
Bachelor thesis
Computing Science

Radboud University

Abstract Nonsense and Programming:
Uses of Category Theory in Computer

Science

Author:
Koen Wösten
K.Wosten@student.ru.nl
s4787838

Supervisor:
dr. Sjaak Smetsers

S.Smetsers@cs.ru.nl

Second assessor:
prof. dr. Herman Geuvers

H.Geuvers@cs.ru.nl

June 29, 2020

Abstract

In this paper, we try to explore the various applications category theory has
in computer science and see how from this application of category theory
numerous concepts in computer science are analogous to basic categorical
definitions. Wewill be looking at three uses in particular: Free theorems, re-
cursion schemes and monads to model computational effects. We conclude
that the applications of category theory in computer science are versatile
and many, and applying category theory to programming is an endeavour
worthy of pursuit.

Contents

Preface 2

Introduction 4

I Basics 6

1 Categories 8

2 Types 15

3 Universal Constructions 22

4 Algebraic Data types 36

5 Function Types 43

6 Functors 52

7 Natural Transformations 60

II Uses 67

8 Free Theorems 69

9 Recursion Schemes 82

10 Monads and Effects 102

11 Conclusions 119

1

Preface

The original motivation for embarking on the journey of writing this was
to get a better grip on categorical ideas encountered as a student assistant
for the course NWI-IBC040 Functional Programming at Radboud University.
When another student asks ”What is a monad?” and the only thing I can ex-
plain are its properties and some examples, but not its origin and the frame-
work from which it comes. Then the eventual answer I give becomes very
one-dimensional and unsatisfactory.

With this thought I set out on the journey of learning category theory;
and it wasn’t immediately clear why involving category theory was useful,
nor was it clear how understanding categories, morphisms, functors and
monads actually lead to building better systems.

Maybe it is because it is not really what category theory provides.
The relevance of the theory isn’t really debatable, as with enough trying

you couldmake anything relevant to a particular subject. If somebody tried
hard enough they could make teddy bears relevant to quantum mechan-
ics. However, whether it is worthwhile, is a completely different question.
Rather than asking how category theory is relevant to computer science, we
might need to ask how it is better than what we already have. Or at least
what nuts and bolts it has to offer, its unique qualities that other theories
don’t boast.

So then, when is an abstraction, such as category theory useful? A good
abstraction allows us to see patterns and give new insights. Whether an
abstraction is good is generally only known after a while. If it did givemany
useful results, then it probably was. Which leaves us with the goal of the
paper; we will explore what uses category theory has come to offer in the
realm of computer science.

Hence the aim of this paper is not to push for a specific application of
category theory – a task better undertaken by more experienced practition-
ers. Instead, I would like to familiarise the reader with the fundamental
vocabulary and highlight a few of the more prominent uses in the field of
computer science. The paper is meant to be self-containing. Therefore an
overview of the theory is given in the first part. In the second part, we illus-
trate a few concrete uses of category theory.

2

I would like to thank my thesis supervisor Sjaak Smetsers for his feed-
back and his thoughts in establishing the current format of the paper.

3

Introduction

Category theory was originally constructed by Samuel Eilenberg and Saun-
ders Mac Lane in the 1940s to study the relation between homology and
algebra [10]. In the following decades, category theory underwent rapid
development to mature into its own autonomous branch of mathematics,
studied on its own as well as used as a unified language to express mathe-
matical ideas linking different fields [15] [18].

Category theory, amongst other theories, is a study of structure, but
what makes it distinct is that in some way the concept of a category can
abstract a kind of mathematics. In particular, it provides a language that uni-
fies many concepts in different parts of math.

Category theory’s “thing” is that it generalizes structure. To understand
this, we first take a step back and seewhat “structure”means. Just pick up a
dictionary, and search for the definition of “structure’’. We do the same, for
example, Merriam-Webster dictionary defines structure like the following:

“The aggregate of elements of an entity in their relationships to
each other” [1, (5)]

Whichever definition found always speaks of elements, parts, components
or something of the sort. Simply put, structure arises only when we com-
pose parts. Now category theory is all about composition as you will find
in the coming sections, so it isn’t astounding to hear that category theory
becomes a convenient way to express underlying structure of all kinds.

In specific we try to structure mathematical theories in such a way that
it makes sense to us. Only theories that are palatable and well learnable are
theories that hold any significance in the long run, inasmuch as something
that others can not learn, will likely not be learned. Not entirely convenient
is that we learn using our brains, those of a naked monkey, adjusted to sur-
vive, hunt and flee. We are not particularly fine-tuned to do math. We are
simply not made to think abstractly, we are made to throw spears, find food
and runwhen facing danger. Our ability to think abstractly is a rather newly
acquired ability, just a fraction in the span of our whole evolution. Since it
is so new it is also still rather primitive, we accept that it is simply not our
strongest suit. Ultimately, theories that work for us, those in which we can

4

reason, are those tuned to our primitive brains. This explains the fact that
theories generally build from basic concepts easily graspable on their own,
combine these concepts, alter previous definitions just slightly and give just
the appropriate amount of “new” stuff such that it is still manageable.

But what does this have to do with category theory? Well… category
theory encompasses the idea of composition, the process of building things
using smaller things. Which is exactly the way our primitive brains want to
think! So, of course, it generalizes all our other theories! Because we made
those exactly so that we can reason about individual parts, and compose
our ideas to form grander ideas.

At the end of the day, the definitions are the important part of category
theory. Once the definitions make sense, then the rest of the system makes
sense. Category theory is all about mastering these definitions so that one
can identify categorical structures in practice. The definitions thus far have
had decent results: With category theory, mathematicians have discovered
just how much all branches of mathematics have in common. They were
then joined by computer scientists who discovered that programming can
also be described by category theory [30] [29] [33].

Title of the paper might require an explanation: The term “abstract non-
sense”, is sometimes used jokingly to refer to a proof that relies on categoric-
principles. It might even refer to the study of category theory itself. In any
case it is not meant derogatory. The term actually pre-dates the notion of a
category. In [19] SaundersMac Lane wrote (referring to his first joint paper
with Eilenberg [9]): “it introduced the very abstract idea of a ’category’—a
subject then called ’general abstract nonsense’!”

5

Part I

Basics

6

The following sections of part 1 present a brief tutorial on the basic con-
cepts of category theory. The objective of this part is to give you enough
of an understanding/grasp of category theory to understand the rest of the
paper. The paper assumes no prior knowledge. As the goal of the complete
paper is to show the capabilities of category theory, this part is only used as
a tool to understand the rest of the paper.

7

d1c Categories

Undoubtedly, the notion of a category is paramount to category theory.
Why else would the word “Category” make up over half of the letters in
the theory’s name? According to its perceived importance, this is the first
particular we will be dealing with.

Categories are constructed out of objects and arrows. Arrows give rise to
structure in categories by connecting objects. That is, an arrow connects a
source object to a target object.

source target

Objects in this sense are just objects, we know nothing about their in-
ternal structure, nor do we want to know about their internals. In category
theory, we make no assumptions about the internal structure or workings
of an object. Category theory describes objects purely in terms of their rela-
tions with other objects, therefore any categorical description of an object is
data independent. Where a single description may apply to anything con-
sidered an object in a category, may it be sets, types, or graphs.

A category consists of a collection of objects, a collection of ar-
rows (often called morphisms) and a composition operator ◦.

The composition operator is central in this definition of a category. It
allows us to compose arrows. So if you have an arrow f from object A to
B and an arrow g from B to C, then we can combine these to form a new
composite arrow g ◦ f from A to C. We read this as g ’after’ f.

A B Cf

g◦f

g

Moreover, the operator limits what collections of objects and arrows are
categories. Not just any collection of objects and arrows is a category. To be
a bona fide category, the composition operator ought to satisfy some impor-
tant properties.

8

1. Composition must be associative. This means that: for any arrows f :
A → B, g : B → C, and h : C → D

h ◦ (g ◦ f) = (h ◦ g) ◦ f

This implies that it does not matter where we place the parenthesis,
the result will be the same.

2. For all objects A in the category, there is an identity arrow, which is a
unit for composition. That means that this identity arrow composed
with any arrow f : A → B, gives back this arrow. The identity arrow
for object A is called idA

f ◦ idA = f = idB ◦ f

Often the subscript of idA is dropped to form idwhen it is clear from
the context which identity arrow is meant.

Remark 1 (Notation of Composition)
The usual order of composition – as used above – has an alternative.
Normally, when we have a morphism f : A → B and a morphism g :
B → C, we write g ◦ f. This notation is actually rather confusing. If we
again look at the figure depicting composition:

A B Cf

g◦f

g

It would make a lot more sense to write f ◦ g, following the order of
the diagram.

A B Cf

f◦g

g

This alternative notation is called the diagrammatic order. When look-
ing at papers and books on category theory it is good to first check
which notation the author uses. The diagrammatic notationmight look
familiar to a programmer if we rewrite it as f; g. First execute f then g.
Some authors even prefer to write the object left of the morphism (x)f
instead of f(x). This notationmakes sense when considering the direc-
tion of the arrow x f→ y. Moreover, composition is naturally written as
(x)(f ◦ g) = ((x)f)g

9

This paper will adopt the usual way of writing composition – g ◦ f
for A f→ B

g→ C. Most functional programming languages follow this
notation, and therefore we think using the notation programmers are
most familiar with is preferable.

Remark 2 (Category Theory Abstracts)
Now categories are noticeably abstract, seeing we cold-shoulder the
contents of objects when reasoning using category theory. Since it is
so abstract, we have no direct applicable results. But we do want these,
and to have applicable results from category theory, we still need to find
constructs to which we can administer category theory. Yet if we want
to verify that some structure/thing , we suspect, is a category, then we
do have to look at the internals of this structure. We also need to do this
if we want to see if our category has special properties.

In short, reasoning within category theory takes no assumption to
the internals of the objects, but to actually verify that something is a
category we need to look at the internals of that something. The sug-
gestion of a category is just an abstract sleeve that fits many constructs.

Examples of Categories
To get some familiarity with categories, we will study a variety of example
categories. After this section, we will start focussing on a single one.

Example 1 (Empty Category)
There is a categorywith zero objects and consequently, zeromorphisms.
This category is called the empty category, which by itself isn’t much.
Though it is not quite as pathetic as one might think, considering it
has importance in the context of other categories, for instance, in the
category of all categories. Similarly, an empty set is important in the
context of other sets, so if an empty set makes sense, then why not an
empty category?

Example 2 (Orders)
A preorder is a set P together with a transitive and reflexive relation ≤.
A preorder gives rise to a category whose objects are the elements of
P. Between each pair of objects p and p′ with p ≤ p′ there is a single
arrow representing this fact; there is no arrow from p to p′ when p 6≤ p′.

10

The reflexivity condition corresponds to the identity law (a ≤ a). The
transitivity of ≤ ensures the existence of composite arrows (if a ≤ b
and b ≤ c then a ≤ c) and since an element has only one way of being
equal or less than another we have that the composition is associative.

A preorder is already enough to form a category, so that a partial or-
der and a total order too give rise to a category.

Consider now these preordered sets as objects themselves, and we
take order-preserving functions as arrows. Where an order-preserving
function from (P,≤P) to (Q,≤Q) is a function f : P → G such that if
p ≤P p′ then f(p) ≤Q f(p′). These then form another category Ord.

The composition of two order-preserving functions f : P → Q and
g : Q → R is a function g ◦ f : P → R. Furthermore, if p ≤P p′ then,
since fpreservesP’s ordering, f(p) ≤Q f(p′); and since gpreservesQ’s
ordering we have: g(f(p)) ≤R g(f(p′)). So g ◦ f is order preserving.
Composition of order-preserving function is associative because each
order-preserving function on preordered sets is just a function on sets
and composition of functions on sets is associative. For each preorder,
the identity function idP preserves the ordering on P and satisfies the
equations of the identity law.

Now Ord is a category and its objects – preorders – are categories
too; ergo, Ord is an example of a category of categories. Then as well,
the category of partial orders (Poset) and the category of total orders
(a subset of Poset).

Example 3 (Monoids)
A monoid is an underlying set M equipped with a binary operation ·
from pairs of elements of M into M such that the binary operation is
associative and has a neutral/identity element e such that e · x = x = x · e.
A monoid may be represented as a category with a single object. The
elements of M are represented as arrows from this object to itself, the
identity element e is represented as the identity arrow, and the opera-
tion · is represented as composition of arrows. Conversely, any category
with a single object gives rise to a monoid. So a monoid is a single ob-
ject category. In fact, the name monoid comes from Greek mono, which
means single.

Again we find that the monoids form a category of categories if
we take as objects monoids and as arrows monoid homomorphisms. A
monoid homomorphism from (M, ·M, eM) to (O, ·O, eO) is a function
f : M → O such that f(eM) = eO and f(x ·M y) = f(x) ·O f(y). The
verification that Mon is a category follows exactly the same steps as for
Poset.

11

Representing categories
To understand categories better we can attempt to represent them visually.
Objects can be depicted as stars or as circles, but to keep it simple, we shall
represent themas points. Amorphismmay similarly be represented asmyr-
iad things, but we shall represent it as a simple arrow. To show off this
graphic representation we give another example category:

Example 4 (The category 3)
The category 3 is a category that has three objects: A,B and C, three iden-
tity arrows and three other arrows: f : A → B, g : B → C and h : A → C.
We can quickly check if 3 is indeed a category. To that end, we should
establish if we can define composition, such that the two constraints are
met. First, we observe that composition – in this example – can only be
defined one way, since we can only compose two arrows if one arrow
starts at the same object as the other ends. Solely f and g end and begin
at the same object, with the result that only these can be composed; to
form g ◦ f = h.

Now we check if this definition of composition fulfils the require-
ments:

1. Composition is associative: We need to show that for any arrows
f : A → B, g : B → C, and h : C → D the following holds.

h ◦ (g ◦ f) = (h ◦ g) ◦ f

When we try to find three arrows to compose, we find that we
only have two. Therefore the condition is vacuously satisfied.

2. Identity: Every object has an identity arrow since we have 3 ob-
jects and 3 identity arrows.

So 3 is a category. When we display it graphically, it is portrayed as
such:

B

A C

idB

g

idA
h

f

idC

12

Diagrams

Statements about object and arrows can quickly become complicated, no-
tably when they involve conditions like “f ◦ a = b ◦ g”. Category theory
offers the use of a graphical style of presentation to make such descriptions
and the arguments involving them more manageable.

A diagram in a categoryC is a collection of vertices and directed
edges, labelled with objects and arrows of C. These labels are
applied consistently, meaning if an edge in the diagram is la-
belled f and the arrow f has domain A and codomain B, then
the endpoints of this edge must be labelled A and B.

An important distinction is made here: We must not confuse diagrams
in categories with diagrams of categories.

We say that a diagram in a category C commutes if all paths in the dia-
gram from every pair of vertices A and Z are equivalent. For example, saying
that “the diagram

A B

Y Z

g′

f′

g

f

commutes” is exactly the same as saying that f ◦ g = g ◦ f.

Composition and Programming (section adapted from [23, p. 7])

When we look at programming, we are solving non-trivial problems (be-
cause if they were trivial we wouldn’t need the help of a computer). We
solve the problems by decomposing them into smaller problems, then we
write programs to solve these smaller problems and we compose these pro-
grams to solve the original problem. Once again we can compose various
of these programs and out rolls another, bigger, program.

We do not program like this because it is the most efficient for a com-
puter. No, we program like this because it is easier to keep track of what is
happening if we chop-up problems into smaller pieces. We can only keep in
mind so many things – I am hardly able to remember the grocery list – and
can’t keep track of the million things the complete program would need to
keep track of. Hence by limiting the scope, our brains can still keep up.

“As a slow-witted human being I have a very small head and
I had better learn to live with it and to respect my limitations
and give them full credit, rather than to try to ignore them, for

13

the latter vain effort will be punished by failure. ”
(Edsger W. Dijkstra [7, p. 3])

For our simple brains to keep track of what is happening, we need to
keep structure in our programs. Good code is structured code.

Half a century ago structural programming revolutionized program-
ming because it made blocks of code composable [7]. Then object-oriented
programming came along, which is all about composing objects. Now, re-
cent developments have ideas from functional programming creeping into
major languages. Lambda’s and partial application in C++11 [14], poly-
morphic lambda’s in C++14 [35], template lambda’s in C++20 [8] and
lambda’s in Java 8 [11]. Functional programming is about composing func-
tions, algebraic data structures andmore interestingly it makes concurrency
composable.

“ Category theory – rather than dealing with particulars –
deals with structure. It deals with the kind of structure that
makes programs composable. ”

(Bartosz Milewski [23, p. x])

Essentially, Bartosz Milewski said category theory deals with structure,
and therefore it is immensely suited to deal with programs. When reason-
ing purelywihtin category theory you cannot look into objects, these objects
are black boxes. All you ever know about the object is how it relates to other
objects. Similarly, in an OOP-language you only know about an object by its
abstract interface, which stipulates the functions it contains (its morphisms,
so how it relates to other objects). The moment you have to know the im-
plementation of an object to compose it with other objects, you’ve lost the
advantages of your programming paradigm[23].

14

d2c Types

In computer science and computer programming, we use types to classify
data values. The type instructs the interpreter or compiler how this data
is to be read and used. Additionally, it gives meaning to the data by stip-
ulating the operations that work on this data. This interpretation of a type
corresponds to a “value space and behaviour” as identified by Parnas et al.
[25]. A value space means that only certain values are of that type, e.g. 1 is
an integer but ′c′ is not. The observation that a type is a value space, leads
us to our initial intuition about types, that they are sets of possible values.

The “behaviour” part of the classificationmeans that there is a collection
of distinct operations that work on those elements in the type’s value space.
For example, sign checks the sign of an integer, but calling sign on a string
has little meaning. If we consider the values of a type as a set, then we can
consider the operations on types as functions between these sets.

Briefly touching on sets: a set can be finite or infinite and so can a type
be, respectively Bool and String are finite and infinite.

There are some subtleties that make this identification of types as sets
tricky. For example polymorphic functions that involve circular definitions
lead to Russell’s paradox. And so does the fact that we can’t have a set of all
sets. We choose to ignore these problems. There are other ways to model
types, that do not lead to paradoxes, but for this paper, this identification
suffises.

Functional Programming
“ If we consider a program as a transformation which can be

built up from “smaller” transformations. Then given a small li-
brary of basic (primitive) functions wemay build our programs
using functional constructors and without concern for any spe-
cific internal representation of that which is being transformed.
” (Davit Pitt [28, p. 6])

We intend to use this functional programming view to introduce the
basic concepts of category theory. We will develop a basic skeleton for a

15

functional programming language. Then slowly introduce concepts from
Category Theory and show how these basic categorical constructions ex-
press themselves in this functional programming language, by extending
the language to incorporate the categorical constructs.

Our Functional Programming Language

We begin to show this fruitful view on types by considering a simple func-
tional language (as adapted from [28] and [27]).

This “designed” languagewill use the same syntax as Hugs andHaskell
[21].

We start from the basics; Functions map “values” into “values”. The
idea behind functional programming is then to use the functions to build
programs (other functions) by somehow combining them. Before we can
combine anything at all, we need to have something to combine. This work
is provided by a set of initial primitive functions, these are the building-
blocks for all our later programs. Initially, primitive functions are defined
by application to the variables, for example:

id x = x

Which is read, ’id’ applied to a constant x yields x. Another primitive
function returns if a value is zero:

isZero x = if x == 0 then true else false

Which is read ‘isZero’ applied to x yields a boolean value that denotes
if x was zero, if x is not a natural number the result is undefined. We now
have two primitive functions whichwe can represent as arrows, working on
the set of all possible values V:

Vid isZero

In constructing programs we are interested principally in functions (ar-
rows) and how they can be combined. The most basic way of combining
functions is composition, which is also defined in terms of application.

(g ◦ f) x = g(f(x))

For example we can define:

isNotZero = not ◦ isZero

Now since those are all functions too, they appear as arrows in the figure:

16

Vid

isNotZero

isZero

not

In the shown example, we only discussed one type of constants, even
though it is clearly nonsensical to apply every operation to all possible val-
ues: isZero(x) does not produce a sensible value unless x is a natural
number. Hence, it would be clever to restrict functions to the values they
enact on. If we introduce arithmetic functions, we should, logically, restrict
these to numerical values. Logical functions such as not should apply to
only boolean values. Thuswe could introduce value spaces (types) of natu-
ral numbers (Nat) and booleans (Bool). Arrows would become character-
ized not by the constants that they are defined on but by their source (and
target) types. This is also how we view arrows in category theory.

