
Bachelor thesis
Computing Science

Radboud University

Flood-It as a SAT problem

Author:
Milan van Stiphout
s4596269

First supervisor/assessor:
Dr. C.L.M. Kop
C.Kop@cs.ru.nl

Second assessor:
Prof. dr. H. Zantema
h.zantema@cs.ru.nl

April 9, 2020

Abstract

Flood-It is a logical puzzle game. It is NP-Complete, meaning that verifying
our solution can be done in polynomial time, but we currently do not know
of a polynomial time algorithm for solving it. In this thesis, after some
similar work on Sudoku, we approach the logical puzzle Flood-It by turning
it into a boolean satisfiability problem and solving it using the techniques
that are available for those problems. We create an encoding to solve the
puzzle regardless of board size or amount of colours used and find bounds to
quicker pinpoint the exact minimum size. Additionally, we experiment with
an extended version of the encoding of the puzzle, but find no improvement
to our encoding by doing this.

Contents

1 Introduction 2

2 Preliminary Knowledge 3
2.1 Flood-It . 3
2.2 Boolean logic and Conjunctive Normal Form 4
2.3 The Boolean Satisfiability Problem and SAT Solvers 5

3 A SAT encoding for Flood-It 6
3.1 States and transitions . 6
3.2 Constants . 7
3.3 Predicates . 8
3.4 Flood conditions . 8
3.5 Number of clauses . 13

4 Experiments 14
4.1 A heuristic for approaching a minimal solution 14
4.2 An extended encoding . 17

5 Related Work 19

6 Conclusions 20

1

Chapter 1

Introduction

Although the computing power at our disposal is ever-increasing, some prob-
lems remain difficult to tackle computationally due to their nature. We do
not have a way to solve problems in the NP-Complete class in polynomial
time, meaning that as the problem’s parameters grow, finding a solution
becomes exponentially harder. Any NP-Complete problem can be reduced
to any other NP-Complete problem, meaning that being able to solve a
problem in the class fast can be useful for other NP-Complete problems.

The boolean satisfiability problem is such an NP-Complete problem.
Given a boolean formula, the problem asks whether an assignment exists for
its variables such that the formula evaluates to true. Although this prob-
lem is NP-Complete, many inference techniques exist to solve this problem
efficiently. Quite some research is done on this, and it becomes easier and
easier to solve many instances of the boolean satisfiability problem.

These promising developments have sparked some research on the appli-
cation of these solvers on other NP-Complete problems. In one example[8],
the NP-Complete puzzle Sudoku was rewritten to a boolean formula and
solved using inference techniques.

In this thesis, we take another puzzle, called Flood-It, where the goal is
to flood a game board in as few moves as possible. Finding the best possible
solution to this puzzle is an NP-Complete problem[2]. We show how we
convert Flood-It to a boolean satisfiability problem and how we use this
along with a modern SAT solver to solve it. Showing how a problem like
Flood-It can be solved, may be useful when trying to solve similar problems.

We will start by introducing some preliminary knowledge on different
aspects of this thesis (chapter 2). Next, we will formalize Flood-It and
present an encoding that specifies how to get a minimal solution for any
instance of Flood-It (chapter 3). We will perform some experiments with
this encoding (chapter 4), compare our work with existing literature (chapter
5) and conclude the research (chapter 6).

2

Chapter 2

Preliminary Knowledge

2.1 Flood-It

Flood-It is a single player logical game wherein the player must turn a
square board into one colour in as few moves as possible. When there are
more than three colours and the board is sufficiently large (n ≥ 3), Flood-It
is NP-Hard.[2]

The game starts off with the field in the top left corner of the board
(called the pivot) in the flooded state. Any fields in the same colour that
can reach the pivot through a path of fields of only that colour are also
flooded.

Each move consists of the player choosing a colour. All flooded fields
change colour to represent the move’s colour. All fields touching the flooded
area with the same colour are flooded as well. This is recursive; any field
with the flooded colour that can reach the the flooded area through a path
of only that colour, is flooded.

The flooded area grows and new neighbours will be eligible for flooding
in the next move. This process continues until either the whole playing field
is flooded. This must be done in the least possible amount of moves. Figure
2.1 shows a series of moves on a puzzle.

