
Bachelor thesis
Computing Science

Radboud University

Web classification using DMOZ

Author:
Lisa Hoek
s1009553

First supervisor/assessor:
Prof.dr.ir, Arjen P. de Vries

a.devries@cs.ru.nl

Second assessor:
Prof.dr.ir, Djoerd Hiemstra

hiemstra@cs.ru.nl

January 17, 2021

Abstract

Web classification is the process of assigning a Web page to a category out
of a pre-defined set of labels. For a classifier to predict well, it needs a
proper training data set to learn how to classify. The DMOZ directory
is very large Web taxonomy consisting of Web pages and a certain topic
given to each URL. Classification on Web taxonomies has to address a num-
ber of challenges that make it a non-trivial problem: a large number of
different categories, a deep hierarchy and class imbalance including many
sparsely populated categories. This research creates a dataset derived from
the DMOZ directory, providing a proper dataset for future research in Web
classification, and conducts an experiment with different selections of la-
bels, showing the performance and difficulties that arise in the process of
Web classification.

Keywords: Web classification, categorisation, DMOZ, Open Directory Project,
Common Crawl

Contents

1 Introduction 3

2 Preliminaries 6
2.1 DMOZ data . 6
2.2 Common Crawl . 6
2.3 Spark . 8
2.4 Classification . 10
2.5 Natural language processing 11

3 Research 13
3.1 Data pre-processing . 13

3.1.1 Pre-processing DMOZ data 13
3.1.2 Pre-processing Common Crawl URL index 14
3.1.3 Executing join . 14
3.1.4 Getting Web content 15
3.1.5 Cleaning Web content 16

3.2 Classification . 17
3.2.1 Preparing different datasets for classification 17
3.2.2 Training the classifier 19

4 Results 20
4.1 Classifier I - 13 categories . 20
4.2 Classifier II - 277 categories 22
4.3 Classifier III - 30 categories (more balanced) 23

5 Conclusions 26

6 Future Work 28
6.1 Expanding data . 28
6.2 Improving cleaned content of the Web pages 29
6.3 Improving the classifier . 30
6.4 Personalised Web search . 30

A Evaluation scores 33

1

B Confusion matrices 36

C Code examples 40

2

Chapter 1

Introduction

Classification is a widely used machine learning method. However, for Web
classification, there are more challenges compared to normal text classifi-
cation, making it a complex area in which research is not that far. Before
a classifier can make predictions (regarding their goal), one needs a proper
dataset to train the classification model with. Only then, it could become
relevant to use the built classifier for its or other applications. Currently,
Web classification is not that feasible to implement as a stand-alone feature
in large search engines as a feature like PageRank in Google Search.

Web classification, however, is useful for several tasks. It can not only
improve query results in a search engine, but it also assists development of
Web directories, can help filtering Web content, and is essential to focused
crawlers or vertical (domain-specific) search engines [17]. In case of the
latter, with the internet divided in categories, one could take a subset with
a topic of personal interest and store this on their own computer, creating
opportunity for an offline search engine.

The effectiveness of good classification algorithms such as logistic regres-
sion has not been thoroughly investigated on very large Web taxonomies [15],
for example the DMOZ directory [12]. Classification on Web taxonomies
has to address a number of challenges that make it a non-trivial problem:
a large number of different categories, a deep hierarchy and class imbal-
ance including many sparsely populated categories. This makes applying
classification algorithms to such datasets with thousands of categories very
difficult; sparsely populated categories do not have a lot of data to learn
from, and on the other hand, a few considerably larger categories will dom-
inate the classification, i.e., most data get predicted as these classes.

In this research, we create a dataset consisting of 514,506 Web pages di-
vided over 13 maincategories, 451 second-level categories and 110,860 dif-
ferent categories in total, derived from the DMOZ directory in combination
with data from the Common Crawl to retrieve the Web page’s content. By

3

doing this, we provide a proper dataset (with a topic and cleaned plain text
for each Web page), which can be used for further research in Web content
classification.

Also, we conduct an experiment asking ourselves: “How do the topics
of the DMOZ dataset perform as labels for a single-label Web classifier?”.
We show that a classifier using the 13 maincategories performs quite well,
but the more classes are added, the more difficult it gets for the classifier
to predict correctly, which is in line with the difficulties described in [15].
Already for the 13 maincategories, class imbalance has a huge impact on the
performance of the classifier.

A related study proposing how to deal with the sparsity of the DMOZ data
is conducted by [10]. They explored different data augmentation techniques
on the DMOZ data and showed that it significantly improved the classi-
fication performance, more than traditional classifiers. Other research [1]
used a classifier from DMOZ data to show that their approach (using social
annotation for Web directory extension) worked better than just classifying
on content. [19] used the DMOZ categories as a variable in their framework
for personalised Web search. They used a text-based classifier trained with
logistic regression to obtain classes for each document in the index. That
way, they improved retrieval performance for one-word queries with high
ambiguity.

Bennett, Svore and Dumais [3] used the DMOZ categories as classifica-
tion space to classify query results. Together with the usage of click data
from user logs, they presented a framework that enhances the ranking of
search engines. It builds on the assumption that user clicks not only serve
as relevance signal for the clicked URL, but also for other URLs belonging
to that same category. So, they trained a classifier with logistic regression
using the whole content of the Web pages and 219 second-level labels (the
ones that had over one thousand DMOZ Web pages). This model was then
applied on real-world Web-scale test data. For each page, they compared
the URL and Query class distribution and calculated several features. These
features were then stored during indexing time of the collection. They were
the first using offline classification during indexing for a large-scale search
engine. The ranker with their features significantly improved the search
engine’s results over a competitive baseline.

Bennett et al. showed classification of Web data can be used to derive
ranking features which are compact enough to still work efficiently in large-
scale Web search engines. They did not, however, use the URL class itself
as a feature in ranking. This is not yet used in search engines because it
requires high precision of its classifier. Also, knowledge about which labels
or which multi-level ordering to use for the classes in Web classification is
needed and still lacking, up to this point.

4

The remainder of this thesis is structured as follows. Chapter 2 gives a
basic understanding of the sources and tools we have used. Chapter 3 de-
scribes the pre-processing phase (what we have done to end up with our
final dataset) and the classification process. The evaluation of the classifiers
is dealt with in Chapter 4. The conclusions are stated in Chapter 5 and in
Chapter 6, improvements and ideas for future research are given. Appen-
dices A, B and C contain the evaluation scores per class for each classifier,
the confusion matrices, and some important code examples that were used
in this research, respectively.

5

Chapter 2

Preliminaries

2.1 DMOZ data

DMOZ is a directory of World Wide Web links, actively maintained from
1998 till 2017. Links to Web pages contain a certain topic built in a hierar-
chical way. Top levels are, for example, ‘Business’ and ‘Sports’ and deeper in
the directory exist lower levels with a path like ‘Science/Technology/Space’
and ‘Recreation/Outdoors/Fishing’.

The community who voluntarily constructed and maintained DMOZ was
also known as the Open Directory Project (ODP). Currently, they have
continued independent from Mozilla under the name of Curlie [5] and are
working on a successor version of the DMOZ directory. As of 2020, it does
not seem that they will be publishing any renewed data anytime soon, just
as the old data due to technical issues. To obtain the XML file containing
DMOZ’s old RDF dump, one must use the Wayback Machine [2] to go to
the latest available dump around the 12th of march, 2017. content.rdf.u8
is the DMOZ data consisting of ˜4 million Web pages. Overall, each entry
consists of a topic, title, description, and the URL of the Web page. Figure
2.1 shows a code snipped of the file.