Bool Nat

not

idBool

succInt

idNatisZero

isNotZero

We finish the construction of this typed functional language, by remov-
ing the need to refer to values. We achieve this by introducing a type, Unit,
such that functions from Unit to another type correspond precisely to the
constants of that type.

For example, the functions from Unit to Nat are:
zero
succInt ◦ zero
succInt ◦ (succInt ◦ zero)
· · ·

Corresponding exactly to all natural numbers. We end up with the fol-
lowing graphical representation of our language.

Nat

Bool

Unit

succInt

idNat
isZeronot

idBool

unit

idUnit

zero
true

false

17

We expand the “created” language with the following components:

primitive types:
Int -- integers
Real -- real numbers
Bool -- truth values
Unit -- a one-element type

built-in operations:
isZero :: Int → Bool -- test for zero
not :: Bool → Bool -- negation
succInt :: Int → Int -- integer successor
succReal :: Real → Real -- real successor
toReal :: Int → Real -- integer to real conversion

constants:
zero :: Int
true :: Bool
false :: Bool
unit :: Unit

Leaving out the identity arrows and composite arrows the category cre-
ated from this small functional language looks as follows:

Int

Bool Real

Unit

succInt

isZero toReal

not succreal

unit

zero

true
false

Types and categories

If we take as our objects sets and functions as morphisms (arrows), then
we end up with a category know as Set. As we have just seen, this could be
useful as our intuitive understanding of types are sets of values. Ideally, we
would just say that types are sets and functions are mathematical functions
between sets. There is just one little problem: There is a difference between a
mathematical function and a function in a programming language. Amath-
ematical function just “knows” its solution, whilst a function in a program-

18

ming language needs to be executed before we have a result. Now, this is
not a problem if the answer can be calculated in a finite amount of steps.
However, code can also be recursive, and therefore might never terminate
and, hence, never have an answer. A naive solutionwould be to ban all non-
terminating functions from a programming language, but this is impossible
as that would mean we need to determine whether a function is terminat-
ing or not, the famous halting problem. To battle this problem, some really
smart people came up with the idea to extend every type by a value, bottom,
that corresponds to a non-terminating computation. Functions that may re-
turn bottom are called partial functions. Functions that return a valid value
for every input are total functions.

Luckily for us, it is okay to ignore non-terminating functions and bot-
toms and treat types extended with bottom as Set. [6]

Composability of Types

Category theory is about composing, but not any two arrows are compos-
able. For two arrows to compose the initial object of one arrow must be the
same as the terminal object of the other. Similarly, in programming to com-
pose functions, one function must accept the return type of the other func-
tion.

We can compose zero :: Unit -> Int and toReal :: Int -> Real
to form toReal◦zero :: Int -> Real. However, we cannot compose
isZero :: Int -> Bool and toReal :: Int -> Real. As Int 6= Real
and Bool 6= Int.

Int

Bool Real

Unit

succInt

isZero toReal

not succreal

unit

zero

toReal ◦ zero
true

false

Type Checking

Withmachine language, any combination of bytes will be accepted and run.
Most of this will, of course, not do anything useful. With higher-level lan-
guages, we would appreciate if the compiler can detect lexical and gram-
matical errors. This filters out the nonsensical programs that one would be
able to enter. Type checking proves yet another one of these barriers, as a

19

type checker makes sure that once data is given a type, it does not display
behaviour outside of what the type is expected to do.

Static vs. Dynamic Dynamically typed languages detect type mismatches
at runtime, whether a static typed one would detect these at compile-
time, eliminating lots of incorrect programs before they have the chance
to run. Static typing might, however, reject programs that would run
without runtime errors, and thus can result in incompleteness. Dy-
namic typing does have the benefit of accepting these programs that
the static type checker would deem illegal.

Strong vs. Weak Often languages are referred to as strong or weakly typed.
Weak typing roughly means that the language has a way to “bypass”
its type system. It allows you to operate on data without considering
its type. Strongly typed languages allow you to only use functions
on data that are meant to be used on that type of data. However, be
cautious when using these terms as there is no universal definition,
and the properties that make a language strong or weak, are generally
better expressed in different characteristics of the language.

Pure vs. Dirty Inmathematics, a function is just amapping of values to val-
ues. In programming, we can implement such a function. Give the
function a value and it will calculate an output value. Such a func-
tion will – for the same input value – always return the same output
value. The square function, for example, won’t change depending on
the phase of the moon or the arrangement of planets. Nor should this
function have the additional effect of writing an entire bachelor thesis
whilst calculating the square root of its input. A function that would
do that cannot be easily modelled as a mathematical function. Func-
tions that always give the same output given the same input, and have
no additional side effects are called pure functions.

Haskell can be considered a strong statically-typed pure language.

Some exotic types

Void Void is the type that is not inhabited by any values. It is the empty
set. Since it is not inhabited by any values we can not call any function
which expects that type. Suppose we have:

absurd :: Void -> a

What would happen if we try to call absurd x? xmust be something
in the value space of Void. But there is no such value and therefore
we can never call this function.

20

This type does, however, have a use. It embodies the classical-logic
law “from falsehood, anything follows”.

Unit Unit is the type that is inhabited by only one value. It is isomorphic
with every singleton (sets with only one value).
Here is a function of Unit that always returns the Integer 44.

f44 :: () -> Integer
f44 () = 44

We consider this a constant function as it always returns the same
value. A function must be called with a value, so a constant function
too. Conceptually, a constant function always takes the unit as input.
This also makes sense in category theory as a morphism (function)
goes from one object to another, it has a source and a target. From the
Unit to the type of the constant. We do not need to mention this con-
ceptual dummy value, because there is always only one instance of it,
the single element in the unit type. So every function of Unit is equiv-
alent to picking a single element from the target type. In fact, we could
think of f44 as an alternative representation for the Integer 44. This
gives us an example of how we could emit explicit mention of values
in a set by talking about functions on them instead.

21

d3c Universal Constructions

“ Mathematicians do not study objects, but the relations be-
tween objects; to them it is a matter of indifference if these ob-
jects are replaced by others, provided that the relations do not
change. Matter does not engage their attention, they are inter-
ested in form alone ” (Henri Poincaré [31, p. 20])

Poincaré tells us that mathematics is about relations between objects,
add to this that category theory is used to formalize different areas ofmathe-
matics. Then it does not come as surprising that category theory is all about
structure and relations. The only thing that matters to an object is how it
relates to other objects. This also means that if we want to talk and reason
about a single object, we first need to specify what its relations are to other
objects. To do this, we use universal constructions. A universal construction
gives us the “best” object satisfying a certain property. These properties of
objects again only talk about their connections to other objects. Because of
thiswe can image a property as being a pattern, made fromobjects andmor-
phisms. A universal construction describes a collection or class of objects
that all satisfy a certain property and picks out themost universal. Universal
in this definition means that we are trying to pick the most general object
from this collection.

Let us give an example:

Example 5 (Numbers)
Suppose we have a category, where the objects are non-negative inte-
gers Z≥ := {0, 1, 2, 3, · · · } and the morphisms specify “is smaller
than or equal to” so ≤. This category is a poset and would look as
follows.

0 1 2 3 · · ·≤

≤

≤

≤

≤

≤ ≤

Clearly 1 ≤ 3, so one would have to imagine the composed arrows

22

as well, but for brevity and visibility we shall leave those out.
We then want to specify a property, so we think of a pattern. The

easiest pattern we can think of would be just a single object:

•

As you can imagine, when we try to find all objects that satisfy this
pattern, we get a lot. In fact, all objects in the category satisfy this pat-
tern. That is a problem, as universal constructions exist to single out an
object so that we can talk about the properties of that specific object.
This is why we want to establish some kind of ranking on all objects
that fit our pattern, we then pick the best object – as determined by our
ranking – as being our universal construction.

We establish a ranking based on the morphisms between all candi-
dates. We could say a candidate is “better” than another if there is an
arrow going from it to the other. Then the “best” is the one that has one
going to every other candidate.

A

B C D E . . .

What object is “best” in this ranking depends on the specific cate-
gory or on the property. It could be the simplest, the smallest, or the
largest. In this case every single object/number was a candidate. The
best object satisfying the property was in fact the smallest number 0.

Still, we have a problem with this ranking, it is not precise enough.
Suppose we had expanded the positive integers with another number
0′. That was also smaller than every other number (including 0), whilst
at the same time having an arrow from 0 to 0′. So that we would have
two smallest positive integers.

0′

1 2 3 · · ·

0

≤

≤

≤

≤

≤

≤

≤ ≤

≤

≤

≤

23

Which object 0 or 0′ would we have to pick as our “best” object?
The ranking chooses both, as both have an arrow to every other object.
Evidently, our ranking doesn’t pick an object uniquely. Now you might
say: ”But 0 and 0′ are the same! They are completely interchangeable!”.
Sure, they represent the same, but they are not the same object. We could
go back to Pointcarés quote:

“ ... it is a matter of indifference if these objects are re-
placed by others provided that the relations do not change.
... ” (Henri Poincaré[31, p. 20])

We call objects like these – those that are completely interchangeable
– isomorphic. From here on we say that it is fine if our ranking selects
multiple objects, as long as they are all isomorphic. For our ranking to
guarantee that all selected objects are isomorphic, we require there to
be one and only one morphism to every other object.

When we use our pattern, together with our new ranking, we find
0 to fit our property up to isomorphism. And indeed 0 is our smallest
positive integer.

Properties are like patterns andfinding the universal construction,means
establishing some kind of ranking among all occurrences – that satisfy that
property – and picking the best fit. Another way to say this is that a univer-
sal construction is an object that satisfies a universal property.

Isomorphisms

We just introduced the term isomorphism, but the previous explanation, that
the objects are completely interchangeable isn’t entirely satisfactory.

Becausewhat does it mean to be completely interchangeable in category
theory? Intuitively, two isomorphic objects must look similar, they must
have the same shape. In a way, the only thing that is different between the
objects is their name.

We can try to better our understanding, by looking at a non-categoric
setting. Suppose we were programming. We would have to have given a
one-to-one correspondence between the constituents of the objects before
we would call them isomorphic.

Take the two types Bool, having the values true and false, together
with our new type NotBool, having the values untrue and unfalse. A
bijection between both types (an invertible function) would show that they
represent the same:

bool2notbool :: Bool -> NotBool
bool2notbool true = unfalse
bool2notbool false = untrue

24

In category theory functions are morphisms. Then an isomorphism is an
invertible morphism; or if you prefer, a morphism paired with its inverse.
Then thus their composition is the identity function. Here f is a morphism
and g is its inverse, together they form an isomorphism:

A B

f
idA

g

idB

f ◦ g = id
g ◦ f = id

We say that two objects, that are isomorphic to each other are within an
isomorphism or that they are identical up to isomorphism [27] Likewise, if all
objects that satisfy some property P are isomorphic, then we say that they
are “unique up to isomorphism”. In practice things are so often “unique up
to isomorphism” that the qualification is often omitted.

Remark 3 (Not always a hit)
A certain universal construction doesn’t necessarily exist in a category.
To illustrate that such a universal construction does not always have
hits, we extend our category to include all integers as objects.

· · · –2 –1 0 1 2 · · ·≤

≤

≤ ≤

≤

≤

≤

≤

≤ ≤

As we can see, there is no object with a unique morphism to every ob-
ject. So there is no number smaller than every other number.

We shall go trough a few examples of universal constructions, the first
of which we have already seen:

Initial Object

The pattern and the ranking we used to find the best object in example 5,
correspond with the universal construction of the initial object.

If we think of the arrow A → B as saying that A is “more initial” than B.
Then the initial object is the object that is more initial than all other objects in
the category. Therefore we can define the initial object as the object that has
arrows going to all other objects in the category. In the example, we stated
that the to be uniquely defined up to isomorphism we needed to add the
additional requirement of having only one way of being more initial than
another object.

25

Accordingly, we want the initial object to have only one arrow going to
every other object. We define it as:

The initial object is the object that has one and only one mor-
phism going to any object in the category.

A

B C D E . . .

! ! ! ! !

(Arrows from an initial object or to a terminal object are sometimes la-
belled ”!” to highlight their uniqueness)

To show that the uniqueness of morphisms indeed ensures that the ini-
tial object is uniquely defined if it exists in a category we give a proof.

Example 6 (uniqueness of the initial object)
We give a proof by assuming the opposite.

Suppose the initial object was not unique up to isomorphism. Then
we would have at least 2 distinct initial objects 0 and 0′ such that they
have a unique morphism to every object x in the category.

0 → x

0′ → x

Every object x in the category includes these initial objects themselves.
So that we can find morphism to make the following diagram.

0 0′
!f

!id

!g

!id

So that we have g ◦ f :: 0 → 0, now we know from the initiality
property of 0, that there is only one morphism from 0 → 0 and we
know this to be the identity morphism. Consequently g ◦ f = id. In
much the same way, we find f ◦ g = id. So that we find f and g to form
an isomorphism.

In fact, we see that the initial object is unique up to unique isomorphism
meaning that there is only one isomorphism relating these two isomor-
phic objects. Because there is only one morphism from 0 → 0′ and only
one from 0′ → 0.

26

A A

B B

C C

h

id

f

id

g

id

f

id

id

h

g

id

CopC

Figure 3.1: A category C and its dual

Duality

When dealing with the initial object we gave a ranking saying that A is more
initial than B if there is an arrow A → B. Yet there is no reason we couldn’t
have reversed the ranking. Having B to be “more terminal” than A if there
is an arrow A → B. Instead of finding the initial object, we could search for
the terminal object.

Effectively, we just turned the arrows around. In fact, this is rather com-
mon in category theory. As it turns out, we can always reverse all mor-
phisms in a categoryC in order to get the opposite categoryCop. This opposite
category will then automatically satisfy all the requirement of a category, as
long a were redefine composition.

f :: a -> b
g :: b -> c

h :: a -> c
h = g ◦ f

fop :: b -> a
gop :: c -> b

hop :: c -> a
hop = fop ◦ gop

The nice thing about this duality is that every time we come up with a
construction, we can reverse all arrows and have the dual construction for
free. These “free” constructions are often prefixed with “co”. So we have
products and coproducts, monads and comonads, limits and colimits, and
so on. In short: for every “something” we have a co-“something”.

We canmake the concept of dualizing a categorymore rigorous, by defin-
ing an inductive dualisation function as seen in Figure 3.2. Though ”revers-
ing direction of all arrows” is all it does.

27

dual(A) = A for object A
dual(x) = x for morphism variable x
dual(f : A– > B) = f : B– > A (note the swap of A and B)
dual(g ◦ f) = dual(f) ◦ dual(g) (note the swap of f and g)
dual(idA) = idA

Figure 3.2: Dualising a category

Terminal Object

Now if we reverse the direction of the net-flow and think of B is “more ter-
minal” than A if there is an arrow from B to A. Then we can similarly define:

The terminal object is the object that has one and only one mor-
phism going to it from every object in the category.

B C D E . . .

A

! ! ! ! !

Initial Object in FPL

So let us try and add an initial object to the language, or find it in case it
already exists. Yes, an initial object, not the, since there can be many repre-
sentations for such an object in a category up to isomorphism.

So let us take a look at our programming language and check if it has a
candidate for the initial object. Let first look at a familiar type Bool. First,
we check if it has a function to every other type. At a first glance, it seems
like it does, as for any type A with values, we can pick a single value a and
create a function:

bool2A :: Bool -> A
bool2A True = a
bool2A False = a

But this only works with types that actually have a value. Void does
not have any values. Consequently, there is no function
bool2Void :: Bool -> Void. And so Bool is definitely not an initial ob-
ject. In fact, there is no function from any type to Void, except for the iden-
tity function specialized to Void: idVoid :: Void -> Void. Now there is

28

no function from any type to Void, so that any type that is not Void can
clearly not be the initial object. So we can better hope Void is the initial ob-
ject. Luckily absurd :: Void -> a is a function to every other type a.

You might now wonder why there exists no function to Void, but from
Void there is always one. Kind of nonsense right? This actually has to do
with the definition of a function in set-theory. As we are currently treating
types as sets, functions between types closely resemble functions between
sets. The set-theoretic definition of a function is as follows:

A function is a relation between sets that associates to every el-
ement of a first set exactly one element of the second set.

We consider the existence of a function from Void to every other type
A. This function might not be able to be executed, but that does not mat-
ter. It just needs to fit the definition of a function to be a morphism in Set.
When we try to verify that there indeed is a function Void -> A for every
A, we just need to look whether the definition holds. And the definition ap-
plies to Void -> A, because the antecedent is not satisfied. There are no
elements in the first set Void and therefore it is vacuously true that all ele-
ments (namely none) of the first set are associated with an element of the
second set. We have no elements so we could not even associate them if we
wanted to. Therefore the function Void -> A is set-theoretically a function.
It is often referred to as the empty function.

Suppose we consider the possibility of a function A -> Void, then for
an element a in A. We need to associate it to an element in Void, however,
there are no elements in Void. So for every element in A, we cannot find
an element in Void to associate it to. Clearly, this violates the definition of
a function and so there is no function A -> Void.

Terminal Object in FPL

Again we attempt to add a terminal object to the language, or find it in
case it already exists. Let us take another look at our programming lan-
guage and check if it has a candidate for the terminal object. We know for
sure that Void cannot be the terminal object as there were no functions
f :: A -> Void.

Once more, we take a look at the familiar type Bool. This time, instead
of finding a function from Bool to every other type, we need to check if there
is a function from every other type to Bool. For Void -> Bool we have
absurd. And for any type A with values we can construct a function that
for every element in A will return True.

tautology :: A -> Bool
tautology _ = True

29

As such we have a morphism to Bool from every object. But Bool is not
a terminal object. As for every object we also have the function:

contradiction :: A -> Bool
contradiction _ = False

This violates the condition that a terminal object has a uniquemorphism
to it from every object and so Bool cannot be a terminal object. We find that
a type with at least 2 values cannot be a terminal object. Then since Void is
also eliminated it can only be a type holding a single value, a singleton. The
singleton in FPL is Unit (or alternatively in Haskell syntax ()). Which has
a unique function to it from every other type A.

unit :: A -> ()
unit _ = ()

It is good to note that () is isomorphic to every other singleton. Say s
is the single value of another singleton S. Then we can define an isomor-
phism between () and S. So that every singleton is a terminal object up to
isomorphism.

unit :: S -> ()
unit s = ()

unit' :: () -> S
unit' () = s

Products

We look at another interesting construction in set theory and check if we
can find a universal construction that captures its properties.

From set theory, we know that the cartesian product of two sets is a set
of pairs of the elements from the initial sets. However this gives mention
of the elements in the set, and that cannot be imitated in category theory.
Ultimately it does not tell us enough to make a categorical construction for
the product. We need an “arrow-theoretic”way to describe a pair. With that
in mind, we can look at the relations a product has to its constituent sets.
We know that there are two functions, the projections, from the cartesian
product set to its constituent sets.

We find the following construction if try to capture this pattern as ob-
jects and morphisms, where there is an object C from which we can con-
struct objects A and B, using two projections p and q going from C to A and
B respectively.

30

C

A B

p q

Nowall C’s that fit this patternwill be a possible candidate for a product.
There may be lots of them, and therefore we need to establish a way to get
the best “fit” for this pattern.

Say C and C′ are both candidates for a product. Then if C is “better” than
C’, then Cwould be the more universal one. This means that the projections
of C′, namely, p′ and q′ can be factorized by p and q (the projections of C)
and some other function m :: C′ → C.

p′ = p ◦ m

q′ = q ◦ m

C′

A C B

m
p′ q′

p q
We take at all such candidates, and pick the best one. We give this object the
special name A×B. This is the product (up to isomorphism) in its respective
category:

Remark 4 (Dashed arrow)
A dashed arrow in a diagram means that the morphism is “presumed
to exits” if the rest of the diagram is filled in properly. In this case, if C
is indeed ‘better’ than C′ then there must exist C′ m

⇢ C.

