
Bachelor thesis
Computing Science

Radboud University

Parsons’ puzzles as formative
assessment

Author:
Kirsten Kingma
s4449037

First supervisor:
Dr. Maria Kallia

maria.kallia@ru.nl

Second supervisor/assessor:
Prof. Dr. Erik Barendsen
erik.barendsen@ru.nl

January 15, 2020

Abstract

Formative assessment provides continuous feedback in order to monitor and
improving students’ learning. A tool to assess programming skills which
shows great potential is Parsons’ puzzles. This study explores students’ and
teachers’ perspectives to investigate the potential of Parsons’ puzzles as a
tool to generate formative feedback. We conducted a study on a class of
students in secondary education where we split the class in two. One group
participated in Parson’s puzzles and the other group participated in writing
tasks as formative assessment. After three weeks of experimentation the
analysis of the results indicates that Parsons’ puzzles take less time to correct
than writing tasks, but are not challenging enough for students with a high
skill level in programming. Students with a low skill level could benefit from
Parsons’ puzzles to enhance their understanding in programming, because
of the lower difficulty. Thus we conclude that when a teacher is mindful of
the difference in difficulty of Parsons’ puzzles and writing task, and matches
these accordingly to the skill level of their students, Parsons’ puzzles can be
a useful tool to generate effective formative assessment.

Contents

1 Introduction 3
1.1 Reflection . 4
1.2 Overview . 6

2 Related work 7
2.1 Formative assessment . 7
2.2 Parsons’ puzzles . 8
2.3 Exit cards . 9
2.4 Think-pair-share . 10
2.5 Self-efficacy . 11

3 Methodology 12
3.1 Philosophical assumptions . 12
3.2 Methodological approach . 13

3.2.1 Participants . 13
3.2.2 Data collection method 13
3.2.3 Data analysis . 17

3.3 Ethical Considerations . 18
3.4 Limitations of the study . 18

4 Results and Discussion 19
4.1 Pre-test . 19
4.2 Feedback sessions . 20
4.3 Self-efficacy questionnaire . 25
4.4 Teachers’ log . 27
4.5 Think-pair-share session . 31

4.5.1 Did you enjoy the structure of the task? 32
4.5.2 Did this task help you understand the given problem

better than the other assignment version would? . . . 33
4.5.3 Did this task help you understand how code is struc-

tured overall? . 34
4.5.4 Did some misunderstandings you have about code be-

come clear because of this task? 35

1

4.5.5 Thematic map . 36

5 Conclusions 38
5.1 Conclusion . 38
5.2 Reflection . 39
5.3 Future work . 40

References 41

A Appendix 44
A.1 Pretest (Dutch) . 45
A.2 Consent form (Dutch) . 50
A.3 Exit cards . 52
A.4 Exit card answers . 55
A.5 Transcripts feedback session 1 (Dutch) 56
A.6 Transcripts feedback session 1 (English) 61
A.7 Transcripts feedback session 2 (English) 66
A.8 The self-efficacy questionnaire (Dutch) 69

2

Chapter 1

Introduction

In every subject at secondary education, getting and giving feedback on a
student’s skill is an important part of the education. In a big meta-research
about the effect of different influences on learning (Hattie & Timperley,
2007), feedback scored first place. But how does a teacher give good feed-
back? For a long time teachers have practiced summative assessment: giving
grades on the final product a student produced. This way, students get struc-
tured feedback on finished work. But like a cook tasting their food while
they are making it, students could profit from getting feedback during their
learning. This method is known as formative assessment and its basic aim
is to provide continuous feedback for monitoring and improving students’
learning.

A meta-analysis (607 effect sizes; 23,663 observations) performed in 1998
suggested that feedback interventions in any context improved performance
with an average effect size of .41 (Kluger & DeNisi, 1996). Since then, mul-
tiple studies and articles argued that formative assessment is essential in the
classroom(Black & Wiliam, 2009, 1998; Nicol & Macfarlane-Dick, 2006).

Formative assessment can be implemented in many different ways, but for
computer science there is still a lot to be done, unfortunately. When teachers
assess programming skills of students, the most used assignment is to write
code. Although writing code is essential and necessary for both students’
practice and understanding, it can be time consuming for a student and for
a teacher to grade. It may not even be the best option when students start
learning new programming concepts or constructs.

A potential solution to these problems could be Parsons’ puzzles (Parsons
& Haden, 2006) (more information is provided in related work at section
2.2). In figure 1.1 we can see an example of a Parsons’ puzzle testing a basic
programming concept in the programming language Python.

3

Figure 1.1: Example of a Parsons” Puzzle

Parsons’ puzzles are a tool to assess programming skills in an entertaining
puzzle-like format. They maximize engagement and since each puzzle so-
lution is a complete sample of well-written code, use of the tool exposes
students to good programming practice (Parsons & Haden, 2006). Research
has shown that not only do Parsons’ take less time to grade, they reduce
the cognitive load of the assignment significantly (Ericson, Margulieux, &
Rick, 2017). This is particularly important since previous research suggests
that exercises with a high cognitive load can slow gaining expertise (Sweller,
1988).

The aim of this research is to investigate the potential of Parsons’ puz-
zles as a tool for formative assessment. Therefore, our research questions
are formulated as follows:

• Can Parsons’ puzzles be used as a tool to generate effective formative
assessment?

To help us with answering this question, we defined two sub-questions:

• Are Parsons’ puzzles beneficial for teachers as a formative assessment?

• Are Parsons’ puzzles beneficial for students to enhance their under-
standing in programming?

1.1 Reflection

The focal reason that I chose Parsons’ puzzles as formative assessment as
the subject of my thesis is that as a teacher of computer science in secondary
education, I have encountered difficulties with assessing my students’ knowl-
edge. During teaching lessons, I encountered some difficulties with assessing
the skill of students. The most obvious way of assessing the students’ skill
level in programming is asking them to write code. But, from my personal
experience as a teacher, this method alone isn’t efficient.

4

Firstly, if the students write their answers on paper, a lot of crucial lit-
tle (syntax) errors are made which would have never happened when the
student was writing in an IDE.

Secondly, the cognitive load of these writing assignments. When writing
code, looking up parts of the solution and small pieces of example code is
essential. When I instruct students in an assignment, I always set a ground
rule for asking questions. “When you encounter difficulties, first ask your
neighbour or search for an answer on the internet and if you still have not
found the solution after trying those options, you can ask me.” I believe this
prepares them the best for writing code independently. The hints students
can get from all these sources, decreases the cognitive load of writing code
immensely.

The third problem I encounter with writing assignments is giving feedback.
Without proper feedback on their code, my students keep on making the
same mistakes over and over. But when students are just starting they of-
ten struggle with giving pseudo code to answer the question. Giving helpful
feedback is very hard when the code is just completely incomprehensible.
Because trying to understand code someone else has written can take a lot
of time, even when it is completely correct. Trying to find out the misun-
derstandings students have from their code, which is filled with errors, is
very difficult.

I strive to give my students the best education possible. And assessing
their skill level and giving helpful feedback is an essential part in their edu-
cation. But I believe asking students to simply write code is not an efficient
experience for students and teachers alike. That is why I want to assess my
students’ skill level by including different types of assignments. I have tried
asking them to fix code, trace code with a table and summarizing code in
their own words. But these methods do not test the application objective of
the Bloom taxonomy that writing does (Bloom, Krathwohl, & Masia, 1984).

This thesis gives me the opportunity to review Parsons’ puzzles as a tool
of assessing the students’ skill level in a more efficient way. Learning new
methods for assessment is important to me as a young teacher, because it im-
proves my teaching practice and therefore the efficiency of my feedback and
grading for students. I believe improving those elements in education can
help students to learn more efficiently and most importantly, enjoy learning
how to code. This can lower the threshold of learning how to code for many
more students to come.

5

1.2 Overview

In this thesis we first talk about related work and their influence on our
research. Then we explain the methodology of our research and present the
results we gathered. After that, we summarize our findings and discuss the
implications for teaching. Finally, we present the conclusions gathered from
our results.

6

Chapter 2

Related work

In this chapter we present the related work to the different themes we discuss
during this thesis. Because the thesis is about Parsons’ puzzles as forma-
tive assessment, these are the first two themes we discuss. Next, we talk
about literature researching exit cards, the think-pair-share exercise and
self-efficacy.

2.1 Formative assessment

For our research we adapt these definitions:

”’Assessment’ refers to all those activities undertaken by teach-
ers, and by the students in assessing themselves, which provide
information to be used as feedback to modify the teaching and
learning activities in which they are engaged. Such assessment
become ’formative assessment’ when the evidence is actually
used to adapt the teaching to meet the needs.”
(Black & Wiliam, 1998, 2)

Thus formative assessment is a method to provide feedback for students.
The type of feedback we give has a big influence on it’s effectiveness. For
example, normative feedback, which relies on teacher comparisons of stu-
dents, should be avoided, because it tends to motivate students for extrinsic
reasons, promotes performance goals, and can lower expectations for success
(Cauley & McMillan, 2010). To promote performance goals, feedback from
formative assessments should reduce social comparisons and instead empha-
size progress toward achieving learning targets (Maehr & Anderman, 1993).
That is why we refrain from giving grades or comments which students could
compare to each other in this study.

7

Furthermore, students need to partner with their teacher to continuously
monitor their current level of attainment in relation to agreed-upon
expectations so they can set goals for what to learn next and thus play a
role in managing their own progress (Stiggins, 2005).

So, feedback should not only focus on students’ current performance, e.g. in
a test, but should also engage teachers and students in a conversation where
students’ learning progress is being regarded in relation with learning goals
and expectations.

2.2 Parsons’ puzzles

Practice exercises for programming basics can be very tedious. This makes
it difficult to motivate students. In their paper, Parsons and Haden describe
Parsons’ Programming Puzzles, an automated, interactive tool that provides
practice with basic programming principles in an entertaining puzzle-like for-
mat (Parsons & Haden, 2006). Solving Parsons problems takes significantly
less time than fixing code with errors or than writing the equivalent code.
Additionally, as noticed by Ericson et al., there is no statistically significant
difference in the learning performance, or in a students’ retention of the
knowledge one week later (Ericson et al., 2017).

We think Parsons’ puzzles are ideal in formative assessment because feed-
back from a Parsons’ puzzle makes clear what students don’t know (in both
syntax and logic) and it is much less ambiguously than marks from a code
writing problem (Denny, Luxton-Reilly, & Simon, 2008). This ensures that
a teacher can quickly see what the progress of a student is, and give them
appropriate feedback.

There are different versions of Parsons’ puzzles. ’Distractors’ can be added
to the available lines of code. These are lines of code that are not part of the
solution. There is no difference in the transfer of task performance whether
students made tasks with distractors or without them (Harms, Chen, &
Kelleher, 2016). However, the distractors increased learners’ cognitive load,
decreased their success at completing Parsons’ puzzles by 26%, and increased
learners’ time on a task by 14% (Harms et al., 2016).

One could also make the Parsons’ puzzles ’two-dimensional’. The verti-
cal dimension is used to order the lines, whereas the horizontal dimension
is used to change control flow and code blocks based on indentation as in
Python. Two-dimensional puzzles are more complicated when compared to
similar puzzles where only the order of the lines needs to be solved (Ihantola
& Karavirta, 2011).

8

A teacher can give line-based or execution based feedback on these Par-
sons’ puzzles. Line-based feedback, is feedback in terms of the order and
indentation of the expected correct solution by highlighting code fragments
that need to be moved somehow in order to fix the program. Execution
based feedback checks the expected results of the code.

In their study, Helminen, Ihantola, Karavirta, and Alaoutinen found that
feedback based on execution, resulted in programs which were more fre-
quently executable when feedback was requested and, overall, feedback was
requested less frequently, as opposed to line-based feedback (Helminen et
al., 2013). At first we did not let the students make the tasks in an IDE
in our study, but on paper. Later in the study we let the students fill in
their answers in an online environment where students can not execute their
code. This made execution based feedback impossible, but we find it more
important that the teacher can have a conversation with the student when
they give feedback.

