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Abstract

Commercial buildings represent a substantial part of worldwide energy con-
sumption and greenhouse gas emissions. Modelling this consumption per
building allows for the identification of opportunities to increase efficiency,
resulting in reduced emissions and costs to businesses. We present a gradient
boosted decision tree model that estimates the annual electricity consump-
tion per square meter of floor area for commercial buildings, trained on a
dataset containing building features and consumption data for 566 stores
operated by a British retailer. The consumption estimates are accurate
to within 11.6% mean absolute percentage error, performing similarly to a
previously used benchmark on this dataset that is based on physical sim-
ulation. These estimates will be used in practice to determine the relative
performance of buildings in this data set and identify buildings that are
likely to benefit from energy saving renovations.
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Chapter 1

Introduction

In the United States, commercial buildings account for 18% of all energy
consumption [1]. With growing populations and increasing wealth in devel-
oping countries, building energy consumption is only expected to increase
in the coming decades. In the context of climate change, this represents
a substantial component of global greenhouse gas emissions [2]. Reducing
this consumption by improving building energy efficiency is an important
method to lower emissions and combat the effects of global warming, while
also reducing costs for businesses.

Van Beek Ingenieurs is a company that aims to accomplish this reduction
by providing data monitoring solutions for the energy consumption of com-
mercial buildings, consolidating various sources of electricity, gas and water
consumption data. Like other companies in the data monitoring sector, they
ensure high data quality and help their clients draw actionable conclusions
from this data. Specifically, they identify opportunities to increase build-
ing energy efficiency, such as changing the schedules of heating and cooling
equipment or installing solar panels. Part of this process is determining
whether a building’s efficiency is better or worse than expected. Currently,
Van Beek uses two methods for benchmarking. Existing buildings are eval-
uated by comparing their energy consumption with their consumption in
previous years; however, this is mostly useful for counteracting consump-
tion increases and does not allow identification of inefficiencies that were
already present before data collection started. It also is not possible for
newly opened stores, where no past consumption data is available.

An alternative solution to this is to model building energy consumption
and compare the expected energy consumption with a building’s real con-
sumption to calculate a benchmark score. A possible technique is to use
physical modelling methods, but these require extensive architectural infor-
mation [3] which is not always available and can be expensive to perform.
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This is the second benchmarking method used by Van Beek, where physical
modelling is used to calculate an expected energy consumption for a portion
of newly opened stores.

In this paper, we use a data-driven approach to estimate electrical energy
consumption for stores of a British retailer over the previous year. These
estimates are calculated using a model which uses only building features
as inputs, such as year of construction, sales floor area, refrigerator count
and opening hours. The main question answered in this paper is: How can
the energy consumption of commercial real estate buildings be estimated,
based on building features using a data-driven method? To aid in answering
this question, we also investigate the following questions:What applicable
data-driven methods exist for prediction of commercial real estate energy
consumption? and How does the implemented data analysis method per-
form compared to Van Beek’s previous methods?. The main contribution of
this paper is that we show good performance of decision tree ensembles for
prediction of annual energy consumption on a real, not simulated, dataset.
While a direct comparison is difficult, our method has a lower error than Van
Beek’s previous benchmark, which involves extensive physical modelling.

The structure of this thesis is as follows. Section 2 contains preliminary
knowledge required to understand this thesis, explaining the field of build-
ing energy efficiency and the data analysis techniques that are applied in
this paper. In section 3 we describe the building data set and the methodol-
ogy used to develop and evaluate predictive models based on this data set.
The resulting models and their performance are described in section 4. In
section 5, we give an overview of the state of the art in similar research. In
section 6, we present our conclusions.
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Chapter 2

Theoretical framework

2.1 Building energy consumption

Buildings consume energy in various forms. The most significant of these
are electricity and natural gas, which are used for different purposes: elec-
tricity is mostly used for lighting, cooling, powering machinery, ventilation
and some space heating, while natural gas is used for space heating. The
total energy consumption of a building is the sum of energy consumed in a
building in all of these forms. Energy conversion and delivery can be very
inefficient; delivering 1 kWh of electrical energy to a building can require
over 3 kWh of energy in another form, such as fossil fuels [4]. As such, a dis-
tinction is made between site energy consumption, i.e. the amount of energy
used on-site in a building, and source energy consumption, the amount of
energy required to generate the on-site consumed energy. For this paper the
source consumption is out of scope and we will only discuss the site energy
consumption.