Figure 2.1: A possible (optimal) solution of a Flood-It puzzle.

3

2.2 Boolean logic and Conjunctive Normal Form

Conjunctive Normal Form (CNF) describes a format for formulas in boolean
logic. A CNF formula is a conjunction of clauses, where a clause is a dis-
junction of literals. A literal is then either a variable or its negation.

An example of a CNF formula would be {(a ∨ b) ∧ ¬c ∧ (c ∨ ¬d ∨ e)}.
We see that disjunctions appear strictly as clauses of the conjunction and
that each disjunction contains one or more literals (which may be positive as
well as negative). There are also clauses that contain only a single element.
These are called unit clauses. In the example above, ¬c is a unit clause.

Any formula in classical boolean logic can be converted to an equisatis-
fiable1 CNF formula in linear time[3]. This makes the format the go-to for
SAT solvers: it is predictable and the conversion can be done quickly.

2.2.1 Transformation rules

In order to define our assertions of Flood in terms of a CNF, we must convert
them from classical logic. For that, we will use the following transformations:

1. Double negation elimination
¬¬P ≡ P

2. De Morgan’s Law
¬(P ∧Q) ≡ ¬P ∨ ¬Q

3. Material implication
P ⇒ Q ≡ ¬P ∨Q

4. Bi-implication rewrite
P ⇔ Q ∨R
≡ (P ⇒ Q ∨R) ∧ (Q ∨R⇒ P)
≡ (P ⇒ Q ∨R) ∧ (¬Q ∧ ¬R) ∨ P)
≡ (P ⇒ Q ∨R) ∧ (¬Q ∨ P) ∧ (¬R ∨ P)
≡ (P ⇒ Q ∨R) ∧ (Q⇒ P) ∧ (R⇒ P)
≡ (¬P ∨Q ∨R) ∧ (¬Q ∨ P) ∧ (¬R ∨ P)

Note that this rule is extensible; the binary disjunction in the orig-
inal formula (Q ∨ R) can be n-ary. When the original formula looks
like P ⇔ Q ∨ R ∨ S, we add S to the first clause of our final formula
and add a new clause (¬S ∨ P). By carefully constructing our rules
containing bi-implications to have this format, we can reduce them
simply using this rule.

Rules (1), (2) and (3) can be found in [7], or any other introductory logic
book. Rule (4) is rewritten using material implication, both De Morgan’s
Laws, and the distributive law of disjunctions over conjunctions[12].

1Two formulae are equisatisfiable if one is satisfied only when the other is.

4

2.3 The Boolean Satisfiability Problem and SAT
Solvers

The boolean satisfiability problem (hereafter called SAT) is concerned with
determining whether for a given formula in propositional logic, an assign-
ment for its contained variables exists such that the formula is satisfied.
SAT was the first problem to be proven to be NP-Complete.[4]

A SAT solver takes a CNF formula as input, and outputs whether there
exists an assignment for the variables such that the formula is satisfied. If
the solver finds a satisfying assignment, it also outputs this. It may be the
case that there are more satisfying assignments, but the solvers only find
one as their primary task is to find out whether the formula is satisfiable.

SAT solvers use a variety of techniques to find solutions to this NP-
complete problem as quickly as possible. These techniques are often boolean
inference techniques that (conditionally) decrease the amount and size of
clauses. Other, more technical techniques also exist: many SAT solvers do
random restarts (while maintaining the information they have learned so
far) in order to try to prevent being stuck in long branches without learning
anything new for a long time.

Boolean formulas have the advantage that various inference techniques
can be used on them to simplify them. An example of a boolean inference
technique is unit propagation:

Example 1. Given a CNF formula {a∧(¬a∨b)∧(a∨¬c)∧(b∨c)∧(¬c∨¬d)},
we see unary clause a. For the CNF to be satisfiable, a must be true. This
means that (1) any other clauses containing a must also be true, and (2)
any occurrences of ¬a can be removed (¬a will never hold, as this would
contradict with clause a). We can thus reduce the CNF formula to
{a ∧ b ∧ (b ∨ c) ∧ (¬c ∨ ¬d)}. The solver has learnt a and will look for a
solution containing this, or a contradiction where ¬a must hold. In the
latter case, the formula is unsatisfiable. The given CNF formula can be
solved entirely using unit propagation, but it often takes a combination of
inference techniques and guesses to find a possible satisfying assignment.