A product of two object A and B is the object A×B equippedwith
two projections p, q such that for any other objects C′ equipped
with two projections p′, q′ there is a uniquemorphism 〈p′, q′〉 :
C → A × B that factorizes those projections:

p ◦ 〈p′, q′〉 = p′

q ◦ 〈p′, q′〉 = q′

C′

A A × B B

!〈p′,q′〉
p′ q′

p q

Remark 5 (The projections are important)
Even though we call A× B the product, the projection arrows are just as
an important part of the definition. Strictly speaking, we should define
the product as the tuple (A × B, p, q).

31

We can also define arrows between product objects in terms of projection
arrows:

If A×C and B×D are product objects, then for every pair of arrows
f : A → B and g : C → D, the product map f× g : A× C → B× D
is the arrow 〈f ◦ p, g ◦ q〉.

Product in FPL

Now the current type system of our language is not powerful enough to
express a product for every pair of types. For example, there is no fitting
product Int×Int.

Yet we would like to have this capability and so we introduce a likely
familiar construct to the type language: a pair (,), together with the two
projections fst and snd.

fst :: (A,B) -> A
fst (a,_) = a

snd :: (A,B)-> B
snd (_,b) = b

Then given any type C with two projections p :: C -> A and
q :: C -> B, there is a unique function from C to the product (A,B) that
factorizes them. In fact, it just combines p and q into a pair.

m :: C -> (A,B)
m x = (p x, q x)

C

A (A,B) B

!m
p q

fst snd
So that m properly factorizes p and q:

p :: C -> A
p = fst . m

q :: C -> A
q = snd . m

It appears that (A,B) is the product of A and B in FPL. To then define
the product map in FPL we would need a function, that for f :: A -> B
and g :: C -> D can give a new function (A,C) -> (B,D). This demand
is satisfied by:

mapPair :: (A -> B) -> (C -> D) -> (A,C) -> (B,D)
mapPair f g (a,c) = (f a, g c)

32

Remark 6 (A × B vs. B × A)
Of course ((A,B), fst, snd) is not the only representative of the set
of tuples (X, p, q) that is optimal in this sense. For example, the type
((B,A), snd, fst) is just as good. But (A,B) and (B,A) are the same
up to an isomorphism by swap (a,b) = (b,a). So, categorically, we
think of them as essentially the same.

Coproducts

We already defined the product, and now by dualising our previous defi-
nition, we get a definition of the coproduct for free.

A coproduct of two objects A and B is the object A + B equipped
with two injections i, j such that for any other objects C′ equipped
with two injections i′ and j′ there is a uniquemorphism [i′, j′]
from A + B to C′ that factorizes those injections.

i′ = [i′, j′] ◦ i

j′ = [i′, j′] ◦ j

A A + B B

C′

i

i′
![i′,j′]

j

j′

To gain a bit of intuition for the coproduct, we can take a look at set
theory, in the category of sets a coproduct is a disjoint union of two sets.
Say the disjoint union of set A and B. Then the elements in the coproduct of
A and B are either in set A or they are in set B. You can imagine this as the
“sum” of two sets.

In the same manner as with product we can also define arrows between
coproduct objects:

If A + C and B + D are coproduct objects, then for every pair of
arrows f : A → B and g : C → D, the coproduct map f + g :
A + C → B + D is the arrow [i ◦ f, j ◦ g].

33

Coproduct in FPL

Again the current category does not have a coproduct for every two objects.
To solve this problem, We introduce yet another construct to the type

language: a tagged union.

data A+B = (0, A) | (1, B)

A tagged union is a data structure used to hold a value that could take
on several different, but fixed, types. A value of type A+B is a value of type
A or (|) of type B, but not both at the same time. The arbitrary chosen
numbers 0 and 1 are used to ‘tag’ the values of the two summands so they
can be distinguished. Closely related to our type A+B are the injections:

inj1 x = (0, x)
inj2 y = (1, y)

A+B is parameterized by two types, A and B and has two injections, the
constructors inj1 that takes a value of type A and inj2 that takes a value
of type B. We see that the types in this case are tagged with either 0 or 1.

A B

A+B
inj1 inj2

Thengiven any type Cwith two injections i :: A -> C and j :: B -> C,
there is a unique m from the coproduct A+B to C that factorizes them. Ac-
tually it just “removes” the tag and applies the proper injection.

m :: A+B -> C
m (0, a) = i a
m (1, b) = j b

A A+B B

C
i

inj1

!m
j

inj2

So that m properly factorizes p and q:

i :: A -> C
i = m . inj1

j :: B -> C
j = m . inj2

34

Remark 7 (tagged union in Haskell)
In Haskell, the role of the tagged union is covered by the Either type.

data Either a b = Left a | Right b

Either a b is parameterized by two types, a and b and has two
injections, the constructors Left that takes a value of type A and Right
that takes a value of type B. We see that the types in this case are tagged
with either Left or Right.

A B

Either A B

Left Right

35

d4c Algebraic Data types

In the defined language we currently have only a fixed amount of primitive
types, Void, Unit, Bool, Int and Real, together will all their products
and coproducts. Though, admittedly, it would be nice if we could define
our own types. Fortunately, the constructs we already have in the language
provide us with a way to do this. We can combine the current types to
form new types using A × B and A + B, and we can do this indefinitely:
The created type Int × Int, can again be combined with Bool, to form
(Int × Int) + Bool and so forth. These created types are called algebraic
data types. In programming, an algebraic data type is a kind of composite
type, a type formed by combining other types. As it turns out, a lot of data
structures in programming can be built using just two constructs; using just
products and coproducts.

An algebraic data type is a possibly recursive sum type of prod-
uct types.

Type Constructors

Tomake use of these algebraic data types we introduce type constructors. As
the name suggests, these construct types. A type constructor is an n-ary
operator working on types. A type constructor takes zero or more types
and returns another type.

We lend the syntax from Haskell:

data Typename [typevar1 · · · typevark] = constr1 | · · · | constrn
-- where type variables distinct

Essentially, new data types are defined by listing all possible proper
ways to construct their values. We use data constructors to construct the
data. We write data constructors using a sans serif font, whereas Haskell
would capitalize the first letter.

Looking back on the existing primitive types, these can be considered
built using nullary type constructors, for instance:

data Bool = true | false

36

Product

The current implementation of a product in the language is a simple 2-tuple
(A,B). I will now introduce a more general way of defining product types
in the language, we can use a data constructor with multiple arguments as
an alternative definition for a product:

data Pair a b = pair a b

Here, Pair a b is the name of the type parameterized by the two types
a and b and pair is the name of the data constructor. We use this data con-
structor to construct the data, we can create a Pair value by passing two
values to pair:

aPoint :: Pair Int Int
aPoint = pair 1 2

It is easily seen that aPoint is isomorphic to the tuple (1,2).

Remark 8 (Identical type and data constructors names)
Since namespaces for type anddata constructors are separate inHaskell,
you will often see the same name used for both, as in:

data Pair a b = Pair a b

With a bit of imagination and a bit of squinting the eyes, we could
even view the built-in Haskell pair as a variation of this definition, as
in:

data (,) a b = (,) a b

In fact, we can actually construct tuple elements in Haskell using
(,). Similarly, we can use (,,) to construct triples and (,,,) for
quadruples and so on.

Example 7 (Specific Named Products)
Instead of using a generic pair or tuples, you can also define specific
named product types, as in:

data Person = person String Int

The advantage of this style of declaration is that you may define
many types that have the same content but different meaning and func-
tionality, and which cannot be substituted for each other.

37

data Address = address String Int

person "Jane Doe" 22 and address "Abbey Road" 6 – now having
different types – are not interchangeable.

Simple 2-tuples are not the only tuples that can make use of this al-
ternative style. No, we can analogously define any n-tuple. For illustra-
tion, here is a quadruple:

Quadruple a b c d = quad a b c d

Sum (Coproduct)

The implementation of the sum type in our language is:

data a + b = (0, a) | (1, b)

Or written a bit differently:

data a + b = inj1 a | inj2 b

We see that the injections are constructors for the data type a + b. Con-
veniently, we have the tags correspond to data constructors’ names.

data Sum a b = left a | right b

So that something of type a is tagged with left and something of type
b is tagged with right. The tag allows us to use pattern matching. It sort of
allows us to manipulate these datatypes to “deconstruct” the data structure
into its components:

whatIsIt :: Sum Int Bool -> String
whatIsIt (left _) = "is an Int!"
whatIsIt (right _) = "is a Bool!"

This type just holds two possible types of values. We can expand that
number and create a sum type with any amount of data constructors.

IsOneOfThese a b c d = first a | second b | third c | fourth d

Example 8 (Enumerations)
First thing, the simplest of these sum types are just enumerations.

38

data Suit = clubs | diamonds | hearts | spades

Example 9 (Maybe)
Sum types also offer a great way the express that a value could be ab-
sent. Theway this is commonly done inHaskell is using the Maybe type:

data Maybe a = nothing | just a

We can see this data type as a summation of to two other data types.
One data type that holds only the value nothing (so a singleton) and
another data type that simply encapsulates a value a.

data Nothing = nothing

data JustAValue a = just a

So that we can combine these types into Nothing + JustAValue a
to form an alternative representation for Maybe a.

Anotherwayof defining Maybe, would have been Maybe a = Unit + a.

Recursive data types

Data definitions can be recursive allowing to describe data structures of vary-
ing size. For instance, below are defined natural numbers and (polymor-
phic) lists as recursive data types:

Example 10 (Natural Numbers)
We first look at a simple inductively (= recursively) defined data type,
that of the Peano naturals.

data Nat = zero | succ Nat

Note that Nat occurs both on the left and the right of the datatype
definition. This is why it is called an inductively defined or recursive
data type.

Example 11 (Lists)
The List data type has two constructors. One matches the representa-
tion for an the empty, nil, and the other – cons – presents a single value

39

followed by the remainder of the list.

data List a = nil | cons a (List a)

Algebra of Types

Taken separately, product and sum types can be used to define a variety of
useful data structures, but the real strength comes from combining the two.
Combing them we find that Set together with the product and coproduct
form a semi-ring. Now natural numbers also form a semi-ring under mul-
tiplication and summation. We see some interesting results if we translate
our semi-ring Set to the one of natural numbers. Looking at this similarity
it becomes clear why types are called “algebraic”.

We take a step back and inspect and look at a few of our datatypes again.

Void

Among our data types, Void is the smallest because it is empty. Void has
exactly 0 values, consequently it also has 0 constructors. We noted that Void
isn’t very useful at a first glance, but it has some interesting properties.

A + Void ∼= A

A × Void ∼= Void

Does this ring a bell? These properties seem awfully familiar to the al-
gebraic properties of 0.

a + 0 = a

a ∗ 0 = a

We introduce 0 as an alternative notation to Void. As amatter of fact, we
are the odd ones here in regard to notation considering the terminal object
is most often denoted by 0 in category theory.

Unit

The next datatype we find is Unit with exactly 1 element (), do you find a
trend here?

We recall that Unit is isomorphic to every other singleton, and so a
singleton and unit are “identical” as far as we care. This means that the
the value or the inhabitant for the Unit type become irrelevant, we could
replace this value with any other value without losing expressive power.

40

From this observation we refer to the class of all singleton types by 1. Con-
sequently,

A × 1 ∼= A

We can read this as follows: If the second components of a product can-
not change, then it is useless and can be ignored. We find the functions fst
and its inverse (id, c) to provide an isomorphism where c is our inhabi-
tant for datatype 1. In much the same way:

1 × A ∼= A

Which has a striking familiarly to the algebraic identity:

1 ∗ a = a = a ∗ 1

Finally, what can we say about 1 + A? Observing this type, we see it is
either a single value or something useful of type A. This correspond exactly
to the Maybe type which is either a single value nothing or an encapsulation
of a useful type just A.

Bool

Following from previous observations on Void and Unit, these have a
class of isomorphic types with a name indicating the amount of inhabitants.
Bool has with true and false exactly 2 inhabitants. Likewise, we will use the
symbol 2 to represent the class of all objects containing exactly two distinct
elements.

We write:

1 + 1 ∼= 2

This follows from the fact that for anytype B = {b1, b2} – so a type with
2 elements – we can trivially make an isomorphism to 1+1. Obviously Bool
is in this class, which enables us to use symbol 2 in places where Bool is
expected. Clearly:

2 × A ∼= A + A

Just think of the example Bool×Nat, where bool indicates the sign of the
natural number, then it allows us represent a number that is either negative
or positive. Doubling the amount of possible values.

data Integer = negative Nat | positive Nat

41

Translation table

We find the following translation table for types to their algebraic represen-
tation:

Numbers Types

0 Void
1 Unit
2 Bool
a + b A + B
a ∗ b A × B

Counting Inhabitants

The first direct use of this algebra is knowing how many inhabitants a type
has. A + B has as many as A and B, combined. Again, the number of
inhabitants looks exactly the same as the algebraic form, A + B. A × B has
an inhabitant for each combination of a’s and b’s, that is a total of A × B.

Similarly, the logical and and or also from a semi-ring, and it too can be
mapped into category theory. Which is the basis for curry-howard isomor-
phism.

Numbers Types
false Void
true ()
a || b Either a b = Left a | Left b
a && b (a,b)

42

d5c Function Types

So far we have tried to dodge the subject: So far we have only discussed
functions as being morphisms, but functions have types too, in Haskell at
least. As you are aware: types are objects in our category thus a function –
which has a type – must have an associated object.

However, function types are different from other types. They are sets of
morphisms from one type to some other type. These sets between objects
are called hom-sets.

A B

Hom(A,B)

Now this is a set of different morphisms and so it is also an object in the
category Set. We notice that in the hom-set has a corresponding object in
the category of sets. This phenomenon is not present in every category, so
we make a distinction:

External and internal Hom-sets

When a hom-set is external to a category. Then it is called an external hom-
set. This means that the hom-set is not part of the category. In some cate-
gories there are ways to represent the hom-set as object within the category,
a so-called hom-object. These hom-sets – those that can be represented
within the category – are called internal hom-sets. The reason that there
is a distinction between external and internal hom-sets, is that not every
category has such a hom-object. For example, it can be shown that there is
no such construction inMon and evidently, such a hom-object must exist in
the category of sets (it is an internal hom-set). So that we have, for any two
sets Hom(A, B) = {f : A → B} is itself a set.

43

A B

C

Hom(A,B)

Set

Figure 5.1: Depiction of a Hom-
object external to the category C

A B

C

Hom(A,B)

Figure 5.2: Depiction of a Hom-
object internal to the category C

44

Universal Construction

Let us try to create a function type – that is an internal hom-object rep-
resenting the morphisms between two types. We abstract away from the
category of sets, this way the construction will automatically work for other
categories. We will however, take our hints from set theory.

As usual, we want an arrow-theoretic way of describing a function. To
do this we start with our initial understanding of a function on sets: A func-
tion is something that is applied to something else or evaluated when given
an argument. This evaluation/application describes a relationship between
different objects in a category. We can try to capture this relation – of the
function and its argument – as a universal construction, similar to the prod-
uct and coproduct.

With this in mind let us try to construct a pattern. Given a candidate
for a function type, lets call it Z, an argument type A and a result type
B, evaluation maps an element of f of Z and an element a of type A to
some value b of type B: f(a) = b. This evaluation must work for every pair
(f, a). We say that this evaluation is a morphism from Z × A → B. The
following pattern emerges from this requirement:

Z Z × A B

A

g

We can now try and look at all possible objects that satisfy this pattern
for Z. You can look at this construction as a sort of query looking for the
right objects. Exactly those together with an evaluation function g that sat-
isfies this pattern.

Now this pattern is not specific enough to single out the function type.
This construction has a lot of hits, and we want to establish the best fit for
this pattern. If we define the better function type to be the most general
one, then we need to show that there exists a function type candidate that
factorizes every other candidate’s evaluation function uniquely. We call the
best such candidate A⇒B. If we have another candidate Z. With its own
evaluationmorphism eval′. Then theremust be a uniquemorphism h from
Z → A⇒B. That factorizes eval′ trough eval: As illustrated in the follow-
ing diagram:

45

Z Z × A

A⇒B A⇒B × A B

A

!h !h×idA eval′

eval

Recall that h × idA denotes a product mapping as defined in chapter 3.
So that eval′ = eval ◦ (h × idA). Formally:

A function object from A to B is an object A⇒B together with the
morphism eval :: (A ⇒ B) × A → B.
So that for any other objects Z with a morphism eval′ :: (Z ×
A) → B. There is a unique morphism h :: Z → (A ⇒ B) that
factors eval′ through eval: eval′ = eval ◦ (h × id).

We trim the above diagram to fit only the important parts in our defini-
tion:

Z × A

A⇒B × A B

!h×idA
eval′

eval

Currying

If we once again take a look at the candidates Z for the function object, we
can see something interesting: All candidates for the function type have
some g that maps a product of two values to a single value.

g :: (Z × A) → B

At the same time, from the universal property of the function type, we
know that there is a unique morphism h that maps Z to a function object
A → B.

h :: Z → (A ⇒ B)

When we think of these morphisms as functions in Set, our first g is
the closest representation we can get to a function taking two arguments.
Besides h is a function that takes one variable of type Z and maps it to a
function from A to B.

46

Then the universal construction establishes a correspondence between
functions of two variables and functions of one variable returning a func-
tion. This correspondence is called currying, and h is called the curried ver-
sion of g. Part of what makes this interesting is that this correspondence is
a bijection.

⇒ If we have g, we know there is a unique h from the universal
construction.

⇐ Conversely, if we have h, thenwe can create g in the following
manner:

g = eval . (h × id)

This correspondence is captured by the standardHaskell functions curry
and uncurry.

curry :: ((a,b) -> c) -> (a -> b -> c)
curry f a b = f (a, b)

uncurry :: (a -> b -> c) -> ((a,b) -> c)
uncurry f (a,b) = f a b

Functions as data

Using currying, we showed a relation between functions and products. In
addition, we needed it to construct the universal construction. This relation
actually goes deeper than that. This is best seen when you consider func-
tions between finite types – types that have a finite number of values, like
Bool, Char or even Int. Such functions, at least in principle, can be fully
memoized or turned into data structures, where one can find the answer
to the function, just by looking it up. This function-data correlation is the
essence of the equivalence between functions, which are morphisms and
function types, which are objects.

For instance we can take a function and :: Bool -> Bool -> Bool,
corresponding to the logical AND and turn this into a lookup table with
two keys, corresponding to the first and second argument.

a b result

True True True
True False False
False True False
False False False

47

Now this is just one such function of type Bool -> Bool -> Bool. For
all functions Bool -> Bool -> Bool, we could make such a lookup table.
A function is different from another function if just one result cell is differ-
ent. For every row, we may change the result cell to any value of the result
type. Whenever we change one such result type we have a new unique
lookup table.

In this case we have 22 = 4 rows and the result type Bool has two pos-
sible values True and False. We conclude that we have a total of 222

= 16
possible different tables, and so 16 possible different inhabitants of the type
Bool -> Bool -> Bool.

Haskell’s Char encodes the Unicode characters, which supports a total
of 1, 114, 112 characters. Of course, Unicode has not mapped all of these
possible values. But for simplicities sake, we shall assume so. As a conse-
quence, Char – for our intents and purposes – contains 1, 114, 112 values.

Then for a function Bool -> Char, we have 2 rows, and for each row
1, 114, 112 result values, hence, a total of 1, 114, 1122 possible values. We
find that the amount of inhabitants to a function type is exponential, where
the argument type is the exponent. A function A -> B has BA inhabitants.

This is why in mathematical literature, the function object, or the inter-
nal hom-objects between two objects A and B, is often called the exponential
and denoted by BA.

Higher-order functions

Now that we have functions as objects, the category includes morphisms
from these function objects to other objects BA → C, In addition we have
morphism to these function objects C → BA. Recalling that a morphism is a
function, we infer that we now have functions with a function as argument
and functions with a functions as result types, otherwise known as higher-
order functions.

A function is called a higher-order function if it does one of the
following:

1 takes one or more functions as arguments.

2 returns a function as its result.

All other functions are first-order functions.

For example curry is a higher-order function. But what we notice it that
the existence of exponentials gives rise to higher-order-functions.

48

Exponentials and Algebraic Data Types

The connection between function types and exponentials can be broadened
when we look at the algebraic data types. The interpretation of function
types as exponentials seamlessly incorporates into our algebra of algebraic
datatypes.

All basic identities from high-school algebra remain true. Categorical
interpretations of initial and final objects, coproducts, products, and expo-
nentials appear consistent with simple equations relating the numbers zero
and one, sums, products and exponentials – learned in high-school. We lack
the tools to prove these, but fortunately, the work has been done for us in
[13]. In the paper, they use the Yoneda lemma and adjunctions, two rather
noteworthy ideas in category theory.