Morrison, Margulieux, Ericson, and Guzdial suggested to add sub-goal la-
bels to Parsons’ puzzles. This refers to a strategy that helps students to
deconstruct problem solving procedures into sub-goals, functional parts of
the overall procedure, to better recognize the fundamental components of
the problem solving process (Atkinson, Catrambone, & Merrill, 2003). In
their study, students who were given sub-goal labels performed statistically
better than the groups that did not receive sub-goal labels or were asked to
generate sub-goal labels (Morrison et al., 2016). The authors also concluded
that a low cognitive load assessment, Parsons’ puzzles, can be more sensitive
to student learning gains than traditional code generation problems.
In our experiment, the problems presented to the students are very small,
so giving sub-goals was unfortunately not an option.

2.3 Exit cards

Exit cards are formative evaluations of students’ knowledge undertaken at
every class meeting. If students want to exit the classroom at the end of a
lesson, they need to complete an exit-card. An exit card can consist of a
reflection. In their study, Patka, Wallin-Ruschman, Wallace, and Robbins
asked students the following questions:

1. What did you learn?

2. What are you confused about?

3. What hindered your learning today?

4. What helped your learning today?

9

Students hand wrote their reflection on a sheet of paper or index card which
was submitted to the instructor at the end of class (Patka et al., 2016).
Unfortunately, 40.68% of exit cards included ‘nothing’ for at least one re-
sponse. Students may not be taking the Exit Cards seriously and/or were
not incentivized to provide detailed answers. These type of exit Cards are
often called: ”One Minute Papers”.

We want to give students more incentive to answer the exit card. So we
put Parsons’ puzzles and writing tasks on them. This makes reflection no
longer the purpose of exit cards. In this form, they can be used as a quick as-
sessment of a student’s understanding of a particular concept or skill (Fattig
& Taylor, 2007). This makes exit cards ideal for formative assessment.

2.4 Think-pair-share

Think-Pair-Share is a cooperative discussion strategy that was first devel-
oped by Professor Frank Lyman and his colleagues at the University of
Maryland in 1981. This teaching-learning strategy works in three phases:

1. Think. The teacher provokes students’ thinking with a question. The
students should take a few minutes to think about the question.

2. Pair. Students pair up to talk about the answers they came up with.
They can compare their mental or written notes and identify the an-
swers they think are best, most convincing, or most unique.

3. Share. After students talk in pairs for a few minutes, the teacher calls
for pairs to share their thinking with the rest of the class.

(Robertson, 2006)

Because students are given time to think about their own responses before
they discuss it with their peers, this strategy helps students to form their
own opinion. After they have thought about their own response, they get
the chance to communicate with one classmate to discuss their answers.
This gives the students a possibility to change their answers or to gain new
conclusions. Then, when they share their answers with the rest of the group,
everybody has the chance to voice their opinion about the given answers.

In a study with a small sample size evidence was found that think-pair-share
is effective in promoting critical thinking in students (Kaddoura, 2013). Be-
cause the quality of the feedback from the students in our experiment can
be enhanced if they think more critically, think-pair-share seems the best
strategy to use. It exhausts all the possible opinions the different students
could have.

10

2.5 Self-efficacy

Perceived self-efficacy is concerned with people’s beliefs in their ability to
influence events that affect their lives. This core belief is the foundation of
human motivation, performance accomplishments, and emotional well-being
(Bandura, 2006). As van Dinther, Dochy, and Segers put it:

We certainly are convinced after reading all the studies and the
presented evidence that self-efficacy is vital to academic perfor-
mance and that self-efficacy of students can be affected posi-
tively. (van Dinther et al., p.105, 2011)

That is why we study the difference in self-efficacy of students after they
have performed the different tasks.

11

Chapter 3

Methodology

To research if Parsons’ puzzles can be used to generate effective formative
assessment, we did a study on a class of students in secondary education.

3.1 Philosophical assumptions

The basic paradigm underpinning our research is the interpretivism paradigm.
The basic reason for this is that our research is focused on students’ expe-
riences with different assessment tools as well as the teacher’s reflective ex-
perience. We acknowledge that each student may perceive, experience and
assign meaning to the assessment process in different ways. In this research
study, we are interested in capturing both the different and shared way in
which students experience the same phenomenon. The opposite paradigm,
positivism, states that understanding of phenomena in reality must be mea-
sured and supported by evidence. While the root of interpretivism is that
humans interpret their world and then act based on their meaning making
and their interpretation. So methods that can be used should be consistent
with human and social sciences (Hammersley, 2012).

Using interpretivism, a single phenomenon may have multiple interpreta-
tions rather than a truth that can be determined by a process of measure-
ment (Pham, 2018). The advantages of interpretivism include that we can
describe certain objects or events and understand them in social context.
We get an insider’s insight in our research objects, which provides us with
even more authentic information (Tuli, 2010). This is perfect for our re-
search, because the students’ perspective of Parsons’ puzzles is, determines
the answer of our sub-question: ’Are Parsons’ puzzles beneficial for students
to enhance their understanding in programming?’

Unfortunately, interpretivism research tends to be very subjective. We dis-
cuss this further in the limitations of the study in section 3.3.

12

3.2 Methodological approach

Our research methodology is mainly qualitative in nature. This is in line
with the interpretivism paradigm as the focus of qualitative research is to
provide insights in the meanings, experiences and perspectives of the par-
ticipants.

3.2.1 Participants

We conducted our research on a class of 16 students in their final year of
secondary education in the Netherlands. They follow the VWO (university
preparatory education) stream, which is a six-year education stream with a
focus on theoretical knowledge, that prepares students to follow a bachelor’s
degree (WO) at a research university. The students have an average age of
18. 15 of the students are male and 1 is female.

Each student provided consent with a consent form, as you can see in ethical
considerations in section 3.3. All students participated because the exercises
are a part of their curriculum. Prior to the study, they all followed a com-
puting science course for at least two years. Every week the class had two
lessons of one hour with another lesson or a break of one hour in between.

3.2.2 Data collection method

The data were collected from three phases in our study:

1. Before the feedback sessions. A pre-test to create equivalent groups.

2. Three sessions where students get formative feedback. A self-efficacy
questionnaire taken after the third feedback session. A log by the
teacher.

3. After the feedback sessions. A think-pair-share session about students’
perspectives.

The pre-test was done in a controlled classroom with all participants at-
tending at the same time. The test was given on paper. The results were
analyzed and we used them to assign each student to one of two groups.
The goal of the pre-test was to create two groups of students, were in each
group, different skill-levels are present.

A week later the feedback sessions started. For three consecutive weeks,
each student was given an exit card on paper, which they had to work on
individually. One of the groups got exit cards which had questions on them
in the form of ”write code to..” In Figure 3.1 you can find the first exit card
with a writing task. The other group got exit cards with Parsons’ puzzles

13

Figure 3.1: The first exit card with a writing task

on them. The writing code exit cards and the Parsons’ puzzles exit cards
addressed the same tasks. In Figure 3.2 you can find the first exit card with
a Parsons’ puzzle.

Figure 3.2: The first exitcard with a Parsons’ puzzle

14

During the first session, students complained about writing down all the
code. Thus a transition was made from paper to an online assignment.
The change for the writing task was from writing with pen on paper, to
typing in the answer. The change for the Parsons’ puzzle was from writing
with pen on paper, to dragging and dropping the lines of code to the right
place. We used Microsoft forms for this. All the exit cards are listed in the
Appendix at A.3. After the students completed the assignment on the exit
card, they were given personal feedback from the teacher. If the student
did not do a sufficient job in answering the assignment, they had to do it
again using the feedback they had just been given. If the student did give
a sufficient answer, they could leave the classroom after they collected
their feedback. The audio of the conversations between teacher and
student was recorded.

This process was repeated for three consecutive lessons. The lessons were
focused on wile-loops, for-loops, lists and building students’ understanding
of this topic of the curriculum.

After the students got formative feedback for the third time, they were
asked to fill in the self-efficacy questionnaire of table 3.1. We used the Mo-
tivated Strategies for Learning Questionnaire (MSLQ), developed by Garćıa
and Pintrich, and adapted it for programming. This questionnaire was de-
signed to measure, among other things, the self-efficacy into a specific sub-
ject (Garćıa & Pintrich, 1991). We modified the self-efficacy section, which
consists of eight questions with a seven-point Likert-scale. The first lan-
guage of the students is Dutch, therefore the questions were translated from
English to Dutch. The Dutch version of the questionnaire can be found in
the Appendix at A.8. Scores are calculated by the mean of the items that are
included in the scale (eight items for self-efficacy) (Artino & Stephens, 2006).

After each of the three feedback sessions, the teacher of the class wrote
down their observations about the session, using the time spent correcting
and giving feedback, comments of the students, the answers given on the exit
card and the insight in a student’s skill. These observations could help in
finding things that we may miss in the transcripts of the feedback sessions.
They also create an opportunity to gain more insight in how beneficial the
Parsons’s puzzles can be as a tool to generate feedback.

In the last phase of the study, each group of students was asked to re-
view the assignments and the feedback together using the think-pair-share
strategy. We used this method because it enhances their critical thinking
ability (Kaddoura, 2013), which increases the quality of their feedback. This
reflection/evaluation took place one week after the last formative feedback
session. For four questions, students had to write down their own answer,

15

Name: Not Very

at all true

true of

for me

me

1. I believe I will receive an excellent grade in the

programming part of this course
1 2 3 4 5 6 7

2. I am certain I can understand the most difficult

material presented on the readings in programming
1 2 3 4 5 6 7

3. I am confident I can understand the basic concepts

taught in programming
1 2 3 4 5 6 7

4. I am confident I can understand the most complex

material presented by the teacher in programming.
1 2 3 4 5 6 7

5. I am confident I can do an excellent job on the

assignments and tests in programming.
1 2 3 4 5 6 7

6. I expect to do well in the programming part of

this course
1 2 3 4 5 6 7

7. I am certain I can master the skills being taught

in programming
1 2 3 4 5 6 7

8. Considering the difficulty of programming, the

teacher, and my skills, I think I will do well
1 2 3 4 5 6 7

Table 3.1: The self-efficacy questionnaire

compare their answer with another student and then share their thoughts
with the entire group. The two groups of students participated in the think-
pair-share session separately. So the discussions and their answers were
based solely on the type of task they were assigned. These were the ques-
tions they were given:

• Did you enjoy the structure of the task?

• Did this task help you understand the given problem better than the
other assignment version would?

• Did this task help you understand how code is structured overall?

• Did some misunderstandings you have about code become clear be-
cause of this task?

The audio of the entire session was recorded and the written answers were
collected.

16

3.2.3 Data analysis

For the pre-test in the first phase of our research, students’ responses were
corrected. Based on the percentage of points they earned, they were cate-
gorised in one of the following level skills: low(<50%), advanced(<80%) and
high(≥80%). We assigned the students to two groups, making sure there
are an equal amount of low, advanced and high level students in each group.

In the second phase of our study we gathered information from the feed-
back sessions with transcripts, a self-efficacy questionnaire and teachers’
observations. The transcripts were analysed using � and ⊗ to mark were
the teacher and the student knew if the task was executed correctly or not,
respectively. We also used the symbol N to mark feedback that is applicable
to only this excercise and the symbol � to mark feedback that is applicable
to programming in general.

The results of the self-efficacy questionnaire were analysed by calculating
the averages.

The teachers’ log consists of observations the teacher made during the feed-
back sessions. Amongst other things, these observations were about how
students felt during the tasks, what stood out from the answers the stu-
dents submitted and how students acted during the tasks and when they
got their feedback.

In the third and last phase of this research, the think-pair-share session,
we used thematic analysis to identify patterns or themes in our qualitative
data generated. Braun and Clarke suggest that it is the first qualitative
method that should be learned because it provides core skills that will be
useful for conducting many other kinds of analysis (Braun & Clarke, 2006).
We also used the guide of Maguire and Delahunt, where they explain how to
execute a thematic analysis (Maguire & Delahunt, 2017). Braun and Clarke
provided a six-phase guide which we use as a framework for our analysis
which you can find in Table 3.2.