2.1.1 Comparing energy efficiency

The energy consumption of buildings is usually specified as energy use in-
tensity (EUI), the energy consumption per unit of floor area in kWh/m2.
This normalizes for the size of a building and provides an indication of the
energy efficiency of a building, allowing it to be compared to other buildings.
Rating building energy performance by comparing its consumption against
other buildings is commonly referred to as benchmarking. Benchmarking
is useful as it helps to identify underperforming buildings, which can then
be inspected more closely to determine the cause of the low efficiency and
remedy it [5].
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2.1.2 Energy efficiency in retail buildings

Retail buildings represent 26% of non-domestic electricity usage in buildings
in the UK. This consumption can be categorized by various end uses that
vary depending on the type of store. For large non-food stores, the me-
dian electrical EUI is 146 kWh/m2, while this is 387 kWh/m2 for large food
stores. This difference is largely explained by the energy required to refrig-
erate food, which amounts to 220 kWh/m2 on average in food stores, equal
to 57% of the total electricity consumption. In the retail sector as a whole,
cooled storage amounts to 32% of all electricity consumption, followed by
lighting (26%), space heating (16%) and cooling and ventilation (8%). The
remaining 18% is consumed for other end uses, such as IT equipment and
machinery [6].
Accordingly, efficiency is mostly determined by the efficiency of these largest
end-uses. Heating and space cooling consumption can be reduced by using
better insulation material or tuning ventilation schedules; food refrigeration
consumption can be reduced by ensuring customers do not open display re-
frigerators for longer than necessary.

2.2 Regression analysis

Regression is a type of data analysis that models the relationship between
some independent variables - also called features or predictors - and a de-
pendent or “outcome” variable [7]. In the context of building efficiency,
regression analysis can be used to predict an expected energy consumption
for a building. The independent variables could be properties of a building,
such as the number of floors it has and the number of refrigerators inside
it. A logical choice for the dependent variable could be e.g. the electrical
EUI. A regression model that is created based on these variables would then
make a prediction of a building’s EUI, given its floor count and refrigerator
count.

2.2.1 Linear regression

In linear regression, the relationship between the independent variables
and the dependent variable is modeled as an equation of the form y =
β0 +β1x1 +β2x2 + ...+βkxk + ε, where y is the predicted value of the depen-
dent variable, β0 is the y-intercept, the βi are parameters of the model, the
xi are explanatory variables and ε is the error, the fluctuation in y that is un-
explained by our model [8]. Note that the xi variables may be the observed
independent variables, but they can also be transformed versions of those
variables - the model is linear in the parameters, not in the independent
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variables. To continue our previous example where we use floor count and
refrigerator count to predict electrical EUI, we might produce the following
linear model: EUIelectric = β0+β1floors+β2floors

2+β3refrigerators+ε.
The goal is then to find values for β such that ε, the error, is minimized for
all observations. Different approaches exist to accomplish this.

The most common form of linear regression is ordinary least squares (OLS),
in which the model aims to minimize the sum of the squared errors.

While fast to create and easy to understand, linear regression can only be
accurate if the relationship it models can be expressed as an equation that
is linear in some variables, which is often insufficient. Furthermore, OLS
linear regression is sensitive to outliers [8].

2.2.2 Decision trees

Decision tree regression [9] models the relationship between independent and
dependent variables using a tree structure not unlike a flowchart, in which
each internal node poses a question about an independent variable and has
an edge to another node for each answer to that question. The leaf nodes
each contain a single value. This regression tree (RT) model can be used to
predict the dependent variable by starting at the root node and following
the branches of the tree until a leaf node is reached; the predicted value is
then equal to the value contained in the leaf node. A graphical represen-
tation of a mock decision tree based on our running example is shown in 2.1.

floors ≤ 2?

refrigerators ≤ 10? refrigerators ≤ 15?

200 300 220 450

true false

true false true false

Figure 2.1: A flowchart representation of a mock decision tree that predicts
electrical EUI given floor count and refrigerator count.

