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Abstract

This thesis proposes a protocol that describes the interaction between a
user and a service provider during authentication. The protocol relies on
persistent storage of an elliptic curve private key in the Indexed Database
API (IndexedDB), such that the private key cannot be extracted from the
IndexedDB. Ownership of this private key can be proven using the elliptic
curve digital signature algorithm (ECDSA), as a consequence the private
key can be used as a factor during two-factor authentication (2FA). By pro-
viding this additional factor during authentication, we seek to overcome the
insecurity of traditional text-based passwords. This insecurity is primarily
caused by the tendency users have to reuse their passwords. We therefore
seek to minimize the negative consequences of password reuse by providing
an extra factor during authentication. The protocol relies on the IndexedDB
to store the private key in a persistent and non-extractable manner. Imple-
menting the protocol has shown that private key, stored in the IndexedDB,
can be extracted from the IndexedDB. An alternative for the IndexedDB
has to be found, since we conclude the security of the IndexedDB to be
insufficient for persistent storage of a private key.



Contents

1 Introduction 3
1.1 2FA Using the Browser . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Password Reuse . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Password Managers . . . . . . . . . . . . . . . . . . . 5
1.2.3 Two-Factor Authentication . . . . . . . . . . . . . . . 5
1.2.4 2FA and the One-Time Password . . . . . . . . . . . . 6

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Preliminaries 7
2.1 Elliptic Curves . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Security of ECC . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Elliptic Curve Key Pair . . . . . . . . . . . . . . . . . 9

2.2 Security Strength . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Hash Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Digital Signature Algorithms . . . . . . . . . . . . . . . . . . 10

2.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.2 Hash Function . . . . . . . . . . . . . . . . . . . . . . 11
2.4.3 RSA Digital Signature Algorithm . . . . . . . . . . . . 12
2.4.4 Elliptic Curve Digital Signature Algorithm . . . . . . 13
2.4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Selection of Elliptic Curve and Hash Function . . . . . . . . . 14
2.5.1 Elliptic Curve Security Strength . . . . . . . . . . . . 14
2.5.2 Hash Function Security Strength . . . . . . . . . . . . 15
2.5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.7 Web Cryptography API . . . . . . . . . . . . . . . . . . . . . 16

2.7.1 Generating a Key Pair . . . . . . . . . . . . . . . . . . 16
2.7.2 Proving Ownership . . . . . . . . . . . . . . . . . . . . 17

2.8 Indexed Database API 2.0 . . . . . . . . . . . . . . . . . . . . 18
2.8.1 Database Object . . . . . . . . . . . . . . . . . . . . . 18
2.8.2 Object Store . . . . . . . . . . . . . . . . . . . . . . . 19
2.8.3 Transaction . . . . . . . . . . . . . . . . . . . . . . . . 19

1



2.8.4 Storing and Retrieving a Key Pair . . . . . . . . . . . 20
2.8.5 Security Considerations . . . . . . . . . . . . . . . . . 21

3 Proposed Protocol 22
3.1 The Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Network Diagram . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 Authentication Protocol . . . . . . . . . . . . . . . . . 25
3.1.3 Multiple Browser Support . . . . . . . . . . . . . . . . 26

3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 IndexedDB Files . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 LevelDB . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Application Vulnerability Assessment . . . . . . . . . . . . . . 29

3.4.1 Bypassing . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.2 Tampering . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.3 Direct Attacks . . . . . . . . . . . . . . . . . . . . . . 31
3.4.4 Monitoring . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.5 Misuse . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5.1 LevelDB . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5.2 Persistence of the IndexedDB . . . . . . . . . . . . . . 32
3.5.3 Private Browsing . . . . . . . . . . . . . . . . . . . . . 33
3.5.4 Shared Browsers . . . . . . . . . . . . . . . . . . . . . 33

3.6 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Conclusions 34
4.1 Further Research . . . . . . . . . . . . . . . . . . . . . . . . . 34

A Implementations 39

B Proofs 50

2



Chapter 1

Introduction

Strong authentication is needed in order to provide access to sensitive data.
Financial services, health-care patient records, or online government are ex-
amples of use-cases that require strong authentication. At first single-factor
authentication (SFA) was mostly adopted by the community due to its sim-
plicity and user friendliness [25]. Common examples of SFA include the
text-based password, and the PIN. However, passwords are the root cause
of over 80% of data breaches [4]. One of the reasons for passwords being
the root cause of data breaches is password reuse, meaning that users tend
to use identical or nearly identical passwords at different service providers.
Password reuse introduces a security vulnerability as an attacker who is able
to compromise the password used at one service, can compromise other ser-
vices protected by the same password, reducing overall security to that of
the weakest site [13].

In order to raise the bar for an attacker, a logic step forward was the
introduction of two-factor authentication (2FA). 2FA uses two distinct or
identical factors to connect an individual with the established credentials.
We identify three factors that can also be used as evidence for proving your
identity [25]:

1. Knowledge factor — something the user knows,
such as passwords or, simply, a “secret”.

2. Ownership factor — something the user has,
such as cards, smartphones, or other tokens.

3. Biometric factor — something the user is,
such as biometric data or behavior patterns.
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1.1 2FA Using the Browser

Even though 2FA raises the bar for an attacker, it is still questionable if
2FA can be realistically adopted by the majority of Internet users [26]. In
this thesis we propose a protocol for 2FA that entirely runs in the browser.
The idea is that the first knowledge factor is supplied by the user by using
a regular username-password verification protocol. The second ownership
factor is supplied by the user’s browser by using our protocol. The protocol
associates a private key with a specific browser, and thus with a specific
user.

The second ownership factor is based on the ownership of a private key.
Each private key is mathematically associated with a public key. The com-
bination of a public and private key is called a key pair. Properly gen-
erating, storing, and proving ownership of a key pair is achieved in the
browser using JavaScript. This means that no additional software, besides
a browser, has to be installed in order to use our protocol. Generating a
key pair, and subsequently proving ownership over this key pair, is done
using the World Wide Web Consortium (W3C) recommended JavaScript
interface Web Cryptography API. Proving ownership over the key pair, in
particular the private key, is done by using the elliptic curve digital sig-
nature algorithm (ECDSA) in combination a challenge-response protocol.
The ECDSA is used in accordance with the current recommendations made
by the National Institute of Standards and Technology (NIST). The Web
Cryptography API expects users to store their key material in the Indexed
Database API 2.0 (IndexedDB), which is also recommended by the W3C.
In this thesis we make the following contributions:

• We propose a protocol that full encapsulates the use of a second factor
in the browser. The Web Cryptography API and Indexed Database
API 2.0 will be used to achieve this.