In all following identities, we replace 0 with initial objects, 1 with the
terminal object and equality with isomorphism. The exponential is the in-
ternal hom-object.

Zeroth power
a0 = 1

Translated:
Void -> a ∼= ()

The exponential a0 represents the set of morphisms from the initial ob-
jects to an arbitrary object a. By the universal property of the initial object,
we know that there is only one such arrow. Then the hom-set C(0,a) has
only 1 element, a singleton. But we know that every singleton is isomor-
phic to the terminal object in Set.

We saw the function in question before: It’s absurd.

Powers of one
1a = 1

Translated:
a -> () ∼= ()

The intuition is similar to the previous result. From the definition of the
terminal object. There is only one morphism from 1 to a. And so this hom-
set is isomorphic to the terminal object.

The only function from any type a to () is the function unit.

First Power
a1 = a

Translated:
() -> a ∼= a

49

This identity restates the finding that we can omit explicit mention of
values in a type, by talking about functions on them instead. The set of
such morphisms is isomorphic to the object itself.

Exponentials of sums
ab+c = ab × ac

Translated:
Either b c -> a ∼= (b -> a, c -> a)

The result of this statement is quite practical. It states that, categorically,
the exponential from a coproduct of two objects is isomorphic to a product
of two exponentials.

In our language, this means that a function from a sum of two types is
equivalent to a pair of functions from individual types. We encounter this
rather often when programming in Haskell. It is just the case distinction we
make when defining a function over a sum type.

data Pet = cat | dog

f :: Pet -> String
f cat = "This is a Cat"
f dog = "This is a Dog"

Instead of writing one function definitionwith a case statement, we split
the function up in two functions, one dealing with cats, the other with dogs.

Exponentials of Exponentials

(ab)c = ab×c

Translated:
c -> (b -> a) ∼= (b,c) -> a

This is just a restatement of currying purely in terms of exponential ob-
jects.

curry :: ((b,c) -> a) -> (c -> (b -> a))
curry f a b = f (a,b)

uncurry :: (c -> (b -> a))-> ((b,c) -> a)
uncurry f (a,b) = f a b

50

Exponentials over products

(a × b)c = ac × bc

Translated:
c -> (a,b) ∼= (c -> a, c -> b)

A function that returns a pair, is equivalent to a pair of two separate
functions returning one element of the pair.

51

d6c Functors

We have seen that many mathematical domains can be formulated as cat-
egories. Since categories themselves constitute a mathematical domain, it
makes sense to ask whether there is a category of categories. In fact, there
is: Its objects are categories, and its arrows are certain structure-preserving
maps between categories, called functors. Something to note about these
maps: A Category consists of not just objects – it consists of objects and
morphisms that connect these objects. So a mapping between categories
must not only map objects, but also map morphisms:

Given two categories, C and D, a mapping m between the two
categories is a operation such that:

1 m maps all objects in C to an object in D. If A is an object in
C, then its image in D is mA.

2 m maps all morphisms f : A → B in C to morphisms in D.
If f : A → B is a morphism in C, then its image in D is
mf : mA → mB.

Remark 9 (mapping vs. function)
The words mapping and function are often used interchangeably. But
occasionally one is chosen for emphasis. For instance in this paper, we
will use the term “function” to refer specifically to a map of sets with
no structure, and use the term “map” when dealing with any type of
algebraic structure. Hence, the difference is that a map can also relate
two objects that are not necessarily sets. Alternatively, a mapping may
be described by a morphism, which generalizes the idea of a function.
This rationale also fits the programmatic definition of a function, in the
sense that a program function acts on sets of values, our types.

52

Now that we know what a mapping is, we get to introduce the functor. A
functor is not too difficult to understand:

A functor is just amapping between categories. Such that it pre-
serves connections between objects:
Given two categories, C and D, the functor F preserves identity
morphisms and composition of morphisms:

Identity:
Let A be an object in C then:

F ida = idFa

“The mapping applied to the iden-
tity morphism in C is the identity
morphism in D”

A

FA

ida

Fida=idFa

Composition:
For composable arrows f : A → B
and g : B → C in C

F (g ◦ f) = F g ◦ F f

“It does not matter if we first com-
pose f and g and take the mapping
then, or first take the mappings of
f and g and compose those”

A C

B

FA FC

FB

f

h

g

Ff

Fh

Fg

Remark 10 (No tears in the fabric)
The notion that a functor preserves connections is important, frequently
it is said that a functor is structure preserving. Bartosz Milewski gives us
a fun way we can try to visualize this:

“ If you picture a category as a collection of objects held
together by a network of morphisms, a functor is not al-
lowed to introduce any tears into this fabric. It may smash
objects together, it may glue multiple morphisms into one,
but it may never break things apart. ”

(Bartosz Milewski [23, p. 72])

Remark 11 (function word)
The word functor comes from the term function word in linguistics [17,

53

p. 30]. These are words that have little lexical meaning and express
grammatical relationships among other words within a sentence. They
signal structural relationships that words have to one another (the syn-
tax of the sentence). So a function word for categories – a functor –
expresses structural relationships between categories.

Functor in Programming

Whilst programming we are dealing with our category of types and func-
tions. Anythingwe definewhile programmingwill have to dowith this cat-
egory. And so a functor regarding to programming only deals with this cat-
egory. We can talk about functors that map the category of types into itself
– such self-mapping functors are called endofunctors. Then an endofunctor
in the category of types maps types to types. Examples of such mappings
are the definitions of types that are parameterized by other types. Maybe is
such a type constructor parameterized by an other type.

data Maybe a = nothing | just a

It is important to note that Maybe is not a type. It is a type constructor. To
turn it into a type we have to first provide a type, say Int, then Maybe Int
is a type. Maybe without arguments represents a function on types. Since
it takes Int to Maybe Int.

Now can we turn Maybe into a functor? (yes, we can). The type con-
structor Maybe already deals with the mapping of objects, so the only thing
left is defining the part of the functor that maps the morphisms between
types. So for every function f :: a -> bwewould like to produce a func-
tion Maybe a -> Maybe b. In Haskell, we implement this mapping as a
higher-order function

f(unction)map :: (a -> b) -> (Maybe a -> Maybe b)

We hand it a function and it “lifts” this function to be used on Maybe types.
“lifting” is used as a metaphor for taking something (in this case, a func-
tion) from one context to another.

instance Functor Maybe where
-- We can not do anything with nothing
fmap _ nothing = nothing
-- The obvious mapping: We tear of the label and apply
-- f to the "value within"
fmap f (just a) = just (f a)

We should alwaysmake sure that the implementation of fmap for a func-
tion preserves identity and composition. These are called the functor laws,
but they simply ensure the preservation of the structure of the category.

54

Identity:
We have to look at two distinct cases, when Maybe a is nothing or is just a:

fmap id nothing = nothing = id nothing

fmap id (just a) = just (id a) = just a = id (just a)

Composition:
Again we look at both cases:

fmap (f . g) nothing
= nothing
= fmap g nothing
= fmap f (fmap g nothing)
= (fmap f . fmap g) nothing

fmap (f . g) (just a)
= just ((f . g) a)
= just f(g(a))
= fmap f (just (g(a))
= fmap f (fmap g (just a))
= (fmap f . fmap g) (just a)

Example 12 (The List functor)
If wewant to gain a better intuition as to the role of functors in program-
ming, then we will need to look at more examples. To be fair, category
theory is, likely, best explained by examples.

Possibly, you have heard that functors can be seen as if they are
some sort of containers, this analogy provides a pretty good for trivial
functors. Anyway, we shall first start with a generic container, the List.
Generic containers are parameterized by the type of the elements they
store, and as we have seen: any type that is parameterized by another
type is a candidate for a functor.

data List a = nil | cons a (List a)

We have a mapping from any type A to the list type List A. The
mapping we are talking about is the type constructor List. To show
that this mapping is a functor we have to define the lifting of functions:
given a function f :: a -> b define a function List a -> List b

fmap :: (a -> b) -> (List a -> List b)

55

It obvious what this function should do. It should turn every ele-
ment of type a to type b using the function f. Then fmap f becomes
our new function List a -> List b. Now there is a special case, what
should happen ifwe encounter a list containing no values? Well, if there
are no values then there is nothing we can apply f to, so that we retain
an empty list.

instance Functor List where
fmap _ nil = nil
fmap f (cons a as) = cons (f a) (fmap f as)

Wenote that List defines the object part of a functor from the types
in Haskell to the type in Haskell (so an endofunctor). And that fmap
defines the arrow part of the functor.

Then let l = [s1, s2, ..., sn], then fmap f maps f over the
elements of l:

List f l = fmap f l = [f s1, f s2, ..., f sn]

Example 13 (Identity functor)
The identity functor on a category C is the functor IC that takes every
C-object and every C-arrow to itself.

In Haskell its definition can be given as:

newtype Identity a = identity a

instance Functor Identity where
fmap f (identity x) = identity (f x)

You can treat it as a container that does not do anything. It is simply
a wrapper around a single value, and that is it. The identity functor
really does nothing. Identity a and a are in fact isomorphic, which
is trivial to see. Not very surprisingly fmap f then is just a disguised
f, it strips off the Identity container, applies f, and slaps the container
back on again.

56

Example 14 (The Diagonal functor)
The diagonal functor ∆ :: C -> C takes each C-object A to the object
(A, A) in the product category C × C. The reason for its name is rather
obvious when you look at the following table:

a b c d · · ·
a (a, a)(a, a)(a, a) (a, b) (a, c) (a, d) · · ·
b (b, a) (b, b)(b, b)(b, b) (b, c) (b, d) · · ·
c (c, a) (c, b) (c, c)(c, c)(c, c) (c, d) · · ·
d (d, a) (d, b) (d, c) (d, d)(d, d)(d, d) · · ·
...

...
...

...
... . . .

In Haskell we can try to construe the Diagonal functor like this:

data ∆ a = ∆ a a

instance Functor ∆ where
fmap f (∆ a a) = ∆ (f a) (f a)

Wequickly check the functor laws and find that the proofs are easily
formulated:
Identity:
fmap id (∆ a a)
= ∆ (id a) (id a)
= ∆ a a = id ∆ a a

Composition:
fmap (f . g) (∆ a a)
= ∆ ((f . g) a) ((f . g) a)
= ∆ (f (g a)) (f (g a))
= fmap f (∆ (g a) (g a))
= fmap f (fmap g (∆ a a))
= (fmap f . fmap g) (∆ a a)

Example 15 (The Reader functor)
Consider a mapping of type A to the type of a function returning A.
This is a mapping from one type to another and thus is a candidate
for a functor. Normaly we would use the type constructor to map the

57

objects part of the functor. But what actually is the type constructor for
a function? If we give the type of a function from A to B we denote it as
A -> B. So that must mean that -> is simply an infix type constructor.

Just as with regular functions we can partially apply type construc-
tors. Resulting in the partially applied form (R ->). The definition of
fmap applied to this case gives the following signature:

fmap :: (A -> B) -> (R -> A) -> (R -> B)

fmap takes a function from A -> B and a function from R -> A and
returns us a function R -> B. Giving it a bit of thought we find that
simple composition does the trick.

instance Functor (R ->) where
fmap f g = f . g

And in point-free style:

instance Functor (R ->) where
fmap = (.)

We verify the identity law:
fmap id h
= (.) id h
= id . h
= h

and the composition law:
fmap (f . g) h
= (.) (f . g) h
= (f . g) . h
= f . (g . h)
= fmap f (g . h)
= fmap f (fmap g h)
= (fmap f . fmap g) h

Functor Composition

Knowing that a functor is a mapping between categories, it is not hard to
imagine that functors compose. A composition of two functors is just the
composition of their respective mappings.

So that the object part of the new mapping becomes the composition of

58

the respective mappings on objects. Correspondingly, the newmapping on
morphisms is just the composition of the original mappings when acting on
morphisms:

Given functors F :: A -> B and G :: B -> C the composite
functor G◦F maps:

1 each A-object A to the C-object:
G(F A).

2 each A-arrow f : A → A′ to the C-arrow:
G(F f) :: G(F A) → G(F A').

It is easy to check that this composition operation is associative and that
the identity functor is the identity for the composition of functors.

So the composition of two functors is a functor whose fmap is the com-
position of the corresponding fmap’s. Now interestingly this composition
is associative, and there is an identity functor (it maps every object to itself
and maps every morphism to itself). So functors behave as morphisms in
some category. This category is the category of categories, where objects
are categories and morphisms are functors.

However, the category of categories would have to include itself, and
this is impossible. Therefore, there is a distinction between categories. small
and big categories. A category is small whenever objects within the cate-
gory form a set, as opposed to something larger than a set, such as a proper
class. Mind that a set can be infinite. Even an infinite uncountable set is
considered small.

59

d7c Natural Transformations

After having introduced the functor in the previous section, we once again
apply the oldest trick in the book: We check if the created structures form a
category.

We consider the functors as objects in a category. Then what could the
morphisms between these functors be?

Mappings on Functors

Since these mappings go from one functor to the other, we at least know
that themorphismmust preserve the objects functorial nature. We consider
two functors F and G between categories C and D. Then an object a in C is
mapped to both Fa and Ga, using respectively the functors F and G.

a

Fa Ga

F G

The mapping we are looking for should map every a in C to some mor-
phism in D from Fa to Ga. We can visualize this as “sliding” the image of
F onto the image of G. Now both Fa and Ga are in the same category D. We
can not just randomly add a newmorphism in this categoryD, and thus the
morphism Fa to Ga must be an already existing (naturally existing) mor-
phism in the category D. This morphism picks for every a in C, a single
morphism from Fa to Ga in D. This morphism is called the component of α
at a, or αa.

a

Fa Ga

F G

αa

Keep in mind that a is an object in C while αa is a morphism in D. Does
such a morphism inD not exists for some a inC, then a mapping as defined
above does not exist. Furthermore, note that α is a collection of naturally
existing morphisms in D that all go from F C to G C, one morphisms for

60

every object in C. So that α becomes a mapping between the objects of the
two functors.

Now we also need to define how this mapping works on morphisms in
C. As it turns outwedonot really have a choicewhendefining thismapping.
To elaborate: If there is a f :: a → b in C. Then since F and G are functors,
it is mapped to Ff :: Fa → Fb and Gf :: Ga → Gb.

a

Fa Ga

b

Fb Gb

F G

f

Ff Gf

F G

α then completes this diagram by providing two additional morphisms:
αa :: Fa → Ga and αb :: Fb → Gb. Where αa and αb take the endpoints of
the F-image of f to the endpoints of the G-image of f.

a

Fa Ga

b

Fb Gb

F G

f

Ff

αa

Gf

F G

αb

If we then keep only the objects and morphisms in D, we are left with
the following diagram:

Fa Ga

Fb Gb

Ff

αa

Gf

αb

If we look closely at the diagram, we see that it contains all objects and
morphisms that are related to f in D. So the candidate for the mapping of f
must be somewhere in this diagram too. Taking a look at these candidates,

61

two of the morphisms are images of f under F and G. One involves only F,
the other only G, so those are no good. The other two are components of
the transformation α, αa and αb, but these are similarly bad options. The
only options that are left are the composite morphisms Gf ◦ αa and αb ◦ Ff.
These both give ways of getting from Fa to Gb, however since we would like
our mapping to be structure preserving, these should be equal. We must
impose that for any f the naturality condition holds:

Gf ◦ αa = αb ◦ Ff

The mapping α as we just described is a natural transformation
from C to D.

Since we were left with little choice regarding the mapping of a mor-
phisms in C, we do not have to define it, as long as it satisfies the naturality
condition.

Natural Transformation in Programming

Example 16 (Reverse)
Let reverse be the function that reverses lists – that is

reverseS :: List S -> List S

takes any list with elements in S to its reverse. For example,

reverseInt [1,2,3] = [3,2,1]

reverse truly does not care about the specific elements in the list.
We could replace them with anything and the substitution would be
the same.

reverseInt [4,5,6] = [6,5,4]

We can apply any mapping whatsoever to the individual elements
of the arguments to reverse, even one that changes their types.

Our previous example then was:

map (+3) (reverseInt [1,2,3]) = [1+3, 2+3, 3+3] = [4,5,6]

And more generally, suppose that f : Int -> B, then:

62

map f (reverseInt [4,5,6])
=
[f(4), f(5), f(6)]
=
reverseB (map f [4,5,6])

or even, if f : A -> B:

map f ◦ reverseA = reverseB ◦ map f
=
fmapList f ◦ reverseA = reverseB ◦ fmapList f

But this precisely states the naturality condition, that means that
reverse is a natural transformation.

Example 17 (Eval)
In categories with exponentiation (those things we use to model mor-
phisms in the category Set) it turns out the the evaluation function
forms a natural transformation.

We give the construction in Set:
For a fixed set A, the map taking B to BA × A can be extended to a

functor FA : Set → Set as follows:

FA B = BA × A
FA (f : B → C) = (f ◦ -) × idA

The fact that eval : FA -> ISet is a natural transformation follows
from the commutativity of the diagram

FA(B) ISet(B)

FA(C) ISet(C)

FA(f)

evalAB

ISet(f)
evalAC

We know that FA(C) = CA × A, and FA(B) = BA × A, also we know
ISet(B) = B and ISet(C) = C, as ISet is the identity functor. Rewriting
our square we get:

BA × A B

CA × A C

(f◦-)×idA

evalAB

f
evalAC

63

To show that the above diagram commutes we use the universal
property of eval.

BA × A

CA × A B

(f◦evalAB)×idA
f◦evalAB

evalAC

So that our above square commutes for - = evalAB.

Example 18 (Length)
Interesting cases of natural transformations appear when one of the
functors is the Const functor. For instance, length can be though of
as a natural transformation form the list functor to the Const functor.
In practice length is defined as:

length :: [a] -> Int
length [] = 0
length (x:xs) = 1 + length xs

This implementation effectively hides the fact that it’s a natural trans-
formation. However, Int is isomorphic to Const Int a, with the fol-
lowing isomorphism:

toConst :: c -> Const c a
toconst c = Const c

fromConst :: Const c a -> c
fromConst (Const x) = x

Making use of this isomorphism we can define length as:

length :: [a] -> Const Int a
length [] = Const 0
length (x:xs) = Const (1 + fromConst (length xs))

Here fromConst is used to peel off theConst constructor. Now length
ignores the type of the elements of the list, and the Const functor ig-
nores the second type argument. It then is not hard to imagine that
changing these ignored types using fmap, will not change the behaviour
of length. And so it satisfies the naturality condition.

64

fmapConstInt ◦ length = length ◦ fmapList

Polymorphic function

The examples above all had something in common. They all are polymorphic
functions, as it turns out every polymorphic function in Haskell is a natural
transformation; we will touch on this in chapter 8. So all examples above
were a cheap shot.

Polymorphic functions don’t touch the elements, they don’t use them,
they don’t view them, the simply leave them as is. Meaning that polymor-
phic function only change structure of a certain type and not any values
within.

65

Conclusion Part I

This concludes the first part of the paper. We’ve learned the basic vocabu-
lary of category theory.

We have seen categories consisting of objects and morphisms between
these objects. Then we took a look at these categories and established that
they form an category themselves, with functors as morphisms. Once more
we looked at our new constructions and have shown that the functors form
a category with natural transformation as morphisms.

We have taken a look at the basic definitions of category and what pro-
gramming construct correspond to them. We found that exponentiation
gives rise to higher order functions. Functors reveal themselves in a pro-
gramming language as type constructors, and natural transformations cor-
respond to the polymorphic functions.

We have looked at simple universal constructions - the product and the
coproduct - and seenhow they give rise to a large variety of algebraic datatypes.

66

Part II

Uses

67

This is the beginning of part 2. We shall showcase three different appli-
cations of category theorywithin computer science. Startingwith free theo-
rems, followed by recursion schemes andwe endwith a section onmonads.

68

d8c Free Theorems

The first direct result from category theory we will discuss is a magic trick:

“ Write down the definition of a polymorphic function on
a piece of paper. Tell me its type, but be careful not to let me
see the function’s definition. I will tell you a theorem that the
function satisfies. ” (Philip Wadler [37, p. 1])

Wadler, in his paper, gives us a way to generate “free” theorems from the
type signature of polymorphic functions where any term of such type must
adhere to the theorem. It is “free” because we do not need to take a look at
the function itself, but only at its signature.