These can model non-linear relationships and are easy to interpret for
humans, as they can be shown as flowcharts and one can see for each pre-
diction exactly which variables caused this decision.
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2.2.3 Decision tree ensembles

Ensemble methods aggregate multiple regression models to create one model
that is more powerful than its individual components. An extensive overview
of ensemble methods, including a theoretical justification for their improved
performance, is given in [10]. Three well-known ensemble meta-algorithms
that can be applied to decision trees are bagging [11], boosting[12] and ran-
dom forests [13].

All three operate by using a training set S of size n to learn k decision
trees, using a different training set S′ also of size n for each individual tree,
which is derived from S.

In bagging, S′ is created for each tree by uniformly drawing random
elements with replacement from S.

Boosting maintains a set of weights over S, and adjusts these weights
after learning each tree such that examples with large error receive a larger
weight and examples with small error receive a smaller weight; S′ is then
constructed by drawing elements from S with probability proportional to
these weights [14].

Random forests operate like bagging, with the addition that each split
decision in a tree may only use a random subset of the independent variables.

2.2.4 Support vector machines

Support vector machines (SVM) for regression aim to find a linear function
f that, given independent variables, approximates the dependent variable
with an error of at most ε. This ε-insensitive regression [15] thus ignores
observations for which the value predicted by f is within ε of the actual
value. An f is then found such that the sum of all errors that are greater
than ε is minimized. The resulting regression generalizes well, as the ε
margin prevents the algorithm from overfitting to patterns in small, random
noise. While SVM regression learns a linear function, it is typically used to
model non-linear relations through use of a kernel: a helper function that
projects the independent variables to another space, such that the regression
function to be found is linear in that space. For an excellent introduction to
support vector regression, we refer the reader to the 2004 tutorial by Smola
and [16].

2.3 Summary

In summary, linear regression, decision tree ensembles and support vector
machines are popular methods for regression analysis. While linear regres-
sion models are simple to develop and interpret, they are unable to accu-
rately model non-linear relations between variables. In addition, they are
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sensitive to outliers. Decision tree ensembles and support vector machines
are more difficult to interpret, but robust to outliers and well suited for
modelling non-linear relations. In the rest of this thesis we will investigate
how these regression analysis methods can be applied to model building
electricity consumption.
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Chapter 3

Data and Methods

Full source code for the described methods is available at
github.com/yhogewind/Code-BachelorThesis.

3.1 Data description and pre-processing

The available dataset consists of building features and energy consumption
in 2019 for 771 buildings owned by a British retailer. The data of interest
was extracted from a proprietary energy management platform to a local
database using Python 3.7. To focus the analysis on active stores we ex-
cluded office buildings, warehouses, and stores that were not open for the
entirety of 2019, yielding a total of 566 buildings used for model development
and testing. This set of stores is diverse: their size ranges from convenience
stores to large clothing shops with attached cafes, and they can sell clothing
and home products, food, or both.
For each building a list of assets was available, detailing individual items on
site such as bakery ovens, elevators and refrigerators; these were aggregated
to a count of items per category per store. The target variable, EUI, was
calculated by dividing the annual electric energy consumption by the total
internal floor area of the store. In addition, the ratio between floor area ded-
icated to food and the total floor area was calculated, as previous research
has shown this to be strongly correlated with EUI [17]. Each store also had
a type associated with it, indicating whether it is mostly food-based or not
and the physical placement: in a retail park, shopping mall or a city center.
A summary of the dataset after these transformations is provided in table
3.1.

3.2 Model development

Before model development the data was randomly split into a section of
20% (n=114), to later be used to test model accuracy and a section of 80%
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mean std min max

Dependent variable

EUI (kWh/m2) 474.19 237.31 94.92 1350.82

Independent variables

Food floor area (m2) 933.82 508.12 0.0 3692.99

Total floor area (m2) 2698.10 2826.07 163.97 15255.98

Food floor area as fraction of total area 0.60 0.36 0.0 1.0

Presence of clothing sales (binary) 0.095 0.29 0.0 1.0

Presence of toilets (binary) 0.24 0.43 0.0 1.0

Presence of gas supply point (binary) 0.84 0.37 0.0 1.1

Average opening hours per day 12.88 1.87 7.41 24.0

Count of “Catering” assets 22.55 17.06 0.0 107.0

Count of “Air Conditioning” assets 74.53 62.26 0.0 499.0

Count of “Lift” assets 4.91 6.10 0.0 57.0

Count of “Refrigeration” assets 86.16 41.50 0.0 310.0

Store opening year 2004.80 6.86 2000.0 2018.0

Length of refrigeration bays (feet) 320.33 128.58 0.0 841.0

Table 3.1: Summary of the dataset after transformations, excluding encod-
ing of store type.