• A proof-of-concept of our protocol will be given. The user side is
implemented in JavaScript, while the service provider side is simulated
using Python.

• A vulnerability assessment of our protocol is performed, which has
identified the IndexedDB to be insufficiently secure to store a private
key such that it can be used as an ownership factor in our protocol.

• We will make our own recommendations on the possibilities of deploy-
ing the protocol in the field.
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1.2 Related Work

In this section we will discuss previous research on the risk of passwords
reuse, and password managers that are designed to reduce this risk. Further-
more we will discuss previous research on current two-factor authentication
methods.

1.2.1 Password Reuse

One of the pitfalls of user authentication with service providers is the text-
based password. Users are estimated to have about 25 different online ac-
counts, these accounts are likely to be protected by reused passwords [13].
To overcome this, and to prevent the use of easily guessable passwords, web-
sites can put so-called password composition policies in place. These policies
enforce the use of for example special characters, numbers, and capitalized
letters in a password. However, cross-site password-guessing algorithms exist
which are able to slightly transform passwords. Because of these transforma-
tions, these algorithms have up to 20-30% higher success rate in comparison
to traditional cross-site password-guessing algorithms [13, 33].

1.2.2 Password Managers

Password managers are designed to overcome the need to reuse passwords
by generating strong passwords that are resistant to dictionary attacks.
These stronger passwords are generated uniquely for each service provider,
and are protected by an easy to remember user-chosen password. Different
types of password managers exist, stand-alone applications, browser plug-
ins, browser scripts and bookmarklets. It has however been found that the
use of password managers does not come without problems [7].

1.2.3 Two-Factor Authentication

Two-factor authentication was designed to offer enhanced protection during
the authentication process. Adding an extra factor during authentication
adds extra security to an account. There are numerous ways to achieve two-
factor authentication, but still research has shown that some people find it
difficult or time consuming to use and set-up 2FA [3, 27]. Also due to the
extra steps a user has to complete in order to authenticate to an service
provider, 2FA has become unpopular.

Currently the FIDO Alliance [4] is working on a simpler and stronger au-
thentication process. One of the ways attempt to achieve this is using both
embedded and external authenticators. Examples of embedded authentica-
tors are biometrics and PIN codes, and examples of external authenticators
include the FIDO Security Key (USB device that can perform public key
cryptography), mobile devices and wearables.
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1.2.4 2FA and the One-Time Password

The one-time password (OTP) can be used as 2FA in many different ways by
a service provider to authenticate a user. The OTP was initially introduced
by Leslie Lamport [20], and is based on the preimage resistance of hash
functions. A well-known example of an OTP is SMS verification, in which
a service provider sends the user an OTP to their phone using SMS. This
OTP can then be used to authenticate the user. In 2011 an authentication
protocol was presented which extends on the initial OTP as introduced by
Lamport [14]. In theory, both presented protocols could be implemented in
the browser using JavaScript, however no research is performed on how to
properly store the secrets that are needed for both OTP protocols in the
browser.

1.3 Outline

In Chapter 2 this thesis starts with an introduction on some cryptographic
principles such as elliptic curves, security strength, digital signature algo-
rithms and hash functions. This introduction is followed by a brief overview
on the Web Cryptography API and the Indexed Database API 2.0, which are
used in JavaScript. Thereafter in the Chapter 3 the protocol is defined and
implemented. Subsequently, we investigate the underlying storage mech-
anism of the IndexedDB, and perform an application vulnerability assess-
ment. Chapter 3 ends with a discussion on the limitations, and subsequently
the recommendations we have identified for the our protocol. In Chapter 4
we draw our conclusions and address potential avenues for further research.
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Chapter 2

Preliminaries

This chapter starts with the cryptographic background on which our proto-
col relies. This is done by an introduction on elliptic curves in Section 2.1,
followed by a definition of security strength in Section 2.2. Hash functions
and digital signature algorithms are introduced in Section 2.3 and in Sec-
tion 2.4 respectively. The previously described sections come together to
decide on which digital signature algorithm will be used in our protocol
in Section 2.5. The two JavaScript libraries on which our protocol relies
are introduced in Section 2.7 and in Section 2.8. Before we will discuss
these libraries individually, we briefly describe the how modern websites use
JavaScript in Section 2.6.

2.1 Elliptic Curves

Elliptic curve cryptography (ECC) was proposed independently by Neal
Koblitz [19] and Victor Miller [23] in 1985. ECC is based on computations
using points on an elliptic curve (EC). These computation are performed
using different domain parameters, which are introduced below.

• p, denotes a large prime number that limits the number of points on
the EC. The EC is defined over a finite field, denoted Fp. A finite
field can be seen as a set that contains a finite number of elements.
Using these number we define how operations such as addition and
multiplication should be performed. These operations are performed
modulo p.

• a & b, two integers that define the shape of the EC, and example of an
EC is the (short) Weierstrass form: y2 = x3 + a + b. Different values
for a and b will change the shape of the EC, an example curve using
a = −3 and b = 3 has been given in Figure 2.1.

• G, a base point on the EC that is also known as a generator of the
subgroup. The subgroup contains a number of points on the EC.
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• n, the smallest positive number such that n × G equals the point at
infinity. n is also said to be the order of the group, or the number of
elements in a specific group.

• h, also known as the cofactor. h is defined as h = n/r, where r is the
order of the subgroup and n is the order of the curve. In the case that
n = r, and thus h = 1, we have a subgroup of which the order is equal
to the order of the curve. This means that points generated by the
generator are equal to all the points on the curve.