Say that r is a function of type:

r :: [a] -> [a]

From just this, as we shall see, it is possible to conclude that r satisfies
the following theorem: for all types A and A' and every total function
a : A -> A' we have

map a ◦ rA = rA′ ◦ map a

Here rA is the instance of r at type A. Intuitively, we can explain the result
rmust work on list of X for any type X. If rworks on any list no matter the
type of its elements, we know it does not touch the elements. All r can do
with the list is to rearrange the elements in the list. And so applying a to
each element of a list and then rearranging yields the same result as rear-
ranging and then applying a to each element. Which is what the equation
above states.

Examples of such rearranging functions r are reverse, tail and take 3.
Take for example r = tail and a = (-1). Then we have:

(map (-1) ◦ tailInt) [1,2,3]
= map (-1) [2,3]
= [1, 2]
= tailInt [0, 1, 2]
= (tailInt ◦ map (-1)) [1,2,3]

69

which satisfies the theorem. Wadler continues with:

“ This theorem about functions of type [x] → [x] is pleasant
but not earth-shaking. What is more exciting is that a similar
theorem can be derived for every type ”

(Philip Wadler [37, p. 1])

The point/aim of this chapter is to show how to derive these theorems,
and show their uses. But before we explain how to derive the theorems for
free, we consider the concept of polymorphism:

Polymorphism

The word polymorphism can roughly mean “of many forms” from the an-
cient greek πολύς (polús) = many, and μορφή (morphē)́ = form, figure,
silhouette. Polymorphism (in computer science) is the notion that you can
provide one way of interacting with many different types of entities.

To say: polymorphic languages are languages in which some values and
variables may have more than one type, polymorphic functions are func-
tions whose operands (actual parameters) can have more than one type
and polymorphic types are types whose operations apply to values of more
than one type.

Polymorphism comes in different flavours. The three “main flavours”
of polymorphism are ad hoc polymorphism, inclusion polymorphism and para-
metric polymorphism. [5]

Ad hoc polymorphism refers to polymorphic functions that can be ap-
plied to arguments of different types, but that behave differently depending
on the type of the argument towhich they are applied. This is also known as
function overloading or operator overloading. These functions may behave
in unrelated ways for each type.

Inclusion polymorphism is often referred to as subtyping. Subtyping
indicates that the interface of type S is compatible with the interface of
some type T. S is a subtype of T if every function that works on an entity
of type T can also be correctly applied to an entity of type S.

Using parametric polymorphism, a function or a data type can be writ-
ten generically so that it can handle values identically without depending
on their type. This allows a language tomaintain full static type-safetywhile
being more expressive. Functions that exhibit parametric polymorphism
are also called generic functions.

We shall be be dealing with the latter.

70

Explaining the magic trick

Wadler’smagic trick originates fromReynolds’ abstraction theorem [32]. Reynolds’
goal in establishing the abstraction theorem was to give a precise meaning
to the statement that a function is ”parametrically polymorphic”. Reynold
uses his abstraction theorem to show that any polymorphic function ex-
pressible in the language defined in his paper is parametric.

With parametricity, wemean the property that captures the intuition that
all instances of a polymorphic function act in the same way. To illustrate,
idA and idA′ are two different instances of the polymorphic function id.
Nevertheless, we know that they behave the same way for every instance,
and that is when we call such a function parametrically polymorphic.

The key insight of Reynolds is that you can read types as relations be-
tween values. It gives us a way to abstract from the shape of a data structure
by only looking at the relations of the values. As an example, we can look
at two pairs

(Green, Red) :: (Colour, Colour)
(True, False) :: (Bool, Bool)

These pairs intuitively have the same shape, they are both pairs (a,a) para-
metric in a. But how dowe know this? Well, we can relate the values, Green
to True and Red to False. Then – when you look at the spaces the related
values occupy – the two pairs have the same shape.

This idea is easily extended. We can establish relations between compos-
ite types in terms of relations between values of the constitute types. The
trick is to inductively transform type constructors into relations. The ele-
ments of the relations are theorems about inhabitants of the original type:
our “theorems for free”.

Remark 12 (Why relations?)
At first, it may seem odd towant to introduce relations, especiallywhen
we are dealingwith functions. However, when dealingwith algorithms,
often, the specifications of the algorithm is what really matters, and
these specifications are typically relations, not total functions. For in-
stance, an algorithm that – even for the same input – can exhibit differ-
ent behaviours on different runs (a non-deterministic algorithm) has
a specification that can not be captured by a total function. Other al-
gorithms do not always yield an answer or need an infinite amount of
time to compute, these algorithms are partial and these too can not be
modelled using total functions.

71

Relational Parametricity

To make the notion of parametricity completely precise, we have to be able
to extend each type constructor T in our chosen programming language to a
function from relation to relations. More formally, if we have a polymorphic
function f of type T α for all types α. That is, for each type A there is
an instance fA of type T A. The action of T is extended to binary relations,
where if relation A has type A ⇔ A′, then we can define a new relation of
the type TA ⇔ TA′. We do as follows:

From type-constructors to relations

As you shall see, each of the rules discussed below come down to: ”Terms
evaluated in related environments yield related values”. This section closely
follows the explanation and notation as found in [37]

Constant Types A constant type T such as Bool or Int, can be read as an
identity relation.

IT : T ⇔ T = {(x, x) | x ∈ T}

In other words, this identity relation states that values of constant
types are related only to themselves.

If x, x′ ∈ T, then (x, x′) ∈ IT iff x = x′.

These identity relations by themselves are not very interesting. The
only “free theorem” we ever get from these monomorphic types is
the monomorphised id :: T -> T function, because that is the only
inhabitant of the relation IT.

Product Types For any relations A : A ⇔ A′ and B : B ⇔ B′, we can form a
product relation A × B : (A × B) ⇔ (A′ × B′) by the construction:

((a, b), (a′, b′)) ∈ A × B
iff

(a, a′) ∈ A and (b, b′) ∈ B

Wadler explains: “That is, pairs are related if their corresponding com-
ponents are related.”

72

List Types For any relation A : A ⇔ A′ , we can construct a relation [A] :
[A] ⇔ [A′]:

([x1, . . . , xn], [x′
1, . . . , x′

n]) ∈ [A]
iff

(x1, x′
1) ∈ A and . . . and (xn, x′

n) ∈ A

Which Wadler describes as:

That is, lists are related if they have the same length
and corresponding elements are related.

Function Types For any relations A : A ⇔ A′ and B : B ⇔ B′, we can
construct the function relation A → B : (A → B) ⇔ (A′ → B′) as:

(f, f′) ∈ (A → B)
iff

(x, x′) ∈ A and (f x, f′ x′) ∈ B

This just states that two functions are related if and only if they take
related arguments from the domain to related results in the codomain.

Universally Qualified Types Finally, we also need to translate polymor-
phic types to relations. This brings us to types of the form

forall χ. F χ

where F is some type constructor. We have to give an interpretation
of ∀ as an operation on relations:
Let F(X) be a relation depending on X . So that F corresponds to a
function from relations to relations, where for every relation A : A ⇔
A′, F takes it to a corresponding relation F(A) : FA ⇔ F′A′.
Then the relation

forall X.F(X) : forall X . F X ⇔ forall X' . F' X'

can be defined by

(f, f′) ∈ forall X.F(X)
iff

forall A : A ⇔ A′.(fA, f′
A′) ∈ F(A)

Nothing special is going on here. This just states that a polymorphic
expression must preserve relationship under every substitution of its
polymorphic type variable to any possible type.

73

Tα,η = η(α) α is a free variable
Tτ,η = idτ τ is a constant type
T(τ,τ ′),η = {((a, b), (a′, b′))|(a, a′) ∈ Tτ,η ∧ (b, b′) ∈ Tτ ′,η}

T(τ+τ ′),η = {(inl a, inl a′)|(a, a′) ∈ Tτ,η}
∪

{(inr b, inr b′)|(b, b′) ∈ Tτ ′,η}

T[τ],η = {([x1, x2, . . . , xn], [x′
1, x

′
2, . . . , x′

n])
|(x1, x′

1) ∈ Tτ,η ∧ . . . ∧ (xn, x′
n) ∈ Tτ,η}

Tτ→τ ′,η = {(f, f′)|∀(x, x′) ∈ Tτ,η, (f x, f′ x′) ∈ Tτ ′,η}

T∀α.τ,η = {(g, g′)|∀A : A ⇔ A'.(gA, g
′
A') ∈ Tτ,η[α 7→A]}

Figure 8.1: Inductive structure of the function T

Coproduct Types Oddly enough Wadler’s paper is completely quiet when
it comes to coproduct types. Why? No idea. Leaving that aside, after
reading through the above examples, we should be able to define the
construction for A + B ourselves:
For any two relations A : A ⇔ A′ and B : B ⇔ B′, the relation A + B :
A + B ⇔ A′ + B′ is defined by:

(x, x′) ∈ A + B
iff

There exists (a, a′) ∈ A.x = inl a ∧ x′ = inl a′

∨
There exists (b, b′) ∈ B.x = inr b ∧ x′ = inr b′

We use a more compact notation, inspired by the notation used in [36].
For every type τ and every relation environment η that maps all free vari-
ables of τ to relations between closed types, we define the relation Tτ,η by
induction on the type structure, see Figure 8.1.

Then parametricity as presented in [32] and [37], implies the following
fundamental property of the relational interpretation of types:

If t :: τ is a closed term of closed type, then:
(t, t) ∈ Tτ,∅

Parametricity gives some interesting results and has uses discussed fur-
ther below.

74

Deriving a theorem

We have been given a systematic way to interpret types as relations and
we know a parametric polymorphic term t of type τ must satisfy the para-
metricity property:

(t, t) ∈ Tτ,∅

Earlier we noted that our free theorems are inhabitants of these induc-
tively constructed relations. And so to get a free theoremwemust “extract”
members from this relation. To continue with the derivation of a free the-
orem, one has to unfold the given parametricity relation using the various
actions on relations as described above.

Often to obtain a more useful theorem you need to specialise relations
to some well-chosen relation. The case where that relation is a relational
interpretation of a function, is often fruitful.

We take a look at the example given in the introduction of this section:

r :: [x] -> [x]

Parametricity of this function gives us:

(r, r) ∈ Tforall x . [x]->[x],∅

We start by unfolding the definition of forall on relations:

forall A : A ⇔ A′

(rA, rA′) ∈ T[x]->[x],{x7→A}

Now we unfold the definition of → on relations:

forall A : A ⇔ A′

forall (xs, xs′) ∈ T[x],{x7→A}

(rA xs, rA′ xs′) ∈ T[x],{x7→A}

We could unfold this even further using the definition of the list opera-
tion on relations. Another thing to do however, is to take a look at the intro-
duced relation A, this is the only “variable” we can play with. And ideally
we would like to extract from our parametricity property a powerful state-
ment, such as an equality. So to do this, we must introduce an equality by

75

cleverly choosing the relation. One way of introducing this equality is by
specialising it to the graph of a function f :: A -> A'.

graph(f) = {(x, x′)|x ∈ A, x′ = f x}

The graph of a function introduces an equality, two elements are related
if they are equal under an application of f. The result assumes the following
form:

forall graph(f)

forall (xs, xs′) ∈ T[x],{x7→graph(f)}

(rA xs, rA′ xs′) ∈ T[x],{x7→graph(f)}

⇔
forall graph(f)
forall xs,
xs' == map f xs =⇒ map f ◦ rA xs == rA′ xs'

⇔
forall graph(f)
map f ◦ rA xs == rA′ ◦ map f xs

As graph(f) is completely defined by f and not used in the rest of the the-
orem we may remove mention of the graph entirely:

forall f :: A -> A'
map f ◦ rA == rA′ ◦ map f

That is the version as presented in the introduction of the section. More
examples, as taken from [37], are given in Figure 8.2.

76

Assume f :: A -> A' and g : B -> B'

head :: [x] -> x
f ◦ headA == headA′ ◦ map f

tail :: [x] -> x
f ◦ tailA == tailA′ ◦ map f

(++) :: [x] -> [x] -> x
map f (xs ++A ys) == (map f xs) ++A′ (map f ys)

concat :: [[x]] -> [x]
map f ◦ concatA == concatA′ ◦ map (map f)

fst :: (x,y) -> x
f ◦ fstAB == fstA′B′ ◦ (bimap f g)

snd :: (x,y) -> y
g ◦ sndAB == fstA′B′ ◦ (bimap f g)

zip :: ([x],[y]) -> [(x,y)]
map (bimap f g) ◦ zipAB == zipA′B′ ◦ (bimap (map f) (map g))

filter :: (x -> Bool) -> [x] -> [x]
map f ◦ filterA (p' ◦ f) == filterA′ p' ◦ map f

sort :: (x -> x -> Bool) -> [x] -> [x]
forall x,y ∈ A .

x <A y = (f x <A′ f y)
=⇒ map f ◦ sortA <A == sortA′ <A′ ◦ map f

fold :: (x -> y -> y) -> y -> [x] -> y
forall x ∈ A, y ∈ B .

g (x ⊕ y) = (f x) ⊗ (f y) and b u = u'
=⇒ g ◦ foldAB (⊕) u == foldA′B′ (⊗) u' ◦ map f

id :: x -> x
f ◦ idA == idA′ ◦ f

Figure 8.2: Examples of free theorems

77

Parametricity and Naturality

Suppose we tried to find the free theorem belonging to a polymorphic func-
tion of type:

r :: forall a. F a -> G a

Then if you accept the premise that we can define such a function for
every functor F and G. Then parametricity of r states:

(r, r) ∈ T∀α.Fα→Gα,∅

Unfolding the definition we get:

(r, r) ∈ T∀α.Fα→Gα,∅

⇔ Junfolding ∀K

∀A : A ⇔ A′

(r, r) ∈ TFα→Gα,[α 7→A]

⇔ Junfolding A → BK

∀A : A ⇔ A′

∀(x, x′) ∈ TFα,[α 7→A]

(r x, r′ x′) ∈ TGα,[α 7→A]

Now we specialise the relation A to the graph of a function h :: A -> A',
i.e, setting A = graph(h) := {(x, y) | h x = y}. Additionally, we realise
that if we do so, then:

F(A) = F(graph(h)) = graph(fmap h)
G(A) = G(graph(h)) = graph(fmap h)

So that we can continue, with the following:

78

∀(a, b) ∈ graph(h))

∀(x, x′) ∈ graph(fmap h)

(r x, r′ x′) ∈ graph(fmap h)

⇔ J(x, y) ∈ graph(h) iff h x = yK

h a == b

=⇒ (fmap h) x == x′

=⇒ fmap h (r x) == r′ x′

⇔

h a == b

=⇒ fmap h (r x) == r′ (fmap h x)

We find the free theorem:

fmap h . r == r . fmap h

But wait! This is exactly the naturality condition. Furthermore we had a
function from one functor to another. That means that this function is a nat-
ural transformation between the two functors. Consequently, that means
that naturality follows from parametricity of the function. Or said differ-
ently: every parametric polymorphic function is a natural transformation!

Uses

“ Modern programmers are too busy to bother proving the-
orems about their programs. Free theorems provide a handy
shortcut, as they allow us to conclude useful properties of func-
tional programs without any proof whatsoever, provided the
programs are suitably polymorphic ”

(Jennifer Hackett & Graham Hutton [12])

What is the use of these theorems? Wadler himself states that the results
are encouraging:

“ In general, the equations derived from types are a useful
form of algebraic manipulation. For example, many laws stated
above allow us to push “map through a function’’. ”

(Philip Wadler [37])

79

This type of manipulation, where we push “map through a function”
can be used to improve the efficiency of code.

Example 19 (filter)
filter :: (a -> Bool) -> [a] -> [a]
filter p [] = []
filter p (x:xs) = if p x then x : filter p xs

else filter p xs

The following law can be derived solely from the parametric poly-
morphic type of filter.

map h ◦ filter (p ◦ h) = filter p ◦ map h

This result might not seem very interesting. However it justifies a
trivial optimization. On the left size we apply h twice to every element
of the list and on right side of the equation only once. Clearly if we have
a lot of these trivial theorems, which can be generated mechanically,
whilst only needing to look at the type, then we have a rather nice col-
lection of small optimizations. A compiler can use these optimization
to rewrite code.

These improvements for nowdepend on the human knowledge that one
must be faster than the other. But there are (promising) attempts to provide
frameworks in order to calculate more efficient methods. [34, 12]

An interesting result that follows from the parametricity theorem is that
certain functions can be specified by a parametricity property. That is the
parametricity property for that type has a unique solution.

Example 20 (Uniqueness of functions)
As an example we give the type (a -> b, a) -> b. You might recog-
nise this as the type of function application. The type constructor T be-
longing to this type,maps two types A and B to the type (A -> B, A) -> B.
The extension of this type constructor to relations maps two relations
A and B to the relation T(A→B,A)→B,∅

Nowsuppose eval is anyparametrically polymorphic functionwith
the same type. Then parametricity claims that

(eval, eval) ∈ T∀α,β.(α→β,α)→β,∅

We can unfold this definition using the rules above and we gain:
For all functions f, f' :: A -> B , and all a, a' :: A:

80

forall A : A ⇔ A′,B : B ⇔ B′

forall (x, x′) ∈ Tα,{α 7→A,β 7→B}

=⇒ (f x, f′ x′) ∈ Tβ,{α 7→A,β 7→B} ∧ (a, a′) ∈ Tα,{α 7→A,β 7→B}

=⇒ (evalAB f a, evalA′B′ f′ a′) ∈ Tβ,{α 7→A,β 7→B}

We can see that function application satisfies this property. And
nowwe can see that function application is uniquely defined by its para-
metricity property. To see this, we instantiate A to the singleton set
{(a, a)} and B to the singleton set {(f c, f c)} then the above result
give us: (eval f c, eval f c) ∈ B. That is, eval f c = f c. And so
we find that there is only one function of type (a -> b, a) -> b.

Most parametricity properties do not have a unique solution however.
For example, both the identity function on lists and the reverse function
satisfy parametricity property of function f :: [a] -> [a].

Nonetheless, there are some for which it is unique, and that allows us to
say some interesting things. Other functions that boast similar uniqueness
are the identity function, projection and fmap. The latter allows us to say:
If there is an implementation of fmap for a given type constructor, one that
preserves identity, then it must be unique. We already knew we could de-
rive an implementation of fmap for arbitrary types. But now we know that
these are even unique! In fact this leaves little reason to not just derive them
in Haskell, using deriving(Functor).

81

d9c Recursion Schemes

We like to reuse code and like our code to be generic, so much even that
we take the level of “genericity” of a programming language as a highly-
valued criterion for usability. One type of genericity we encounter is the
ability to capture “programming patterns” as parametrisable abstractions.
[2] One place to find such pattern is in recursive functions. They often fol-
low a similar pattern: they pattern-match on the input and continue to recur
until they hit a base-case. Another pattern we often find ourselves is a func-
tion that takes a seed value, to produce the first value in some container like
datatype, and creates a new seed to produce the rest of the datatype. These
patterns of recursive functions are known as recursion schemes.

To properly discuss these, we will need somemore machinery to reason
about them. In specific, we need a proper model for recursive types. A the-
ory for such datatypes would need a calculus for program transformation
[20]. Earlier I introduced these as algebraic types where the type appears
on both sides of the equation, that, however, is not very specific and does
not allow for such calculations.

We start this section with the concept of algebras and homomorphisms
between these. We will use these algebras to give a better understanding of
datatypes. We will see that recursive datatypes are algebras but of a special
kind. Special in the way that they are “initial“. We also introduce the nota-
tion of a “catamorphism’’ and an “anamorphism” – special kinds of homo-
morphisms first introduced in a programming setting by Meijer et al[22].
We show that these cata- and anamorphisms provide a nice abstraction for
our recursive functions.

Algebras

An algebra is a set, together with a number of operations (func-
tions) that return values in that set. The set is called the carrier
of the algebra.

Example 21 (Natural Numbers)

82

(N, 0, +) is an algebra with carrier set N and the functions:

0 :: () → N
(+) :: N × N → N

We treat fixed elements, like 0 ∈ N, as nullary operations. This is
indicated by the source type (), the initial object.