We will be using MiniSat v2.2.0 (MiniSat was first described in [5]) as our
solver of choice. It is a little older, but is still a very strong conflict-driven
SAT solver. Just like most modern SAT solvers, it uses the DIMACS2 input
format.

2https://logic.pdmi.ras.ru/~basolver/dimacs.html

5

https://logic.pdmi.ras.ru/~basolver/dimacs.html

Chapter 3

A SAT encoding for Flood-It

Our strategy to solve Flood-It is to use a SAT solver (as described in sec-
tion 2.3). In order for this to work, we must encode the puzzle as a boolean
satisfaction problem. In this chapter, we will construct an encoding that de-
scribes the conditions for Flood-It in terms of a CNF formula. This formula
can then be used as input for the SAT solver.

We want our solver to find the shortest sequence of moves that finishes
the puzzle. This chapter formulates a strategy, formalizes game concepts and
finally proposes a set of predicates and conditions that, when put together
in a CNF formula, accurately describe any instance of Flood-It as a SAT
problem.

Solving a SAT problem gives us a boolean answer. Thus, we cannot use a
single encoding to answer the question “how many moves does it take to solve
this Flood-It puzzle?” Rather, we choose a value p and pose the question
“can we solve this Flood-It puzzle in p moves?” We then logarithmically
approach the lowest possible value of p in order to find the minimal solution
for the Flood-It puzzle.

3.1 States and transitions

A state in Flood-It is a configuration of colours of the board’s fields and
whether the fields are flooded or not. Transitioning between states happens
with moves: a colour is chosen, the flooded area is recoloured to this colour,
and any fields (in)directly touching the flooded area that have this colour
are marked as flooded. The colours are only important to clarify which fields
will get flooded by which move: the goal of the game is to flood all fields,
and not necessarily to flood them in a certain colour.

Value p denotes how many transitions (moves) we may make. There are
p + 1 states: each state has a transition to the next state tied to it, except
for the final state. A move at time 0 denotes a transition from the state at
time 0 to the state at time 1.

6

3.2 Constants

For us to be able to specify properties of Flood-It, we must formally define
the game and its workings. By naming all aspects of the game and properties
of the playing field, we establish a frame of reference to build an encoding
from. In this section, we handle all constants: all of the factors of the game
that are independent of user input.

3.2.1 Game parameters

Besides the parameter p that was introduced at the beginning of this chapter,
a game of Flood-It has two more parameters. An overview of all game
parameters follows:

� n: the dimension of the board. A board is square, so that it has a size
of n× n;

� k : the number of colours available;

� p: the maximum number of moves that may be made to complete the
puzzle.

While we are looking for a minimum value of p, the game’s difficulty can be
adjusted for players by increasing the number of moves they are allowed to
make. There is always, however, a strict minimum value for p: a puzzle has
a minimum amount of moves required to solve it.

3.2.2 Functions

In order to provide an easy way to refer to some field-related constants, the
following functions are defined:

� Neighbours(f): Given a field in a board, produces all orthogonal
neighbours of that field.
Corner fields two neighbours. Edge fields that are not corners will
have three neighbours. Non-edge fields will have four neighbours.

� Cluster(f): Given a field in a board, produces all fields connected to
it at t = 0 with the same colour.
This is recursive: the function groups all equally coloured fields with
a path of the same colour between them.

� Colour(f): Given a field, produces the colour it had at t = 0.

For these functions, f ∈ {0, . . . , n2 − 1}. Each field is identified by its
own number, starting with 0 for the pivot in the top left corner and then
progressing to the right. At the end of the line, we move down one row and
start from the left again.

7

3.3 Predicates

The properties of the game are expressed in the following predicates:

� Fld(t, f)
Given a turn and a field, expresses whether that field is flooded. These
predicates together specify the board state.