Figure 2.1: Part of the elliptic curve y2 = x3 − 3x+ 3

2.1.1 Security of ECC

The security of elliptic curve based cryptographic algorithms is based on
the elliptic curve discrete logarithm problem (ECDLP). ECDLP states that
given an elliptic curve E defined over a finite field Fp, a point P on E of
order n, and a point Q that is a multiple of P such that Q 6= P , one has to
find an integer x ∈ [0, n − 1] such that Q = xP [22]. It is considered to be
hard to find x given points P and Q. However, given x and P , it is trivial
to compute Q.
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2.1.2 Elliptic Curve Key Pair

An EC key pair consists of a private key pk, which is represented as an
integer and a public key P which is a point on the curve. We derive the
pubic key from the private key by computing P = pkG. Computing the
private key, given points P and G is considered to be hard, because of the
previously described ECDLP.

2.2 Security Strength

The security strength is expressed in bits, and represents a number that
is associated with the amount of work (that is, the number of operations)
that is required to break a cryptographic algorithm or system. Over time,
cryptographic algorithms and their associated key lengths may become more
vulnerable to successful attacks, requiring a transition to stronger algorithms
or longer key lengths [5]. In other words, the higher the security strength,
the stronger the cryptographic algorithm or system and the more likely it is
to stay resilient against attacks in the future.

2.3 Hash Functions

A hash function is a function that takes a message of arbitrary length as
an input and gives a fixed-length message as an output, the output is also
known as the digest of the hash function. In other words, a hash function f is
a function that takes a message x, and gives a digest y. The hash function f
is said to be deterministic, that is computing f(x) multiple times will always
result in the same digest. It is therefore also said that a hash function is a
mapping from a message to a digest. Different types of hash functions exist,
their difference being most notable in their security strength and the length
of their digest. We identify three different attacks, and thus three different
attacks to which a hash function can be resistant to. Their definitions as
presented below are in accordance with the NIST definitions [31].

1. Preimage resistance.
Preimage resistance is an expected property of a cryptographic hash
function such that, given a randomly chosen message digest, mes-
sage digest, it is computationally infeasible to find a preimage of the
message digest. In other words, given y it is difficult to find an x such
that f(x) = y.

2. Second preimage resistance.
Second preimage resistance is an expected property of a cryptographic
hash function whereby it is computationally infeasible to find a second
preimage of a known message digest. In other words, given x it is
difficult to find an x′ such that x′ 6= x and f(x) = f(x′).
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3. Collision resistance.
An expected property of a cryptographic hash function whereby it is
computationally infeasible to find a collision. In other words, it is
difficult to find both x and x′ such that x′ 6= x and f(x) = f(x′).

2.4 Digital Signature Algorithms

This thesis relies on a technique that is able to provide proof of ownership
of a private key. This proof can be provided by using a digital signature
algorithm in combination with a challenge. How a digital signature algo-
rithm is incorporated in our protocol can be found in Chapter 3. In this
section we will focus on two digital signature algorithms that are standard-
ized by NIST [30]. We will do so by giving a general overview of the two
digital signature algorithms, and demonstrate the intuition on how these
algorithms operate in Section 2.4.1 and Section 2.4.2. In Section 2.4.3 and
Section 2.4.4 the two digital signature algorithm will be introduced, after
which we discuss which of the two algorithms is best suited for our protocol
in Section 2.4.5.

2.4.1 Introduction

We continue to discuss two different signature verification algorithms that
are approved by NIST [30]. These two digital signature algorithms rely on
asymmetric cryptography. That is, the user generating a signature has own-
ership over a private key, and an associated public key. The combination
of the public and private key is called a key pair. Each public key is asso-
ciated with exactly one private key and vice versa. As the names suggest,
the private key is to be kept private at all times, while the public key is
meant to be shared. When using a digital signature algorithm, a signature
is computed over a message and a private key. By doing so, one can provide
evidence that it owns its own private key corresponding to its public key. It
can therefore be used as a factor. However, one cannot simply send its own
private key. This is because we seek to link the ownership of a private key
with the identity of a user. Simply “showing” your private key makes it very
vulnerable to be stolen. We will therefore use a digital signature algorithm.

Both signature generation algorithms consist of two phases:

1. Signature generation, in which a digital signature is computed over a
message and a private key.

2. Signature verification, in which it is determined whether the combi-
nation of signature, public key and message is valid. In other words,
it is verified whether the signature is correctly computed using both
the message and the private key that is associated with the expected
public key.
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These two phases are graphically represented in Figure 2.2. The result of the
signature verification will be used to determine whether the user actually
owns the correct private key, without ever revealing said key.

Figure 2.2: Signature generation and verification.

2.4.2 Hash Function

In Figure 2.2 we saw how the message is directly supplied to both the sig-
nature generation and verification functions. In reality we first need to
compute the hash of the message, and provide the digest to both the signa-
ture generation and verification functions. Thus, we generate the signature
over the digest and also verify the signature using the digest of the same
message. An updated illustration that represents this concept is given in
Figure 2.3. The reason of adding this extra layer of complexity is mainly
due to an attack called digital signature forgery which will be discussed in
the next paragraph.

Figure 2.3: Signature generation and verification using a hash function.

Digital Signature Forgery

A hash function is able to transform a message of variable length into a
digest of fixed length. In order to understand the importance of this trans-
formation, we need to have a closer look at how digital signature algorithms
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interpret the digest of a message during signature generation. Digital signa-
ture algorithms do not accept a variable length message, instead they will
only look at the n left most bits of the provided digest. Not applying a
secure hash function before generating a signature will result in an attack
being able to perform a digital signature forgery, and thus compromising the
overall security of the used digital signature algorithm. A digital signature
forgery is the ability to generate a signature for a message, without know-
ing the private key and thus without using the regular signature generation
function. A proof that we can indeed create a forgery knowing only the
message and corresponding signature, given that there is no hash function
in place, has been in given in Figure B.1.

Digital signature forgery is the reason to use a hash function before
signature generation. In the case that a hash function is present, it has
to provide collision resistance in order to prevent the ability of creating a
digital signature forgery as described in the previous paragraph. Otherwise,
two different messages that result in the same digest will also have the same
signature and thus it becomes feasible to create a digital signature forgery.

Besides collision resistance a hash function should also offer second preim-
age resistance. This property is of importance for the same reason as why
collision resistance is important. It should be noted that when a hash func-
tion is collision resistant, it implies that this hash function is also second
preimage resistant.

2.4.3 RSA Digital Signature Algorithm

RSA is an acronym of the surnames of Ron Rivest, Adi Shamir and Leonard
Adleman, who first described RSA in 1977 [28]. RSA is based on the so-
called prime factorisation problem, which states that given two large prime
numbers p and q it is hard to derive both p and q from n such that n = p · q.