Step 1: Become familiar with the data Step 4: Review themes

Step 2: Generate initial codes Step 5: Define themes

Step 3: Search for themes Step 6: Write-up

Table 3.2: Six-phase framework for doing thematic analysis (Braun &
Clarke, 2006, p. 3354)

The first step is reading and re-reading the transcripts of the feedback ses-
sions and the think-pair-share session. In the second step we started organ-

17

ising our data in a meaningful and systematic way. We coded the data so
it was filtered into small chunks of meaning. We did this by hand and we
developed and modified the codes as we worked through the coding process.
After performing these two steps we made tables for the codes from think-
pair-share session. One table for each of the four questions we asked the
students. The codes were sorted in the tables by what kind of task they
were about and if they were positive or negative about that task.

The third step focuses on searching for themes in our codes. We use the
definition for a theme as a pattern that captures something significant or
interesting about the data and/or research question. In the fourth step we
reviewed, modified and developed all the themes that we identified before.
We looked critically at our themes to make sure they make sense. Then we
gathered all the codes that were relevant to each theme Next, we refined
our themes in step five. The goal in this step was to identify the essence
of each theme. To complete this step we constructed a thematic map. The
final step is writing what we learned from our analysis. Which you can find
in Chapter 4.

3.3 Ethical Considerations

The students were all 17 years old or older, so we asked for their permission
in a consent form. The consent form stated the purpose of the study, what
information would be gathered from them and how it would be processed. It
also stated that they participated on their free will and could stop with the
study if they wanted to at any time. If a participant was not yet 18 years
old, their parents were asked to give consent as well. The consent form can
be found in Dutch in the appendix A.2.

3.4 Limitations of the study

As mentioned before, our interpretivist research method has some disadvan-
tages which affect the validity of our results. Research outcomes may be
affected by the researcher’s own interpretation, belief system, ways of think-
ing or cultural preference which can cause bias (Mack, 2010). However, we
were vigilant not to let our preconceptions affect our interpretations. In this
study, we demonstrate examples of the transcripts to give the readers the
possibility to assess our interpretations.

Furthermore, because we used a qualitative methodology instead of a quan-
titative methodology we can not rely on numbers of statistics. The results
we gathered also cannot be generalized in different environments because of
our interpretive research.

18

Chapter 4

Results and Discussion

In this chapter we present the results we have gathered from our research.
We discuss our thoughts about the results and what they could mean from
our point of view.

We gathered results from different sources as stated in the methodology
chapter corresponding to the three parts of our study. First we present and
discuss the results of the pre-test the students did, together with their assign-
ment to one of the two groups. Then we present and discuss some quotes of
the students and teacher from the feedback sessions. The third part consists
of the discussion and results from the self-efficacy questionnaire we asked
the students to fill in. Then we present and discuss our findings from the
teachers’ log of the feedback sessions. Finally we present and discuss the
feedback and opinions we gathered from our students in a think-pair-share
session after all the feedback sessions. This also includes a thematic map of
our findings from this session.

4.1 Pre-test

The 16 participants of the study performed a test to measure their skill in
programming. The test can be found in the Appendix at A.1. In table 4.1
you can find their results.

Low level (<50%) Advanced level (<80%) High level (≥80%)

Group A 3 3 2

Group B 3 3 2

Total 6 6 4

Table 4.1: Number of students of each level in the pre-test

19

Because of privacy reasons, we only present the levels of the students. The
percentage represents how many of the available points on the test a stu-
dent earned. After the test, we split the students in two groups, to ensure
every group had an equal number of low, advanced and high level students.
We assigned group A to the Parsons’ puzzles and group B to the writing
tasks. This split resulted in an average percentage in group A of 64% and
an average percentage in group B of 66%. The overall average percentage
was 65%.

The skill level differs enormously, although they are evenly spread over the
two groups. Some students scored near perfect, while others scored very
bad. We believe this can have a big influence on the study. Because group
A and group B both contain students with a high skill level and a low skill
level, we can gather information about both in our study.

4.2 Feedback sessions

For three consecutive weeks, students were given a programming task on an
exit card based on the group they were assigned to after the pre-test. This
entails students from group A made exit cards 1A, 2A and 3A and students
from group B made exit cards 1B, 2B and 3B. The Dutch transcripts of the
first feedback session can be found in the Appendix at A.5. The English
translation of these transcripts can be found in the Appendix at A.6. The
English translation of the second feedback session can be found in the Ap-
pendix at A.7. There are less than 16 conversations each lesson, because
some students could not attend them because they were ill or otherwise oc-
cupied. We present two conversations from every group.

In these conversations, T stands for Teacher and S stands for student. The
conversations are numbered for referencing. The symbol � marks were the
teacher knew if the task was executed correctly or not. The symbol ⊗ marks
were the student knew if the task was executed correctly or not. The symbol
N marks feedback that is applicable to only this exercise. The symbol �
marks feedback that is applicable to programming in general.

Feedback session 1 - Student 6 - Parsons’ puzzle

T: Nr = 1, while, then you do the if, then print it and then else. Hmm I
miss the nr ++. �
S: yes it is here right?
T: yes, but what if. Watch this while here, it checks. Suppose he is odd,
then he does the if, then you print it. But this is a check if it is true. �
S: then it is odd
T: yes

20

S: ⊗ oh then you also have to do nr ++ there
T: yes exactly and then with that else, what should you do there?
S: then print
T: yes but then you also have to do nr ++ right? N Otherwise it is odd once
and then nothing happens. That’s why there are 2 nr ++ things. Okay,
thank you.

Feedback session 2 - Student 7 - Parsons’ puzzle

T: Did it work completely? Did you finish the assignment?
S: No, I don’t have it yet.
T: � Oh you haven’t done it right.
S: Oh no, I did it completely wrong.
Other student: He always has the prescribed lines, that’s not fair at all.
T: There is only one such assignment left, then we will alternate it, okay?
S: ⊗ This line must be back there again.N
T: Yes.
S: But I actually thought I had done that.
T: Yes I don’t know what happened.
S: Well then it is okay.
T: But you get it?
S: Yes, I get it.
T: OK.

Feedback session 1 - Student 5 - Writing task

T: Let’s see
S: It’s a bit ugly because I didn’t know what to do, that’s where it starts.
And there it goes further
T: okay yes. The smaller than 0, 1000. Then you do the number plus 2 and
then print it
S: ⊗ The only mistake is that it doesn’t print 0 now, but then it should print
here one more time before that. N
T: � Yes exactly
S: But that didn’t seem right to me
T: But then you could first print the number and then do the number + 2.
N
S: Yes I could, but then the good number would have been gone.
T: Further more. If I were you I would take a better look at the assignment
next time. It says here that you have to print this. Like 6 = even. �
S: so number and then string is even.
T: and you have not made a method of it.N But otherwise super, great!

21

Feedback session 1 - Student 11 - Writing task

T: yes you have exactly the same thing [as the student before you].
S: Well mine is called nr, that’s more practical
T: Let’s take a look, private void int numbers. � I see you put an ! here
first, but now there is only 1 =. And that is an assignment. �
S: ⊗ Ohh yes double =
T: exactly yes, very good. And it must be comparison. So yes that is number
++. This is unfortunately not the correct syntax for this.
S: okay
T: do you know how ++ works?
S: uhh no. yes that’s just the value there
T: yes that’s the easy thing about ++. Instead of number = number + 1,
you just have to write number ++ and you’re done �
S: okay
T: otherwise completely correct

It was hard to gather useful results from these transcripts. The markers
indicating when the teacher and student knew if the task was executed
correctly or not did give very interesting results. As you can see in the
conversations above, the teacher knew if the answer was correct or not in
roughly the same time with Parsons’ puzzles as with the writing task. The
N and � markers indicated more feedback was given on the writing task.
The bigger length of the conversations about the writing task indicates this
as well. After a writing task, it took longer for the teacher and student to
understand everything they did wrong or right then it would for a Parsons’
puzzle. The students with a low skill level performing the writing task often
needed feedback during the assignment as well. This makes the feedback
progress even lengthier. This is not something that is desired in the class-
room. Very long personal feedback can cause an unequal distribution of the
teacher’s attention. In the next two conversations you can see an example
of this problem.

Feedback session 2 - Student 3 - Writing task

T: Do you find it harder?
S: Yes
T: Yes you have to write it, right? That is why I have the example on the
board. So that you can still look at it.
S: It’s really harder.
T: It is exactly the same assignment, but then you have to write it yourself.
Try again, you can do it.

[some time passes]

22

Feedback session 2 - Student 3 & 6 - Writing task

T: If you really can’t figure it out, you can indicate that. Then I will help
you out.
S: Yes we can’t figure it out.
T: Okay then I’m going to help you. Let’s see, you are both in the same
place in the assignment. You have already created the method, that is very
good. We have to print the characters, so you are indeed making a for loop.
S: I only did what is on the board.
T: On the board it is written that we first create a variable. We say the
object type and give the variable a name. Then we say that the egg object
there on the board is every egg that appears in eggList. And now we have
characters. So we actually want to have every character that appears in the
list. So we can take over the example almost exactly and adjust it a little bit
for our situation. So you said there are strings in that list.
S: Yes.
T: What is the type of the object?
S: String.
T: Exactly. So we can write that down. Open parenthesis, String. And think
of a nice name, it doesn’t matter. You only need it in the for loop. Nice,
good name. Then you put a colon and we need the list that we are going to
walk through. That is..
S: Do you have to initialize the characters in the list?
T: Yes well you have to initialize the list first. Because you haven’t done
that yet.
S: umm ..
T: Shall I give an example of that? How to initialize a list?
S: Yes.
T: Okay [give an example on the board]
S: Should this be in the for loop? Or where should this be?
T: Well you have to initialize it somewhere right? And you said that you
already got the list with the method. So you probably have already initialized
the list before you enter the method. If you don’t get the list, you can simply
initialize it in the method. You can then go through the list. Because that
can only be done after the initialization. Then, during the process, you can
print any letter. Because you always get each letter in the for loop. And
that is what you want to print, right?
S: Yes
T: So then you can print that. And then you only have to close the method.
Yes?
S: OK.
T: Try this and I’ll come back later.

23

Feedback session 2 - Student 5 - Parsons’ puzzle

T: [Name] Are you also going to work on the assignment? Oh you already
have it!
S: Yes, look.
T: Oh that’s all right. How did it go?
S: It was pretty easy.
T: Yes, nice. Do you think you could have made it before I explained it?
S: Yes.
T: Okay, good. Do you think you could have written it yourself?
S: Yes.
T: OK.

This conversation is about the same programming problem as the conver-
sation before with students 3 and 6. The skill level of students 3, 5 and 6
is also the same. The only difference is student 5 made a Parsons’ puzzle
and students 3 and 6 made a writing task. In the conversations we can see
student 5 found the task ”pretty easy” while students 3 and 6 said they
”can’t figure it out”. This indicates students with a low skill level may ben-
efit more from a Parsons’ puzzle than a writing task.

Students with a high skill level performing a Parsons’ puzzle often did not
need any feedback at all. As you can see in the example below.

Feedback session 2 - Student 1 - Parsons’ puzzle

T: [Reads aloud] Yes, really good. Did you find the assignment difficult?
S: No.
T: Good.

This indicates students with a high skill level may not benefit as much
from a Parsons’ puzzle.

The checking of the answers was significantly slowed down if a student wrote
down line numbers instead of lines of codes. Students did not want to copy
all the lines of code in the right order. So they wrote down line numbers in
front of each line and wrote them in the correct order. Because just writ-
ing down numbers takes less time and work. The problem is that students
did not generate an overview of their code if they use this tactic. Thus
making it harder to check their answer. Not only for the teacher, but for
themselves as well. This resulted in a lot of wrong answers because of small
mistakes which the students probably would not have made if they just
copied the line numbers. To make sure this did not happen in the second
and third week, we remade the task in digital form. Now the students with

24

the Parsons’ puzzles just have to drag and drop the lines in the correct order.

There was one other thing we found during the feedback sessions. Stu-
dents with writing tasks often delivered an answer which differed from the
answer on the answer sheet. And these were often correct as well. This is
bound to happen, because every programmer has his or her own style and
can come up with a different approach for the same problem. But it did
made checking their answers lengthier, because the teacher had to familiar-
ize their code from scratch before they could provide feedback.