10



Parameter Search space

n trees 100, 200, 400, 800

max depth 2, 4, no limit

min samples leaf 1, 2, 4

min samples split 2, 3, 4

(a) Random forest

Parameter Search space

n trees 100, 200, 400

max depth 2, 4, no limit

min samples split 2, 3, 4

learning rate 0.001, 0.01, 0.1

(b) Gradient-boosted trees

Parameter Search space

kernel polynomial, rbf

degree 4, 5, 6, N/A

coef0 1, 5, 10, N/A

epsilon 0.001, 0.01, 0.1, 1, 10

regularization C 0.1, 0.2, 0.5, 1.0, 10.0, 100, 1000

tolerance 0.01, 0.1, 0.2

(c) Support vector machine

Table 3.2: Search space for the parameters of each algorithm. Optimal
parameters are underlined.

(n=452), used for training and validation. We used the Python library
scikit-learn [18] for model and parameter selection. We chose three regres-
sion models to develop, as they have shown good performance in similar
research on a simulated dataset [19]: random forest (RF), gradient boosted
decision trees (GBT) and support vector machine (SVM). In addition, we
developed an ordinary least squares linear regression model, which is a sim-
ple and popular method for EUI estimation [20]. All algorithms except the
linear regression require meta parameters to be specified. As RF and GBT
are both decision tree ensembles, they share some parameters: maximum
tree depth, the number of trees in the ensemble and the minimum samples
in a node required to split that node. The SVM parameters were the type
of kernel used for data transformation, the regularization parameter C, the
stopping tolerance and epsilon; in addition, if the polynomial kernel is used,
the degree and the independent term in the polynomial kernel must be cho-
sen. An overview of the search space for these parameters is shown in table
3.2. The optimal parameters were selected using grid search with 10-fold
cross-validation on the training-validation set.

We then used the optimal parameters for each algorithm to create a
model, trained on the entire training-validation set.
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3.3 Evaluation

After developing the four models, we evaluated their performance using the
previously held-out testing dataset. Three metrics were used to compare the
error between the predicted consumption values and the actual consump-
tion: mean absolute percentage error, coefficient of determination and the
percentage of margin around the predicted values that contains 80% of the
actual values. These metrics are chosen as they are common in other annual
EUI estimation studies [21] and are easy to understand.

3.3.1 Mean absolute percentage error

The mean absolute percentage error (MAPE) is defined for n predictions and
actual values as the equation below [21]. It reflects the average prediction
error as a percentage of the actual value, which is an easily understood
measure of the prediction accuracy.

MAPE =
1

n

n∑
i

∣∣∣∣ypredicted,i − yactual,i
yactual,i

∣∣∣∣ ∗ 100%

3.3.2 Coefficient of determination (R2)

The coefficient of determination is a well-known metric in statistics that rep-
resents the portion of the variance in a dependent variable that is explained
by an independent variable. Choosing the predicted EUI as the dependent
variable and the actual EUI as the independent variable, R2 provides an
indication of the strength of our predictions. An R2 equal to 1 would mean
that the model under test performs perfectly, while an R2 equal to 0 shows
that the model performs no better than if it always predicted the mean of
the target variable. R2 is defined for n predictions and actual values as the
equation below, in which yactual is the mean of the actual y values [21].