Key Pair Generation

We present the following steps to generate a RSA key pair, some details in
these steps are omitted to make the example clearer. The key pair can then
used to generate and subsequently verify signatures using RSA:

1. Generate two distinct prime integers p and q.

2. Compute n such that n = p · q.

3. Compute Carmichael’s totient function for n, λ(n). Since n = p · q
we can rewrite λ(n) in terms of the least common multiple of p and
q, so λ(n) = lcm(λ(p), λ(q)). Because both p and q are prime we can
further derive this expression to λ(n) = lcm(p− 1, q − 1).
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4. Choose an integer e such that 1 < e < λ(n). This e has to be coprime
to λ(n). Which means that the greatest common divisor of both e and
λ(n) has to be 1, thus gcd(e, λ(n)) = 1.

5. Compute d, such that d ≡ e−1 (mod λ(n)).

After completing these steps we have generated a public key which con-
sists of the tuple (n, e) and is corresponding private key which consists of
the tuple (d, e).

Signature Generation & Verification

Using the generated key pair from the previous section, we can now generate
the signature of a message m. In order to generate a signature we first
compute the digest h of m using a hash function H, so h = H(m). The
signature s can then be computed using the private key such that s =
hd (mod n). Subsequently verifying this signature can be done using the
corresponding public key, so we verify that se ≡ h (mod n). These two
will be equal if the correct private and public key pair are used, because
se = (hd)e = hde ≡ h (mod n).

2.4.4 Elliptic Curve Digital Signature Algorithm

Having discussed the basic principles and key pair generation of EC in Sec-
tion 2.1, we describe the signature generation and verification of the elliptic
curve digital signature algorithm (ECDSA) in this section.

Signature Generation & Verification

The domain parameters used in this section are introduced in Section 2.1.
In order to generate a signature we take the following steps:

1. First compute the digest h of m using a hash function H, so h = H(m).

2. Subsequently generate a random k such that 1 < k < (n − 1), where
n is the order of G.

3. Compute (x, y) = k ×G.

4. Compute r = x (mod n). If r is equal to zero, we go back to step 2
and select a new k.

5. Compute s = k−1(h+r ·pk) (mod n). If s is equal to zero, we go back
to step 2 and select a new k.

We now have the signature, which is the tuple (r, s). Subsequently veri-
fying the generated signature can be done by taking the following steps:
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1. Compute the digest h of m using the same hash function H, so h =
H(m).

2. Compute (x, y) = (h · s−1) ·G+ (r · s−1) · P .

3. The signature is valid if r equals x, and invalid otherwise.

2.4.5 Discussion

We decided to use ECDSA in our protocol at the expense of RSA, because for
the same key length ECDSA achieves a higher security strength compared
to RSA [5]. Besides a shorter key length which will reduce storage overhead
on storage limited devices, the length of a signature generated using ECDSA
is shorter compared to the length of a signature generated using RSA for
the same security strength. The advantage of shorter signatures is that less
data has to be send over the network.

2.5 Selection of Elliptic Curve and Hash Function

In this section we discuss which hash function should be used in which situ-
ation. Our protocol uses the Web Cryptography API, this API will among
other things be used to generate signatures. The ECDSA requires us to spec-
ify both an elliptic curve and a hash function in order to generate signatures.
The Web Cryptography API supports the following elliptic curves: P-256,
P-384, and P-521. Furthermore, the Web Cryptography API supports the
following four hash functions: SHA-1, SHA-256, SHA-384, and SHA-512.
The choice of hash function largely depends on the security strength of the
hash function in relation to the security strength of the chosen elliptic curve.
In this section we will discuss the security strength of both the supported
elliptic curves and the supported hash functions individually, followed by
a discussion on which elliptic curve and hash function will be used in our
protocol.

2.5.1 Elliptic Curve Security Strength

The security strength of the available curves has been standardized by
NIST [32], and is defined to be about n/2. In Section 2.1 n was introduced
as the order of the base point G. The curves P-256, P-384, and P-521 have
an order of 256, 384 and 521 bits respectively, hence their naming. In accor-
dance with the NIST specification, curve P-256 has a security strength of
128 bits, P-384 has a security strength of 192 bits, and P-521 has a security
strength of 256 bits [5].
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2.5.2 Hash Function Security Strength

The security strength of a hash function is determined depending on its
required properties. In Section 2.4.2 we have stated that the hash function
used in our protocol has to be both collision resistant and second preimage
resistant. A hash function that is collision resistant implies that this function
is also second preimage resistant. Thus, the security strength of our hash
function depends on the expected collision resistance of said function. The
expected collision resistance strength of a hash function is half the length of
the digest, i.e., for a L-bit hash function, the expected security strength for
collision resistance is about L/2 bits [12].

2.5.3 Discussion

Now that we have defined the basis of the expected security strength of the
available elliptic curves and hash functions, we can determine the actual
expected security strength. This is represented in Table 2.1.

Security

Strength

Hash Function used

for Digital Signatures

ECDSA

Curve

≤ 80 SHA-1

128 SHA-256 P-256

192 SHA-384 P-384

256 SHA-512 P-521

Table 2.1: Security strength of the supported hash functions and curves.

In our protocol we decided to use the SHA-512 hash function in com-
bination with the P-521 curve. The main reason for this choice is future
use. Our protocol relies on storing a private key. Since this key will be used
during future login attempts, we wish our protocol to not only be secure
right now, but also in the foreseeable future. NIST recommends that a se-
curity strength of 128 bits is acceptable for the year 2031 and beyond [5].
However, the higher the security strength of the cryptographic algorithms
our protocol relies on, the longer our protocol is expected to remain secure.
We therefore opted for the highest security strength that is available to us,
which is the SHA-512 hash function in combination with the P-521 elliptic
curve.

2.6 JavaScript

In Section 2.7 and Section 2.8 the two required JavaScript interfaces will be
introduced. JavaScript is a programming language that allows a web-page
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to have additional functionalities beyond what is possible with HTML and
CSS. HyperText Markup Language (HTML) and Cascading Style Sheets
(CSS) are two typically used languages to define the appearances of a web-
site. Typically the JavaScript is defined in a file with the .js suffix, where
HTML and CSS typically have the .html and .css suffix respectively. These
three files combined form a website.
We will first introduce the Web Cryptography API, on which the our pro-
tocol relies for ECDSA signature generation and EC key pair generation.
Our protocol uses the Indexed Database API to handle the storage of the
generated key pair.