2.2 Common Crawl

The Common Crawl [9] is a non-profit organisation that crawls the Web.
Their Web crawler visits billions of pages and each month, it stores its raw
crawl data into Web ARChive (WARC) format. This consists of information
how the data was requested, metadata on the crawl process itself and the
HTTP response from the websites it contacts.

WARC files contain many WARC records (one record corresponds to one
contact the crawler makes with a Web page). So, if one wants to obtain the
content of a specific page, one should include which bits to read from the
WARC file. This is done by including the WARC record’s offset and length

6

Figure 2.1: Start of DMOZ’s RDF dump content.rdf.u8

to the HTTP request to the Common Crawl’s server. For example, one can
use the Python package Requests and use the code below to retrieve one
single WARC record as shown in Figure 2.2.

url = "https://commoncrawl.s3.amazonaws.com/" + warc_filename

response = requests.get(url, headers={`Range': `bytes={}-{}'

.format(offset, offset+length-1)})

The Common Crawl also provides WAT and WET files which store com-
puted metadata and extracted plain text from the Web data, respectively.
The latter removes the need of converting HTML content to plain text your-
self, which is quite handy as many tasks only require textual information.
However, the Common Crawl does not include offsets in WAT and WET
files as it does to each WARC record, so one cannot easily retrieve the WET
plain text of one specific Web page without first creating additional data
structures. For convenience, this thesis has used the WARC files with their
offsets. Consequently, we did the HTML cleaning ourselves.

7

Figure 2.2: Example response of a WARC HTTP request, retrieved from
https://commoncrawl.org/the-data/get-started/

2.3 Spark

When, due to big data tasks, working on a single computer is not feasible
anymore, one can choose to process data on a cluster. This makes dividing
work over several computers possible. These worker nodes are independent
of each other and instructed by their one master node.

Apache Spark [8] is one of the frameworks for distributed data processing.
It provides an interface and four components on top of the Spark Core’s
framework. (Spark SQL, MLlib, Spark Streaming and GraphX). Its default
language is Scala, but also Java, Python and R are supported. Using Spark
on a cluster requires a cluster manager (e.g., Yarn) and a distributed storage
system like Hadoop Distributed File System (HDFS). To easily explore and

8

analyse data when working on the cluster, Apache Zeppelin is an interactive,
Web-based notebook for writing and executing code.

The general idea behind Spark is its Resilient Distributed Datasets
(RDDs). An RDD is a read-only, immutable object of data items, dis-
tributed over multiple computers in the cluster. When the RDD is not
partitioned over multiple nodes, there are no tasks to execute in parallel.
Good partitions are of real importance. Efficient handling of these parti-
tions is managed by avoiding intermediate shuffles between them and by
distributing the data wisely.

There exist two types of operators to manipulate data from RDDs.
Transformations make new RDDs out of the previous one, for example a
map()-function but also a groupByKey() or join(). Actions return a result
like count() or take(n). Transformations have lazy evaluation, so they are
only performed when they are followed by an action. If some part of a job
has already been performed, it can also re-use the already existing cached
RDDs corresponding to that same task.

Over the years, Spark has grown into a complete eco-system consisting of
different interfaces, to help users work with the rather low-level abstraction
of the RDD. An example that we use extensively in this thesis is Spark SQL,
a Spark component that introduced the data abstraction DataFrames. One
can make a dataframe out of an RDD and perform operations on it. It
even facilitates using SQL as a language once a so-called (global) temporary
view is created. One can apply transformations and actions on data in the
dataframe, but also create their own user-defined functions (UDFs) which
will then be applied to each row of the dataframe.

Another component of the Spark eco-system that has been deployed in
this thesis are the MLLib libraries, that provide scalable versions of common
machine learning algorithms, like the Logistic Regression classifier.

Pyspark [21] is the Python API for Spark. It is not only useful if you are
already familiar with Python and prefer it over Scala, but also enables using
Python packages on the cluster. Python code for a single computer can also
be easily transformed into something in Pyspark that works large-scale on
a cluster.

The standard format to save data on the file system is in Parquet files be-
cause it preserves the partitions. Other formats like CSV are also supported
and can be transformed into a dataframe but are slower to use. Efficient
data storage and distribution is of importance for fast executions. Partitions
are often made based on a certain key feature like for employee data their
working department. This way, queries within a certain partition (depart-
ment) can be executed faster, because it does not have to look at the other
partitions. If partitioning the data results in uneven partition sizes, due to
skew in the value distribution in the original data source, it is also better
to distribute the data into so-called ‘buckets’, where the system will apply
hashing to create these approximately equi-sized groups. This optimises the

9

worker nodes because the amount of processing for each bucket becomes
about the same.

2.4 Classification

Classification is the process in which items are given a certain label based on
its features. In the case of text classification, one gives as input a piece of text
and the classifier predicts (out of the given categories) which category suits
best, for example a category like ‘Sports’ for a text from a sports magazine.
Web classification resembles the simpler problem of text classification, but
the content of Web pages is often messy and needs a lot of cleaning before
it is transformed into a useful text snippet. For example, HTML consists of
tags which need to be removed. Several toolkits are available for this, like
BeautifulSoup [18] for Python. After cleaning the Web content, often some
natural language processing is done as well (see next section).

When all input data is pre-processed, some part of it is kept separate as
test data (often between 20% and 40%) and the rest is used as training data
for the classifier. A classifier can be built using a certain Machine Learning
algorithm. There exist many different algorithms, the one used in this thesis
is the (multinomial) logistic regression classifier. Details about this kind of
classifier can be found here [20].

A classifier is trained by giving it the feature vectors and labels of the
training data. A feature vector contains all information about that certain
data item. After transforming the training data, the model can be applied
to the test data as well and make predictions based on their feature vectors.
Because the test data also has an original label, it can be compared to the
predicted label. The accuracy is the percentage (or factor between 0 and 1)
of correctly classified items in the test data.

A good evaluation method is the confusion matrix. This shows for all data
items the predicted label versus the true label. In the case of binary classi-
fication, True Positives (TP) are all labels correctly classified as True; True
Negatives (TN) are all labels correctly classified as False, False Positives
(FP) are all incorrectly classified as True; and False Negatives (FN) are all
labels incorrectly classified as False. In the case of multinomial classification,
it is kind of similar except all classes have their own TP, TN, FP and FN.
For example, the FP of class A are all items classified as A while they belong
to a different class and FN are all items from A classified as a different class.

With these four values, measurements like precision, recall and F1 mea-
sure can be calculated. (Equation 2.1). Precision is the number of correct
items compared to all items predicted as this class. Recall is the number of
correct items compared to the number that truly belong to that class. F1 is
a measurement that shows the combination of the two.

10

P =
TP

TP + FP
R =

TP
TP + FN

F1 = 2
P ∗R
P +R

(2.1)

Accuracy but also precision, recall and F1 are not a good evaluation method
when classes are imbalanced. For example, for fraud detection only a few
percent consists of fraud and if the classifier just classifies every data item
as no fraud, the accuracy is almost 100% while the classifier did not detect a
single fraud item. Better measurements are done when looking at each indi-
vidual class. This introduces the measurements weighted precision, weighted
recall and weighted F1, (equation 2.2, 2.3 and 2.4 respectively).

PPVw =
1

N

∑
l∈L

PPV (l) ∗
N−1∑
i=0

δ#(yi − l) (2.2)

TPRw =
1

N

∑
l∈L

TPR(l) ∗
N−1∑
i=0

δ#(yi − l) (2.3)

Fw(β) =
1

N

∑
l∈L

F (β, l) ∗
N−1∑
i=0

δ#(yi − l) (2.4)

Here, L is defined as the set of classes. y as the prediction vector and δ# is
a modified delta function δ(x) which is 1 if x = 0 and 0 otherwise.