R2 = 1 −
∑n

i=1(ypredicted,i − yactual,i)
2∑n

i=1(yactual,i − yactual)2

3.3.3 80th percentile margin

The 80th percentile margin is used to evaluate energy consumption esti-
mation in [22], to provide an indication of the percentage margin required
around predicted values to be reasonably sure the actual value will be within
the margin. This is calculated by first determining the absolute error for

each prediction, as a percentage of the predicted value:
∣∣∣ypredicted−yactualypredicted

∣∣∣
and choosing the value at the 80th percentile.
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Chapter 4

Results

The trained models were evaluated using the data previously set apart for
testing. The performance metrics for each model on this testing set are
shown in table 4.1. These show that all models make a prediction of EUI
with an error of under 16% on average, and a high R2 indicates that much of
the variation in EUI is explained by all models. It should be noted that the
models predict EUI, which is by definition the total consumption divided
by floor area. As there is a strong correlation between total consumption
and floor area, the models attain a higher R2 if used to predict total con-
sumption instead: our exploratory tests show that the R2 when predicting
total energy consumption is 0.94 for the random forest model; however, the
MAPE is identical.
Figure 4.1 shows the predicted EUI, plotted against the actual EUI for each
building in the testing set. Immediately apparent in each graph is a cluster
located between an actual EUI of 200 and 400 kWh/m2. This cluster almost
exclusively contains stores that have a small portion of floor area dedicated
to food sales and thus consume little energy for refrigeration and cooking.
The linear model performs the worst of all four models. In the linear model,
this cluster between 200 and 400 kWh/m2 is less tightly grouped than in the
other models; in fact, there is more spread across the entire range of EUI
values. This is visible in the graph and it is also reflected in the high MAPE
(15.8%) and 80% margin (22.4%). The graph also shows one prediction near
zero, where the actual consumption is closer to 100, while all other models
provide accurate estimations even in this low range.
The second worst performance is shown by the SVR, which is marginally
less accurate than the tree ensembles. In the high end of the EUI these
estimates are substantially lower than the actual consumption, which can
also be seen in the linear regression. While this bias does indeed represent
inaccurate estimates in this range, an argument could be made that the
stores with such high EUI might be inefficient and therefore should have a
lower EUI. If that is the case, this underestimation of high EUI values is
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MAPE R2 80% margin

OLS linear model 15.8% 0.90 22.4%

Random forest 11.7% 0.91 16.8%

Gradient boosted trees 11.6% 0.90 17.6%

Support vector machine 13.5% 0.90 19.6%

Table 4.1: Performance metrics on the test data for each developed model.

appropriate for a model that is to be used for benchmarking by comparing
estimates to real values.

The tree ensemble models, random forest and gradient boosted trees, yield
the most accurate predictions of all four models. Across the entire range
of EUI values they provide accurate estimates, which is reflected in the low
MAPE. Of the two, the random forest model appears to be slightly better
with a lower 80% margin, which indicates a lower spread.

4.1 Comparison with physical benchmark

The physical modelling approach previously used by Van Beek has been
applied to 26 stores opened between 2015 and 2019. It is difficult to make
a fair comparison between this previous approach and our models, for sev-
eral reasons. The stores which have been modelled physically are not all
contained in our randomly selected test set; as such, we cannot compare
predictions for the same buildings. Secondly, the physical simulations were
calculated over different periods than our analysis, which exclusively used
data from 2019. Most importantly, the physical simulation estimates are
predictions for a future period, whereas our methods provide an estimate of
the past year’s consumption. This gives our methods an advantage as they
are not subject to uncertainty due to future weather or changes in consumer
behaviour.

Still, we can make some valuable comparisons to assess whether the per-
formance of our models is acceptable for use by Van Beek. The previous
physical simulations had a MAPE of 20.1%. The 11.6% MAPE shown by
our best model is significantly lower, indicating that its estimation accuracy
is sufficiently high to be of value in Van Beek’s use cases. In addition to
this improved accuracy, our methods are easy to apply to any building in
the data set. While the physical simulations require extensive architectural
data that is not available for all buildings and requires much preparation
per prediction, our methods work using readily available data and can be
applied to all buildings with little effort. As such, our models are deemed

14



to be suitable for use by Van Beek and will be used alongside the physical
modelling for new stores as well as on all existing stores to assess energy
performance.
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Figure 4.1: Actual electrical EUI vs estimated EUI for the testing set. The
black line indicates x=y.
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Chapter 5

Related Work

Several recent literature reviews exist for building energy consumption bench-
marking [23], [24], [20], [3]. A selection of studies discussed in these reviews
is described below.