2.7 Web Cryptography API

In order to perform ECDSA in the browser, we need to find a reliable im-
plementation that is able to perform two operations. Firstly it has to be
able to generate EC key pairs, secondly it should also be able to perform the
previously discussed ECDSA signature generation and verification. These
two operations should furthermore be fully supported in JavaScript. Such
an implementation is provided by the Web Cryptography API, which has
been recommended by the W3C since January 2017 [9]. A consequence of
this recommendation is that the Web Cryptography API is currently com-
patible with all major browsers [10]. In this section we will provide coding
examples on how to generate an EC key pair, and how to perform ECDSA
signature generation and verification using the generated key pair.

2.7.1 Generating a Key Pair

Using the Web Cryptography API we can generate an EC key pair using
the function generateKey, which has three arguments. First it takes an
EcKeyGenParams object which specifies the type of the key pair. The type
of a key pair consists of a name, in our case ECDSA, and the name of the
elliptic curve to use which in our case is P-521. The second argument of
the function generateKey is a boolean, which determines whether or not
the private key is extractable. That is, can the private key ever be revealed
from the key pair, or can it only be used for certain computations. Which
kind of computations are allowed to use the key pair is determined by the
third argument of the function generateKey. The argument takes a String
array which contains either or both the strings sign and verify, which
indicate that the key pair can be used to both perform signature generation
and signature verification respectively. In Figure 2.4 a key pair is generated
that is able to both sign and verify signatures.
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1 window . crypto . sub t l e . generateKey (
2 {
3 name : "ECDSA" ,
4 namedCurve : "P-521" ,
5 } ,
6 ex t rac tab l e ,
7 [ "sign" , "verify" ]
8 )
9 . then ( keyPair => {

10 // Handle the generated key pair

11 }) ;

Figure 2.4: Generating an ECDSA key pair.

2.7.2 Proving Ownership

In Figure 2.4 we have seen that we can generate a key pair using the Web
Cryptography API. Using the same API we can also sign a message and
subsequently verify the signature. Signature generation can be performed
by executing the sign function which, as expected, takes a private key
and a message as its arguments. Besides these arguments it also takes
an EcdsaParams object. In this object we specify the name of the digital
signature algorithm, in our case ECDSA, and the hash to be used, which is
SHA-512 in our case. A coding example of ECDSA signature generation
signature is given in Figure 2.5.

1 window . crypto . sub t l e . s i gn (
2 {
3 name : "ECDSA" ,
4 hash : {name : "SHA -512" } ,
5 } ,
6 privateKey ,
7 message
8 )
9 . then ( s i gna tu r e => {

10 // Handle the signature

11 }) ;

Figure 2.5: Generating an ECDSA signature.

After signing a message, we can determine if the generated signature is
valid. This can be done by executing the function verify, which also takes
an EcdsaParams object as an argument. The same name and hash are to be

17



used during signature generation. Furthermore the function verify takes a
public key, signature and message and will return a boolean. This boolean
tells us whether or not the signature is valid. A coding example is given in
Figure 2.6.

1 window . crypto . sub t l e . v e r i f y (
2 {
3 name : "ECDSA" ,
4 hash : {name : "SHA -512" } ,
5 } ,
6 publicKey ,
7 s ignature ,
8 message
9 )

10 . then ( i sVa l i d => {
11 // Handle isValid boolean

12 }) ;

Figure 2.6: Verifying an ECDSA signature.

2.8 Indexed Database API 2.0

The Indexed Database API, or IndexedDB, has been standardized by the
World Wide Web Consortium (W3C) since January 8th, 2015. It has been
designed to be a database of records holding simple values and hierarchi-
cal objects. Each record consists of a key and some value. Moreover, the
database maintains indexes over records it stores [8]. The IndexedDB is a
persistent databases, meaning that whatever is stored using the API will
be stored for future use. In this section different aspects of the documen-
tation will be highlighted. These aspects are required as basic background
knowledge for this thesis.

2.8.1 Database Object

A request has to be made in order to open or create a database. This
request takes a name variable, and optionally a version number which can
be almost any integer greater than one. The version number is set to 1 in
the case it has been left unspecified. In Figure 2.7 the boilerplate code for
opening and creating a database object can be found. One or more of the
four open requests, onupgradeneeded, onsuccess, onerror or onblocked

may be called to indicate the progress. These four events may be triggered
when both opening or deleting a database.
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1 const r eque s t = indexedDB . open (name , number ) ;
2
3 r eques t . onupgradeneeded = event => {
4 // Handle on Upgrade Needed

5 }
6 reques t . onsucces s = event => {
7 var db = event . t a r g e t . r e s u l t ;
8 // Handle on Success

9 }
10 reques t . oner ro r = event => {
11 // Handle on Error

12 }
13 reques t . onblocked = event => {
14 // Handle on blocked

15 }

Figure 2.7: Opening/creating a database object.

If the onsuccess function is called, a so-called “connection” has been
made with the database. The connection will be closed whenever the user
leaves the site, or the variable db goes out of scope. Each connection contains
a set of object stores, which in turn are the holders of the actual data. This
concept will be substantiated in the subsequent section.

2.8.2 Object Store

As briefly introduced in the previous section, an object store is the primary
storage mechanism for storing data. An object store has a list of records
which hold the data stored in the object store. Each record consists of a key
and a value. The list is sorted according to the key in ascending order. There
can never be multiple records in a given object store with the same key [8].
No Structured Query Language (SQL) is required in order to interact with
the IndexedDB, since the database contains objects that are indexed by key
value pairs.

2.8.3 Transaction

Figure 2.8 displays how the connection with the database can be used to
create a transaction and subsequently an object store. A transaction is
needed whenever we want to read or write to the database. It takes both a
scope and a mode as arguments. Using the scope argument we determine
which object store(s) this transaction can use, while the mode determines
the type of interactions with these object store(s). The mode can either be
readonly, readwrite or versionchange.
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1 var t r an sa c t i on = db . t r an sa c t i on ( scope , mode) ;
2 var ob j e c tS to r e = t r an sa c t i on . ob j e c tS to r e (name) ;

Figure 2.8: Creating a transaction for an object store.