� Move(t, c)
Given a turn and a colour, expresses whether that colour was chosen
at that turn. A move transitions the board into a new state.

� TchF ld(t, f)
Given a turn and a field, expresses whether this field is next to a
flooded field at that turn. This predicate helps our encoding as it
shows which fields are eligible for being flooded next turn.

Here, f is defined as in section 3.2.2. These predicates make up the variables
of our formula: we use them to represent the Flood-It puzzle. The assign-
ments of the Move predicates will tell us which moves we need to make in
which order to solve a puzzle in a given amount of moves. This is only true,
however, if we set proper conditions that all predicates must adhere to. We
do this in the following section.

3.4 Flood conditions

The conditions in this chapter are set so that the predicates we established
have to follow the rules of Flood-It. Only by doing this, will a possible
assignment that the SAT solver finds be relatable to the original puzzle.

3.4.1 Precondition

When the game starts, the game is in state t = 0. The fields in the pivot’s
cluster are flooded, all other fields are not flooded. The precondition is as
follows:

1. The cluster containing the origin field is flooded before the game starts.

n2−1∧
f=0

Fld(0, f), if f ∈ Cluster(0)

¬Fld(0, f), otherwise

The case distinction is made to mimic the implementation of condition (1)
as closely as possible: the precondition is expressed in unary clauses in the
encoding.

8

3.4.2 Move conditions

All states except the last have a move associated with them. Each move is
done with exactly one colour: there must always be a chosen colour for a
transition to happen, and a transition may not have more than one colour
at once. The following conditions reflect this:

2. At least one move must be made each turn.

p−1∧
t=0

k−1∨
c=0

Move(t, c)

3. At most one move may be made each turn.

p−1∧
t=0

k−2∧
c=0

k−1∧
d=c+1

¬Move(t, c) ∨ ¬Move(t, d)

Condition (3) is symmetrical and the limits are set up to avoid duplicate
clauses in the encoding. For each combination of moves occurring at a
certain time, there is at least one that is not chosen.

3.4.3 Board conditions

During a game, our goal is to flood all fields on the board. Field f will be
flooded at time t + 1 if and only if at least one of the following situations
occurs:

i f was already flooded at time t;

ii f touched the flood at time t and the move at time t was of colour
Colour(f);

iii A field in Cluster(f) was flooded at time t + 1 through option (ii).

More formally, we describe this as follows:

Fld(t + 1, f)⇔Fld(t, f) ∨ (Move(t, cf) ∧ TchF ld(t, f))

∨ Fld(t + 1, g1) ∨ · · · ∨ Fld(t + 1, gk)

with (g1, . . . , gk) = Cluster(f) and cf = Colour(f)

The five conditions in this subsection describe the three situations presented
above. Due to how the TchF ld predicate is defined (in section 3.4.4) and
condition (8), any field in Cluster(f) that floods will flood f as well. As
such, when writing a condition that has ¬Fld(t + 1, f) as a consequent, we
must make sure that no field in the entire cluster will be flooded.

9

The opposite is not true: due to condition (8), if any field in the cluster
is flooded, they all are (a case of situation (iii)). Any condition with Fld(t+
1, f) in the consequent only has to look at an antecedent for which f is
flooded, and condition (8) ensures that all fields in Cluster(f) are flooded.

Condition (4) and (5) together form the basis for situation (i); condition
(6) and (7) form situation (ii) and condition 8 equals situation (iii).

The five board conditions are:

4. A flooded field will remain flooded for the rest of the game.

p−1∧
t=0

n2−1∧
f=0

Fld(t, f)⇒ Fld(t + 1, f)

≡
p−1∧
t=0

n2−1∧
f=0

¬Fld(t, f) ∨ Fld(t + 1, f)

Once a field is flooded, there is no way to un-flood it. For all states except
the last, we define that a flooded field is also flooded in the next state.