Sharp [25] was first to estimate EUI based on building features for bench-
marking purposes, using OLS linear regression. This approach was recently
used to predict real annual electricity consumption in a data set of 188 UK
supermarkets, reaching an R2 of 0.75 [17].

Artificial neural networks (ANN) have been used for EUI prediction with
varying rates of success [3]. Zhang finds that ANNs are less effective than
simple linear regression models [26], as do Li and Huang [27]. In contrast,
ANNs can perform well when forecasting hourly energy consumption on a
simulated data set [22], and are used to develop effective benchmarks on real
data in [28] and [29].

Support vector machines (SVM) are another commonly used method for
energy consumption prediction. An SVM is used by Li [30] to predict the
annual EUI of 59 residential buildings, using a dataset of real energy con-
sumption measurements and extensive architectural data. The SVM model
is compared with various ANNs and is shown to have the lowest training and
testing errors. In [31], SVMs are used effectively for short- to medium-term
prediction of real measured energy consumption, given energy consumption
in previous time periods.

Tree-based ensemble methods are used for energy consumption estimation
and shown to be capable of outperforming state-of-the-art methods in [19].
This study compares tree-based ensemble models: random forest, extremely
randomized trees and gradient-boosted regression trees to state-of-the-art
methods SVM, SVM+ANN ensemble [32] and genetic programming [33].
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These different techniques are compared by applying them on a shared data
set. This data set uses physical modelling techniques on hypothetical build-
ings with random architectural features such as surface area and height to
obtain a simulated heating and cooling load for each building. The tree
ensembles perform best, with gradient-boosted regression trees improving
state-of-the-art predictions of heating load by 14% and cooling load by 65%,
while also requiring the least computational power to train.

Quantile regression is introduced as a benchmarking tool in [34], by cre-
ating a different quantile regression model for each of 92 percentiles. A
building’s benchmark score is calculated by applying each regression model
to the building’s features and choosing the model which has the predicted
EUI closest to the building’s actual EUI. The benchmark score is then equal
to 100 minus the percentile of that model, giving an indication of the relative
performance of the building on a scale from 0 to 100. No assessment of ac-
curacy is given aside from a test of consistency of benchmark scores between
buildings in two subsequent years. The dataset used in this study contains
only building features and real electricity and gas consumption values.

Some publicly available data sets exist that could be used to compare meth-
ods for building energy consumption estimation, but we decided not to
use these. The Commercial Buildings Energy Consumption Survey data
(CBECS) [35] is the basis for the United States government energy bench-
marking tool, EnergyStar. This data set was not used in this paper due to
its small sample size and low quality [36]. The ASHRAE great energy pre-
dictor shootout data set [37] is based on real consumption measurements and
is of high quality, but is intended for time-series, short-term forecasting of
consumption based on historical consumption and as such is not appropriate
for our intended model goals.

5.1 Summary

The literature indicates that many different algorithms can be applied suc-
cessfully in the space of building energy consumption estimation. Tree en-
semble models appear to be the strongest method for annual estimations
that do not depend on historical energy consumption, while support vector
regression and neural networks perform well on short term and high resolu-
tion time-series forecasting. It should be noted that many of these studies
are based on either small data sets or data sets based on physical modelling
rather than real measured consumption, which may mean the results do not
generalize well to other data sets based on real measurements [21][38]. Fi-
nally, a few public building energy consumption data sets exist, but these
were not used for comparison in our research as they were either of low
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quality or not intended for the type of estimation performed in our work.

19



Chapter 6

Conclusions

We have shown that decision tree ensembles can be used to accurately pre-
dict electricity consumption for retail buildings. While all of the investigated
methods performed adequately, linear regression had the lowest accuracy.
Support vector machine, random forest and gradient boosted decision trees
all performed well, with the support vector machine performing marginally
worse than the two decision tree ensembles, of which random forest was
most accurate by a small margin. Our results indicate that the good perfor-
mance of decision tree ensembles in simulated energy consumption data sets
also holds when applied to real energy consumption data. Accordingly, we
believe this prediction can be used to inform energy management decisions
and achieve a reduction in energy consumption. As the gradient boosted
ensemble provided consumption estimations in line with Van Beek’s current
modelling technique for new stores while being easier to apply, it will be
used by Van Beek in practice to evaluate the energy performance of both
new and existing buildings.
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