This aspect of a writing task, that the solutions can very wildly, is also
one of its assets. Students are forced to think of their own approach to the
problem. Which makes this a good practice for them. But for students with
a low skill level this is sometimes impossible. They do not possess enough
knowledge about programming to think of a solution. Which makes this
task not very beneficial to their learning. This problem becomes especially
clear in the transcripts of the second feedback session.

4.3 Self-efficacy questionnaire

After the students made the third exit card, they filled in a self-efficacy
questionnaire which you can find in table 3.1. In figure 4.2 you can find the
results of all the participants. One student did not fill in the questionnaire
because he or she did not attend the lesson.
For each of the eight statements, the students had to fill in how much they

agreed with it on a scale from one to seven. The higher the number, the
higher their self-efficacy. In the table you can see the average self-efficacy of
every student and for every question. The average self-efficacy score of the
students in group A is 4,0. The average self-efficacy score of the students in
group B is 5,0. The standard deviation in both groups is 1,0.

At first, we thought the self-efficacy questionnaire would show that students
who made Parsons’ puzzles have a higher self-efficacy than the students who
made writing tasks. Because the Parsons’ puzzles were perceived as an easier
task and the students making writing tasks struggled with them a lot. But
the opposite happened. Students in group A, who made Parsons’ puzzles,
had the lowest self-efficacy. They differed from the other group with 1 point
on a scale of 1 to 7.

The pre-test made sure the group was split in two groups of students that
should on average have the same skill level. This was made clear to the
students, but during the feedback sessions, students questioned their group
assignment a lot. This may have caused the believe in some students that

25

Participants Questions

Group 1 2 3 4 5 6 7 8 Average

A 6 5 7 7 6 6 6 7 6,3

A 4 2 7 4 3 3 4 6 4,1

A 3 2 5 3 2 3 4 3 3,1

A 2 2 3 2 2 3 3 5 2,8

A 3 3 4 4 3 3 3 3 3,3

A 3 4 6 5 3 5 5 6 4,6

A 4 3 2 3 3 3 4 4 3,3

A 4 3 6 3 3 5 6 7 4,6

B 4 2 6 3 4 3 3 7 4,0

B 4 2 3 3 3 4 3 6 3,5

B 5 4 7 5 5 5 6 5 5,3

B 5 4 7 6 6 5 6 6 5,6

B 7 5 7 6 6 7 6 6 6,3

B 6 4 6 5 5 7 5 7 5,6

B 4 5 6 6 3 4 5 6 4,9

A 3,6 3,0 5,0 3,9 3,1 3,9 4,4 5,1 4,0

B 5,0 3,7 6,0 4,9 4,6 5,0 4,9 6,1 5,0

Total 4,3 3,3 5,5 4,3 3,8 4,4 4,6 5,6 4,5

Table 4.2: Results self-efficacy questionnaire

they were assigned to the Parsons’ puzzles because they were not skilled
enough for the writing task group. The difference could also have been
caused by the perceived difference in difficulty of the tasks and how ac-
complished students could feel after completing a task that is perceived as
difficult or easy.

Because the Parsons’ puzzles were perceived as easy, students maybe did
not think they were good in programming when they could execute them
correctly. While the students that made the writing task maybe thought
they were good in programming because they could correctly execute the
’hard’ task.

26

4.4 Teachers’ log

As a teacher, I made some observations during the feedback sessions. For
example, students with Parsons’ puzzles were finished earlier than students
with a writing task. This indicates that Parsons’ puzzles may be quicker to
solve than completing a writing task. It is ideal if the task students have
to complete does not take a lot of time, because this gives the teacher more
opportunities to do it as a formative assessment.

Students were disappointed if they were assigned to group B, because they
had to do the ’hard’ writing task. They were happy if they were assigned
to group A, for the ’easy’ Parsons’ puzzle. They assigned these difficulties
themselves. While I was giving feedback to a student solving a Parsons’
puzzle his neighbour voiced the underlined sentence in the following conver-
sation:

Feedback session 2 - Student 7 - Parsons’ puzzle
T: Did it work completely? Did you finish the assignment?
S: No, I don’t have it yet.
T: Oh you haven’t done it right.
S: Oh no, I did it completely wrong.
Other student: He always has the prescribed lines, that’s not fair at all.
T: There is only one such assignment left, then we will alternate
it, okay?
S: This line must be back there again.
T: Yes.
S: But I actually thought I had done that.
T: Yes I don’t know what happened.
S: Well then it is okay.
T: But you get it?
S: Yes, I get it.
T: OK.

As you can see, the student complained because they had to do the writing
task, and had to think of all the code by themself. While their neighbour has
the Parsons’ puzzle, which already provides the lines of code. This indicates
that students found Parsons’s Puzzles easier and more fun to do. The first
is important information for teachers that want to provide students with
tasks that match their level. The second part, that Parsons’ puzzles could
be more fun to do for students is also important. If a teacher has the op-
portunity to choose between two otherwise equal tasks, they probably want
to provide the one that is the most enjoyable for students to do.

Students wrote down line numbers instead of complete sentences of the
Parsons’ puzzles. Because of this, it was harder to check their answers.

27

Students also made more mistakes if they did this. An example from the
first feedback session, where a student just wrote down the line numbers:

Feedback session 1 - Student 4 - Parsons’ puzzle
T: Oh you put it like that.
S: Yes, I didn’t copy it completely.
T: So we start there, then we do this, then we go here. Do we
do that if .. No this is not right
S: Yes, I am sure it is true, ma’am. Why isn’t it correct?
T: Yes, let’s see, it is indeed not correct
S: Oh wait I put this on the wrong place then. Okay you are
right madam, it must be turned around indeed.
T: Yes exactly. Did you just not see this?
S: Yes, I did not take a good look, so it would have been better if
I wrote it down, yes.
T: Okay, well. Then you also know what to do next time.
S: Yes
T: Thank you

As you can see, the student realised they would not have made their mis-
take if they wrote down the entire answer, because then they would have
an overview of their code, which would have made it easier to check. The
unwillingness of students to copy lines of code, leads to a higher chance of
them making mistakes. But they appear to be willing to take that chance.
That’s why we found it important to change how the students submit their
answers. As told in the methodology at section 3.2.2. We changed the exit
cards so students only had to drag and drop the lines of codes, ensuring
students did not have the option of only writing down the line numbers.

The answers of the students of the writing task sometimes differed from
the answer on the answer sheet, while they were still correct. This made
checking the answers harder and take a longer time. Which is not desired,
because it uses up valuable time.

Students with all skill levels understood their mistakes from the feedback
generated by the Parsons’ puzzle very fast. It was easy for the teacher to
give feedback based on the Parsons’ puzzle. Students with low skill levels
required a lot of time to understand the feedback generated by the writing
task. It was hard for the teacher to give feedback based on the writing task
to them as well. For students with an advanced or high skill level this was
not that much of a problem. This indicates that it may be beneficial for
students with a low skill level to get feedback on Parsons’ puzzles instead of
writing tasks.

28

Students compared their answers during the feedback sessions with the
answers of the student that got feedback at that moment.

This means they listened to the feedback given to another student and
checked if that feedback was also applicable to their answer. This indi-
cates students have the opportunity to learn from the feedback to other
students. Which can save time and creates an extra learning opportunity.

Many different misunderstandings that may indicate students misconcep-
tions were discovered at the Parsons’ puzzles. For example, in the first
students had to make the following program:

private void evenOrOdd(){

int nr = 1;

while(nr != 1000) {

if((nr % 2) != 0) {

nr++;

} else {

System.out.println(nr + "= even");

nr++;

}

}

}

One student forgot to put nr++; after the print statement. Which re-
sults in a program that will infinitely loop. Another student put the line
System.out.println(nr + "= even"); before the if clause. Resulting in
a program that will print nr + "= even" for every nr. Sometimes it was
harder to discover misunderstandings for the writing task because there were
more things which could go wrong.

Students were very happy with the drag and drop version of Parsons’ puz-
zles. This confirms that it was a good decision to change the exit cards from
paper to an online task.

All students making the Parsons’ puzzles task, performed well. Indicat-
ing that they may be too easy for the high level students.

Students making the writing task found it hard. They often could not even
make a start with the task. Extra explanation was needed which took a lot
of time. The students seemed disengaged and less motivated by the task.
Some examples showing this problem:

Feedback session 2 - Student 4 - Writing task
S: I really can’t figure out what to do.

29

T: Have you looked at the example? If you can’t figure it out then
just show what you did so far. Then I will give feedback about
that.
S: OK.

Feedback session 2 - Student 3 & 6 - Writing task
T: If you really can’t figure it out, you can indicate that. Then I
will help you out.
S: Yes we can’t figure it out.
T: Okay then I’m going to help you.
[The teacher explains what the students need to do]

It took a lot of time to explain the problem individually to the students. It
seemed the exercise was too hard for these students. There were no students
making Parsons’ puzzles that needed as much feedback before they could
solve it. This indicates a writing task may be too hard for students with a
low skill level.

Students making the Parsons’ puzzles often could figure out on their own
what their mistake was if they delivered the wrong answer. Some examples:

Feedback session 2 - Student 7 - Parsons’ puzzle
T: Did it work completely? Did you finish the assignment?
S: No, I don’t have it yet.
T: Oh you haven’t done it right.
S: Oh no, I did it completely wrong.
Other student: He always has the prescribed lines, that’s not fair
at all.
T: There is only one such assignment left, then we will alternate
it, okay?
S: This line must be back there again.
T: Yes.
S: But I actually thought I had done that.
T: Yes I don’t know what happened.
S: Well then it is okay.
T: But you get it?
S: Yes, I get it.
T: OK.

Feedback session 1 - Student 1 - Parsons’ puzzle
T: Oh you just wrote down the numbers
S: Yes I have done it with numbers so you have 1 2 3 4
T: Hmm that’s a bit hard to check. Where is 1? Oh here and
then 1 2 3 4 5 6...
S: That sounded very doubtful

30

T: Yes, I expected another line first
S: Oh I must have turned them around.
T: Yes. It might be more convenient for next time if you just
write it down
S: Yes okay
T: Because I know that it takes less time, but that makes it dif-
ficult for me to check. Thus making it more difficult for you to
check.
S: Yes that is fine
T: Yes? Okay. Then it’s okay.

The part where students figured out their own mistakes are underlined. This
indicates students were less dependent on the feedback of a teacher. Which
is a desired characteristic because it enhances self-regulated learning, which
plays an important role in students’ academic achievements (Zimmerman,
1990).

4.5 Think-pair-share session

Seven students from each of the two groups participated in a think-pair-share
session. Two students did not participate because they were not present dur-
ing the lesson in which the sessions was done.

As described in the methodology: we gathered codes from the transcripts
and the notes of students of the think-pair-share session. For each of the
four questions, we made a table with all the gathered codes for this question.

The codes were put in the column of the kind of task they were about.
The rows of the tables indicate whether the codes were negative or positive
about the task. If codes appeared more than once, we put the number of
times they appeared. In table 4.3 you can also find a row with a sugges-
tion, because this statement was neither positive or negative. For the first
question, many codes were gathered because the students provided a lot of
feedback. But as the session progressed, the amount of feedback students
provided decreased. Therefore, the fourth table contains fewer codes than
the first table. This may have happened because students already felt like
their feedback about the tasks was already exhausted by the previous ques-
tions and they would otherwise repeat themselves. Another reason could be
that students felt like they could not answer the question.

31

4.5.1 Did you enjoy the structure of the task?

Parsons’ puzzle Writing task

Yes

Feeling more competent

Easier to do (3)

Diversity in programming tasks

Fun to do

No

Not that challenging (3) Too hard (4)

Not that useful No idea where to begin (3)

Too easy to do Unclear goal of the assignment (2)

Not fun to do

Suggestions
It should be possible to write

answers in an IDE

Table 4.3: Did you enjoy the structure of the task?

In table 4.3, you can see there were no positive remarks about the Writing
task. That’s why we believe students did not enjoy the writing tasks. They
did have a lot of positive remarks for Parsons’ puzzles, which indicates that
the students did enjoy them. For both of the tasks there were negative re-
marks, which indicates the students were critical of both.