Improving the classification model can be done by, for example, tuning
the hyper-parameters of the algorithm. Due to time constraints, this is not
included in this thesis.

2.5 Natural language processing

Natural language processing is the field which concerns how human readable
text should be processed by machines. NLTK [16] is the most used natural
language processing toolkit for Python. Relevant features are Word segmen-
tation (Tokenization), Stop word removal, Lemmatization and Stemming.

When tokenizing, a chunk of text is split up in separate words, this is
for most languages of course done by splitting on space, so the string of text
is transformed into an array of words.

Stop words are frequently used words that often do not carry additional
meaning, such as ‘the’, ‘a’, ‘for’, ‘but’. Filtering out this useless data saves
a lot of space and processing time later. For this reason, Stop word removal
is one of the standard procedures for text-mining applications.

Lemmatisation is the task of changing each word back to its certain base
form if possible. This way, plural forms return to their singular value and
verbs like ‘walked’ and ‘walks’ are all changed to their base form ‘walk’.

11

Lemmatisation is done by looking up the lemmas (base forms) in a dictio-
nary.

Word stemming is a process which looks like lemmatisation, but root
forms do not necessarily need to be an existing word. An example is the
root form of ‘trouble’, which is ‘troubl’. This way, more words will merge into
the same root. For example, ‘computed’, ‘computing’, but also ‘computer’
and ‘computational’ stem down to the root ‘comput’. There are two error
measurements in stemming: understemming and overstemming. The latter
is the case when words like ‘computer’ and ‘computational’ get stemmed
down to the same root, as in the previous example, even though one would
have liked to keep them separate.

Thus, for natural language processing there is no general best method,
and it varies which steps to include and how strict to be in those.

12

Chapter 3

Research

3.1 Data pre-processing

This section describes the process that was made to obtain the Cleaned Com-
mon Crawl Content (CCCC) in a dataframe together with its category labels
(retrieved from DMOZ). Briefly said, the DMOZ data containing URLs and
topics needs to be joined with the Common Crawl data consisting of URLS
and WARC information. After joining, the WARC information is used to
obtain the HTML content for each Web page. Lastly, the content is cleaned
and a dataframe remains consisting of maincategory, categories, url, title and
cleaned content. This dataframe (stored as CCCC parquet table) is used for
training and testing the classifier.

3.1.1 Pre-processing DMOZ data

To begin with, the DMOZ data is transformed into a dataframe. We used
Python 3.6 in a Google Colab notebook for this. To get our hands on the
data, we read the data as done in “URL classification using DMOZ data” by
Utsav [22] and built a mini-classifier with Sklearn based on the description
text and topics.

Then, we moved on to the actual pre-processing. We decided to read the
data in a slightly different way than suggested by [22]. We started off by
reading the content of content.rdf.u8 and splitting it on </ExternalPage>

(instead of newlines). As can be seen in the file in Figure 2.1, splitting on
</ExternalPage> will make sure the ‘title’, ‘description’ and ‘topic’ of a
URL stay together in one string with the URL.

Then, the ‘url’, ‘title’ and ‘topic’ are extracted from each snippet. This
is done with regular expressions. In case the snippet is lacking a URL, title
or topic, it will not be added to the dataframe. In case there were multiple
URLs, titles or topics in the snippet, the first one is taken.

The dataframe is formed by taking the first part of the topic as main-
category, the whole topic as categories, the url and title. This resulted in

13

a dataframe of 3,573,026 entries (against Utsav’s 3,529,057 entries). This
difference can be explained by looking at Figure 2.1 again. The first URL
contains a title, description, priority and topic. Utsav’s processing skipped
this snippet, because of the ‘priority’ disrupting the standard format title-
description-topic.

The maincategory ‘World’ is dropped because it contains non-English
Web pages. In this thesis, we only focus on building an English text classifier.
Also, the category ‘Regional’ is dropped. This category splits on regions
first, something that does not belong to the rest of the maincategories. The
classifier will learn to predict topics like sport, science, etc. – not regions.
The si,ze of the dataframe, after dropping these two categories, is 979,845
records.

The Python code used for the DMOZ processing can be found in Ap-
pendix C, code example 1. Figure 3.1 shows the current head of the dataframe.

Figure 3.1: First 5 records of the DMOZ dataframe

3.1.2 Pre-processing Common Crawl URL index

Now, we have moved on to working in Zeppelin with Spark 2.4.4 on an
Amazon EMR 6.0.0 cluster. The Common Crawl’s CC-INDEX table that
resides on their AWS S3 cluster is in our Zeppelin notebook represented by
a dataframe, to combine conveniently with the DMOZ data. We have used
both CC-MAIN-2017-13 (March 2017) which is most in line with the date of
the DMOZ data and the crawl CC-MAIN-2017-04 (January 2017) which is a
bit earlier. From these dataframes, all columns are dropped, except for url,
warc filename, warc record offset and warc record length. Both dataframes
contain ˜3 billion Web pages.

3.1.3 Executing join

The JOIN-operator is used to align the two datasets, matching on URLs
that are equal in both datasets. Executing this is simple with an SQL query
like this:

val joinDF = spark.sql("SELECT maincategory, categories, title,

c.url, warc_filename, warc_record_offset, warc_record_length

14

FROM global_temp.dmoz d INNER JOIN global_temp.cc c WHERE d.url

== c.url").cache()

It performs an inner join on the two global temporary views that are made
from the DMOZ and CC dataframes. In Appendix C, code example 2 shows
the general process how the DMOZ and CC dataframes are created, the join
is performed, and the joined data is stored in the file system.

With the use of the Common Crawl data from January 2017, the join
resulted in 575,745 entries with a fine execution time of half an hour (and
only ˜15 minutes when scaling up to ten worker nodes). The joined dataset
is around half the size of the original dataset. Unfortunately, there existed
also duplicate rows, because only 438,445 entries were left after taking all
unique URLs.

The goal is to end up with as large a dataframe as possible, i.e., the size
of the original DMOZ dataframe (979,845 records), because we are trying
to link the WARC information to (preferably) all DMOZ Web pages. To
increase the number of matched entries, we decided to look at crawl CC-
MAIN-2020-45 (October 2020) and crawl CC-MAIN-2017-13 (March 2017)
as well. The latest version of the Common Crawl data (October 2020)
resulted in only 63,056 matches, confirming our beliefs it is better to use
Common Crawl data from around the same time as the DMOZ data. The
joined dataframe with March 2017 data consisted of 589,022 matches and
after removing the duplicates 400,307 entries. This is about the same size
as the set of January 2017.

Hoping there were many distinct URLs, we then took (after matching
with DMOZ) the union of the two dataframes from January and March 2017.
Luckily, this increased the final dataframe to 514,506 Web pages. Figure 3.2
shows the head of the current dataframe.

3.1.4 Getting Web content

In the next step, the four columns to the right of the dataframe in Figure
3.2 are used to extract the HTML content from the WARC file. With
an HTTP request to the Common Crawl server, one can obtain the HTML
content that was fetched and put in the WARC file. A request consists of the
URL “https://commoncrawl.s3.amazonaws.com/”+warc filename and can
be given certain headers. For this research, we give the range of bytes to read
as a header (which are the warc record offset and warc record offset+length-
1).