Other examples are:

(R, 1, ∗), with 1 :: () → R, (∗) :: R × R → R
(B, true,∧), with true :: () → B, (∧) :: B × B → B
(B, true,∨), with false :: () → B, (∨) :: B × B → B
([A], [], ++), with [] :: () → [A], (++) :: [A] × [A] → [A]

The above examples are all similar, they have been chosen in such a way
that they all have the same number of operationswith the same arities. They
are all related by the following abstract algebra:

(A, e,⊕), with e :: () → A,⊕ :: A × A → A

This abstract algebra describes a class of algebras. So the above examples all
belong to this class. An example of another class of algebras is:

(N, +, +1), with (+) :: N × N → N, (+1) :: N → N
(R, ∗, ∗2), with (∗) :: R × R → R, (∗2) :: R → R

which belong to this abstract class:

(A,⊕, f), with (⊕) :: A × A → A, f :: A → A

An algebra may belong to multiple classes, as an example the first of the
above concrete algebra also belongs to the class:1

(A,⊕, f), with (⊕) :: N × A → A, f :: A → A

Remark 13 (Algebras from datatype)
A recursively defined datatype determines, in a naturalway, an algebra.
A simple example is the datatype Nat defined by:

data Nat = zero | succ Nat

1See A changed to N in the type of ⊕

83

The corresponding algebra is: (Nat, zero, succ), with

zero :: () → Nat
succ :: Nat → Nat

This shows that a datatype determines an algebra in which the car-
rier of the algebra is the datatype itself, and the constructors of the
datatype are the operations of the algebra.

Homomorphisms

A homomorphism is a map between two algebras, which must be from the
same class that preserves the structure of the class. Thismap takes elements
between their carrier sets. For example, the function exp :: N → R is a
homomorphism from the source algebra (N, 0, (+)) to the target algebra
(R, 1, (∗)).

Where respecting the structure means that exp satisfies the following
properties:

exp(0) = 1
exp(x + y) = exp(x) ∗ exp(y)

Another name for the “preservation of structure” is that exp is “com-
patible with the operations”. One could see that exp acts as a sort of bridge
between the structures, so that + and ∗ work the same way on the same el-
ements, under application of exp.

For the class of algebras whose generic algebra is

(A, e,⊕), with e :: () → A, ⊕ :: N × A → A

we have that a homomorphism h :: (A, e,⊕) → (B, u,⊗) satisfies:

h e = u
h(x ⊕ y) = x ⊗ h(y)

In this new case, you might wonder why h is not applied to x. The an-
swer is: because that wouldn’t make sense; h is a function from A → B,
whilst x ∈ N. But more importantly, it shows that the current notion of
a homomorphism is dependent on the specific algebra class. We shall see
how to define the idea of a homomorphism generically, being able to talk
about homomorphisms generically is important in the context of for exam-
ple catamorphisms – shown later in this section. To that end, we shall have
to introduce another concept: the F-algebra.

84

F-algebras

If we look at the above notation for algebras we find that it quickly becomes
unwieldy, simply consider an algebra with more operations. Preferably, we
would want a more compact definition, as that would give a better basis
for computation. Additionally, as this is a paper on category theory, so we
would like a categorical definition of algebras. It would also make sense if
it was possible to capture these algebraic structures, be category theory is
all about structure.

What we first notice – when we take a look at a class of algebras – is
that it defines an abstract pattern for a set of algebras. This pattern is a
set of operation typings that depend on the carrier set. This can actually be
captured by a functor (as it would take the carrier set to a set of operations
that work on that set (a type constructor)). I shall use an example to show
this:

Example 22 (Algebras and Functors)
Let us, once more, take a look at the type of the Peano naturals.

data Nat = zero | succ Nat

The corresponding algebra is: (Nat, zero, succ), with

zero :: () → Nat
succ :: Nat → Nat

We know that these function types may be represented as exponential
objects:

zero ∈ Nat1

succ ∈ NatNat

Now the Cartesian product of these two sets is:

Nat1 × NatNat

Then using some algebraic manipulation as introduced in section 4, we
can rewrite it as:

Nat1+Nat

Which is the exponential notation of the function function type:

1 + Nat → Nat

85

To say, the entire algebra (Nat, zero, succ), can be captured by the
function [zero, succ] :: 1 + Nat → Nat. Recall that [,] is the coprod-
uct mediating arrow. That is, the triangles in the following diagram
commute:

1 + Nat Nat

1 Nat

[zero,succ]

inr

succinl

zero

What is more, we can generalize this statement, by abstracting away
from the type Nat by replacing it with the variable z. In this way, we
are led to consider the unary functor N defined by:

N z = 1 + z

The functor N captures the pattern of the inductive formation of the
Peano naturals. We find the entire algebra (Nat, zero, succ) defined
by:

[zero, succ] :: N Nat → Nat

This example shows how we come to define an F-algebra.

An F-algebra is a triple consisting of an endofunctor F, an object
a, and a morphism

Fa → a

The object is often called the carrier, an underlying object or, in the con-
text of programming, the carrier type. The morphism is often called the
evaluation function or the structure map. Think of the functor F as forming
expressions and the morphism as evaluating them.

F-algebra in Haskell

Here’s Haskell’s definition of an F-algebra:

type Algebra f a = f a -> a

In the example of Peano naturals. The functor in question (N z = 1 + z) is:

data NatF a = zeroF | succF a

And the object is the datatype Nat. Our evaluation function NatF Nat -> Nat
becomes:

86

evalNatF :: NatF Nat -> Nat
evalNatF zeroF = zero
evalNatF (succF x) = succ x

This is the definition of an algebra in category theory based on the notion
of a functor.

Recursion

We first look at the simple inductively defined datatype, that of the Peano
naturals.

data Nat = zero | succ Nat

We can try to list all possible values using the functor that captured the
construction of these members.

zeroF
succF zeroF
succF (succF zeroF)
succF (succF (succF zeroF))
...

Continuing this process, we can write a symbolic equation:

succFn+1 zeroF = succF (succFn zeroF)

Conceptually, if we have done this an infinite amount of times (because
of course we cannot actually do that), then applying succF one more time,
does not change anything, we end up with virtually the same type. This
type “at infinity” is like the type Nat. As an analogy, adding 1 to ∞ is still
∞. This is of course just a hand-waving argument, an intuition, but the
thought is captured by a fixed point, an object defined as:

Fix f = f (Fix f)

This object is fixed, because when applying f to it, it does not change.

Remark 14 (What about a type with the same pattern functor?)
Notice how the definition of the fixed point does notmention the carrier
type anywhere. The fixed point is independent of its carrier type. If we
took another algebra from the same class, with a different carrier and
conceptually applied our constructor functor without end, we would
end up with the same fixed point. The starting point of our journey
doesn’t matter, we always end up in the same place. This is not always

87

true for an arbitrary endofunctor in an arbitrary category, but in the
category Set things are nice.

In Haskell, the definition of a fixed point is:

newtype Fix f = in (f (Fix f))

The nice thing about this fixed point is that it is defined only using the
way we construct the type from itself. And this allows us to capture the en-
tire type Nat, using only the functor that captured said inductive formation.
To view our Peano numbers as a fixed point definition, let us once again
abstract from Nat on the right side by replacing it with the variable z:

N z = 1 + z

The functor N captures the pattern of the inductive formation of the Peano
naturals. The point is that we use this to rewrite the definition of Nat to the
fixed point.

data Nat = in (N Nat) -- Here I replaced Fix N with Nat

Apparently, the pattern functor N uniquely determines the datatype Nat.
Then our datatype Nat as F-algebra for the endofunctor N becomes (FixN, zero+
succ) .

Category of F-algebras

We have found that we can uniquely determine a recursive datatype using
its pattern functor, we could then start to wonder how this datatype relates
to other datatypes; What homomorphisms originate and which end up at
this algebra? When we wonder how something relates to something else
it becomes natural to use category to look at these relations. But to that
end we need to see whether F-algebras with homomorphism as morphisms
form a category.

Fist we check how these homomorphisms between algebras translate to
homomorphism between F-algebras. A homomorphism is compatible with
the operations, but now that these operations have been incorporated into
the evaluation function. We say that the homomorphism h is compatible
with the evaluator functions. A homomorphism h :: (A, f) → (B, g) is
compatible with the evaluator functions f and g if

g ◦ F h = h ◦ f

Or diagrammatically, the following square commutes:

88

F A F B

A B

F h

f g

h

This is indeed a category. Identity homomorphisms form identity mor-
phism in this category of F-algebras,

F A F A

A A

F id

f f

id

and the composition of two homomorphisms is a homomorphism:

F A F B F C

A B C

F m

f

F n

g h

m n

Initial algebra

So how does this fixed point relate to other algebras in the category of F-
algebras? As it turns out, this fixed point is the initial object in the category
of F-algebras over the endofunctor. We canprove this using category theory:

What we would like to show is that an initial object in the category of F-
algebra’s (also called an initial algebra) is a fixed point of F. Now we first
described the fixed point using equality.

F(Fix F) = Fix F

However in category theory this equality is changed to an isomorphism:

F(Fix F) ∼= FixF

This result is know as Lambek’s Theorem [16]:

Let i be the carrier of the initial algebra and j :: F i → i its
evaluator. Then the evaluator of the initial algebra is an isomor-
phism.

89

The proof of Lambek’s theorem is as thus:
Since (i, j) is initial there exists a unique homomorphism m to every

other F-algebra. So lets create an algebra (F i, F j) by lifting j.

F (Fi)

F i

F j

Now the initiality property gives us the unique homomorphism m ::
(i, j) → (F i, F j) or the following commuting diagram:

F i F(F i)

i F i

F m

j F j

m

Obviously we also have that j is a morphism from (Fi, Fj) to (i, j)
(the need commutativity is j(F i) = j(F i)). Or equivalently the following
diagram commutes:

F(F i) F i

F i i

F j

F j

j

j

Now we smash these two diagrams together to get:

F i F(F i) F i

i F i i

F m

j F j

F j

j

m

idi

j

The diagram shows that j ◦ m is a homomorphism from (i, j) to itself.
However, since (i, j) is initial idi is the only morphism (i, j) → (i, j).
Therefore j ◦ m = idi. We can now use this and the commuting property of
the left diagram to show:

90

m ◦ j = F j ◦ F m
= F (j ◦ m)
= F idi

= idF i

Consequently with j ◦ m = idi and m ◦ j = idF i we have shown that j is
an isomorphism, with inverse m. Therefore:

F i ∼= i

But that is the same as saying that i is a fixed point.

Catamorphisms

So what did we gain by doing this? We can now say that the fixed point
of any pattern functor is an initial algebra. This is useful because we had
shown that these fixed points correspond to certain datatypes. It alsomeans
that our datatypes receive the same properties as initial algebras.

Then let’s rewrite the initiality condition using our datatypes. We call our
initial algebra FixF, as the fixed point of the pattern functor F. Our evalua-
tor function becomes the constructor in :: F(Fix F) → Fix F. The initiality
condition then tells us that there is a unique homomorphism m to any other
algebra (a, alg) over the same pattern functor.

F (Fix F) Fa

Fix F a

fmap m

in alg

m

Remember how Lambek’s theorems told us that in is an isomorphism,
we shall call the inverse out. Accordingly, we can just flip the isomorphism
to gain the commuting diagram:

F (Fix F) Fa

Fix F a

fmap m

algout

m

When we write down the the commutation condition for this diagram:

m = alg ◦ fmap m ◦ out

91

Notice how m occurs on both sides of the equation. It looks like our
construction results in a recursive definition of m. Besides alg is a simple
non-recursive function. This is rather powerful because that means we can
go to every other algebra (so all other types) using our function m, which is
defined using only the variable algebra alg.

Since we can do this for any algebra alg, it makes sense to defines a
higher order function takes the algebra as a parameter and gives us the func-
tion we called m. This higher order function is called a catamorphism (from
the Greek κατά meaning “downwards”):

cata :: Functor f => (f a -> a) -> Fix f -> a
cata alg = alg . fmap (cata alg) . out

Example 23 (Peano Naturals)
The functor that defines the positive natural numbers:

data NatF a = oneF | succF a

Let us take (Int, Int) as the carrier type and define the algebra:

fac :: NatF (Int, Int) -> (Int, Int)
fac oneF = (0,1)
fac (succF (n, f)) = (n+1, f*(n+1))

Now you an easily convince yourself that the catamorphism born
from this algebra, cata fac calculates the n-th factorial. In general an
algebra for the datatype NatF a captures a recurrence relation. It de-
fines the next value in terms of the previous element. A catamorphism
then evaluates the n-th element of that sequence.

cata fac (in (succF (in (succF (in (succF (in oneF))))))) == (3,6)

Example 24 (Lists)
We find the list datatype. if we consider the fixed point of the following
functor.

data ListF e a = nilF | consF e a

Indeed, replacing the variable a with the result of recursion, which
we’ll call List e, we get:

92

data List e = nil | cons e (List e)

An algebra for the list functor, patternmatches on both constructors
of the datatype. The algebra defines one step in the recursion, its result
for NilF defines howwe evaluate an empty list, and its result for ConsF
specifies how the current element should be combined with the result
of the evaluated tail of list.

As an example, the algebra that calculates the length of a list:

lenAlg :: ListF e Int -> Int
lenAlg (consF e n) = n + 1
lenAlg nilF = 0

Indeed, the resulting catamorphism cata lenAlg calculates the length
of a list. Here n is the length of the entire tail, and when we return n + 1
we return our new evaluated length (as tail plus one element is one el-
ement longer), which is used in the next step of evaluation. Notice how
this evaluator lenAlg is a combination of two functions. The first takes
two values a list element and the accumulator (nicely packaged in the
pair consF e n) and returns a new accumulator. The second defines a
starting value.

Compare that to the traditional Haskell definition:

length = foldr (\e n -> n + 1) 0

We find the components of the algebra represented as the two argu-
ments to foldr. We observe foldr is just a catamorphism specialized
to lists.

Anamorphisms

As we know, for every construction in category theory we have one dual to
it. The categorical dual to a catamorphism is called an anamorphism, from
the Greek ανα meaning “upwards”. As in a anamorphism builds up from
a single seed value as opposed to a catamorphism, that builds down the
structure into a single value.

The anamorphism is born from the construction dual to an F-algebra,
an F-coalgebra. where the direction of morphisms is reversed:

a → F a

Coalgrabras for a given functor together with homomorphism between
them also form a category. The homomorphisms now preserve the coal-
gebraic structure. e.g. the following diagram commutes for the homomor-
phism m :: (B, g) → (A, f).

93

F A F B

A B

F m

f g

m

The terminal object (t, u) in that category is called the terminal (or fi-
nal) coalgebra. For every other algebra (A, f) there is a unique homomor-
phism m to the terminal algebra. Similarly, to the initial algebra in the category
of F-algebras, a terminal coalgeba is a fixed point of the functor, in the sense
that the morphism u :: t → F t is an isomorphism (Lambek’s theorem for
coalagebras). Which leaves us the following commuting diagram – dual to
the definition of a catamorphism.

F (Fix F) Fa

Fix F a

inn

fmap m

m

coalg

The commuting property of this diagram then leaves us with the follow-
ing definition for an anamorphism:

ana :: Functor f => (a -> f a) -> a -> Fix f
ana coalg = inn . fmap (ana coalg) . coalg

A terminal coalgebra is usually interpreted in programming as a recipe
for generating (possibly infinite) data structures or transition systems just
like a catamorphism can be used to evaluate an initial algebra, an anamor-
phism can be used to coevaluate a terminal coalgebra.

Example 25 (Streams)
The following functor gives us a fixed point that is an infinite stream of
elements of type e:

data StreamF e a = StreamF e a
deriving Functor

A coalgebra for StreamF e is a function that takes the seed of type
a and produces a pair (StreamF is a fancy name for a pair) consisting
of an element and the next seed.

A Show instance for our Fix datatype is needed if wewish print out
the result.

94

instance (Show (f (Fix f))) => Show (Fix f) where
show (in f) = show f

You can easily generate simple examples of coalgebras that produce
infinite sequences, such as list of all natural numbers, all primes or all
squares. This one for example allows us to create an infinite stream of
all triangle numbers.

1 3 6 10 15

triangle :: Int -> StreamF Int Int
triangle x = streamF (x * (x + 1) `div` 2) (x+1)

Generating the numbers becomes the simple call:

ana triangle 1

Relating base functors and recursive datatypes

The examples above all define a new fixedpoint of some base functor. But
in Haskell, a type that is isomorphic to this fixedpoint might already exist.
Take for example 24. In Haskell we already have a List a datatype [a].

We would much rather use the type that is already present in Haskell.
We have to somehow tell the compiler that [a] is our fixed point. To this
end, we can introduce a Base typeclass.

class (Functor f) => Base f where
type Rec f :: *

inn :: f (Rec f) -> Rec f
out :: Rec f -> f (Rec f)

A functor can be a base for a fixed point. This base corresponds to our pat-
tern functor. So that cata and ana can be rewritten to:

cata :: Base f => (f a -> a) -> Fix f -> a
cata alg = alg . fmap (cata alg) . out

ana :: Base f => (a -> f a) -> a -> Rec f
ana coalg = inn . fmap (ana coalg) . coalg

95

We find the following instances:

instance Functor (ListF e) where
fmap f nilF = nilF
fmap f (ConsF e a) = ConsF e (f a)

instance Base (ListF e) where
type (Rec (ListF e)) = [e]

inn nilF = []
inn (ConsF e a) = e:a

out [] = nilF
out (e:a) = (ConsF e a)

With this in place we can instead call:

cata lenAlg [1,2,3,4,5] == 5

Program Calculation Laws

Generic catamorphisms and anamorphisms give closed patterns that repre-
sent inductive programming techniques and this allows for the generic ex-
pression of programming rules. An account of some of these rules is found
in [22]. These laws actually birth a complete new style of programming
called the algebra of programming[4] or generic programming[2]. Some of these
laws prove to be free-theorems chapter 8. One such rule is the ana-fusion
law. We use this fusion law for anamorphisms as a transformation rule. We
can transform the composition of a function with an anamorphism into a
single anamorphism so that the intermediate values can be avoided. Or we
can use it the other way around to split a function, to allow for subsequent
optimizations.

We show how to derive this theorem using the notation of section 8.

ana :: Functor f => (a -> f a) -> a -> Fix f

Wekeep inmind that f is a functor. Parametricity of this function then gives
us:

(ana, ana) ∈ Tforall x,f . (a -> f a) -> a -> Fix f,∅

We start by unfolding the definition, after a few subsequent rewrites we
have:

96

forall A : A ⇔ A′

forall F : F ⇔ F′

(a, b) ∈ Ta,{a7→A,f 7→F}

=⇒ (coalgA,Fa, coalg
′
A′,F′b) ∈ Tf a,{a7→A,f 7→F}

=⇒ (c, d) ∈ Ta,{a7→A,f7→F}

=⇒ (anaA,F coalgA,Fc, anaA′,F′ coalg′
A′,F′d)

∈ TFix f,{a7→A,f 7→F}

We instantiate A to the graph of function f. And F to the identity func-
tion on functor F (recall how f is a functor!). We specify it to the identity
function since we want both sides of the equation to be equal, and for that
to happenwe need that the return types on both sides are equal. The return
type in this case is the fixed point of our polymorphic functor type f.

forall graph(f) : A ⇔ A′

forall idF : F ⇔ F
(a, b) ∈ Ta,{a7→graph(f),f7→idF}

=⇒ (coalgA,Fa, coalg
′
A′,Fb) ∈ Tf a,{a7→graph(f),f 7→idF}

=⇒ (c, d) ∈ Ta,{a7→graph(f),f 7→idF}

=⇒ (anaA,F coalgA,Fc, anaA′,F coalg′
A′,Fd)

∈ TFix f,{a7→graph(f),f 7→idF}

Which states the following in a programming way:

forall f : A– > A′

forall Functor F
f a == b

=⇒ fmap f (coalgA,F a) == coalg'A′,F b

=⇒ f c == d
=⇒ anaA,F coalgA,F c == anaA′,F′ coalg'A′,F d

⇔

97

forall f : A– > A′

forall Functor F
=⇒ fmap f (coalgA,F a) == coalg'A′,F (f a)

=⇒ anaA,F coalgA,F c == anaA′,F′ coalg'A′,F (f c))

This gives us an equality such thatwe can fuse a composition of fwith an
anamorphism into a single anamorphism. That sounds like the ana-fusion
rule we are trying to derive. Only there is an added requirement before we
can use this rewrite rule.