Almost all of the feedback in this table relates to the difficulty to the task:
easy, too easy, too hard. Apparently the difficulty of a task is heavily re-
lated to the enjoyment of it. Students with a high skill level found the
Parsons’ puzzles too easy to do, while Students with a low or advanced skill
level found them easier to do in a positive way. The students with a low
or advanced skill level who performed writing tasks found them too hard
to do. Indicating that matching a students’ skill level to the difficulty of
a task plays an important role in the enjoyment of a task. Previous work
found that two-dimensional puzzles were more complicated than the one-
dimensional puzzles we used in our research (Ihantola & Karavirta, 2011).
When a programming language based on indentation, like Python, is used,
these two-dimensional puzzles could help make the puzzles more challenging
for students with a high skill level.

32

4.5.2 Did this task help you understand the given problem
better than the other assignment version would?

Parsons’ puzzle Writing task

Yes
It made it easy enough to

understand the problem
I already understood the problem a little

No

It was confusing Explanation would be better (2)

I never looked at the problem It differs a lot

During making the assignment I needed

extra help (2)

Table 4.4: Did this task help you understand the given problem better than
the other assignment version would?

An interesting code in table 4.4 about Parsons’ puzzles is ”I never looked at
the problem”. The student explained it as follows:

”I just had to look at the set lines of code in the assignment and
make sure those lines were in an order that would make a correct
program. I did not need to know what problem the code should
solve in order to do that.”

This indicates that a Parsons’ puzzle does not test if a student can solve
a programming problem, but if a student can write correct code. While a
writing task tests both. Indicating students with a high skill level does not
benefit as much by making a Parsons’ puzzle.

The other codes are, again, related to the difficulty of the task. Because
a Parsons’ puzzle already gives you set programming lines, a student with
a low skill level commented it gave them the opportunity to understand the
problem. While other students with a low skill level who performed writing
tasks, stated they could not make the assignment without extra help.

The codes in this table indicate students Parsons’s puzzles helped students
with a low skill level to understand the given problem better than writing
tasks would. For students with a high skill level Parsons’ puzzles could fail
in helping students understand the given problem.

33

4.5.3 Did this task help you understand how code is struc-
tured overall?

Parsons’ puzzle Writing task

Yes
You have to think about it (2) Good practice (2)

Good practice

No It was confusing I did not have enough understanding (2)

The details were hard

Not efficient

Table 4.5: Did this task help you understand how code is structured overall?

When we look at table 4.5 we can see that students find both Parsons’ puz-
zles and writing tasks are a good practice for learning how code is structured
overall. There is one code that states Parsons’ puzzles can confuse your un-
derstanding of how code is structured. At first, the lines of the program
are in the wrong order, so the student could be confused by this. But this
confusion is necessary for the assignment. It is the thing a student should
fix to finish the assignment. Other codes stated that Parsons’ puzzles are
beneficial because you have to think about the code structure so this does
not seem to be a significant problem.

And again there are codes about the difficulty of the task. This time the
only problem is the difficulty of the writing task. Students with a low skill
level said because the task was too hard to execute, it was not beneficial
for their understanding in the structure of code. Students with an advanced
skill level indicated they found the task not efficient for understanding how
code is structured overall. They also said the details of writing code for a
writing task is hard. These two codes indicate that even for students with
an advanced skill level the difficulty of writing tasks is too high. This may
cause the failure of the writing task to help those students understand how
code is structured overall.

34

4.5.4 Did some misunderstandings you have about code be-
come clear because of this task?

Parsons’ puzzle Writing task

Yes The feedback was helpful

No
I could not compare the code

with how I would do it myself
I needed more help

Table 4.6: Did some misunderstandings you have about code become clear
because of this task?

As mentioned before, there are not many codes in table 4.6. Probably be-
cause students felt they were repeating themselves or they felt like they
could not answer the question. Fortunately, the feedback that was gath-
ered did provide some interesting codes. One code stated an interesting
problem with Parsons’ puzzles. The set lines of code in the puzzle can dif-
fer from the way a student would have written the code themselves. This
means that some misunderstandings they might have would never arise be-
cause they cannot do them. This can make it hard for a student to translate
the feedback they get from this task to how they would write their own code.

This disadvantage is also an asset of Parsons’ puzzles. Because it also gives
an optimal solution to the student. The lines themselves already are correct
so this can help or guide a student in what an optimal solution should look
like.

The help a student with a Parsons’ puzzle gets from it’s task, is the thing a
student with a writing task often needs to learn more about there misunder-
standings. And with a writing task feedback from the teacher can be crucial.
Because the student has to start writing with only a problem description.

35

4.5.5 Thematic map

Finally, we made a thematic map based on the codes gathered in the think-
pair-share session which you can find in figure 4.1.

Figure 4.1: Thematic map of feedback from the students

The round boxes are the themes and the square boxes are the sub-themes
we gathered from our codes.

The thematic map consists of the two themes we believe are the most im-
portant for students: Enjoyment of the task and progress on the tasks. For
both of these themes we will discuss how the sub-themes relate to the themes
and the codes gathered from the think-pair-share session.

Enjoyment of the task

Students were happy with the diversity of a new kind of task Parsons’ puz-
zles brings. The novelty of it made them more driven to finish the task.

Parsons’ puzzles made students with a low skill level feel more competent,
because they felt the difficulty of it better suited their skill level, which con-
tributed to their enjoyment of the task.

Students with a high skill level often found the writing task more chal-
lenging, which made it enjoyable. While they were not challenged by the
Parsons’ puzzles, which made those less enjoyable for these students.

Progress on the task

The low complexity of the Parsons’ puzzles helped students with a low skill
level in understanding the goal of the program. On writing tasks these
students needed feedback from the teacher to be able to complete the task,
which made it hard for them to use this task to enhance their understanding
in code structure. Thus the difference between a writing task and a Parsons’
puzzle can have a big impact on the progress of students on their task.

36

The Parsons’ puzzle’s set lines of code made it incomparable to their own
code, which made students with a high skill level feel like they did not have
ownership of the code. It forced them to use the set lines of code, which
made these students unable to use their own style of programming, which
had a negative impact on their progress. Because of this, these students
also felt that a Parsons’ puzzle did not help them as much in understanding
how code is structured overall and uncovering some misunderstandings they
might have, as a writing task could have. While students with a low skill
level still lack the need of ownership of their code, which made the set lines
of code welcome help.

We believe this thematic map gives a good overview of the two different
kinds of assignments and how they could benefit students.

37

Chapter 5

Conclusions

In this thesis we researched Parsons’ puzzles as formative assessment. We
did a qualitative study on a class of students in secondary education which
we split in two groups. A pre-test ensured we could split the class in such
a way, that each group contained students of students with a low, advanced
and high skill level in programming. For three consecutive weeks one group
made Parsons’ puzzles and the other group made writing tasks as forma-
tive assessment. We gathered the transcripts from these formative feedback
sessions, a self-efficacy questionnaire, a teachers’ log. After the feedback ses-
sions were complete, we asked the students what their thoughts were about
both kind of tasks in a think-pair-share session.

In this chapter we draw our conclusions about the research questions we
stated in the introduction. After this, I reflect on what I’ve learned from
this study as a teacher and how this is going to change my teaching experi-
ence. Finally, we propose some potential future work to end our conclusion.

5.1 Conclusion

Are Parsons’ puzzles beneficial for teachers as a formative assess-
ment?
During our thesis we could only gather results from the perspective of one
teacher. Thus this answer is limited to only my reflections and observations
as a teacher. The results of my thesis conclude there is not a concrete answer
to this question. Future research should explore this phenomenon.

My first observation is that it takes less time to correct a Parsons’ puz-
zle than to correct a writing task, because the amount of possible answers
is smaller. This is supported by previous research (Ericson et al., 2017).
Because it is desirable for teachers to spend as little time as possible on
correcting answers, this makes Parsons’ puzzles a better alternative.

38

Next is the unequal distribution of the teachers’ attention on students mak-
ing writing tasks because of the lengthy feedback students with a low skill
level need. However, we should acknowledge that we observed that students
with a high skill level found the tasks too easy. Which could potentially
make the lessons less challenging for them.

Are Parsons’ puzzles beneficial for students to enhance their un-
derstanding in programming?
For this sub-question we can argue that for students with a low skill level
in programming, the lower difficulty of Parson’s gives them a better oppor-
tunity to enhance their understanding. When these students made writing
tasks, the goal of the task was often unclear enough for them to enhance
their understanding. Previous research found Parsons’ puzzles reduce the
cognitive load and that exercises with a high cognitive load can slow gaining
expertise (Ericson et al., 2017)(Sweller, 1988). This supports our findings
because the exercise has a higher cognitive load for students with a low skill
level as opposed to students with a high skill level.

For the students with an advanced skill level, unfortunately no results were
evident from our study. But, students with a high skill level were denied
the opportunity to think of their own approach to the given problem when
they made a Parsons’ puzzle, because of the given set of lines of code. While
writing tasks do not have this restriction.

The answers to these sub-questions help us answer our research question:
Can Parsons’ puzzles be used as a tool to generate effective for-
mative assessment?
We believe that when a teacher keeps in mind the difference in difficulty of
Parsons’ puzzles and writing tasks, and matches these accordingly to the
skill level of their students, Parsons’ puzzles can be a useful tool to generate
effective formative assessment.

5.2 Reflection

In the introduction I reflected on my experiences as a teacher of computer
science in secondary education. I stated three problems I encountered while
assessing their skill level using writing tasks: The lack of an IDE when writ-
ing on paper, the high cognitive load of the tasks and the difficulty of giving
good feedback.

During this study I learned new things, because it forced me to reflect on my
teaching. But the most important lessons I learned were from the feedback

39

my students gave me. They were very honest in their opinion and I found
it good to see how good they were at giving constructive feedback about
their learning experience. I will definitely keep asking for feedback from my
students, so I can keep on learning from them.

Another thing I learned from this study, is that Parsons’ puzzles are a good
alternative for writing tasks for students with a low skill level in program-
ming. The problem of the high cognitive load of the writing tasks and the
difficulty in giving good feedback about them to these students can be solved
by using Parsons’ puzzles.

Because the goal of formative assessment is giving students useful feedback
on their learning, not a grade, it does not matter that students perform
tasks with a different difficulty. In the future, I will adapt my formative
assessment methods to a students’ skill level. With two kinds of tasks for
students with a low skill level and a high skill level, so students can choose
between the two tasks. This will give students with a low skill level more
opportunity to get useful feedback, which, I hope, will result in them gain-
ing programming skill faster. This also ensures students with a high skill
level will not suffer from lack of time I have to engage with them, because
of the extra explaining I have to give the slower students. In conclusion,
I believe giving students assignments as formative assessment that match
their difficulty will improve the quality of the formative assessment in my
classroom.

5.3 Future work

Because this is a qualitative research, we can not rely on numbers of statis-
tics. Future work could extent this study by employing more students, of
different ages and different stages of learning how to program. Also, other
studies could explore other teachers’ perspectives and have more insights
into how we can improve the quality of the feedback on both Parsons’ puz-
zles and on writing tasks. Our last recommendation for future work is to
investigate how Parsons’ puzzles could affect students’ self-efficacy, because
the results from our questionnaire was the opposite of what we expected.

40

References

Artino, A., & Stephens, J. M. (2006). Learning online: Motivated to self-
regulate. Academic Exchange Quarterly , 10 (4), 176–182.

Atkinson, R. K., Catrambone, R., & Merrill, M. M. (2003). Aiding trans-
fer in statistics: Examining the use of conceptually oriented equations
and elaborations during subgoal learning. Journal of Educational Psy-
chology , 95 (4), 762.

Bandura, A. (2006). Guide for constructing self-efficacy scales. Self-efficacy
beliefs of adolescents, 5 (1), 307–337.

Black, P., & Wiliam, D. (1998). Inside the black box: Raising standards
through classroom assessment. Granada Learning.