The returned data is decompressed using Python library zlib, decoded
based on ‘utf-8’ and read by Python package BeautifulSoup to parse the
HTML and convert it to plain text only, using function ‘get text’. Now, we
end up with a string consisting of three parts: information about how the
information was requested, metadata and the cleaned HTML content. Only

15

Figure 3.2: First 20 records after joining DMOZ and Common Crawl

the last one is of our interest and kept as column content in the dataframe.
This code was first tested on a small sample outside the cluster. In Ap-

pendix C, code example 3 shows the Python function. Once on the cluster,
we hit some obstacles. The Python package Requests (used to send the
HTTP request to the Common Crawl server), was not installed by default
on the cluster’s driver. Additionally, installing a library on the driver does
not mean the worker nodes are able to use it. For this, the packages need to
be passed along to the worker nodes. A guide to do this can be found here
[6].

Once all content was collected, we wrote the result to the file sys-
tem for possible later use. The now redundant columns warc filename,
warc record offset and warc record length are dropped and the dataframe is
saved as parquet table CCC. We specified to partition by the data’s main-
categories and bucket by its categories to improve further SQL queries on
the categories.

3.1.5 Cleaning Web content

Before using the content column as input for the classifier, it should be
cleaned. We used a Python function written by Idil Ismiguzel [14] for this
and slightly adjusted it.

First, all characters are converted to lower case and the white spaces are
stripped from the content. Then, the text is searched for contractions, which
are replaced by their longer forms if present. The list of English contractions
from Wikipedia is used here [13]. Then, all unwanted characters or words
are removed as good as possible with regular expressions. For example,
Unicodes like the non-breaking space ‘\xa0’ are replaced by a normal space

16

‘ ’ with the regular expression:

text = re.sub(r`[\^ \x00-\x7F]+',` ', text)

Stopwords are removed from the text with Python package NLTK. It has
many more features of which we use the WordPunctTokenizer and the Word-
NetLemmatizer. As last step, we join the array of words back to a full string,
because this is nicer to give as input to the classifier.

In Appendix C, code example 4 shows the process described above. On
the cluster, we put this function in a user-defined function (UDF) and per-
formed it on the content column of the dataframe, creating a new column
called cleaned content. Column content is dropped. Again, the dataframe is
stored as parquet table as described in the previous section, but now under
the name CCCC.

3.2 Classification

3.2.1 Preparing different datasets for classification

In this research, we decided to build three different classifiers (instead of
one elaborate classifier), since we wanted to focus on the distribution of
categories. Classifier I labels on maincategory. Classifier II uses all second-
level categories such as ‘Arts/Movies’ instead of ‘Arts’. (Categories with
less than 100 Web pages are discarded). And the last classifier has clever
distributed labels to make the data less imbalanced: from the three largest
categories (Arts, Business and Society), its largest sub-categories are taken
out and used as a separate category. For example, ‘Arts’ is split up in
‘Arts/Music’, ‘Arts/Movies’, ‘Arts/Literature’, ‘Arts/Performing Arts’ and
‘Arts/Visual Arts’ and the rest of the data remains in class ‘Arts’. Where
to stop splitting can be automated but is done by human judgement in this
thesis.

Figure 3.3 shows the number of Web pages for each maincategory. The
first three classes are considerably larger than the others. Figure 3.4 shows
the distribution of labels when the second level is taken (and the ones with
less than 100 Web pages removed). The class imbalance increased even more
compared to the first-level categories. Figure 3.5 is the third dataset with a
better distribution. The y-axis is set the same as in Figure 3.3 to show we
reduced class imbalance.

The code how we created the second and third dataset can be found in
the beginning of the classifiers’ Notebooks [11].

17

Figure 3.3: Nr of Web pages per category, classifier I

Figure 3.4: Nr of Web pages per category, classifier II

Figure 3.5: Nr of Web pages per category, classifier III

18

3.2.2 Training the classifier

For each dataset, the following procedure is followed using Spark MLlib.
First of all, a classifier cannot be trained with strings as labels, so the

StringIndexer is used to transform the maincategory into integer labels.
Then, a random split is made which divides the data into 75% training and
25% testing data.

A pipeline is created which consist of the stages ‘tokenizer’, ‘hashingTF’
and ‘lr’. The first one uses the Tokenizer and transforms the cleaned content
into an array of words. Tokenizing in an earlier phase of the process (when
the cleaned content was made) was not possible, because the next trans-
former HashingTF did not accept our own tokenized array. The HashingTF

transforms the output of the tokenizer into feature vectors. These are the
term frequencies of the words. The last stage of the pipeline uses the
LogisticRegression module to train and apply a logistic regression classi-
fier. When this pipeline is fitted on the training data, it takes the columns
label and features and starts training the model. Due to time constraints,
we opted to use default hyper-parameters as is and defer their optimisation
to later work.

Training a classifier with a lot of data and many labels, requires a lot
of memory on the cluster. When training classifier II, we hit the obstacle
of not having enough memory available. We fixed this by claiming 32 GB
on the driver. Though, this is not advisable when multiple people are using
the same cluster.

Once the model is applied to the training data, we can predict labels by
transforming the test data. We compare the prediction column with their
original label. To convert the integer labels from prediction back to their
corresponding category name, we use the IndexToString transformer.

Evaluation is done by instantiating a metrics object which requires the
columns prediction and label. It can calculate all sorts of evaluation statis-
tics. We also print the confusion matrix. These values are then used in a
Python program [11] to plot the confusion matrix with Seaborn heatmap
[23] and Matplotlib.pyplot [7].

In Appendix C, code example 5 shows the general approach that was used
for training, testing, and evaluating the three classifiers. For the detailed
code, we refer to the three Zeppelin Notebooks on our Github page [11].

19

Chapter 4

Results

This chapter shows the evaluation results of the three classifiers. The ac-
curacy, weighted precision, weighted recall and weighted F1 measure are
calculated. Unfortunately, Spark MLlib cannot compute the AUROC for a
multi-class problem, but we do show the confusion matrices for classifier I
and III, and the normalised confusion matrices for all three classifiers. Nor-
malisation is done by dividing each entry by the number of true label Web
pages of that category.

4.1 Classifier I - 13 categories

The first classifier categorises Web pages in the following 13 categories:
‘Society’, ‘Arts’, ‘Business’, ‘Recreation’, ‘Computers’, ‘Science’, ‘Sports’,
‘Shopping’, ‘Reference’, ‘Health’, ‘Games’, ‘Home’ and ‘News’.

Figure 4.1 shows a random sample of the test data. On average, 11 out
of 20 are classified correctly.

Table 4.1 shows the overall statistics. Accuracy on its own does not tell
us a lot how good the classifier performs. The weighted measures normalise
the data such that the amount of data per class is taken into account. More
than half of the test data is classified correctly, 54%. Although clearly the
performance is much better than random choosing one of the 13 labels, it is
unclear if the effectiveness is already good enough for practical applications,
as for example, a feature in search engines.

Accuracy 0.54

Weighted precision 0.58

Weighted recall 0.54

Weighted F(1) Score 0.53

Table 4.1: Evaluation scores Classifier I

20

Figure 4.1: Random sample taken from test set Classifier I

Figure A.1 shows the statistics per class. In here, the first three classes
have a high recall (0.64-0.70) and low precision (0.43-0.50). Then, it switches
the other way around and the remaining categories have a rather low recall
(0.16-0.49) but higher precision (0.58-0.83). This can be explained by look-
ing at the confusion matrix in Figure B.1. The data we worked with has
quite some class imbalance. The first three categories ‘Society’, ‘Arts’ and
‘Business’ are considerably larger than the other ones. When the classifier
was trained with the training data, it learnt a lot of items need to be clas-
sified as ‘Society’, ‘Arts’ or ‘Business’. So, a lot of items from the test data
are classified as these three categories while their true label was something
else. The last category ‘News’ is also relatively small compared to the mid-
dle classes, making it hard for the classifier to predict this label. News items
are more often classified as ‘Society’, ‘Arts’ or ‘Business’ than ‘News’ itself,
so its recall is really low.