2.8.4 Storing and Retrieving a Key Pair

Once we have actually create a transaction, we can continue with storing
the key pair we have created in Figure 2.4. In this example we will store the
generated key pair keyPair from Figure 2.4, using the variable objectStore
used in Figure 2.8. In order to do so we need the readwrite permission as
a mode of the transaction. A coding example of this procedure is given
in Figure 2.9. As can be seen in this example, an optional key could be
provided whenever we wish to store a JavaScript value in the IndexedDB.
This key can be used to identify the value, or in this case the keyPair, we
are adding to the database.

1 var r eque s t = ob j e c tS to r e . add ( keyPair , key ) ;
2 r eque s t . onsucces = event => {
3 // Handle on success

4 }
5 reques t . oner ro r = event => {
6 // Handle on error

7 }

Figure 2.9: Adding a key pair to IndexedDB.

Retrieving an object from the IndexedDB can be done in a similar fash-
ion as adding an object to the IndexedDB. For example, the key pair we
have added to the database in Figure 2.9 can be retrieved by calling the
function get on the variable objectStore. This has been demonstrated in
Figure 2.10. While doing so we need to ensure that the transaction we are
using transaction either has the mode readonly or readwrite.
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1 var r eque s t = ob j e c tS to r e . get ( key ) ;
2 r eque s t . onsucces = event => {
3 // Handle on success

4 }
5 reques t . oner ro r = event => {
6 // Handle on error

7 }

Figure 2.10: Extracting a key pair to IndexedDB.

2.8.5 Security Considerations

In the previous sections we have given a brief overview of how the IndexedDB
can be used in combination with the Web Cryptography API. In this section
we will discuss some of the security considerations that are implemented by
the IndexedDB to ensure that, in our case, our key material originating
from the Web Cryptography API stays secure. All of these considerations
attempt to restrict access such that only the scripts that are supposed to
access specific databases can do so.

Same Origin Policy

The same origin policy (SOP) ensures that only certain origins can access
databases that are assigned to that specific origin. An origin is defined as the
combination of the application layer protocol, domain and port number [21].
Each origin has its own corresponding set of databases, and thus the SOP
prevents an origin access to the database(s) of another origin.

DNS Spoofing

The domain name system (DNS) is a system which maps domain names to an
IP-address, which is used to identify and locate servers on the internet. DNS
spoofing is the act of maliciously modifying this mapping from domain name
to IP-address. This can be done in various ways, however these techniques
will not be discussed in this thesis. It is important to run our protocol over
TLS (HTTPS) instead of HTTP. HTTPS is a more secure version of HTTP
which are both used to communicate between a server and a client over the
Internet.
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Chapter 3

Proposed Protocol

In this chapter we propose our protocol. We will do so in Section 3.1, and
give a minimal implementation in Section 3.2. Based on this implemen-
tation, we investigate how the IndexedDB implementation of the Google
Chrome browser stores JavaScript objects on the computer in Section 3.3.
An assessment is made to identify any possible vulnerabilities in Section 3.4.
Based on our findings we described the limitations and our recommendations
of our protocol in Section 3.5 and Section 3.6 respectively.

3.1 The Protocol

In this section we will present the theoretical framework of using the browser
as an ownership factor during authentication. The protocol describes the
interaction between a user and the service provider during authentication,
and relies on the Web Cryptography API and the Indexed Database API
in the browser on the client side. We define a protocol on how to use the
IndexedDB as an ownership factor during authentication. The protocol can
be found in Protocol 1.
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1. A service provider asks a user to authenticate.

2. The user and the service provider execute the regular username-
password verification protocol.

3. If the browser does not have a key pair, it will generate one.

4. The service provider sends a challenge C to the user.

5. The user computes an ECDSA signature S, based on C, its password,
and its private key located in the IndexedDB.

6. The user sends S and its public key to the service provider.

7. The service provider performs ECDSA signature verification if the
public key is known.

8. If one of the steps 2-7 fails, the protocol fails and otherwise it suc-
ceeds.

Protocol 1: Using the browser as an ownership factor.

We elaborate on the steps of Protocol 1.

1. “A service provider asks a user to authenticate.”
The request to authenticate marks the start of this protocol, such a
request be made whenever the service provider deems authentication
of the user to be necessary.

2. “The user and the service provider execute the regular username-password
verification protocol.”
During this step a protocol that authenticates the user based on a
username and password combination is used. Said protocol is simpli-
fied down to a single step. More information on this step can be found
in Section 3.1.2.

3. “If the browser does not have a key pair, it will generate one.”
This steps marks the first new additional step compared to single factor
authentication. In the case that the specific browser has never been
used before to authenticate to the service provider, it has to generate
a key pair which it will store in the IndexedDB.

4. “The service provider sends a challenge C to the user.”
It is critical that the challenge C is unpredictable, in order to prevent
possible replay-attacks by malicious users.

5. “The user computes an ECDSA signature S, based on C, its password,
and its private key located in the IndexedDB.”
This step is performed in the browser using the Web Cryptography
API, based on the key pair that is stored in the IndexedDB. The
message that is to be signed is equal to the password appended to the
challenge, which is provided by the service provider.
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6. “The user sends S and its public key to the service provider.”
The signature S is sent to the service provider, so that it can be used
in the subsequent step. By always sending the public key along with
the signature we prevent a malicious user from gaining knowledge on
whether or not the user is able to authenticate from multiple browsers.
Additional information on authenticating with multiple browsers can
be found in Section 3.1.3.

7. “The service provider performs ECDSA signature verification if the
public key is known.”
The penultimate step of the protocol. During this step the service
provider performs ECDSA signature verification, and thus checks if
the user has ownership over the correct private key. If the service
provider does not recognize the public key as a valid public key for
this user, then this step will fail.

8. “If one of the steps 2-7 fails, the protocol fails and otherwise it suc-
ceeds.”
This final step determines whether or not the authentication process
was successful. It should be noted that even if step 2 fails, that is
when an unknown username-password combination is provided to the
service provider, steps 3 till 7 are still executed. This has be done to
prevent a malicious user from obtaining information on whether step
2 or 7 has failed. In other words, using this protocol, a malicious user
cannot differentiate between an incorrect username-password combi-
nation and a failed ECDSA signature verification. The user is notified
of the result of the protocol.