And so, forall f : A– > A′, and F-coalgebras (A, coalg) and (A′, coalg′):

(fmap f) ◦ coalg == coalg' ◦ f
=⇒ ana coalg == (ana coalg') ◦ f

Note how we removed the subscript for coalg. It is clear from context
what function this should be as being a F-coalgebra, specifies the polymor-
phic function to F. And the carrier type indicated in (A, coalg) specifies
the polymorphic function coalg to A. Likewise we know the instantiation
for coalg′. Similarly we find that the subscript for ana is redundant.

Let us put our new-found ana-fusion rule to use:

Example 26 (Roman Numerals)
The classical Romans write their numbers using the following symbols:
M, D, C, L, X, V and I with the respective values of 1000, 500, 100, 50, 5
and 1. A positive integer is denoted by writing these symbols consecu-
tively, where the highest value symbols are on the left, and the lowest
value symbols are on the right. The value of the number is the sum of
the individual symbols. Negative values and zero can’t be represented.

Supposewewould like a function that converts a number in base 10,
to its equivalent Roman version. First, we need away to represent these
Roman numerals. We will use an enumeration for the Roman numeral
symbols, and a list-like datatype for the entire numbers.

data Roman = I | V | X | L | C | D | M
deriving(Show)

data RomanNum = zero | cons Roman RomanNum
deriving(Show)

As we see RomanNum is a recursive datatype with the pattern functor:

98

data RomanNumF a = zeroF | consF Roman a

Assume the proper instances for the Base and Functor type classes
are provided. Clearly, the base conversion function we want to make
is a function Int -> RomanNum. We know the positive integers and
the roman numerals represent the same thing. So it would be rather
logical if there was a homomorphism from the positive integers to the
Roman numerals.

roman :: Int -> RomanNumF Int
roman x

| x >= 1000 = consF M (x-100)
| x >= 500 = consF D (x-500)
| x >= 100 = consF C (x-100)
| x >= 50 = consF L (x-50)
| x >= 10 = consF X (x-10)
| x >= 5 = consF V (x-5)
| x >= 1 = consF I (x-1)
| otherwise = zeroF

We can use ana roman to convert integers to their roman represen-
tation. But it is not yet perfect, as Romans used abbreviations for often
occurring patterns.

DCCCC 7→ CM LXXXX 7→ XC VIIII 7→ IX
CCCC 7→ CD XXXX 7→ XL IIII 7→ IV

This reducing can again be captured by an anamorphism.

abbrev :: RomanNum -> RomanNumF RomanNum
abbrev zeroF = zeroF
abbrev (cons x1 (cons x2 (cons x3 (cons x4 (cons x5 ys)))))

| [x1,x2,x3,x4,x5] == [D,C,C,C,C] = consF C (cons M ys)
| [x1,x2,x3,x4,x5] == [L,X,X,X,X] = consF X (cons C ys)
| [x1,x2,x3,x4,x5] == [V,I,I,I,I] = consF I (cons X ys)

abbrev (cons x1 (cons x2 (cons x3 (cons x4 ys))))
| [x1,x2,x3,x4] == [C,C,C,C] = consF C (cons D ys)
| [x1,x2,x3,x4] == [X,X,X,X] = consF X (cons L ys)
| [x1,x2,x3,x4] == [I,I,I,I] = consF I (cons V ys)

abbrev (cons x y) = consF x y

99

So thatwehave ana abbrev ◦ ana romanwhich gives us the proper
Roman number representation. Though it this can be inefficient since,
computationally, we first make a large list of Roman letters and then
abbreviate it. It, however, would be more efficient if we directly incor-
porated the abbreviation step whilst converting to Roman numerals.

To this end, we could try and derive a more convenient form. Using
the ana-fusion law:

forall f : A– > A′, and F-coalgebras (A, coalg) and (A′, coalg′):

(fmap f) ◦ coalg == coalg' ◦ f
=⇒ ana coalg == (ana coalg') ◦ f

In this case, we can apply the law with the following substitutions

(fmap (ana roman)) ◦ f == abbrev ◦ ana roman
=⇒ ana f == (ana abbrev) ◦ (ana roman)

The antecedent (fmap (ana roman)) ◦ f == abbrev ◦ ana roman then
becomes a specification for our new function f. We just need to solve
this equation for f.

A direct insight we gain is that f is of type Int -> RomanNumF Int.
Other than that f needs to already incorporate the abbreviations, as
fmap (ana roman) only works on the Int part of the RomanNumF Int
datatype. The already chosen Roman letter accompanying should al-
ready be the first part of the abbreviation. Now we still need the func-
tion to also properly chose the rest of the abbreviation, and the only
way we can influence the next step is by changing the seed Int value.

Weobserve that adding a roman symbol in front of a romannumeral
reduces its numerical value by that amount. If we then want to get
the original amount we have to add the negated value to the next seed.
This leaves us with the function romanAbbrev as below.

If we take f to be romanAbbrev as below, the left side of the impli-
cation holds (for all positive integers). The proof is easy but tedious. It
is a induction proof on x, and requires 7 different case distinctions, but
other than that is just a lot of definition unfolding.

100

romanAbbrev :: Int -> RomanNumF Int
romanAbbrev x

| 900 <= x && x < 1000 = consF C (x+100)
| 400 <= x && x < 500 = consF C (x+100)
| 90 <= x && x < 100 = consF X (x+10)
| 40 <= x && x < 50 = consF X (x+10)
| 9 <= x && x < 10 = consF I (x+1)
| 4 <= x && x < 5 = consF I (x+1)
| otherwise = roman x

And so ana romanAbbrev is our final integer to roman function.
Now ana romanAbbrev is both faster and uses less memory than its
counterpart ana abbrev ◦ ana roman.

101

d10c Monads and Effects

Pure lazy functional languages, such asHaskell offer the power of lazy eval-
uation and the simplicity of equational reasoning. Pure languages make
changes in code easy, by making the types which operations depend on
explicit. Though at times, this restructuring, even for a seemingly small
change can become extensive, meanwhile using an impure feature might
reduce this restructuring to a few lines. Impure languages offer tempting
features such as state, exception handling or continuations – all powerful
tools in the hands of a programmer. This offer of flexibility and expres-
sive power is hard to pass away, a language not offering features like these,
could be considered crippled compared to those that do.

If for example, we wanted to add error handling to a program made in
a pure language, we would need to change the result type to include error
values, and at every call wewould have to check for and handle these errors
appropriately. If instead, we had used an impure language with exception
handling, there would have been no need for restructuring at all.

Without a special construct, cue the monad, these pure languages sim-
ply don’t offer the flexibility needed for a pleasant coding-experience.

The Problem

This is not the only problem programmers deal with regularly. Amongst
others, here is a short listing of similar problems taken from [3], where we
usually give up on the purity of our functions:

1. Partiality
2. Nondeterminism
3. Side effects
4. Exceptions
5. IO

What is astonishing is that all these problems are somehow alike. This
insight was first discovered by Eugenio Moggi [24].

102

The Solution

Pure functions take a value and return a value. What happens whilst exe-
cuting the function shouldn’t affect the outcome or do something odd/ex-
tra. We should be able to memoize the function. We find that during the
execution of a pure function we can’t just throw an exception or write to a
log. As this would do something different than just taking a value and re-
turning a value.

Somehow we want our effect to be represented in the return value of
the function. We call these functions with added effects computations [24].
These computations are entirely different with each different effect. And
you have to realize that, at this stage, these functions do nothing special.
It’s only when we insist on decomposition – being able to decompose a sin-
gle computation into smaller computations – and to then compose them af-
terwards, that we need something called a monad.

You see, these computations are useless if we can’t chain them together.
Consider two functions, one that also has the added effect of printing “Hello”
and another that has the added effect of printing “World!”. We would ap-
preciate it if our final programwould be able to print ”HelloWorld!”. Though
this is only possible if we could combine these output statements, and so
we insist on composition.

I’ve said that all these semantics of all these varying effects can be cap-
tured by the structure of a monad! But what is a monad?

Yeah! What is a monad?

The concept of a monad comes from category theory. But don’t bother com-
pletely understanding its definition right away. How we come to this defi-
nition is explained after introducing Kleisli Categories. We start with a def-
inition as given in [38].

For all our purposes:

A monad is a triple (M, unitM, BindM) consisting of a type con-
structor M and a pair of polymorphic functions:

unitM :: a -> M a
bindM :: M a -> (a -> M b) -> M b

These functions must satisfy three laws, namely the laws of as-
sociativity, left identity and right identity, which are discussed
later in this chapter.

The basic idea in converting a program to monadic form is this: a func-
tion of type a -> b is converted to one of type a -> M b (we embellish
the function with M). Thus in a program where we would print to a log,

103

functions have type a -> (b, String) rather than a -> b. The identity
function has type a -> a. The corresponding function in monad form is
unitM, which has type a -> (a, String). It takes a value into its corre-
sponding representation in the monad. In this example, the endofunctor
was of course M a = (a, String).

Kleisli Category

A Kleisli category is a category naturally associated to a monad. We will
use this category as an aid to understanding the monad.

If we insist on being able to compose the computations, we find our-
selves a category, a Kleisli category, where arrows between A and B are ar-
rows from A to M B (Our computations!) in the original category C. Our in-
sistence on being able to compose these arrows translates to the composition
operator of this new category. In Haskell this composition takes a funny
form, known as the fish operator:

(>=>) :: (a -> M b) -> (b -> M c) -> (a -> M c)

If f :: A → M B and g :: B → M C, then in the Kleisli category:

A B C
g

g>=>f

f

Mind you that this fish operator is different for every Kleisli category.
Meaning different for every computation.

If we want our computations to form a proper category. The fish op-
erator will need to be associative and have an identity arrow of the form
A → M A. Consequently, we can only form a Kleisli category for those com-
putations that have an associative composition and an identity computation.

For our limited purposes, a Kleisli Category has, as objects, the objects
of the underlying category C (in our case the types of the programming
language). Morphisms from object A to object B are morphisms in C from
A to an object derived from B using the particular embellishment (our com-
putations, the endofunctor M).

Example 27 (Kleisli Category for the Writer monad)
How would this Kleisli category look for a chosen computation, say
a computation that creates a log? Let us start by defining a type that
could carry a logging string with it, the Writer type:

type Writer a = (a, String)

104

Ourmorphisms are functions froman arbitrary type to some Writer
type:

a -> Writer A

The String part is the text that is going to be logged.
We declare the composition:

(>=>) :: (a -> Writer b) -> (b -> Writer c) -> (a -> Writer c)
m1 >=> m2 = \x ->

let (y, s1) = m1 x
(z, s2) = m2 y

in (z, s1 ++ s2)

In the composition we execute the first computation. Then extract
the first component of the resulting pair and pass it to the next com-
putation. We concatenate the logs of both computations. Lastly, we
combine the results into a value-log pair.

I will also define the identity morphisms for our Kleisli category:

unitWriter :: a -> Writer a
unitWriter x = (x, "")

A log can be useful to track a lots of things, a prominent example in
computer science is logging function calls, to get a trace, so that we can
later debug our code.

Two morphisms existing in this category would be:

upCase :: String -> Writer String
upCase s = (map toUpper s, "upCase")

toWords :: String -> Writer [String]
toWords s = (words s, "toWords")

Finally, the composition of the two functions is accomplished with the
help of the fish operator:

process :: String -> Writer [String]
process = upCase >=> toWords

This function takes a string, and capitalizes every letter, furthermore
it splits everything in separate words. But what is special is that it logs
what it has done. It passes the log implicitly using our fish operator, we
don’t have to deal with passing the log from function to function, that

105

is done for us. Alternatively we could have used an impure global log,
but this implementation retains it purity and thus allows equational
reasoning and lazy evaluation.

Sowhat didwe just all do? We took our original model of types to a new
extended category. One which shares the same objects, but where arrows
are embellished and where their composition does something more than
just chain output to input. Instead of having the composition laid out for us,
we can now experiment with composition. It turns out that this additional
choice of composition is precisely what we need to give simple denotational
semantics to programs using side effects.

So what does a monad have to do with this Kleisli category?

To a Kleisli Category, the monad is the glue that makes it all work out and
makes it a proper category. Say we have two arrows in the Kleisli Category
from A → B, and B → C, then we can’t just willy-nilly compose these, as they
are arrows A → M B and B → M C in the original category. And the target of
the first is different than the source of the latter.

A M B C M C\

What we can do is to apply B → M C to the B “within” M B. To give us an
arrow in C A → M(M C). We can do this because M is an endofunctor.

A M B M(M C)

Then we are almost there as we only have to somehow join those two M’s
together, and we get an arrow in our Kleisli category. Our glue, the monad,
provides this joining mechanism. The monad also provides the identity
arrow.

AKleisli triple – or amonad in extension form – over a category
C is a triple (M, unitM, bindM), where

M :: Obj(C) → Obj(C)
unitMA :: A → M A for A ∈ Obj(C)
bindM :: M A → (A → M B) → M B

bindM, in Haskell is given the infix notation >>=.
and the following operations hold:

unitM a >>= k = k a -- left identity
m >>= unitM = m -- right identity
m >>= (\x -> k x >>= h) = (m >>= k) >>= h --associative

106

These “monad laws” actually ensure that the corresponding Kleisli Cat-
egory is actually a category. A Kleisli category is a category based on a
monad. Using our new glue we can define our Kleisli category properly:

Given a Kleisli triple (M, unitM, BindM) over C, the Kleisli cate-
gory CM is defined as follows:

1. the objects of CM are those of C

2. the hom-set CM(A, B) of morphisms from A to B in CM is
C(A, M B)

3. the identity on A in CM is UnitMA :: A → MA

4. composition in a Kleisli category is given by the fish oper-
ator:
(>=>) :: (A -> M B) -> (B -> M C) -> A -> M C
f >=> g = \a -> bindM (f a) g

It is natural to take UnitMA as the identity on A in the category CM since
it maps x to x viewed as a computation.

Now the axioms for a Kleisli triple are equivalent to the axiom laws of a
category, namely identity and associativity.

Fish Dissection

We take another look at the silly fish operator. We put on our programmer
goggles, and take on a programmers viewpoint of this operator.

When implementing the fish operator of different monads you quickly
realize that a lot of code is repeated and can be easily factored out. As a
starting point, the Kleisli composition always returns a function that takes
a single value, we could just as well start our fish with a lambda:

(>=>) :: (a -> m b) -> (b -> m c) -> (a -> m c)
f >=> g = \a -> ...

And the only thing we can do with a is to pass it to our first function
argument f.

f >=> g = \a -> let mb = f a
in ...

So what do we have now? We still need to do something with the func-
tion g, which takes something of value b to mc and the only thing we have

107

is mb :: m b. That should ring a bell. We only need our bind to turn this
m b together with a function g :: b -> m c into a single value m c.

(>>=) :: m a -> (a -> m b) -> m b

Instead of defining the fish operator, we may instead define bind. That
isn’t so shocking, we already knew this, but it is interesting that we come to
the same conclusion so easily, by just looking at the type of (>=>).

Okay, but what does bind do? Can we dissect that too? If we take ad-
vantage of the fact that m is a type constructor (a functor) we can use fmap
to apply g to the b “within” m b resulting in a value of type m (m c). All
we need now is a function that collapses or flattens the double application
of m. Such a function is called join.

join :: m (m a) -> m a

using join, we can rewrite bind as:

ma >>= f = join (fmap f ma)

This lead us to the third option for defining a monad:

class Functor m => Monad m where
join :: m (m a) -> m a
return :: a -> m a

Herewe have explicitly requested that m is a functor, we didn’t have to do
that in the previous two definitions of the monad. That’s because any type
constructor m that either support the fish or bind operator is automatically
a functor. For instance, it’s possible to define fmap in therms of bind and
return.

fmap f ma = ma >>= \a -> return (f a)

Monads Categorically

This exact observation that the fish operator can be replaced by join can
also be described categorically. Let’s get to the maths, immediately it be-
comes confusing. Mathematicians use different notation than program-
mers. We will adopt this different notation, as it is more common. Instead
of using M (for monad)mathematicians prefer to use the letter T for the end-
ofunctor and the greek letters: µ for join and η for return. Both join and
return are parametric polymorphic functions, so we know that these are
natural transformations. This is also the take of the categorical definition.

Therefore, in category theory, a monad is defined as an endofunctor T
equipped with a pair of natural transformations µ and η.

108

A monad – in monoid form – over C is a triple (T, η,µ), where
T : C → C is an endofunctor, η :: I → T and µ :: T ◦ T → T are
natural transformations and the following diagrams commute:

T3 T2

T2 T

µ◦T

T◦µ

µ

µ

I ◦ T T2 T ◦ I

T

η◦T

µ

T◦η

Remark 15 (Notation T ◦ µ)
You might look at these diagrams and think “That doesn’t make any
sense, why would we compose a functor with a natural transforma-
tion?!” and you would be completely right – that doesn’t make any
sense. The notation T ◦ µ is actually an abbreviation for the horizon-
tal composition IT ◦ µ, where IT is the identity natural transformation.
However, the notation is unambiguous, exactly because it doesn’t make
any sense: the only option it could be in this context is the identity nat-
ural transformation at component T.

• • •

T2

T

µ

T

T

IT 7→ • •

T3

T2

IT◦µ

Now, these definitions specify the same and therefore are isomorphic,
there is a bijection between Kleisli triples and monads:

⇒ Given a Kleisli triple (T, η, bindM) the correspondmonad is
(T, η,µ), where T is the extension of the function T to the endo-
functor T by taking (T f) x = bindM x (η◦ f) for f :: a -> b
and µA x == bindM x idTA.

⇐ Conversely, given a monad (T, η,µ), the corresponding
Kleisli triple is (T, η, bindM), where T is the restriction of the
functor T to objects, and bindM x f = (µB ◦ (T f)) x for
f :: A -> T B

Roughly speaking, the associativity law states that the two ways of re-
ducing T3 down to T must give the same result. Two unit laws (left and

109

right) state that when η is applied to T and then reduced by µ, we get back
T.

Previously the requirement – that the composition of Kleisli arrows is
associative and that ηa is the identity Kleisli arrow at a – translated to the
monadic laws for µ and η. But this new definition makes them look more
likemonoid laws. In fact, µ – pronouncedmu – is often calledmultiplication,
and η – pronounced êta sometimes ita – is called unit. So we have multipli-
cation µ, unit η, associativity and unit laws. That indeed sounds quite like a
monoid, but our definition of a monoid is too narrow to describe a monad
as a monoid so let us generalize the notion of a monoid.

Monoidal Categories

We all know what a monoid is. It is a set with a binary operation and a
special element called unit! Where the binary operationmust be associative
and unital with regard to that neutral element. Moreover, we had already
made a categoric description of a monoid as a single-object category where
elements are represented by endomorphisms (m → m).

In a way we associated to every element a function from (m → m). In
Haskell this is encoded into the type of mappend.

class Monoid m where
mempty :: m
mappend :: m -> m -> m

This curried version of mappend can be interpreted as mapping every
element of m to a function:

mappend :: m → (m → m)

It’s this interpretation that gives rise to the definition of a monoid as a
single-object category. But because currying is built into Haskell, we could
as well have started with the uncurried definition of multiplication:

mappend :: (m, m) → m

And see how this shift in perspective leads to another arrow-theoretic
definition of the monoid. Our new perspective on the mappend function
suggests a different path to generalization: replacing the Cartesian product
with the categorical product. We could start with a category where prod-
ucts are globally defined, pick an object m there, and define multiplication
as a morphism:

µ :: m × m → m

Okay, that is one part. Now for η, the unit, we want to select a single
element. However as category theorist we don’t like talking about elements

110

of an object (we are not allowed to!). Luckily, we can use our trick of using
a morphism from the terminal object i to select our single element.

η :: i → m

Unlike in the previous definition of amonoid as a single-object category,
monoidal laws here are not automatically satisfied – we have to impose
them. But to formulate them, we have to establish the monoidal structure
of the underlying categorical product itself.

E.g. we need to formulate diagrams that specify themonoidal behaviour
of the product. (associativity and identity)

We start with associative property. Associativity of the monoid states
that to order in which we apply µ does not matter. We have two ways of
reducing M × M × M. Note that since the Cartesian product is a bifunctor we
can lift the morphisms id and µ.