Figure B.2 shows the normalised confusion matrix. Here, the colours and
values give a better indication per class how good the classifier is. Visible
is a diagonal line representing all True Positives. However, the first three
columns are relatively darker showing a lot of items get classified incorrectly

21

as one of the three largest classes.

4.2 Classifier II - 277 categories

The second classifier contains 277 categories from the second level like ‘Art-
s/Movies’. Initially, this resulted in 451 different categories, but a lot were
rather small. After removing all categories which had less than 100 Web
pages in it, the number of categories downgraded to 277 and the number of
Web pages in the dataframe became 509,082 (originally 514,506).

Figure 4.2 shows a random sample of the test data. One can see the
categories are more detailed than the 13 maincategories.

Figure 4.2: Random sample taken from test set Classifier II

Table 4.2 shows the statistics of the classifier. The values are rather low
compared to the previous classifier. The more categories, the more difficult
it is for the classifier to predict correctly.

Assuming the classes behave in a similar style as in the previous classifier,
we decided to calculate statistics for the first 10 classes, 10 classes in the
middle and 10 at the end instead of giving the statistics for all 277 categories.
These statistics can be found in Table A.2. In here, one can see the precision
and recall do not consistently grow or decrease anymore as it did for the
previous classifier. There are quite some classes with high precision and/or

22

Accuracy 0.36

Weighted precision 0.41

Weighted recall 0.36

Weighted F(1) Score 0.33

Table 4.2: Evaluation scores Classifier II

recall. Take, for example, category ‘Sports/Squash’. It has a P = 0.88
and R = 0.24. This is rather high for a class with just a bit more than
100 Web pages in the dataset. Apparently, the classifier can predict this
category really good which is probably because of the distinct word ‘Squash’.
Some more ambiguous classes like ‘Society/Future’ have a precision and
recall of both zero. This indicates that the selection of labels also hugely
affects the performance of the classifier. Categories should have some unique
characteristics like the name of a certain sport to classify on.

In the normalised confusion matrix shown in Figure B.3, one can dis-
tinguish a diagonal line for all True positives. It could have been a more
consistent dark line; some categories fail and have a quite light TP, others
are remarkable dark (for example an entry like ‘Sports/Squash’. Again, the
first set of columns are considerably darker than other columns, because
the classes are imbalanced. The first three categories have 45,752, 26,729
and 15,625 Web pages while the last classes have only just above a hun-
dred. One can also notice some darker cells at random places (not on the
diagonal TP line). These are probably due to some topics overlapping in
real life as well, for example a Web page from ‘Science/Math’ predicted as
‘Reference/Education’ as visible in Figure 4.2.

4.3 Classifier III - 30 categories (more balanced)

This third classifier is made with more balanced data to see what class imbal-
ance does to precision and recall. The intuition behind it is that categories
that are really big, probably have subcategories that can be distinguished
well by the classifier.

The target classification consists of the same maincategories ‘Recre-
ation’, ‘Computers’, ‘Science’, ‘Sports’, ‘Shopping’, ‘Reference’, ‘Health’,
‘Games’, ‘Home’ and ‘News’ but the three originally largest categories ‘So-
ciety’, ‘Arts’, ‘Business’ are now split up using the second-level categories.
These are ‘Society/Religion and Spirituality’, ‘Society/Law’, ‘Society/Issues’,
‘Society/People’, ‘Society/History’, ‘Society/Organizations’, ‘Arts/Music’,
‘Arts/Movies’, ‘Arts/Literature’, ‘Arts/Performing Arts’, ‘Arts/Visual Arts’,
‘Business/Construction and Maintenance’, ‘Business/Industrial Goods and Services’,
‘Business/Arts and Entertainment’, ‘Business/Business Services’, ‘Business/-

23

Consumer Goods and Services’ and ‘Business/Textiles and Nonwovens’.
The Web pages belonging to rather small subcategories are unioned into
the three general ‘Society’, ‘Arts’, ‘Business’ categories, resulting in 30 cate-
gories in total. As already mentioned in Section 3.2.1, we choose this division
based on our own judgement. The process, however, could be automated.

Figure 4.3 shows a random sample of the test data.

Figure 4.3: Random sample taken from test set Classifier III

Table 4.3 shows the statistics for this classifier. This third division of
labels lowered all scores compared to the first classifier.

Accuracy 0.45

Weighted precision 0.48

Weighted recall 0.45

Weighted F(1) Score 0.43

Table 4.3: Evaluation scores Classifier III

Figure B.4 is the confusion matrix for this classifier. Notice that the
three classifiers are trained and tested with three different random data
splits, so one cannot compare the absolute numbers from one confusion
matrix with another. The normalised confusion matrices on the other hand

24

can be compared to each other.
In Figure B.5, a good diagonal line is visible at the left top. Also, the first

set of columns is not that dark anymore as in the confusion matrix for the
first classifier. However, another problem now occurs. A lot of Web pages
were classified as ‘Business’ while it belonged to one of its subgroups like
‘Business/Business Services’ and ‘Business/Industrial Goods and Services’.
This leads to the diagonal TP line not being that present anymore at the
right bottom for these subcategories. Their recall is around 0.1. As a conse-
quence, the total accuracy is rather low in table 4.3 and does not tell us a lot
about the performance of the classifier compared to the others. Other sub-
categories such as ‘Arts/Movies’ and ‘Arts/Literature’ seem to perform well
with a precision of 0.65 and 0.60 and a recall of 0.65 and 0.39, respectively.

The recall increased for all maincategories from ‘Recreation’ till ‘News’,
when comparing Table A.1 with Table A.3. However, the precision lowered
for all categories. This can be attributed to the fact that more TP arose for
these classes because they became relatively larger in size compared to the
now multiple second-level categories. Splitting the largest three categories
did solve the class imbalance, resolved the problem of a lot of items being
wrongly classified as one of these largest classes, and increased their recalls.
The F1 scores stay about the same.

25

Chapter 5

Conclusions

In this thesis, we have built a dataset consisting of ˜0.5 million Web pages
categorised with a certain topic. Three classifiers were trained each given a
different selection of labels. The first classifier seems to perform best, but it
also has the least categories to classify on. The second classifier has so many
categories, the overall performance lowered quite a bit. However, still a lot
of distinct categories such as ‘Sports/Squash’ had a high precision and recall
even when they did not have a lot of training data and there was quite some
class imbalance. Conquering this class imbalance, the input to classifier III
had the three largest main categories split up in multiple subcategories. This
resulted in a higher recall for all normal maincategories, but the classifier
was not that great at distinguishing Web pages between the different kinds of
‘Business’ subcategories (lowering the overall performance). Subcategories
such as ‘Arts/Movies’ and ‘Arts/Literature’ classified really well on the other
hand.

The results of the three classifiers combined indicate that there is much
potential for classification of the Web, as long as the selection of labels is
clear and distinct. The hierarchy of the DMOZ dataset is carefully human-
chosen, but one can argue whether this categorisation is effective when ap-
plied on a classification model. The hierarchies are too deep, some categories
are really similar to another and there is lots of class imbalance (a few consid-
erably larger categories, and many sparsely populated categories), making
it hard for a classifier to predict Web pages when there are many categories
to chose from.