5. If no member of a field’s cluster touches the flooded area and the field
is not flooded already, the field will not be flooded.

p∧
t=0

n2−1∧
f=0

¬TchF ld(t, g1) ∧ · · · ∧ ¬TchF ld(t, gk) ∧ ¬Fld(t, f)⇒

¬Fld(t + 1, f)

≡
p∧

t=0

n2−1∧
f=0

TchF ld(t, g1) ∨ · · · ∨ TchF ld(t, gk) ∨ Fld(t, f)∨

¬Fld(t + 1, f)

with (g1, . . . , gk) = Cluster(f)

6. If a move is chosen with a field’s colour and that field touches the
flooded area, it is flooded.

p−1∧
t=0

n2−1∧
f=0

Move(t, cf) ∧ TchF ld(t, f)⇒ Fld(t + 1, f)

≡
p−1∧
t=0

n2−1∧
f=0

¬Move(t, cf) ∨ ¬TchF ld(t, f) ∨ Fld(t + 1, f)

with cf = Colour(f).

10

A field that directly touches the flooded area is eligible for flooding in the
next turn. If the move colour equals the field’s colour, the field is flooded.
This combined with the previous rule makes sure that any clusters touching
the flooded area eligible for flooding.

7. If a move is chosen that is not f ’s colour and f was not flooded prior,
f is not flooded now.

p−1∧
t=0

n2−1∧
f=0

¬Fld(t, f) ∧ ¬Move(t, cf)⇒ ¬Fld(t + 1, f)

≡
p−1∧
t=0

n2−1∧
f=0

Fld(t, f) ∨Move(t, cf) ∨ ¬Fld(t + 1, f)

with cf = Colour(f).

For an unflooded field, a move that is not of the field’s colour will never
flood the field. This rule captures that.

8. When a field is flooded, all connected fields with the same colour are
also flooded.

p∧
t=0

n2−1∧
f=0

Fld(t, f)⇔ Fld(t, g1) ∨ ... ∨ Fld(t, gk)

≡
p∧

t=0

n2−1∧
f=0

(¬Fld(t, f) ∨ Fld(t, g1) ∨ · · · ∨ Fld(t, gk)) ∧

(¬Fld(t, g1) ∨ Fld(t, f)) ∧
· · · ∧
(¬Fld(t, gk) ∨ Fld(t, f))

with (g1, . . . , gk) = Cluster(f)

In the encoding, all fields are part of clusters. Any field connected to an-
other field with the same colour, will always change together with this other
field. The above condition represents this.

11

3.4.4 Touching condition

Here, we specify what it means when a field is touching the flooded area: a
direct neighbour is flooded. Neighbours are orthogonal; no diagonals.

9. If and only if at least one of a field’s neighbours is flooded, does it
touch flood.

p∧
t=0

n2−1∧
f=0

TchF ld(t, f)⇔ Fld(t, n1) ∨ · · · ∨ Fld(t, nk)

≡
p∧

t=0

n2−1∧
f=0

(¬TchF ld(t, f) ∨ Fld(t, n1) ∨ · · · ∨ Fld(t, nk)) ∧

(¬Fld(t, n1) ∨ TchF ld(t, f)) ∧
· · · ∧
(¬Fld(t, nk) ∨ TchF ld(t, f))

with (n1, . . . , nk) = Neighbours(f)

3.4.5 Postcondition

If the game can be completed in p turns, then at t = p + 1 it must hold
that all fields are flooded. This does not necessarily mean that p is an
optimal solution, just that the optimal solution is at most p moves. The
postcondition we get is:

10. After the maximum number of moves has been made, all fields are
flooded.

n2−1∧
f=0

Fld(p + 1, f)

12

3.5 Number of clauses

Table 3.1 gives an overview of the clauses each rule adds to the encoding, ex-
pressed in terms of the game parameters. This overview shows the structure
of our encoding, which is insightful when reasoning about the effectiveness
of different rules of inference or SAT solvers.

Condition Number of clauses Arity of clauses

1 n2 1

2 p k

3 p · k · (k − 1)

2
2

4 p · n2 2

5 (p + 1) · n2 |Cluster(f)| + 2

6 p · n2 3

7 p · n2 3

8
(p + 1) · n2 +

(p + 1) · |Cluster(f)|
|Cluster(f)| + 1

2

9
(p + 1) · n2 +

(p + 1) · n2 · (4n2 − 4n)

3 to 5

2

10 n2 1

Table 3.1: Number and arity of clauses of the conditions presented in
chapter 3.4. Arity here refers to the number of literals in a clause.