After a successful authentication, the service provider may give the user
the ability to authenticate using another browser, besides the browser that
was just used to authenticate with. The support of multiple browsers is
described in Section 3.1.3.

3.1.1 Network Diagram

Before we will give an implementation of our protocol, we will discuss the
network interactions of the protocol. The network interactions are described
between a user and a service provider to which the user has to authenticate
itself to. The order and effects of these interactions highlight the basic inner-
working of our protocol. In Figure 3.1 we give the network diagram of our
protocol that is described in the previous section.
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Figure 3.1: Network diagram of our protocol.

3.1.2 Authentication Protocol

The network diagram in Figure 3.1 starts with the user sending a request to
log in. It does so by providing a username and password combination. How-
ever, the network diagram represents authentication using a username and
password in a rather naive way. It does so by using the password authenti-
cation protocol (PAP), which is the most basic authentication protocol one
can imagine, the user sends a username and password combination to the
service provider which on its turn responds whether or not this combination
is correct. PAP should not be used, since it is very insecure to not encrypt
your credentials before sending them over the network. Furthermore PAP
does not offer any security against replay attacks. In the rare instance that
PAP is used, our protocol should append the text-based password to the
challenge before it is signed.
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Challenge-Handshake Authentication Protocol

A more robust authentication protocol for a username and password combi-
nation is the challenge-handshake authentication protocol (CHAP). When-
ever CHAP is used, the service provider sends an unpredictable challenge
to the user, which has to hash this challenge together with the password.
The digest of this hash computation is sent back to the service provider,
which performs the same hash computation and compares the digest with
the result that is provided by the user. The user is authenticated only if
both digests are equivalent. The service provider may send such challenge at
random intervals, and not only during login. Whenever a variant of CHAP
is used in combination with our protocol, the user should append the digest
to the challenge before it is signed, instead of appending the password to
the challenge.

3.1.3 Multiple Browser Support

Some users might find it frustrating when they are only able to authenticate
using one specific browser. For instance, one might want to authenticate
to a service provider from both a personal computer and a mobile phone.
We therefore define the option to authenticate from a limited number of
browsers. Each browser that a user wishes to authenticate from has a unique
key pair. As a consequence, the service provider has to keep track of which
public keys could be used to verify the signature of which specific user. In
Protocol 2 we define a protocol that should be used whenever a user wants to
authenticate from a new browser, but already uses another known browser.
In this protocol we use the following terminology:

• New browser, a browser that has never successfully completed the pro-
tocol as defined in Protocol 1. However, the user wants to use this
specific browser as defined in Protocol 1.

• Known browser, a browser that has successfully completed the protocol
as defined in Protocol 1. This browser thus has a key pair that can be
used to authenticate with.

1. The user will notify the service provider, using a known browser, that
it wants to authenticate using a new browser.

2. The user performs Protocol 1 using a new browser.

3. The user has the option to trust the new browser, using a known
browser.

Protocol 2: Using an additional browser as an ownership factor.
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We will elaborate on the steps of Protocol 2.

1. “The user will notify the service provider, using a known browser, that
it wants to authenticate using a new browser.”
After successful authentication using a known browser, the user is
given the option to inform the service provider that the user wishes
to authenticate with a new browser. Note that the user only has the
option to do so if Protocol 1 has been performed successfully.

2. “The user performs Protocol 1 using a new browser.”
Using a new browser Protocol 1 is performed. By doing so the new
browser will generate a key pair and store it in the IndexedDB, however
Protocol 1 will fail on step 7 because the newly generated public key
is not known by the service provider. However, if the previous step
was performed successfully, the service provider will temporarily store
the public key whilst awaiting approval in the subsequent step.

3. “The user has the option to trust the new browser, using a known
browser.”
Trusting the new browser will tell the service provider that the public
key, that was supplied to the service provider in the previous step, can
be used to perform ECDSA signature verification with. Protocol 2 is
only successful if the user decides to trust the new browser in this final
step.

After completing Protocol 2, the user is able to execute Protocol 1 suc-
cessfully using the new browser.

3.2 Implementation

In Figure A.1 till Figure A.4 a minimal working proof-of-concept is given.
The already introduced Web Cryptography API (Section 2.7) and IndexedDB
(Section 2.8) are used to execute our protocol in the user’s browser. On the
other hand, the server side of our protocol relies on the use of two Python
libraries called Flask [29] and Cryptography [11]. Flask is used to start a lo-
cal server, which is able to simulate the service provider side of the network
diagram given in Figure 3.1. The Cryptography library is used to perform
the ECDSA signature verification on the signature and public key, and the
corresponding challenge as provided according to our protocol. A .html file
and .css file can also be found in these figures, these two files represent a
generic login window. These two libraries, and their corresponding .html

and.css files, will not be discussed in detail, since their use is merely to
provide a proof-of-concept and not to provide a production ready codebase.
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3.3 IndexedDB Files

The security of Protocol 1 is based on the assumption that the private key,
which is stored in the IndexedDB, can be used to uniquely identify a browser.
This identification can only occur if there is no way to extract or reveal the
private key after it has been generated. In the JavaScript environment this
property is guaranteed by the Web Cryptography API, which allows the pro-
grammer to set the extractable Boolean to false upon key pair generation,
which as a consequence means that the private key cannot be revealed in
the JavaScript environment. In order to further investigate the strength of
the connection between the private key and the browser, we abstract away
from the JavaScript environment and investigate the IndexedDB on a lower
level. We investigate how the IndexedDB stores the key pair on the drive for
persistent storage. Even though the use of the IndexedDB is standardized
by W3C, the underlying structure is not. For example Google Chrome uses
the LevelDB [16], while Mozilla Firefox uses SQLite [24]. In this section we
will investigate how Google Chrome stores a key pair, using the LevelDB.