We would recommend neither of the three classifiers, as they do not seem
to be sufficient enough for practical applications. Each have their own flaws,
however, give an indication what to keep in mind when building upon this
current research. 13 categories is not sufficient to represent the Web for
goals we envision, classifier II shows it is able to predict classes with little
data quite correct as long as its topic is distinct from others, and the third
classifier shows categories should indeed not overlap when using single-label

26

classification. For a proposal of a better classification, we refer to the future
work in Section 6.3.

27

Chapter 6

Future Work

Building a classifier for Web data is a long process, not only involving the
training of the classifier, but also many pre-processing steps of getting the
proper training data. Because there are so many steps and choices to be
made, there are also lots of opportunities for improvements.

6.1 Expanding data

The DMOZ dump data consists of ˜4 million Web pages. After dropping the
‘World’ and ‘Regional’ categories, the size of the dataset reduces to ˜1 million
Web pages. The category ‘World’ cannot be used when building an English
text classifier. However, as future work, the category ‘Regional’ could be
added to the data. This category has a difficult hierarchy with paths such as
‘Regional/Europe/United Kingdom/Recreation and Sports/Sports/
Country Sports/Fishing’. The Web pages within this category could be
transferred to the category ‘Recreation/Outdoors/Fishing’ which is already
one of the labels in the data.

Something similar occurs with the ‘Kids&Teens’ directory. This direc-
tory resides in a different XML-file than content.rdf.u8, namely
kt-content.rdf.u8. This XML-file also has categories like ‘Arts’ and
‘Computers’, but contain new categories like ‘Teen Life’ and ‘School Time’
as well. One can merge these similar categories with the standard DMOZ
categories and come up with an idea to work with the new categories (e.g.,
adding them to the labels as new categories, not including them, etc).

Lastly, data could be expanded by improving the joining phase of the
DMOZ and Common Crawl. In this step, the data reduced from 979,845
entries to 514,506 entries, simply because the DMOZ URL did not exist
in the Common Crawl. More Common Crawl buckets (from other months)
could be added to match on. Ideally, all DMOZ URLs match to some record
in the Common Crawl, future work can find out whether this is possible.

28

6.2 Improving cleaned content of the Web pages

For the content of each Web page, this thesis included some basic cleaning
plus stop word removal and lemmatisation. Another natural language pro-
cessing task is stemming which can be executed in future to see whether this
improves the classification.

Another feature of NLTK, the package that was used in this thesis, is the
ability to remove non-English words. We decided not to use this function in
the end, because it removed too many words. See the example Web content
in Figure 6.1 for clarification. As future work, another function inside NLTK
or a package other than NLTK could be found that works better for removing
non-English words. This will also remove unwanted HTML data that was
missed during tag-removal.

Figure 6.1: In this research is chosen for box two. The boxes are a vi-
sualisation of which stop words are removed and which non-English words
would be removed if continued cleaning. One can see non-English words be-
ing removed, but also some named entities such as ‘robert louis stevenson’
which could be useful information. All plurals are removed as well, mean-
ing lemmatisation or stemming needs to be performed first before removing
non-English words could become an option.

29

6.3 Improving the classifier

In this thesis, the classification model stays quite basic. No hyper-parameters
were tuned to improve the performance of the classifier. As future research,
cross-validation should be performed to find the best combination of hyper-
parameters.

A better classifier could also arise when the labels are better defined.
Classifier II and III show there is potency in splitting the categories into more
subcategories, as long as the categories stay distinct. More investigations
for classifiers are possible; (1) a training could be performed on all lowest
levels of all categories, (2) on all third-level categories, or (3) one with an
intuitively clever selection of labels to make them as distinct as possible.
The trick is to come up with a different categorisation than the standard
DMOZ categories such that it enhances Web classification.

For this latter research idea using the DMOZ categories, labels should
be split based on distinctiveness of the emerging subcategories. For exam-
ple, splitting ‘Sports’ results in subcategories such as ‘Sports/Bowling’ and
‘Sports/Golf’ but also in ‘Sports/Water sports’ and ‘Sports/Winter sports’.
One can argue the last two are still not distinct enough as a label for the
classifier and one must take their subcategories again as final label, i.e., cat-
egories like ‘Sports/Water sports/Kitesurfing’ and ‘Sports/Winter sports/
Snowboarding’.

6.4 Personalised Web search

Once satisfaction is reached of improving the classification, future research
could continue to build upon work by Bennett et al. [3] by looking if the
predicted classes can also be stored as feature during indexing time and im-
prove query results. Research can also be directed towards personalised Web
search in the form of offline search engines. Once Web pages are classified
in certain topics, it becomes relatively easy to retrieve a certain subset of
personal interest and store this offline on your computer. We suggest using
ChatNoir [4] if research is performed in this direction, which is a search en-
gine using Common Crawl data from January 2017 as document collection.
One could investigate whether the ranking worsens once a query is executed
on only a subset of the document collection (with the same topic of the
query) or actually improves because users want their query results to be in
the same class as the query itself.

30

Bibliography

[1] Sadegh Aliakbary, Hassan Abolhassani, Hossein Rahmani, and Behrooz
Nobakht. Web page classification using social tags. In 2009 Inter-
national Conference on Computational Science and Engineering, vol-
ume 4, pages 588–593, 2009.

[2] The Internet Archive. Wayback machine. https://archive.org/web/.

[3] Paul N. Bennett, Krysta Svore, and Susan T. Dumais. Classification-
enhanced ranking. In Proceedings of the 19th International Conference
on World Wide Web, WWW ’10, page 111–120, New York, NY, USA,
2010. Association for Computing Machinery.

[4] Janek Bevendorff, Benno Stein, Matthias Hagen, and Martin Potthast.
Elastic ChatNoir: Search Engine for the ClueWeb and the Common
Crawl. In Leif Azzopardi, Allan Hanbury, Gabriella Pasi, and Benjamin
Piwowarski, editors, Advances in Information Retrieval. 40th European
Conference on IR Research (ECIR 2018), Lecture Notes in Computer
Science, Berlin Heidelberg New York, March 2018. Springer.

[5] Curlie. About curlie. https://curlie.org/docs/en/about.html.

[6] Arjen P. de Vries. Zeppelin on redbad, 2020. https://rubigdata.

github.io/course/admin/zeppelin.html.

[7] The Matplotlib development team. matplotlib.pyplot.plot.
https://matplotlib.org/3.2.0/api/_as_gen/matplotlib.

pyplot.plot.html.

[8] The Apache Software Foundation. Apache spark. https://spark.

apache.org/.

[9] The Common Crawl Foundation. Common crawl. https://

commoncrawl.org/.

[10] JongWoo Ha, Jung-Hyun Lee, Won-Jun Jang, Yong-Ku Lee, and
SangKeun Lee. Toward robust classification using the open directory
project. In 2014 International Conference on Data Science and Ad-
vanced Analytics (DSAA), pages 607–612, 2014.

31

[11] Lisa Hoek. Web classification using dmoz. https://github.com/

LisaHoek/dmozclassification.

[12] AOL Inc. Dmoz - the directory of the web. https://dmoz-odp.org/.

[13] Wikimedia Foundation Inc. List of english contractions.
https://en.wikipedia.org/wiki/Wikipedia%3aList_of_English_

contractions.

[14] Idil Ismiguzel. Nlp-with-python, May 2020. https://github.com/

Idilismiguzel/NLP-with-Python.