13

Chapter 4

Experiments

4.1 A heuristic for approaching a minimal solution

4.1.1 Justification and set-up

Although an efficient encoding is paramount to us quickly solving any Flood-
It puzzles, we are still estimating and then logarithmically approaching the
minimum solution. This means that better setting our initial estimate means
we have to compute fewer (potentially very time-consuming) encodings. Our
initial logarithmic approaching algorithm looks as follows:

puzzle← Flood-It puzzle
lower bound← 0
upper bound← GreedyMinimalSolution(puzzle)

function Approach(puzzle, lower bound, upper bound)
while lower bound 6= upper bound do

minimal solution attempt← bupper bound+lower bound
2 c

encoding = Encoding(puzzle,minimal solution attempt)
if SAT-Solver(encoding) then

upper bound← minimal solution attempt
else

lower bound← minimal solution attempt + 1
end if

end while
return lower bound

end function

Figure 4.1: Initial algorithm for finding minimal solution.

This is a safe but slow approach: we are guaranteed that lower bound ≤
minimal solution ≤ upper bound, but we also know with high likelihood
that the solution is not 0 (the probability for this is (1k)n

2−1, which quickly

14

works out to be negligible as n and k grow). Additionally, we know the
number of moves required to flood a random board is Ω(n) with high
probability.[2]

A smarter approach is in order. We will attempt to establish a heuris-
tic for the bounds and build a new approaching algorithm that uses these
bounds efficiently.

For n in the range [4, 9] and k in the range [3, 6], we generate 100 random
puzzles for each combination of n and k and inspect the solutions.

4.1.2 Results and discussion

Figure 4.2: The minimum solutions of 100 of each combination of n ∈ [4, 9]
and k ∈ [3, 6], visualized as box plots.

From the data, we conclude that starting with a lower bound of n + k − 5
is below the 25th percentile and n + k is above the 75th percentile for all
combinations of n and k.

For our improved algorithm, we set the bounds to these values. When
our minimal solution ends up being one of the original bounds, we must
verify that this is in fact the minimum solution. This ends up taking longer
for these edge cases, but because n + k − 5 ≤ minimum solution ≤ n + k
with high likelihood for all tested combinations of n and k, we take this risk.

15

The new algorithm looks as follows:

puzzle← Flood-It puzzle
lower bound← puzzle.n + puzzle.k − 5
upper bound← puzzle.n + puzzle.k

minimum← Approach(puzzle, lower bound, upper bound)

if minimum = puzzle.n + puzzle.k − 5 then
repeat

minimum← minimum− 1
encoding ← Encoding(minimum)

until ¬SAT-Solver(encoding)
minimum← minimum + 1

else if minimum = puzzle.n + puzzle.k then
encoding ← Encoding(minimum)
while ¬SAT-Solver(encoding) do

minimum← minimum + 1
encoding ← Encoding(minimum)

end while
end if

Figure 4.3: Improved algorithm for finding minimal solution. Variable
minimum holds our final solution.

In our improved algorithm, we first assume that our solution lies between
our initial boundaries. If the Approach-function gives us an answer that
equals one of the original bounds, however, we have to check whether that
is truly the minimum solution.

The actual minimum solution may lie below n + k − 5, so if Approach
returns n+k−5, we decrement this and see whether the puzzle is solvable for
that value. As soon as we try a value for which the puzzle is unsolvable, we
know the value above it is the minimum solution. Values closer to n+ k− 5
have a higher probability of being the minimum solution, which is why we
decrement instead of again logarithmically approaching with lower bounds.

If Approach returns n + k, we must check whether this is actually satis-
fiable. We test whether it is, and if it is not, we increment our minimum by
one and try again. We repeat this until we find the minimum solution. Val-
ues closer to n+k have a higher probability of being the minimum solution,
which is why we decrement instead of again logarithmically approaching
with higher bounds.