Black, P., & Wiliam, D. (2009, Jan 23). Developing the theory of forma-
tive assessment. Educational Assessment, Evaluation and Accountabil-
ity(formerly: Journal of Personnel Evaluation in Education), 21 (1), 5.
Retrieved from https://doi.org/10.1007/s11092-008-9068-5

Bloom, B. S., Krathwohl, D. R., & Masia, B. B. (1984). Bloom taxonomy
of educational objectives. In Allyn and bacon. Pearson Education.

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology.
Qualitative research in psychology , 3 (2), 77–101.

Cauley, K. M., & McMillan, J. H. (2010). Formative assessment techniques
to support student motivation and achievement. The Clearing House:
A Journal of Educational Strategies, Issues and Ideas, 83 (1), 1-6. Re-
trieved from https://doi.org/10.1080/00098650903267784

Denny, P., Luxton-Reilly, A., & Simon, B. (2008). Evaluating a new
exam question: Parsons problems. In Proceedings of the fourth in-
ternational workshop on computing education research (pp. 113–124).
New York, NY, USA: ACM. Retrieved from http://doi.acm.org/

10.1145/1404520.1404532

Ericson, B. J., Margulieux, L., & Rick, J. (2017). Solving parsons problems
versus fixing and writing code. In Proceedings of the 17th koli calling
international conference on computing education research (pp. 20–29).
New York, NY, USA: ACM. Retrieved from http://doi.acm.org/

10.1145/3141880.3141895

Fattig, M. L., & Taylor, M. T. (2007). Co-teaching in the differentiated
classroom: successful collaboration, lesson design, and classroom man-

41

agement, grades 5-12. John Wiley & Sons.
Garćıa, T., & Pintrich, P. R. (1991). Student motivation and self-regulated

learning: A lisrel model.
Hammersley, M. (2012). What is qualitative research? A&C Black.
Harms, K. J., Chen, J., & Kelleher, C. L. (2016). Distractors in parsons

problems decrease learning efficiency for young novice programmers.
In Proceedings of the 2016 acm conference on international comput-
ing education research (pp. 241–250). New York, NY, USA: ACM.
Retrieved from http://doi.acm.org/10.1145/2960310.2960314

Hattie, J., & Timperley, H. (2007). The power of feedback. Review of
Educational Research, 77 (1), 81-112. Retrieved from https://doi

.org/10.3102/003465430298487

Helminen, J., Ihantola, P., Karavirta, V., & Alaoutinen, S. (2013, March).
How do students solve parsons programming problems? – execution-
based vs. line-based feedback. In 2013 learning and teaching in com-
puting and engineering (p. 55-61).

Ihantola, P., & Karavirta, V. (2011). Two-dimensional parson’s puzzles:
The concept, tools, and first observations. Journal of Information
Technology Education, 10 , 119–132.

Kaddoura, M. (2013). Think pair share: A teaching learning strategy to
enhance students’ critical thinking. Educational Research Quarterly ,
36 (4), 3–24.

Kluger, A., & DeNisi, A. (1996, 03). The effects of feedback interventions on
performance: A historical review, a meta-analysis, and a preliminary
feedback intervention theory. Psychological Bulletin, 119 , 254-284.

Mack, L. (2010). The philosophical underpinnings of educational research.
Polyglossia.

Maehr, M. L., & Anderman, E. M. (1993). Reinventing schools for early
adolescents: Emphasizing task goals. The Elementary School Journal ,
93 (5), 593–610.

Maguire, M., & Delahunt, B. (2017). Doing a thematic analysis: A practical,
step-by-step guide for learning and teaching scholars. AISHE-J: The
All Ireland Journal of Teaching and Learning in Higher Education,
9 (3).

Morrison, B. B., Margulieux, L. E., Ericson, B., & Guzdial, M. (2016).
Subgoals help students solve parsons problems. In Proceedings of the
47th acm technical symposium on computing science education (pp.
42–47). New York, NY, USA: ACM. Retrieved from http://doi.acm

.org/10.1145/2839509.2844617

Nicol, D. J., & Macfarlane-Dick, D. (2006). Formative assessment and
self-regulated learning: a model and seven principles of good feedback
practice. Studies in Higher Education, 31 (2), 199-218. Retrieved from
https://doi.org/10.1080/03075070600572090

Parsons, D., & Haden, P. (2006). Parson’s programming puzzles: A fun

42

and effective learning tool for first programming courses. In Pro-
ceedings of the 8th australasian conference on computing education
- volume 52 (pp. 157–163). Darlinghurst, Australia, Australia: Aus-
tralian Computer Society, Inc. Retrieved from http://dl.acm.org/

citation.cfm?id=1151869.1151890

Patka, M., Wallin-Ruschman, J., Wallace, T., & Robbins, C. (2016). Exit
cards: creating a dialogue for continuous evaluation. Teaching in
Higher Education, 21 (6), 659-668. Retrieved from https://doi.org/

10.1080/13562517.2016.1167033

Pham, L. (2018). A review of key paradigms: positivism, interpretivism
and critical inquiry. University of Adelaide.

Robertson, K. (2006). Increase student interaction with
”think-pair-shares” and ”circle chats”. Retrieved from
https://www.colorincolorado.org/article/increase-student

-interaction-think-pair-shares-and-circle-chats

Stiggins, R. (2005). From formative assessment to assessment for learn-
ing: A path to success in standards-based schools. Phi Delta Kap-
pan, 87 (4), 324-328. Retrieved from https://doi.org/10.1177/

003172170508700414

Sweller, J. (1988). Cognitive load during problem solving: Effects
on learning. Cognitive Science, 12 (2), 257-285. Retrieved
from https://onlinelibrary.wiley.com/doi/abs/10.1207/

s15516709cog1202 4

Tuli, F. (2010). The basis of distinction between qualitative and quantitative
research in social science: Reflection on ontological, epistemological
and methodological perspectives. Ethiopian Journal of Education and
Sciences, 6 (1).

van Dinther, M., Dochy, F., & Segers, M. (2011). Factors affecting students’
self-efficacy in higher education. Educational Research Review , 6 (2),
95 - 108. Retrieved from http://www.sciencedirect.com/science/

article/pii/S1747938X1000045X

Zimmerman, B. J. (1990). Self-regulated learning and academic achieve-
ment: An overview. Educational psychologist , 25 (1), 3–17.

43

Appendix A

Appendix

44

Pagina 1 van 5

Toets Informatica V6
Datum: oktober 2019 Duur: 60 minuten

Stof: Hoofdstukken 1 t/m 5 van Algoritmisch Denken op Informatica-Actief

Er zijn 10 opdrachten waarvoor je in totaal 29 punten halen. Bij elke opdracht staat

aangegeven hoeveel punten je daarvoor kunt halen. Als de punten niet gelijk verdeelt

zijn over de deelopdrachten staat het daar ook bij.
___ __ ___ ___

Opdracht 1 – (2pt.)
Welke van de volgende zijn een int ?

A. getNrOfEggsHatched()

B. 4

C. 3.2

D. vier

E. -3

F. 0

G. False

Opdracht 2 (3pt.)
Hieronder staat code voor een nieuwe methode en het bijbehorende stroomdiagram.
Geef voor A t/m G aan wat er in de code of het stroomdiagram moet staan.
Bij de code moet je de juiste syntax gebruiken.

public A moveDown () {

turnRight();

move();

B

}

A.1 Pretest (Dutch)

45

Pagina 2 van 5

Opdracht 3 – (2pt.)
Stel MyDodo heeft de volgende methode: boolean alleEierenGevonden(), die

aangeeft of de dodo al haar eieren gevonden heeft. Hieronder staan een aantal

stellingen. Geef per stelling aan of deze waar of onwaar is.

a) Deze methode heeft een boolean parameter.

b) De begin- en eindsituatie van de methode zijn aan elkaar gelijk.

c) Deze methode levert een boolean op.

d) Dit is een mutator methode.

Opdracht 4 – (5pt.)
Bekijk het stroomdiagram hieronder. Schrijf de programmacode en voeg een

beschrijving van de beginsituatie en eindsituatie toe aan jouw (JavaDoc)

commentaar.

46

Pagina 3 van 5

Opdracht 5 – (6pt.)
We willen dat Dodo het eierenpatroon hiernaast maakt. Daarvoor mogen we de
volgende methodes gebruiken:

Methode name Methode Omschrijving
jump (int n) Ga n cellen vooruit

goldenEggTrail(int n)

Legt een spoor van n gouden
eieren. Het eerste ei ligt in de
huidige cel. Na afloop staat Dodo
direct achter het laatste ei.

blueEggTrail(int n)

Zelfde als goldenEggTrail maar
dan met blauwe eieren.

turnRight () Draai 90 graden met de klok
mee.

Voorbeeld: Stel Dodo staat in de linkerbovenhoek. Dan kunnen we de rand van

gouden eieren uit het plaatje maken door de volgende code 4 keer achter elkaar uit

te voeren:

We hebben voor het gewenste patroon de volgende vier oplossingen bedacht. Elk

van deze oplossingen wordt vier keer achter elkaar uitgevoerd. Je mag aannemen

dat de startpositie van Dodo zodanig gekozen is dat het patroon precies in de wereld

past.

a) [2pt.] Een van deze oplossingen is fout. Welke is dat?

goldenEggTrail(8);

turnRight();

47

Pagina 4 van 5

b) [2pt.] Corrigeer de foutieve oplossing door op de juiste plek in het

stroomdiagram precies één instructie toe te voegen. Geef hiervoor aan tussen

welke instructies je een wijziging wilt doen en wat de nieuwe instructie is.

c) [2pt.] Of het algoritme werkt hangt ook af van de startpositie van Dodo. Ga

ervan uit dat Dodo aan het begin naar het oosten kijkt. Geef voor alle vier de

algoritmes, de coördinaten van de cel waar Dodo moet beginnen.

Opdracht 6 – (2pt.)

a) Wat print het programma?

b) Stel we veranderen de eerste regel in int punten = 1; Wat print het

programma dan?

Opdracht 7 – (2pt.)

Neem onderstaande tracing table over en vul hem aan voor surprise(3, 5).

Regel n m x y

1 Geen waarde Geen waarde

2 Geen waarde

..

int punten = 4;

if (punten == 3 && punten > 1){

System.out.println("A");

}else{

System.out.println("B");

}

if (punten > 2 && punten < 2){

System.out.println("C");

}elif (punten == 4 || punten <=3){

System.out.println("D");

}

if (punten != 1){

System.out.println("E");

}else{

System.out.println(punten);

}

punten += 1

private int surprise (int n, int m) {

 int y = 0;

 int x = 0;

 while (x < n) {

 y = y + m;

 x = x + 1; }

 return y; }

48

Pagina 5 van 5

Opdracht 8 – (4pt.)
Maak een algoritme waarmee het spiraal-patroon
hier beneden gemaakt wordt. Je algoritme moet
voor elke wereldgrootte werken.
Je mag van het volgende uitgaan:

▪ Er is een variabele WORLD_WIDTH eerder in

de code gedeclareerd die aangeeft hoe
breed de wereld is.

▪ De wereld is even hoog als breed.
▪ Dodo begint in de linkerbovenhoek, kijkend

naar rechts.
▪ Dodo eindigt op een ei.

Geef de methode, en let op de correcte syntax.
Je hoeft geen beschrijving van de begin- en eindsituatie te geven.

Tip: gebruik blueEggsTrail(int n) van opgave 6, turnRight() en layEgg().

Opdracht 9 – (3pt.)

Leerlingen hebben de opdracht gekregen een methode te schrijven die het

gemiddelde van alleen de positieve getallen in een lijst berekent. Hierbij is 0 geen

positief getal. Er staan echter drie fouten in. Geef voor elke fout het regelnummer en

een verbetering.

public double AverageofList(List<Integer> list){

 //Declare the internal variables

 List<Integer> listOfNumbers = list;

 int sum = 0;

 int count = 0.0;

 double avg = 0.0;

 //Count how many positive numbers there are in the list and

 //calculate the sum of all the positive numbers in the list.

 for (int number : listOfNumbers){

 if(number > 0){

 sum++;

 count++;

 }

 }

 //only try to calculate the average if there is at least

 //one positive number

 if (count >= 0){

 avg = (double) sum/count;

 }

 return avg;

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

49

Pagina 1 van 2

Toestemmingsformulier
Onderzoek Parson’s Puzzels voor formatieve toetsing

Informatie over het onderzoek
Voor mijn bachelorscriptie wil ik een onderzoek doen in de klas. Ik wil deze klas oefeningen

geven tijdens de les (die gewoon onderdeel zijn van het lesmateriaal). Daarna geef ik hier

telkens persoonlijk even feedback op, de audio daarvan wil ik graag opnemen zodat ik de

korte gesprekken kan transcriberen.