[15] Sathi T. Marath, Michael Shepherd, Evangelos Milios, and Jack Duffy.
Large-scale web page classification. In 2014 47th Hawaii International
Conference on System Sciences, pages 1813–1822, 2014.

[16] NLTK project. Natural language toolkit. https://www.nltk.org/.

[17] Xiaoguang Qi and Brian D. Davison. Web page classification: Features
and algorithms. 41(2), February 2009.

[18] Leonard Richardson. beautifulsoup4. https://pypi.org/project/

beautifulsoup4/.

[19] David Sontag, Kevyn Collins-Thompson, Paul N. Bennett, Ryen W.
White, Susan Dumais, and Bodo Billerbeck. Probabilistic models for
personalizing web search. In Proceedings of the Fifth ACM International
Conference on Web Search and Data Mining, WSDM ’12, page 433–442,
New York, NY, USA, 2012. Association for Computing Machinery.

[20] Apache Spark. Mllib: Main guide - multino-
mial logistic regression. https://spark.apache.

org/docs/2.4.4/ml-classification-regression.html#

multinomial-logistic-regression.

[21] Apache Spark. Pyspark 3.0.1 documentation. https://spark.apache.
org/docs/latest/api/python/index.html.

[22] Utsav. Building a url classifier using dmoz
data, January 2017. https://utatds.github.io/

2017-01-18-URL-classification-using-DMOZ-data/.

[23] Michael Waskom. Seaborn.heatmap. https://seaborn.pydata.org/

generated/seaborn.heatmap.html.

32

Appendix A

Evaluation scores

Class Precision Recall F(1) Score

Society 0.50 0.70 0.58

Arts 0.52 0.70 0.59

Business 0.43 0.64 0.51

Recreation 0.62 0.37 0.47

Computers 0.68 0.46 0.55

Science 0.67 0.44 0.53

Sports 0.77 0.49 0.60

Shopping 0.60 0.36 0.45

Reference 0.58 0.28 0.38

Health 0.73 0.38 0.50

Games 0.83 0.36 0.50

Home 0.72 0.31 0.43

News 0.67 0.16 0.25

Table A.1: Evaluation scores Classifier I

33

Label Class Precision Recall F(1) Score

0 Society/Religion and Spirituality 0.26 0.81 0.40

1 Arts/Music 0.26 0.69 0.37

2 Reference/Education 0.30 0.46 0.36

3 Arts/Movies 0.61 0.47 0.53

4 Computers/Software 0.32 0.45 0.37

5 Science/Biology 0.69 0.67 0.68

6 Games/Video Games 0.53 0.51 0.52

7 Arts/Literature 0.60 0.41 0.49

8 Society/Law 0.48 0.55 0.51

9 Arts/Performing Arts 0.37 0.24 0.29
...

134 Games/Gambling 0.69 0.34 0.45

135 Home/Consumer Information 0.56 0.10 0.16

136 Recreation/Living History 0.69 0.27 0.38

137 Society/Military 0.38 0.74 0.12

138 Business/Aerospace and Defense 0.08 0.01 0.01

139 Society/Government 0.39 0.08 0.13

140 Business/Environment 0.65 0.10 0.17

141 Business/Materials 0.13 0.01 0.02

142 Shopping/Toys and Games 0.08 0.01 0.01

143 Business/Real Estate 0.64 0.13 0.21
...

267 Sports/Squash 0.88 0.24 0.38

268 Health/Senses 0.0 0.0 0.0

269 Society/Future 0.0 0.0 0.0

270 Sports/Darts 0.5 0.07 0.12

271 Games/Conventions 0.0 0.0 0.0

272 Computers/Artificial Life 0.33 0.05 0.08

273 Arts/Digital 0.0 0.0 0.0

274 Shopping/Weddings 0.0 0.0 0.0

275 Business/News and Media 0.0 0.0 0.0

276 Sports/Badminton 0.5 0.10 0.16

Table A.2: Evaluation scores first, middle and last 10 classes Classifier II

34

Class Precision Recall F(1) Score

Society/Religion and Spirituality 0.42 0.75 0.54

Recreation 0.35 0.55 0.43

Computers 0.50 0.59 0.54

Business 0.29 0.49 0.37

Science 0.49 0.56 0.53

Sports 0.59 0.56 0.58

Shopping 0.40 0.50 0.44

Arts/Music 0.69 0.43 0.53

Arts 0.43 0.26 0.32

Reference 0.52 0.31 0.39

Health 0.64 0.41 0.50

Society 0.55 0.28 0.37

Games 0.30 0.48 0.37

Arts/Movies 0.65 0.65 0.65

Arts/Literature 0.60 0.39 0.47

Home 0.64 0.30 0.41

Society/Law 0.75 0.42 0.54

Arts/Performing Arts 0.63 0.10 0.18

Business/Construction and Maintenance 0.45 0.11 0.18

Business/Industrial Goods and Services 0.52 0.17 0.26

Business/Arts and Entertainment 0.53 0.10 0.17

Business/Business Services 0.22 0.05 0.08

Business/Consumer Goods and Services 0.11 0.01 0.02

Arts/Visual Arts 0.55 0.05 0.09

Society/Issues 0.51 0.18 0.26

Society/People 0.13 0.03 0.04

Business/Textiles and Nonwovens 0.44 0.13 0.20

Society/History 0.55 0.28 0.37

Society/Organizations 0.74 0.13 0.23

News 0.18 0.19 0.18

Table A.3: Evaluation scores Classifier III

35

Appendix B

Confusion matrices

Figure B.1: Confusion matrix for Classifier I with 13 labels

Figure B.2: Normalised confusion matrix for Classifier I with 13 labels

36

F
ig

u
re

B
.3

:
N

or
m

al
is

ed
co

n
fu

si
on

m
at

ri
x

fo
r

C
la

ss
ifi

er
II

w
it

h
27

7
la

b
el

s

37

F
ig

u
re

B
.4

:
C

on
fu

si
on

m
at

ri
x

fo
r

C
la

ss
ifi

er
II

I
w

it
h

30
la

b
el

s

38

F
ig

u
re

B
.5

:
N

or
m

al
is

ed
co

n
fu

si
on

m
at

ri
x

fo
r

C
la

ss
ifi

er
II

I
w

it
h

30
la

b
el

s

39

Appendix C

Code examples

For the Zeppelin Notebooks and full Python code, we refer to our GitHub
repository. [11]

import os

import re

import pandas as pd

from pydrive.auth import GoogleAuth

from pydrive.drive import GoogleDrive

from google.colab import auth

from oauth2client.client import GoogleCredentials

Give permission to Google drive

auth.authenticate_user()

gauth = GoogleAuth()

gauth.credentials = GoogleCredentials.get_application_default()

drive = GoogleDrive(gauth)

Make sure the content.rdf.u8 file is in your google drive.