16

4.2 An extended encoding

4.2.1 Justification

The encoding we have presented is minimal: no rule may be removed without
breaking it. While this gives us the lowest construction time for encodings,
redundant rules may be added that could give the SAT solver extra insights
on more quickly handling puzzles. In this experiment, we are adding redun-
dant clauses and seeing how they impact solving time.

4.2.2 Redundant clauses

Two rules are added to the original encoding:

11. If a move is made, the next move will not be of that colour.

p−2∧
t=0

k−1∧
c=0

Move(t, c)⇒ ¬Move(t + 1, c)

≡
p−2∧
t=0

k−1∧
c=0

¬Move(t, c) ∨ ¬Move(t + 1, c)

Due to Move’s idempotence, performing a second move of the same colour
never adds to the flooded area. Therefore, we can remove that option from
the list.

12. If a field is flooded, its neighbours touch flood.

p∧
t=0

n2−1∧
f=0

Fld(t, f)⇒ TchF ld(t, n1) ∧ · · · ∧ TchF ld(t, nk)

≡
p∧

t=0

n2−1∧
f=0

(¬Fld(t, f) ∨ TchF ld(t, n1)) ∧ · · · ∧

(¬Fld(t, f) ∨ TchF ld(t, nk))

4.2.3 Set up

We attempt to solve 100 randomly generated puzzles twice: once with the
minimal encoding as presented in chapter 3, and once with the extended
encoding that includes the two rules above. We look at the time the SAT
solver takes to solve these puzzles for different n and k values and compare
the times of the minimal and extended encoding. Per combination of n and
k, we count how many times the minimal encoding was quicker, and how
many times the extended encoding was quicker. We take n ∈ [4, 11] and
k ∈ [3, 6].

17

4.2.4 Results and discussion

n 4 5 6 7

k min. ext. min. ext. min. ext. min. ext.

3 83 17 83 17 90 10 94 6

4 86 14 94 6 97 3 97 3

5 88 12 95 5 91 9 97 3

6 89 11 96 4 99 1 99 1

n 8 9 10 11

k min. ext. min. ext. min. ext. min. ext.

3 93 7 99 1 99 1 98 2

4 98 2 100 0 100 0 100 0

5 97 3 99 1 100 0 100 0

6 100 0 100 0 99 1 100 0

Table 4.1: For combinations of n and k, shows how many of the 100
puzzles were solved faster by the minimal (min.) encoding, and how many

were solved faster by the extended (ext.) encoding.

As becomes clear from the results in table 4.1, solving the extended encoding
takes the SAT solver longer than the minimal encoding in most cases. As
n and k grow, the number of puzzles solved faster by the extended encod-
ing decreases. It may be possible that adding more or different redundant
clauses does reduce solving time (and possible even perform faster than the
minimal encoding), but we cannot say this with certainty. Additionally,
different SAT solvers may respond differently to these extra clauses.

18

Chapter 5

Related Work

A lot of variations of Flood-It exist, including a 2-player version and a
version where the pivot field is chosen each turn, rather than just being the
top left field. For many of these versions and specific boundaries, a proof of
complexity has been made.[2, 11] Other than this, we have found no research
relating to Flood-It.

SAT was the first problem to be classified as NP-Complete[4] and a
lot of work has been done on solving it, much of which can be found in
the JSAT journal1. The annual competition for SAT solvers2 showcases
new techniques, solvers, and efficiency improvements. SAT remains NP-
Complete, but through inference rules, implementation optimizations and
technical improvements, the solvers can handle more and more complex
problems regardless.[1] SAT solvers have many applications in computing
science, prominently including model checking and software verification[13]
and cryptography[9, 10].

Earlier research showed specific instances of Sudoku were solved by con-
verting them to a SAT problem and using inference rules on them.[8] These
puzzles, however, had only a single solution and could be solved by logic
alone. This is not the case for Flood-It, which it is search-based. Addi-
tionally, the goal for Sudoku is to find a final configuration that satisfies all
constraints, whereas for Flood-It, the shortest path towards the final config-
uration is the goal. This leads to a structurally different and more complex
encoding as states and transitions between states have to be distinguished.