M × (M × M) M × M M

(M × M) × M M × M M

id×µ µ

µ×id µ

Ideallywewould like to say: ”These twopath are the same!” and bedone
with it. But there is a slight problem: M×(M×M) is not the same as (M×M)×M.
They, however, are isomorphic. There is a natural isomorphism called the
associator α that converts between them. With the help of the associator we
can create the following commuting diagram that captures the associative
property:

(M × M) × M M × (M × M)

M × M M × M

M

µ×id

α

id×µ

µ µ

Likewise, we can establish a diagram for the left and right identity prop-
erties. Where I is the neutral element, and λ and ρ are two natural isomor-
phisms called, respectively, the left and right unitor.

I × M M × M M × I

M

η×id

λ
µ

id×η

ρ

With this new construction we can define a monoid on top of any cate-
gory with products and a terminal object. As long as we can pick an object

111

m and two morphisms µ and η that satisfy the diagrams for some α,λandρ,
we have a monoid.

We could stop here and pretend this version is all good and fine. But it
isn’t; at least not for our purpose. If we want to give claim to the similarity
between a monad and a monoid we need to be able to say that endofunc-
tor composition acts monoidal. But endofunctor composition is not a cat-
egorical product! The problem is that our current concept of a monoid on
a category is too specific. We use products, but don’t call on all properties
of the categorical product, indeed we only needed associativity of the prod-
uct, not the fact that it has projections. Similarly, for the terminal object, we
never used its terminal property. We only needed that it worked as a neu-
tral element with regard to the product.

So instead of using the categorical product, we can use something that
behaves like a product, but isn’t actually one. This is called a tensor product
– the definition of which is beyond the scope of this paper. But we only
need to know that it is associative up to isomorphism and doesn’t give us
all the extra baggage of a product. In addition, it is also a bifunctor, because
we need it to lift morphisms.

With this we can define a monoidal category.

Amonoidal category is a categoryC togetherwith a tensor prod-
uct ⊗ :: C×C → C and a unit object i, together with three natu-
ral isomorphisms called, respectively, the associator and the left
and right unitors:

αabc :: (a ⊗ b) ⊗ c → a ⊗ (b ⊗ c)
λa :: i ⊗ a → a
ρa :: a ⊗ i → a

Then we can define a monoid in a more general setting of a monoidal
category (instead of a category with products and a terminal object). It is
just a straightforward generalization of our previous results.

(M ⊗ M) ⊗ M M ⊗ (M ⊗ M)

M ⊗ M M ⊗ M

M

µ⊗id

α

id⊗µ

µ µ

I ⊗ M M ⊗ M M ⊗ I

M

η⊗id

λ
µ

id⊗η

ρ

112

Monads as Monoids

Anyway, back to our our original goal. We wanted to show the similarity
between a monoid and a monad, in fact a monad is a monoid.

If wewish to define amonad as amonoid using our above definition, we
first need to establish that it lives within amonoidal category. So we need to
find a good candidate for a tensor product in the category of endofunctors.

To be a tensor product we first have to establish that the candidate is
a bifunctor. A bifunctor in the category of endofunctors would take two
morphisms – here natural transformations – and give back a natural trans-
formation from the tensor product of their sources to the tensor product of
their targets.

⊗ :: (a → b) → (c → d) → (a ⊗ c → b ⊗ d)

Ifwewere to check if endofunctor compositionfits this pattern, wewould
find the following by replacing objects by endofunctors, arrows by natural
transformations, and the tensor product by composition:

◦ :: (F → F′) → (G → G′) → (F ◦ G → F′ ◦ G′)

Which you my recognize as the special case of horizontal composition.
And asweknow, horizontal composition of natural transformations respects
identity and associativity, and so we conclude that endofunctor composi-
tion forms a bifunctor.

Secondly, we need to find a unit object with regard to that tensor prod-
uct. Endofunctor composition has a clear identity, namely, the identity func-
tor IdC. The third condition that a tensor product is associative up to isomor-
phism is fulfilled by endofunctor composition. To boot, associativity and
identity of endofunctor composition are both strict! Meaning that for α,λ
and ρ we can use the identity natural transformation id.

We now have that category of endofunctors of C, together with func-
tor composition as tensor product and the identity functor as unit forms a
monoidal category. Then what is a monoid in this category? It’s an object –
that is an endofunctor T; and two morphisms – that is natural transforma-
tions:

µ :: T ◦ T → T

η :: I → T

Not only that, α,λ and ρ are the identity natural transformations, con-
sequently the monoid laws shrink into these diagrams:

113

T3 T2

T2 T

µ◦T

T◦µ

µ

µ

I ◦ T T2 T ◦ I

T

η◦T

µ

T◦η

They are exactly the monad laws we’ve seen before.

“ All told, a monad in X is just a monoid in the category of
endofunctors of X ” (Saunders Mac Lane [17, p. 137])

Effects

Our new slogan, that Saunders Mac Lane so kindly provided, gives us a
rather compact definition of a monad. Moreover, this definition allows for
easy identification of monads. It’s exactly those endofunctors that behave
monoidal and in programming languages, our endofunctors are type con-
structors.

The only thing left on this topic, now that we know what a monad is
and does, is ask ourselves why these monads are so important in functional
programming. We’ve seen our one example using the Writer monad. Fur-
thermore, in the introduction of this section, I gave a small list of similar
problems. Let’s go through the list and identify the embellishment that ap-
plies to each problem in turn.

We shall, however, not give directions on how to use these. Readers
that wish for a tutorial could refer to Tackling the awkward squad: monadic
input/output, concurrency, exceptions, and foreign-language calls in Haskell [26].

Partiality

Whilst codingwe occasionally deal with functions thatmight not terminate.
In a lazy language like Haskell, such never-ending functions may, neverthe-
less, return a value and this value can be passed down to following func-
tions. The value that is passed along represents that the function does not
terminate and is called “bottom”. This value is of course not usable, but on
the condition thatwe don’t explicitly try to use it, our programwill continue
to run. We can use a monad to model this partiality. Every function that
might not terminate can be embellished: we extend the return type with
another value, by lifting it into a new type that contains all values of the
original plus the “bottom” value.

This monad of partiality can be represented using the built-in Haskell
type

data Maybe a = just a | nothing

114

Maybe is a parameterised type. Elements built using the just data con-
structor represent successful computations, whilst nothing represent fail-
ure.

The monad operators can be implemented as

return a = just a

m >>= f = case f of
just a -> just (f a)
nothing -> nothing

We could explicitly encode failure (so that we can have functions return
failure) by setting.

failure = nothing

Remark 16 (Partiality in Haskell)
In Haskell, every function may be non-terminating. Therefore all types
in Haskell are assumed to be lifted. This is also the reason why we talk
about Hask the category of lifted Haskell types and functions, rather
than simple Set.

Nondeterminism

Nondeterministic functions are functions that if given the same input, may
return many different results. Semantically this is no different than a func-
tion returning a list of all possible answers. This equivalence is especially
striking in a lazily evaluated language, where if we just need a single value,
we can take the head of the list. Since the language is lazy it would never
evaluate the tail. If instead, we wanted a random value, we could randomly
select one element from the list.

The list monad implements the idea of non-deterministic computations.
Ifwe execute twonondeterministic computations in sequence, the first could
return any of its possible outcomes. The outcome would then be passed to
the second function, that again – considering this input – will output one of
its possible return values.

This processmodelled using a list can be represented as the first function
giving a list of all its possible values. The second function is then applied to
every possible output of the first, returning for every input – again – a list.
To get the final list of all possible return values, we have to collapse all lists
back into a single one.

The list monad can be implemented in Haskell as such:

115

return a = [a]

m >>= f = concat (map f m)

Alternatively, we could define

join = concat

Side-effects (State)

You may think of a function that has read/write access to some state as a
pure function that takes in a state as an additional argument and produces
a value-state pair as a result: (a,s) -> (b,s). At first this might not look
like a Kleisli arrow, but after currying a -> (s -> (b,s)) we can recog-
nize it as a computation.

To implement the monad of side-effect in Haskell we define a new type,
State s a, to represent computations producing an a, with a side-effect on
a state of type s.

newtype State s a = state (s -> (s,a))

The monad operations are then:

return a = state (\s -> (s,a))

State m >>= f = state (\s -> let (s', a) = m s
state m' = f a

in m' s')

The state can be manipulated using

get :: State s s
get = state (\s -> (s,s))

put :: s -> State s ()
put s = state (_ -> (s, ()))

Example 28 (Increment state)
For example, a function to increment the state could be expressed using
these functions as

increment :: State Int ()
increment = get >>= \s ->

put (s+1)

116

or alternatively:

increment :: State Int ()
increment = do

s <- get
put (s+1)

Remark 17 (Read-only and write-only)
Our previous logging computation, also know as the Writer monad is
actually a specific case of this State monad. Where the state is write-
only. Likewise, there is also a read-only state, facilitated by the Reader
monad.

Exceptions

A function in an imperative language that throws an exception, is just a
partial function in disguise. For specific input values it doesn’t give back a
return value but an exception, which likely just states that the function has
no valid output value for that input. The difference is that it makes a fancy
distinction between the types of failures it has.

The simplest implementation of exceptions in terms of pure total func-
tions uses the Maybe functor like the model for partial functions. If we want
to also return some information about the cause of the failure, as real excep-
tions do, we can use the Either functor instead. A computation that goes
right, outputs a right value.

Here is the Monad instance for Either:

instance Monad Either String where
left e >>= k = left e
right a >>= k = k a
return a = right a

A simple example of a function that can throw an exception is:

divide :: Int -> Int -> Either String Int
divide x y

| y == 0 = left "Cannot divide by 0"
| otherwise = right (x `div` y)

The monadic composition for Either correctly propagates the error,
in fact, it shuts down any further computations when an error is detected.
That’s exactly what we want when an error is detected.

117

IO

Input/output has been a rather embarrassing topic for purely functional lan-
guages. And so have foreign function calls been an awkward story. There
simply is noway to guarantee that a functionwritten in a different language
does not have a side-effect. We can’t in good conscience call such function
without risking compromising Haskell’s purely functional semantics.

Despite this, we can still model input/output in a functional way. We
can treat the entire universe as an object in our program. Then we consider
a program to be a function from the state of the universe before it is run, to
the state of the universe afterwards. Mathematically this is entirely fine,
though in the real world we can’t pass the state of the entire universe to
our functions. That is fine as long as we never explicitly interact with it, we
can treat it as if there is a type that perfectly describes this. We call this type
Universe.

Then our IO type becomes:

type IO a = State Universe a

Along with that we alter the primitives slightly

readFile :: String -> IO String
writeFile :: String -> String -> IO ()

Uses

Category theory gives us a mathematical model for programming. Cate-
gory theory gives us a way to describe computational effects as monads.
One advantage of this that is possible to make formal proofs of correctness
of software. This might not seem that important for consumer grade prod-
ucts, those work reasonable well already, but for critical software, such as in
rockets meant for human spaceflight, knowing that the program is proved
to be correct would put me at ease.

118

d11c Conclusions

In this paper, we’ve tried to explore the various applications category theory
has in computer science. We witnessed how the de-compositional nature
of programming problems gives birth to a category, where types are objects
and functions are morphisms. We’ve seen how from this application of cat-
egory theory various concepts in computer science are analogue to basic
categorical definitions. We’ve argued that category theory holds the tools
to explain the fundamental structure behind programming. We’ve applied
category theory to various programming problems to improve our under-
standing, and in specific cases, this allows for elegant solutions. Either im-
proving usability, re-usability or productivity.

Category theory provides a bunch of new tools -– Free theorems, Recur-
sion Schemes andMonads. Using these devices, we can structure programs
in new and useful ways, and we’ve shown several examples of this.

Still, the approaches discussed aren’t perfect. For example, the IOmonad
in Haskell has developed into a sin-bin and monads do not compose nicely.

This paper is also relevant to the present controversy over the use of
category theory to programming. Some believe that category theory – as
abstruse as it is –- is just an abstract framework, too far removed from prac-
tical purposes, that it serves no place in real programming. A big asset cat-
egory theory has to offer are generalized specifications and seeing patterns
in a system you would otherwise not directly see. This is, of course, a re-
sult of abstraction, a good abstraction keeps just the right amount to reveal
the essence of something. I believe category theory removes just the right
things to reveal human thinking when building theories and finding struc-
ture.

This paper provides further evidence, that even this abstract nonsense
is too versatile not to use. It is a powerful language we have to describe
structure. We should not obstruct access to such a tool.

119

Bibliography

[1] Structure, 2020. Accessed: 18 June 2020.

[2] Roland Backhouse, Patrik Jansson, Johan Jeuring, and Lambert
Meertens. Generic programming: An introduction. In 3rd International
Summer School on Advanced Functional Programming, pages 28–115.
Springer-Verlag, 1999.

[3] Nick Benton, John Hughes, and Eugenio Moggi. Monads and effects.
APPSEM 2000. LNCS, 2395, 10 2000.

[4] Richard Bird andOege deMoor. Algebra of Programming. Prentice-Hall,
Inc., USA, 1997.

[5] Luca Cardelli and Peter Wegner. On understanding types, data ab-
straction, and polymorphism. ACM Comput. Surv., 17(4):471–523, De-
cember 1985.

[6] Nils Anders Danielsson, John Hughes, Patrik Jansson, and Jeremy
Gibbons. Fast and loose reasoning is morally correct. ACM SIGPLAN
Notices, 41(1):206–217, 2006.

[7] E.W.Dijkstra.Notes on structured programming. EUT report.WSK,Dept.
ofMathematics andComputing Science. TechnischeHogeschool Eind-
hoven, 2nd ed. edition, 1970.

[8] Louis Dionne. Familiar template syntax for generic lambdas. Techni-
cal Report P0428R2, ISO/IEC JTC 1, Informationtechnology, Subcom-
mittee SC 22, Programming Language C++, july 2017.

[9] Samuel Eilenberg and Saunders MacLane. Group extensions and ho-
mology. Annals of Mathematics, 43(4):757–831, 1942.

[10] Samuel Eilenberg and Saunders MacLane. General theory of nat-
ural equivalences. Transactions of the American Mathematical Society,
58(2):231–294, 1945.

[11] Brian Goetz. Lambda expressions for the java™ programming lan-
guage. Technical Report JSR-335, Oracle, february 2014.

120

[12] J. Hackett and G. Hutton. Programs for cheap! In 2015 30th Annual
ACM/IEEE Symposium on Logic in Computer Science, pages 115–126,
2015.

[13] Ralf Hinze and Daniel WH James. Reason isomorphically! In Proceed-
ings of the 6th ACM SIGPLAN workshop on Generic programming, pages
85–96, 2010.

[14] Jaakko Järvi, John Freeman, and Lawrence Crowl. Lambda expres-
sions and closures: Wording for monomorphic lambdas. Technical
Report N2550=08-0060, ISO/IEC JTC 1, Informationtechnology, Sub-
committee SC 22, Programming Language C++, february 2008.

[15] Daniel M. Kan. Adjoint functors. Transactions of the American Mathe-
matical Society, 87(2):294–329, 1958.

[16] Joachim Lambek. A fixpoint theorem for complete categories. Mathe-
matische Zeitschrift, 103:151–161.

[17] SaundersMac Lane. Categories for theWorkingMathematician. Springer-
Verlag New York, 2nd ed. edition, 1998.

[18] F.William Lawvere. An elementary theory of the category of sets. Pro-
ceedings of the National Academy of Sciences of the United States of America,
52(6):1506–1511, 1964.

[19] SaundersMacLane. The pnaswayback then. Proceedings of theNational
Academy of Sciences, 94(12):5983–5985, 1997.

[20] Grant Reynold Malcolm. Algebraic Data Types and Program Transfor-
mation. PhD thesis, 1990. date_submitted:2008 Rights: University of
Groningen.

[21] Simon Marlow et al. Haskell 2010 language report. Available online
http://www. haskell. org/(May 2011), 2010.

[22] Erik Meijer, Maarten M. Fokkinga, and Ross Paterson. Functional
programming with bananas, lenses, envelopes and barbed wire. In
Proceedings of the 5th ACM Conference on Functional Programming Lan-
guages and Computer Architecture, pages 124–144, Berlin, Heidelberg,
1991. Springer-Verlag.

[23] Bartosz Milewski. Basic Category Theory for Programmers. 2018.

[24] Eugenio Moggi. Notions of computation and monads. Information and
Computation, 93(1):55 – 92, 1991. Selections from 1989 IEEE Sympo-
sium on Logic in Computer Science.

121

[25] D. L. Parnas, John E. Shore, and David Weiss. Abstract types defined
as classes of variables. SIGMOD Rec., 8(2):149–154, March 1976.

[26] Simon Peyton Jones. Tackling the awkward squad: monadic input/output,
concurrency, exceptions, and foreign-language calls in Haskell, pages 47–96.
IOS Press, January 2001.

[27] Benjamin C. Pierce. Basic Category Theory for Computer Scientists. MIT
Press, Cambridge, MA, USA, 1991.

[28] David Pitt. Categories, pages 1–15. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1986.

[29] Andrew M. Pitts. Categorical logic. Technical Report UCAM-CL-TR-
367, University of Cambridge, Computer Laboratory, may 1995.

[30] B. Plotkin. Algebra, categories and databases. volume 2 of Handbook
of Algebra, pages 79 – 148. North-Holland, 2000.

[31] Henri Poincare. Science andhypothesis. la science et l’hypothèse, 1905.

[32] John C. Reynolds. Types, abstraction and parametric polymorphism.
In Mason R.E.A, editor, Proceedings of IFIP Congress, volume 83, pages
513–523, Amsterdam, North-Holland, 1983. Elsevier Science Publish-
ers B.V.

[33] P.J. Scott. Some aspects of categories in computer science. volume 2 of
Handbook of Algebra, pages 3 – 77. North-Holland, 2000.

[34] Daniel Seidel and Janis Voigtländer. Improvements for free. Electronic
Proceedings in Theoretical Computer Science, 57:89–103, Jul 2011.

[35] Faisal Vali, Herb Sutter, and Dave Abrahams. Proposal for generic
(polymorphic) lambda expressions. Technical ReportN3559, ISO/IEC
JTC 1, Informationtechnology, Subcommittee SC 22, Programming
Language C++, march 2013.

[36] Janis Voigtländer. Free theorems simply, via dinaturality, 2019.

[37] Philip Wadler. Theorems for free! In FPCA, 1989.

[38] Philip Wadler. The essence of functional programming. In Proceed-
ings of the 19th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’92, pages 1–14, New York, NY, USA, 1992.
ACM.

122

Index

abstraction theorem, 71
ad hoc polymorphism, 70
algebra, 82
algebraic data types, 36
anamorphism, 93
arrow, 8
associative, 9
associator, 111

bottom, 19

catamorphism, 91
class, 83
commuting diagram, 13
composition, 8
computation, 103
coproduct, 33
coproduct map, 33
curried, 47
currying, 47

data constructors, 36
diagram, 13
diagrammatic order, 9
dirty function, 20
dualizing, 27
dynamically typed, 20

empty category, 10
empty function, 29
endofunctor, 54
exponential, 48

F-algebra, 84, 86

first-order functions, 48
fixed point, 87
functor, 52

higher-order functions, 48
hom-sets, 43

identity, 9
inclusion polymorphism, 70
initial algebra, 89
initial object, 25
isomorphism, 24

Kleisli category, 104
Kleisli triple, 106

Lambek’s Theorem, 89

mapping, 52
monad, 103
monoid, 11
monoid homomorphism, 11
monoidal category, 112
morphism, 8

natural transformation, 62
naturality condition, 62
neutral/identity element, 11

object, 8
order-preserving functions, 11

parametric polymorphism, 70
parametrically polymorphic, 71
parametricity, 71, 74

123

partial function, 19
partial order, 11
pattern matching, 38
polymorphic functions, 65
polymorphism, 70
preorder, 10
product, 31
product map, 32
pure function, 20

statically typed, 20
strongly typed, 20
structure preserving, 53

tensor product, 112
terminal algebra, 94
terminal object, 27
the functor laws, 54
total function, 19
total order, 11
type constructors, 36

unitor, 111
universal, 22
universal constructions, 22
universal property, 24

weakly typed, 20

124

	Preface
	Introduction
	I Basics
	Categories
	Types
	Universal Constructions
	Algebraic Data types
	Function Types
	Functors
	Natural Transformations

	II Uses
	Free Theorems
	Recursion Schemes
	Monads and Effects

	Conclusions