The ID is part of the link to the file (click on retrieve link)

id = "INSERT_ID_HERE"

downloaded = drive.CreateFile({'id':id})

downloaded.GetContentFile('content.rdf.u8')

df = pd.DataFrame(columns=['maincategory','categories', 'url', 'title'])

with open('content.rdf.u8', 'r') as contents:

lines = contents.read().split("</ExternalPage>")

topics_mainlist = []

topics_list = []

titles_list = []

urls_list = []

lines = [str(line) for line in lines]

for line in lines:

titles = re.findall('<d:Title>(.+)</d:Title>', line)

urls = re.findall('<ExternalPage about="(.+)">', line)

40

topics = re.findall('<topic>(.+)</topic>', line)

if titles and urls and topics:

topics_mainlist.append(topics[0].split('/')[1])

topics_list.append(topics[0])

titles_list.append(titles[0])

urls_list.append(urls[0])

del lines

del titles

del urls

del topics

df.maincategory = topics_mainlist

df.categories = topics_list

df.url = urls_list

df.title = titles_list

df = df.drop(df[df.maincategory == 'World'].index)

df = df.drop(df[df.maincategory == 'Regional'].index)

from google.colab import drive

drive.mount('drive')

df.to_csv('urls.csv')

!cp urls.csv "drive/My Drive/"

Example code 1: Python code that was used in Google Colab to obtain the
DMOZ data from content.rdf.u8

val urls = s"hdfs:/user/lisa/urls.csv"

val dfU = spark.read.option("header",true).option("inferSchema",true).csv(urls)

dfU.createGlobalTempView("odp")

val df = spark.read

.option("mergeSchema", "true")

.option("enable.summary-metadata", "false")

.option("enable.dictionary", "true")

.option("filterPushdown", "true")

.parquet("s3://commoncrawl/cc-index/table/cc-main/warc/crawl=CC-MAIN-2017-04/"

+ "subset=warc/")

.drop("url_host_name","url_host_tld", "url_host_2nd_last_part",

"url_host_3rd_last_part", "url_host_4th_last_part", "url_host_5th_last_part",

"url_host_registry_suffix","url_host_registered_domain", "url_host_private_suffix",

"url_host_private_domain", "url_protocol", "url_port", "url_path", "url_query",

"fetch_time", "fetch_status", "content_digest", "content_mime_type",

"content_mime_detected","warc_segment")

df.createGlobalTempView("cc")

val joinDF = spark.sql("SELECT maincategory, categories, title, c.url, " +

"warc_filename, warc_record_offset, warc_record_length FROM " +

"global_temp.odp o INNER JOIN global_temp.cc c WHERE o.url == c.url").cache()

41

joinDF = joinDF.dropDuplicates("url")

joinDF.write.format("csv").option("header",true).mode("overwrite")

.option("sep", ",").save(s"hdfs:/user/lisa/join.csv")

Example code 2: Basic Scala code example of executing the JOIN

def get_content(filename, offset, length):

import zlib, requests

from bs4 import BeautifulSoup

url = "https://commoncrawl.s3.amazonaws.com/"+filename

r = requests.get(url, headers={'Range': 'bytes={}-{}'

.format(offset, offset+length-1)})

Here we need to do a try-except block

try:

data = zlib.decompress(r.content, wbits = zlib.MAX_WBITS | 16)

html = data.decode('utf-8',errors='ignore')

soup = BeautifulSoup(html, 'lxml')

content = soup.get_text()

except zlib.error:

content = 'Decompression error; invalid/incomplete request response'

try:

warc, header, response = content.strip().split('\r\n\r\n', 2)

return response

except:

return ""

Example code 3: Python function for getting the Web page’s content

def clean_text(text, remove_stopwords = True):

import re

import nltk

from nltk.corpus import stopwords

from nltk.stem import WordNetLemmatizer

nltk.data.path.append('./nltk_data')

Convert words to lower case

text = text.lower()

Remove whitespaces

text = text.strip()

Replace contractions with their longer forms

if True:

text = text.split()

new_text = []

for word in text:

if word in contractions:

new_text.append(contractions[word])

else:

new_text.append(word)

42

text = " ".join(new_text)

Format words and remove unwanted characters

text = re.sub(r'https?:\/\/.*[\r\n]*', '', text, flags=re.MULTILINE)

text = re.sub(r'\<a href', ' ', text)

text = re.sub(r'&', '', text)

text = re.sub(r'[_"\-;%()|+&=*%.,!?:#$@\[\]/]', ' ', text)

text = re.sub(r'
', ' ', text)

text = re.sub(r'\'', ' ', text)

text = re.sub(r'[^\x00-\x7F]+',' ', text)

Remove stop words and non-English words

if remove_stopwords:

text = text.split()

words = set(nltk.corpus.words.words())

stops = set(stopwords.words("english"))

text = [w for w in text if not w in stops]

#text = [w for w in text if w in words and not w in stops]

text = " ".join(text)

Tokenize each word

word_list = nltk.WordPunctTokenizer().tokenize(text)

Lemmatize each word and put back in one string

lemm = nltk.stem.WordNetLemmatizer()

lemmatized_output = ' '.join([lemm.lemmatize(w) for w in word_list])

Return cleaned text

return lemmatized_output

Example code 4: Adjusted Python function for cleaning the Web content,
original version written by Ismiguzel [14]

%pyspark

from pyspark.ml import Pipeline, PipelineModel

from pyspark.ml.classification import LogisticRegression

from pyspark.ml.feature import HashingTF, Tokenizer, StringIndexer, IndexToString

from pyspark.ml.feature import StringIndexerModel

from pyspark.mllib.evaluation import MulticlassMetrics

from pyspark.sql.functions import col

spark.sql("DROP TABLE IF EXISTS cccc")

spark.sql(

"CREATE TABLE cccc(categories STRING, title STRING, url STRING, " +

"cleaned_content STRING, maincategory STRING) USING parquet PARTITIONED " +

"BY(maincategory) CLUSTERED BY(categories) INTO 12 BUCKETS " +

"LOCATION 'hdfs:/user/arjen/cccc'"

)

spark.sql("MSCK REPAIR TABLE cccc")

df = spark.table("CCCC")

Transform the categories to numeric labels

indexer = StringIndexer(inputCol="maincategory", outputCol="label",

handleInvalid="keep")

43

trainpl = Pipeline(stages=[indexer])

indexermodel = trainpl.fit(df)

d = indexermodel.transform(df)

Split data in training and test data

splits = d.randomSplit([0.75, 0.25], 24)

trainDF = splits[0]

testDF = splits[1]

Configure an ML pipeline

tokenizer = Tokenizer(inputCol="cleaned_content", outputCol="words")

hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(), outputCol="features")

lr = LogisticRegression(maxIter=10, regParam=0.001)

pipeline = Pipeline(stages=[tokenizer, hashingTF, lr])

Fit the pipeline to training documents.

model = pipeline.fit(trainDF)

Make predictions on test documents.

testSet = model.transform(testDF)

Convert the numeric labels back to the categories

labels = (indexermodel.stages[0]).labels

converter = IndexToString(inputCol="prediction", outputCol="predicted_category",

labels=labels)

converted = converter.transform(testSet)

Start evaluation

predictionAndLabels = testSet.select(col("prediction"),col("label")).rdd

metrics = MulticlassMetrics(predictionAndLabels)

Overall statistics

precision = metrics.precision()

recall = metrics.recall()

f1Score = metrics.fMeasure()

print("Precision = %s" % precision)

print("Recall = %s" % recall)

print("F1 Score = %s" % f1Score)

Statistics by class

classes = d.select("label").rdd.flatMap(lambda x:x).distinct().collect()

for label in sorted(classes):

print("Class %s precision = %s" % (dict.get(label), metrics

.precision(label)))

print("Class %s recall = %s" % (dict.get(label), metrics.recall(label)))

print("Class %s F1 Measure = %s" % (dict.get(label), metrics

.fMeasure(label, beta=1.0)))

Weighted stats

print("Weighted recall = %s" % metrics.weightedRecall)

print("Weighted precision = %s" % metrics.weightedPrecision)

print("Weighted F(1) Score = %s" % metrics.weightedFMeasure())

Confusion matrix

44

confusionMatrix = metrics.confusionMatrix()

Example code 5: General code example for training, testing and evaluating
the three classifiers

45