Our research shows an application of SAT solvers and how they can be
a part of the process of solving an NP-Complete game. Besides [6] and [8],
we could not find other work like this on games.

1http://jsatjournal.org/
2http://www.satcompetition.org/

19

http://jsatjournal.org/
http://www.satcompetition.org/

Chapter 6

Conclusions

We have found that Flood-It lends itself quite well to being encoded as
a SAT problem. We presented a minimal but complete encoding and an
algorithm that uses said encoding to find the minimal solution for a given
Flood-It puzzle. The encoding uses ten conditions that are required to hold
for the puzzle to be solved in a valid manner. The conditions specify rules
regarding possible states of the game, as well as how to transition from one
state to the next.

We established heuristic bounds that should make puzzles quicker to
solve. We also experimented with adding redundant conditions to our en-
coding, but this was not successful. This could be due to the form of the
encoding not benefiting much from our additional conditions, or due to the
choice of solver.

The work done in this thesis can likely be applied very well to similar
games, in which finding a path is most important, or the answer has to be
approximated logarithmically, or both.

20

Bibliography

[1] Proceedings of SAT competition 2018. https://helda.helsinki.fi/
bitstream/handle/10138/237063/sc2018_proceedings.pdf.
Accessed: 30-03-2020.

[2] David Arthur, Raphaël Clifford, Markus Jalsenius, Ashley Monta-
naro, and Benjamin Sach. The complexity of flood filling games. In
Luisa Gargano Paolo Boldi, editor, Fun with Algorithms, Lecture Notes
in Computer Science, page 307–318. Springer, June 2010.

[3] C.e. Blair, R.g. Jeroslow, and J.k. Lowe. Some results and experiments
in programming techniques for propositional logic. Computers & Op-
erations Research, 13(5):633–645, 1986.

[4] Stephen A. Cook. The complexity of theorem-proving procedures. In
Proc. Symposium on the Theory Of Computing (STOC), pages 151–158.
ACM, 1971.

[5] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Theory
and Applications of Satisfiability Testing, Lecture Notes in Computer
Science, page 502–518, 2004.

[6] Keijo Heljanko, Misa Keinänen, Martin Lange, and Ilkka Niemelä. Solv-
ing parity games by a reduction to sat. Journal of Computer and System
Sciences, 78(2):430–440, 2012.

[7] Patrick J. Hurley. A concise introduction to logic. Cengage Learning,
12th edition, 2015.

[8] Inês Lynce and Joël Ouaknine. Sudoku as a SAT problem, 2006.

[9] Ilya Mironov and Lintao Zhang. Applications of sat solvers to crypt-
analysis of hash functions. In Armin Biere and Carla P. Gomes, editors,
Theory and Applications of Satisfiability Testing - SAT, pages 102–115,
Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[10] Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending SAT
solvers to cryptographic problems. In Theory and Applications of Sat-

21

https://helda.helsinki.fi/bitstream/handle/10138/237063/sc2018_proceedings.pdf
https://helda.helsinki.fi/bitstream/handle/10138/237063/sc2018_proceedings.pdf

isfiability Testing - SAT, Lecture Notes in Computer Science, page
244–257, 2009.

[11] Uéverton Dos Santos Souza, Frances Rosamond, Michael R. Fellows,
Fábio Protti, and Maise Dantas Da Silva. The Flood-It game parame-
terized by the vertex cover number. Electronic Notes in Discrete Math-
ematics, 50:35–40, 2015.

[12] Alfred Tarski. Introduction to Logic. Oxford University Press, 4th edi-
tion, 1994.

[13] Yakir Vizel, Georg Weissenbacher, and Sharad Malik. Boolean satisfi-
ability solvers and their applications in model checking. Proceedings of
the IEEE, 103(11):2021–2035, 2015.

22

	Introduction
	Preliminary Knowledge
	Flood-It
	Boolean logic and Conjunctive Normal Form
	The Boolean Satisfiability Problem and SAT Solvers

	A SAT encoding for Flood-It
	States and transitions
	Constants
	Predicates
	Flood conditions
	Number of clauses

	Experiments
	A heuristic for approaching a minimal solution
	An extended encoding

	Related Work
	Conclusions