Ook zal ik een aantal leerlingen interviewen over hun ervaring met de oefeningen en mijn

feedback. Dit zal ik dan van tevoren vragen aan deze leerlingen.

Deelnemer onderzoek
Ik verklaar hierbij op voor mij duidelijke wijze te zijn ingelicht over de aard, methode en doel

van het onderzoek.

Ik begrijp dat:

 ik mijn medewerking aan dit onderzoek kan stoppen op ieder moment en zonder

opgave van reden

 gegevens anoniem worden verwerkt, zonder herleidbaar te zijn tot de persoon

 de opname vernietigd wordt na uitwerking van het interview

Ik verklaar dat ik:

 geheel vrijwillig bereid ben aan dit onderzoek mee te doen

 de uitkomsten van dit onderzoek verwerkt mogen worden in een verslag of

wetenschappelijke publicatie

 toestemming geef om de audio van de gesprekken op te laten nemen

Handtekening deelnemer:

……………………………………………………………………………………….

Naam: ………………………………………………………………………………

Datum: ………………………………………………………………………………

Handtekening wettelijk vertegenwoordiger (als de deelnemer jonger is dan 18 jaar):

……………………………………………………………………………………….

Naam: ………………………………………………………………………………

Datum: ………………………………………………………………………………

A.2 Consent form (Dutch)

50

Pagina 2 van 2

Onderzoeker
Ik heb mondeling toelichting verstrekt over de aard, methode en doel van het onderzoek. Ik

verklaar mij bereid nog opkomende vragen over het onderzoek naar vermogen te

beantwoorden.

Handtekening: …………………………………………………………………..

Naam: ……………………………………………………………………………

Datum: ……………………………………………………………………………

51

Exit card 1A
Name:

Write the code below in the right order. When executed, the method should check every
number from 1 to 1000 if it is even or odd. If the number is even, it should print for example
"6 is even". If the number is odd, it should not print anything.

nr++;

System.out.println(nr + "is even");

while(nr != 1000) {

}

} else {

private void evenOrOdd(){

int nr = 1;

}

nr++;

if((nr % 2) != 0) {

A.3 Exit cards

Exit cards 1A, 2A and 3A, containing Parsons’ puzzles, were handed out in
that order to the students in group A. Exit cards 1B, 2B and 3B, containing
writing tasks, were handed out in that order to the students in group B.

52

53

Exit card 1B
Name:

Write a method which checks every number from 1 to 1000 if it is even or odd. If the
number is even, it should print for example "6 is even". If the number is odd, it should not
print anything. Use a while loop in your method.

54

A.4 Exit card answers

These are the answers to the exit cards from A.3. The answer for a writing
task and Parsons’ puzzle with the same number, is the same.

Exitcard 1

private void evenOrOdd(){

int nr = 1;

while(nr != 1000) {

if((nr % 2) != 0) {

nr++;

} else {

System.out.println(nr + "= even");

nr++;

}

}

Exitcard 2

private void printBoard(){

List<Character> board = {'h' , 'o' , 'i' };

for (Character c: board) {

System.out.println(c);

}

}

Exitcard 3

private int countLetter (char letter, String word) {

int count = 0;

for (int place : word){

if(word[place] == letter){

count++;

}

}

return count;

}

55

A.5 Transcripts feedback session 1 (Dutch)

T stands for Teacher, S stands for student. Before each conversation, the
group the student is assigned to, is stated. The students are numbered for
referencing. The symbol � marks were the teacher knew if the task was
executed correctly or not. The symbol ⊗ marks were the student knew if
the task was executed correctly or not.

Student 1 - Parsons’ puzzle

T: Oh je hebt alleen de nummers opgeschreven
S: Ja ik heb met nummertjes gedaan dus je hebt zo 1 2 3 4
T: Hmm dat is een beetje moeilijk nakijken. Waar is 1? Oh hier en dan 1 2
3 4 5 6... �
S: Dat klonk heel erg twijfelachtig
T: Ja ik verwachte daar eerst nog een else
S: ⊗ Oh dan had ik ze omgedraaid
T: Ja. Het is misschien handiger voor de volgende keer als je het gewoon
opschrijft
S: Ja oke
T: Want ik weet dat dit minder tijd kost, maar zo is het voor mij moeilijk
te controleren en voor jou ook moeilijk om te controleren.
S: Ja is goed
T: Ja? Oke. Dan is het verder goed

Student 2 - Parsons’ puzzle

T: En even zien
S: We beginnen met de private void
T: Oh je hebt..
S: we beginnen met 6 en dan gaan we naar 7 en dat is het laatste
T: 6, 7, 3. Hmm ik heb eerst nog.. Wanneer initialiseer je het nummer? Oh
die doe je inderdaad daarna, 6 7 3 is de while. Dan doen we de if, 10 9, ja
die is goed. Dan komt de else
S: en dan komt de fout ⊗
T: je bent bij 1 en 2. Huh hmm
S: Jaaa hier komt de fout
T: Ja precies. � Zie je zelf dat je het fout hebt gedaan?
S: Ik zie het ja
T: Ja je moet dus het printen als die even is. Dan moet je hem dus niet
voor elk getal printen. Dat hij die wel doet. Dus dat is een beetje
S: Ja
T: Verder begrijp je wel welke fout je hebt gemaakt?
S: Ja

56

Student 3 - Parsons’ puzzle

T: Oh ja je hebt het ook op dezelfde manier overgeschreven. Misschien voor
jezelf ook fijn. Schrijf het programma gewoon op. Je merkt al dat het voor
mij moeilijk is om te controleren, en dan is het voor jezelf ook moeilijk om
te controloren. Dus je kunt het zelf makkelijker checken en even nalopen of
het goed is gegaan. Ja? Oke top
S: dus er staan nog int = 0
T: Jaaa goedzo even zien. Oh die int, ja. Hij perfect! � Goed gedaan! Was
het nog moeilijk?
S: Nee ⊗
T: Oke top, goedzo!

Student 4 - Parsons’ puzzle

T: Oh je hebt zo
S: Ja ik heb het niet helemaal overgeschreven.
T: Dus we beginnen daar, dan doen we dit, dan gaan we hier heen. Doen
we die if.. � Nee het klopt niet
S: Jawel ik weet zeker dat het klopt mevrouw. Hoezo klopt die niet?
T: Ja even kijken, het klopt inderdaad niet
S: Oh wacht ik heb deze bij de verkeerde gezet dan. ⊗ Oke u heeft gelijk
mevrouw, die moet omgedraaid inderdaad.
T: Ja precies. Had je deze gewoon niet gezien?
S: Ja ik had verkeerd gekeken, dus ik had het inderdaad beter kunnen op-
schrijven, maarja.
T: Oke, nou goed. Dan weet je ook weer wat je de volgende keer moet doen.
S: Ja
T: Dankjewel

Student 5 - Writing task

T: Even zien
S: Een beetje lelijk want ik wist niet goed wat ik moest doen, daar begint
die. En daar gaat die verder
T: oke ja. De kleiner dan 0, 1000. Dan doe je het getal plus 2 en dan print
die het getal
S: Het enige foutje is dat die nu niet 0 uitprint maar dan moet die eigenlijk
nog een keer daarvoor hier al uitprinten. ⊗
T: � Ja precies
S: Maar dat leek me niet goed
T: Maar dan zou je ook eerst het getal kunnen printen en daarna pas getal
+ 2 kunnen doen.
S: Jaa dat zou ook kunnen, dan was het verder wel met het goede aantal
gegaan

57

T: Verder. Ik zou even beter naar de opdracht de volgende keer. Hier staat
dat je dit moet printen. Zoals 6 = even.
S: dus getal en dan string is even.
T: en je hebt er geen methode van gemaakt. Maar verder super, prima!

Student 6 - Parsons’ puzzle

T: jij hebt hier die gedaan. Nr = 1, while, dan doe je de if, dan print ie het
en else. Hmm ik mis de nr++ �
S: ja die staat hier toch?
T: ja, maar wat als. Kijk deze while hier, die checkt. Stel hij is oneven, dan
doe hij de if, dan print jij hem. Maar dit is dus een check, als deze true is
S: dan is hij oneven
T: ja
S: ⊗ oh dan moet je daar ook nr++ doen
T: ja precies en dan bij die else, wat moet je daar doen?
S: dan printen
T: ja maar dan moet je ook nr++ doen toch? Anders is het eenmaal oneven
en dan gebeurt er niks. Daarom zijn er 2 nr++ dingen. Oke dankjewel

Student 7 - Writing task

T: public int print getallen en dan gaat hij punten returnen. Het getal is
kleiner dan 1000. Getal is even. � Je doet geen check. Je begint bij 2. Dan
print je 2 is even en dan is getal 3. En dan print je het weer.
S: ++ is toch gewoon, wacht dat is maar 1 er bij
T: Ja het is niet helemaal de correcte syntax zie je dat? Als je dit doet
[schrijft voorbeeld op] dan doet hij += 1
S: En wanneer je
T: voor += 2 kun je twee keer die regel doen, of gewoon += 2
S: ⊗ ooohh +=, oh ja. Moet ik het nu helemaal opnieuw gaan schrijven?
T: nee als je het begrijpt is het goed.
S: Jaaa oke. Dan prima!

Student 8 - Parsons’ puzzle

T: void evenOrOdd, int nr 1. 1000
S: ja dan moet er 2x nr++ staan, hier ook.
T: Ja precies. Oh dan heb je het echt heel goed gemaakt! � Je bent alleen
die nr++ vergeten.
S: ⊗ ja die had ik maar 1 x gezien, dus die heb ik ook niet 2x opgeschreven
T: Ja, oke. Goedzo!

58

Student 9 - Parsons’ puzzle

T: private void evenOrOdd, nr = 1. Ja. Dan print hij, oei. � Heb je goed
gekeken naar deze vergelijking?
S: Waarschijnlijk niet.
T: Hier staat, nr %2 . Dus als hij modulo 2 ongelijk is aan 0, dan komt er
waarschijnlijk dus 1 uit
S: En dan is het oneven, aha. ⊗
T: Dus iets kritischer kijken naar de code. Maar verder is hij prima!

Student 10 - Writing task

T: methode erop is ook goed. Eerst even de variabele met value initialiseren.
Als hij kleiner of gelijk aan 1000 is dan gaat hij door. Als hij ongelijk is aan
1, dan is hij 0 dus dan is hij even. Ja dat klopt. En dat is het enige wat je
checkt. En daarna doe je nr++. Ja heel efficiënt, helemaal top. � ⊗

Student 11 - Writing task

T: ja jij hebt gewoon precies hetzelfde.
S: Nou de mijne heet nr, dat is praktischer
T: even kijken, private void int getallen. � Ik zie dat je hier eerst een ! had
staan, maar nu staat er maar 1 =. En dat is een toewijzing.
S: ⊗ Ohh ja dubbel =
T: precies ja, heel goed. En het moet vergelijking zijn. Dus ja dat is getal++.
Dit is helaas niet de correcte syntax hiervoor.
S: oke
T: weet je hoe ++ werkt?
S: uhh nee. ja dat is gewoon de waarde erbij
T: ja dat is dus het makkelijke aan ++. In plaats van getal = getal + 1,
hoef je alleen maar te schrijven getal++ en je bent klaar
S: oke
T: verder helemaal goed

Student 12 - Writing task

T: je loopt door je getallen. Als getal = 2, getallen moeten kleiner zijn dan
1000. En dan doen je telkens + 2 dus dan blijft hij even. � Ho je doet hier
een nieuw getal. Oh dit is het getal dat je print en dat is een ander getal
dan je loopt.
S: Ja ik wist niet zeker of dat moet.
T: Ja ik zou niet weten waarom dat zou moeten. Want je doet hier gewoon
hetzelfde. Ze hebben ook telkens dezelfde waarde. Alleen deze telt op hier-
voor en de ander hierna.

