrix more secure:

6.2.1 Lack of Deniability

One way to guarantee key deniability would be omitting the one-time
key signatures. However, the downside of this is that it would enable
weak forward secrecy. Another option would be implementing “Deni-
able authenticated key exchange with Zero-knowledge” (DAKEZ), in-
stead of Triple-Diffie-Hellman to establish shared secret keys. According
to Unger and Goldberg [39], DAKEZ has both deniability and perfect for-
ward secrecy.
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6.2.2 Megolm ratchet

The Megolm ratchet randomly initializes a 1024 bit string. However,
only 256 bits of the 1024 bit string are used to advance keys. Since the
other 768 bits remain constant during the whole session, the input of
the HKDF is mainly constant as well (see Figure 4.5). As a consequence,
the security of forward secrecy is reduced. An improvement would be to
advance the whole 1024 bits ratchet value instead of just 256 bits.

For example, create a Megolm session by generating a random 1024
bit string Ri, where i is the number of times the ratchet value has iter-
ated. This bit string can be split into two bit strings of 512 bits: Ri,0 and
Ri,1. Then by using HMAC with the hash function SHA-512 and some
arbitrary input string, advance the values of Ri,0 and Ri,1 after each
generated key:

Ri,0 = HMAC (Ri−1,0, “0x00”),

Ri,1 = HMAC (Ri−1,1, “0x01”).

Then similar to the regular Megolm algorithm, concatenate Ri,0 and Ri,1

back into a 1024 bit string which will be used as message key Mi:

Mi = Ri,0 ‖ Ri,1.

Using HKDF with the message key as input, the Cipher key, MAC key
and IV can be derived.

Now, if a cipher key is compromised, calculating the previous estab-
lished keys is computationally much more difficult, since the value of
the whole 1024 bit string is advanced, instead of just 256 bits.
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Chapter 7

Conclusions

This thesis conducted an analysis about the key management of Matrix.
It examined how keys in Matrix are computed, verified, used, exchanged
and stored and how these areas relate to one another. Key generation
starts when a Matrix user logs into their client for the first time on a
client supported platform. Matrix registers this as a “device”. Each
device has two long-term key pairs generated, an Ed25519 fingerprint
key pair and a Curve25519 identity key pair. If two Matrix users want
to authenticate each other before communicating, they can verify their
device’s fingerprint key pair by computing a SAS. By using a fingerprint
signature on the identity key, the public identity key can be verified.

After verifying the long-term device keys, Matrix users are able to com-
pute a key that is used to end-to-end encrypt a message. To compute
such a key, first an Olm session needs to be established to create a se-
cure channel between two Matrix users. An Olm session is based on
the double ratchet algorithm of Signal. The Olm algorithm consists of
two ratchets, a symmetric key ratchet to compute keys to encrypt and
decrypt Megolm sessions, and a Diffie-Hellman ratchet that advances
each time a Megolm session has been exchanged between two Matrix
users’ clients. If the Diffie-Hellman ratchet advances, it replaces the
symmetric key ratchet with a new symmetric key ratchet (see Figure
4.2). Next, both Matrix users’ clients compute a Megolm session, which
is a randomly initialized single ratchet. They exchange their Megolm
session with each other using the Olm keys. If a message is going to be
send, the ratchet advances and a new key is computed to symmetrically
encrypt the message. Since the receiver has the same ratchet and the
encryption method is symmetric, the receiver can compute the same key
and decrypt the message.
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Keys can also be shared among other devices. If a Matrix user is un-
able to decrypt a conversation (because for example the user logs into
a client for the first time), the client can request keys from the other
user’s devices, and the keys can be exported via Olm.

If a Matrix user logs out of their client, the keys are discarded due to
security reasons (see Section 4.3). To store the keys, the Matrix user
has the option to export the Megolm ratchets to a file, which is secured
by a user generated password.

Matrix’s end-to-end encryption generally is a secure algorithm that com-
plies with most security properties [37]. For example, it guarantees
authentication since Matrix uses SAS verification (see Section 4.1.1),
which is considered to be a secure way to verify the fingerprint key of
a device and to counter an unknown key-share attack. However, it re-
quires an extensive amount of time to verify each fingerprint key in a
room with many participants. A Matrix developer is therefore currently
working on cross signing, so that a Matrix user only has to sign their
own devices, and the other party’s master key. This reduces the amount
of SAS key verifications in a room.

One of the security properties that Matrix does lack, is key deniabil-
ity. The developers of Matrix state that the Olm protocol with signed
one-time keys still has partial deniability [24]. However, that statement
is invalid since they did not keep in mind that homeservers also sign the
events (see Section 4.2.2). Due to the signatures on the one-time keys by
the client and the signature of the homeserver, a message transcript in
the hands of a third party cannot be denied by the transcript participant.

Furthermore, while end-to-end encryption of Matrix secures the con-
tent of the message sufficiently, it does not directly mean that the mes-
sage itself is secure. Matrix leaks a significant amount of unencrypted
metadata which still can disclose information about the message and the
sender.
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7.1 Future work

An interesting research avenue would be to explore the implementation
of DAKEZ to potentially improve the deniability of Matrix’s key manage-
ment. Another research opportunity would be to analyse how much the
traffic data discloses about Matrix users, and find an intermediate solu-
tion until The Matrix.org Foundation C.I.C. releases peer-to-peer Matrix
with The Loopix Anonymity System.
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