59

S: ⊗ Ja
T: oke, verder is je functie helemaal goed. Goed bedacht

Student 13 - Writing task

T: Ja perfect, top! � ⊗

60

A.6 Transcripts feedback session 1 (English)

T stands for Teacher, S stands for student. Before each conversation, the
group the student is assigned to, is stated. The students are numbered for
referencing. The symbol � marks were the teacher knew if the task was
executed correctly or not. The symbol ⊗ marks were the student knew if
the task was executed correctly or not.

Student 1 - Parsons’ puzzle

T: Oh you just wrote down the numbers
S: Yes I have done it with numbers so you have 1 2 3 4
T: Hmm that’s a bit hard to check. Where is 1? Oh here and then 1 2 3 4
5 6... �
S: That sounded very doubtful
T: Yes, I expected another line first
S: ⊗ Oh I must have turned them around
T: Yes. It might be more convenient for next time if you just write it down
S: Yes okay
T: Because I know that it takes less time, but that makes it difficult for me
to check. Thus making it more difficult for you to check.
S: Yes that is fine
T: Yes? Okay. Then it’s okay.

Student 2 - Parsons’ puzzle

T: Let’s have a look
S: We start with the private void
T: Oh you have ..
S: we start with 6 and then we go to 7 and that is the last one
T: 6, 7, 3. Hmm I first have .. When do you initialize the number? Oh you
do that afterwards. 6 7 3 is the while. Then we do the if, 10 9, yes, that’s
good. Then comes the else
S: and then the error comes ⊗
T: you are at 1 and 2. Huh hmm
S: Yes, here comes the error
T: Yes exactly. � Do you see yourself what is wrong?
S: I see yes
T: Yes you have to print it if it is even. Then you don’t have to print it for
every number. That he does. So that’s a bit
S: Yes
T: Furthermore, do you understand what mistake you made?
S: Yes

61

Student 3 - Parsons’ puzzle

T: Oh yes, you wrote it down the same way. This could be better for yourself
as well. Just write down the program. You already notice that it is difficult
for me to check, so it must be difficult for you to check. So it is better if you
can check it yourself and check whether everything went well. Yes? OK,
great
S: so there are still int = 0
T: Yeah well, let’s see. Oh that int, yes. He perfect! � Well done! Was it
still difficult?
S: No. ⊗
T: Okay, good!

Student 4 - Parsons’ puzzle

T: Oh you put it like that.
S: Yes, I didn’t copy it completely.
T: So we start there, then we do this, then we go here. Do we do that if ..
� No this is not right
S: Yes, I am sure it is true, ma’am. Why isn’t it correct?
T: Yes, let’s see, it is indeed not correct
S: Oh wait I put this on the wrong place then. ⊗ Okay you are right madam,
it must be turned around indeed.
T: Yes exactly. Did you just not see this?
S: Yes, I did not take a good look, so it would have been better if I wrote it
down, yes.
T: Okay, well. Then you also know what to do next time.
S: Yes
T: Thank you

Student 5 - Writing task

T: Let’s see
S: It’s a bit ugly because I didn’t know what to do, that’s where it starts.
And there it goes further
T: okay yes. The smaller than 0, 1000. Then you do the number plus 2 and
then print it
S: ⊗ The only mistake is that it doesn’t print 0 now, but then it should
print here one more time before that.
T: � Yes exactly
S: But that didn’t seem right to me
T: But then you could first print the number and then do the number + 2.
S: Yes I could, but then the good number would have gone
T: Further more. If I were you I would take a better look at the assignment
next time. It says here that you have to print this. Like 6 = even.

62

S: so number and then string is even.
T: and you have not made a method of it. But otherwise super, great!

Student 6 - Parsons’ puzzle

T: Nr = 1, while, then you do the if, then print it and then else. Hmm I
miss the nr ++ �
S: yes it is here right?
T: yes, but what if. Watch this while here, it checks. Suppose he is odd,
then he does the if, then you print it. But this is a check if it is true
S: then it is odd
T: yes
S: ⊗ oh then you also have to do nr ++ there
T: yes exactly and then with that else, what should you do there?
S: then print
T: yes but then you also have to do nr ++ right? Otherwise it is odd once
and then nothing happens. That’s why there are 2 nr ++ things. Okay,
thank you

Student 7 - Writing task

T: public int print numbers and then he returns the variable points. The
number is less than 1000. Number is even. � You don’t do a check. You
start at 2. Then you print 2 is even and then number 3. And then you print
it again.
S: ++ is common anyway, wait that’s only 1 more
T: Yes it is not quite the correct syntax do you see that? If you do this
[write example] he will do + = 1
S: And when you
T: for + = 2 you can do that rule twice, or just + = 2
S: ⊗ ooohh +=, oh yes. Do I have to write it all over again?
T: no if you understand, it’s okay.
S: Yes okay. Good!

Student 8 - Parsons’ puzzle

T: void evenOrDd, int no. 1000
S: yes there must be 2x nr ++, here too.
T: Yes exactly. Oh then you really made it very well! � You only forgot
the nr ++.
S: ⊗ yes I only saw it once, so I didn’t write it down twice
T: Yes, okay. Well done!

63

Student 9 - Parsons’ puzzle

T: private void evenOrDd, nr = 1. Yes. Then it prints, whoops. � Did you
look at this comparison closely?
S: Probably not.
T: It says here, nr% 2. So if he is modulo 2 unequal to 0, then probably 1
comes out
S: And then it’s odd, aha. ⊗
T: So look a little more critically at the code. But otherwise it’s fine!

Student 10 - Writing task

T: method on it is also good. First initialize the variable with value. If it is
less than or equal to 1000, it will continue. If he is unequal to 1, then he is
0 so he is even. Yes that’s right. And that’s the only thing you check. And
then you do nr ++. Yes very efficient, perfect. � ⊗

Student 11 - Writing task

T: yes you have exactly the same thing [as the student before you].
S: Well mine is called nr, that’s more practical
T: Let’s take a look, private void int numbers. � I see you put an ! here
first, but now there is only 1 =. And that is an assignment.
S: ⊗ Ohh yes double =
T: exactly yes, very good. And it must be comparison. So yes that is number
++. This is unfortunately not the correct syntax for this.
S: okay
T: do you know how ++ works?
S: uhh no. yes that’s just the value there
T: yes that’s the easy thing about ++. Instead of number = number + 1,
you just have to write number ++ and you’re done
S: okay
T: otherwise completely correct

Student 12 - Writing task

T: you walk through your numbers. If number = 2, numbers must be less
than 1000. And then you always do + 2 so he will stay a while. � Woah
you do a new number here. Oh this is the number that you print and that
is a different number than you walk.
S: Yes, I wasn’t sure if I had to.
T: Yes I would not know why that should be. Because you just do the same
here. They also always have the same value. Only this counts on before and
the other on.

64

S: ⊗ Yes
T: okay, otherwise your position is great. Well thought out

Student 13 - Writing task

T: Yes perfect, great! � ⊗

65

A.7 Transcripts feedback session 2 (English)

T stands for Teacher, S stands for student. Before each conversation, the
group the student is assigned to, is stated. The students are numbered for
referencing.

Student 1 - Parsons’ puzzle

T: [Reads aloud] Yes, really good. Did you find the assignment difficult?
S: No.
T: Good.

Student 2 - Parsons’ puzzle

T: Are you done as well? Lets see.
S: Yes, I only had to turn 1 thing around.
T: Oh really? It puts the rules in a random order, so you’re lucky.

Student 3 - Writing task

T: Do you find it harder?
S: Yes
T: Yes you have to write it, right? That is why I have the example on the
board. So that you can still look at it.
S: It’s really harder.
T: It is exactly the same assignment, but then you have to write it yourself.
Try again, you can do it.

Student 4 - Writing task

S: I really can’t figure out what to do.
T: Have you looked at the example? If you can’t figure it out then just show
what you did so far. Then I will give feedback about that.
S: OK.

Student 5 - Parsons’ puzzle

T: [Name] Are you also going to work on the assignment? Oh you already
have it!
S: Yes, look.
T: Oh that’s all right. How did it go?
S: It was pretty easy.
T: Yes, nice. Do you think you could have made it before I explained it?
S: Yes.
T: Okay, good. Do you think you could have written it yourself?

66

S: Yes.
T: OK.

Student 3 & 6 - Writing task

T: If you really can’t figure it out, you can indicate that. Then I will help
you out.
S: Yes we can’t figure it out.
T: Okay then I’m going to help you. Let’s see, you are both in the same
place in the assignment. You have already created the method, that is very
good. We have to print the characters, so you are indeed making a for loop.
S: I only did what is on the board.
T: On the board it is written that we first create a variable. We say the
object type and give the variable a name. Then we say that the egg object
there on the board is every egg that appears in eggList. And now we have
characters. So we actually want to have every character that appears in the
list. So we can take over the example almost exactly and adjust it a little
bit for our situation. So you said there are strings in that list.
S: Yes.
T: What is the type of the object?
S: String.
T: Exactly. So we can write that down. Open parenthesis, String. And
think of a nice name, it doesn’t matter. You only need it in the for loop.
Nice, good name. Then you put a colon and we need the list that we are
going to walk through. That is..
S: Do you have to initialize the characters in the list?
T: Yes well you have to initialize the list first. Because you haven’t done
that yet.
S: umm ..
T: Shall I give an example of that? How to initialize a list?
S: Yes.
T: Okay [give an example on the board]
S: Should this be in the for loop? Or where should this be?
T: Well you have to initialize it somewhere right? And you said that you
already got the list with the method. So you probably have already initial-
ized the list before you enter the method. If you don’t get the list, you can
simply initialize it in the method. You can then go through the list. Because
that can only be done after the initialization. Then, during the process, you
can print any letter. Because you always get each letter in the for loop. And
that is what you want to print, right?
S: Yes
T: So then you can print that. And then you only have to close the method.
Yes?
S: OK.

67

T: Try this and I’ll come back later.

Student 7 - Parsons’ puzzle

T: Did it work completely? Did you finish the assignment?
S: No, I don’t have it yet.
T: Oh you haven’t done it right.
S: Oh no, I did it completely wrong.
Other student: He always has the prescribed lines, that’s not fair at all.
T: There is only one such assignment left, then we will alternate it, okay?
S: This line must be back there again.
T: Yes.
S: But I actually thought I had done that.
T: Yes I don’t know what happened.
S: Well then it is okay.
T: But you get it?
S: Yes, I get it.
T: OK.

Student 8 - Writing task

T: Are you figuring it out?
S: Yes a little bit.
T: You can indeed just take over from the board and adjust it to what you
need. Well done!

68

A.8 The self-efficacy questionnaire (Dutch)

Naam: Compleet Heel

niet erg

waar waar

voor voor

mij mij

1. Ik geloof dat ik een excellent cijfer zal krijgen voor

het programmeerdeel van dit vak
1 2 3 4 5 6 7

2. Ik ben er zeker van dat ik de meest ingewikkelde

materialen over programmeren die we hebben gekregen

begrijp

1 2 3 4 5 6 7

3. Ik ben er zeker van dat ik de basis concepten die

mij geleerd zijn in programmeren, begrijp
1 2 3 4 5 6 7

4. Ik ben er zeker van dat ik de meest ingewikkelde

concepten die mij geleerd zijn door mijn docent in

programmeren, begrijp

1 2 3 4 5 6 7

5. Ik ben er zeker van dat ik het fantastische zou

doen bij opgaven en toetsen over programmeren
1 2 3 4 5 6 7

6. Ik ga er vanuit dat ik het goed ga doen op het

programmeerdeel van dit vak
1 2 3 4 5 6 7

7. Ik ben er zeker van dat ik de vaardigheden die

mij zijn geleerd in programmeren, kan beheersen
1 2 3 4 5 6 7

8. Als ik rekening houd met de moeilijkheid van

programmeren, de docent en mijn vaardigheden,

denk ik dat ik het goed zal doen

1 2 3 4 5 6 7

Table A.1: The self-efficacy questionnaire in Dutch

69