3.3.1 LevelDB

Once we request to store a key pair using JavaScript, a .ldb file is created in
which the key pair is stored. The process of converting a JavaScript object
to bytes, such that they can be stored in a .ldb file is called serialization.
The process of converting these bytes back into the same JavaScript object
is called deserialization. During serialization both the public and private
keys are not compressed nor encrypted, they can thus be found in clear
text in the .ldb file. The private key seems to always follow the hex string
0xD63081D30201010442. In Appendix A.5 a proof-of-concept is given using
Python that can, if provided a .ldb, extract the private key.

Example

Using the implementation as described in Section 3.2, we generate a key
pair which we store in the IndexedDB using the Google Chrome (version
87.0.4280.88) browser. The key pair is stored as a JavaScript object that
has three properties, the public key, the private key, and the public key
formatted in PEM format as formalized in RFC 7468 [17]. The subsequently
generated .ldb file is inspected, and shown in Figure 3.2.
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Figure 3.2: .ldb file including the public key x-coordinate (yellow),
y-coordinate (green), and the private key (blue).

In Figure 3.2 the bytes that represent the public key are marked in yellow
for the x-coordinate (bytes 416-481) and green for the y-coordinate (bytes
483-547). In the same figure the private key is marked in blue (bytes 589-
654). Starting around byte number 672 we can see the start of the public key
in PEM format. We can conclude that the IndexedDB is not an appropriate
storage mechanism to securely store a private key that is used to uniquely
identify a browser. This is because using the .ldb file, the private key can
easily be extracted from the browser, even though the private key is marked
as non-extractable in the JavaScript environment.

3.4 Application Vulnerability Assessment

In the following sections we report on our findings of the application vulner-
ability assessment (AVA). Our target of evaluation (TOE) is our protocol as
defined in Protocol 1. During this assessment, emphasis will be placed on
the underlying use of the IndexedDB and the Web Cryptography API. The
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AVA will be performed on the basis of five categories, using the criteria as
defined in [1, 2].

3.4.1 Bypassing

Bypassing can occur in different forms, all of which include an attacker being
able to avoid any security enforcement. Two different potential vulnerabili-
ties are identified that bypass a security measurement. The first vulnerabil-
ity is introduced by the underlying representation of the IndexedDB. This
vulnerability allows an attacker to extract the private key by exploiting how
the IndexedDB serialises JavaScript objects. This vulnerability has already
been discussed in Section 3.3, because of its critical importance to security
of the protocol. In this section we will discuss what an adversary would be
able to do once the same origin policy is bypassed.

Same Origin Policy

This section will describe what an adversary could do when it has success-
fully bypassed the same origin policy (SOP). The SOP regulates cross-object
access control in the browser using domain names [18]. The intents of SOP
is to let a user access malicious websites, without giving these malicious
websites access to honest websites. The IndexedDB is also protected by the
SOP. Under normal circumstances we can assume that a malicious site is
not able to access the IndexedDB of another, distinct domain. However, an
adversary will have full access to the IndexedDB of a specific domain in the
case that it’s able to successfully bypass the SOP. In the subsequent section
we discuss what operations could be performed in the event that the SOP is
bypassed, in relation to the IndexedDB that is used by our protocol. Below,
a summation is given in which we discuss two different operations which
an adversary could perform once the SOP is bypassed. In Figure A.6 and
Figure A.7, coding proof-of-concepts are given in JavaScript that implement
these two operations.

• Deletion of the database.
While it is completely valid for a user to delete the IndexedDB, it could
also be done by an adversary that has bypassed the SOP. After the
database, including the key pair, is deleted, the user can no longer au-
thenticate using our protocol. Thus, as a consequence the user would
be denied access to the service provider. The deletion of the database
is a permanent operation, and no backup system is offered by default.

• Generation of signatures.
When an adversary has access to the IndexedDB which stores the
key-pair, it could in theory generate infinitely many signatures. Gen-
erating many signatures does not weaken the underlying ECDSA al-
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gorithm, given that the pseudo random number generator of the Web
Cryptography API does not leak information about any of the bits
of the pseudo random number k. This number k is introduced in
Section 2.4.4, and is used during signature generation. In fact many
types of nonuniformities in k can reveal the private key, given suffi-
ciently many signatures [6]. In the case that the exact same k is used
twice to sign two distinct messages, the private key will be leaked. A
proof of computing the private key if the same k is used twice is given
in Figure B.2.

3.4.2 Tampering

Tampering includes any attack based on an adversary attempting to influ-
ence the behaviour of our protocol. We have not identified any tampering
vulnerabilities, since the protocol is fully automated and thus not influenced
by the user. Furthermore, we do not identify any vulnerabilities in perform-
ing the protocol in a different order, or by purposefully delaying or sending
incorrect messages to the service provider.

3.4.3 Direct Attacks

In this section we identify one direct attack in our protocol, which might
occur in three different forms. The security of the our protocol relies on the
use of a strong pseudo random number generator. Below we will discuss
each of the three instances in which a pseudo random number has to be
generated, and what the consequences are if the number can be predicted,
ie. that the number is easy to distinguish from random.

• Key pair generation.
Upon the first use of our protocol in the browser, an EC key pair
has to be generated. In order to do so, a pseudo random number
has to be generated. This number represents the private key, from
which the corresponding public key is derived. Whenever this pseudo
random number becomes predictable, ie. is no longer random, the
private key and thus also the public key become predictable. This
would undermine the security of our protocol.

• Challenge generation.
A pseudo random number generator is used in order to ensure that
a challenge, which is generated on the server side, is in fact unpre-
dictable. However, our protocol becomes vulnerable to a replay attack
if the challenge becomes easy to predict.

• Signature generation.
As described in Section 2.4.4 the generation of an EC signature re-
quires a random integer k to be generated. If enough bits of k are
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leaked, it becomes possible to extract the private key from a signa-
ture, given sufficiently many signatures [6]. A proof of computing the
private key if the same k is used twice is given in Figure B.2.

3.4.4 Monitoring

Monitoring the challenges of our protocol over the network, as described in
Section 3.1.1, will not diminish the security of our protocol. If the challenges
are monitored, then the protocol will not offer any non-reputability. This
is due to the fact that the user has to sign a certain challenge, and as a
consequence the user cannot deny that it tried to authenticate to a specific
service provider. This is because an attacker that is monitoring the network
can see the challenge, and the signature that is used to sign that specific
challenge. However, an attacker monitoring the authentication process does
not limit the overall security of the protocol.

3.4.5 Misuse

Misuse can occur when a user is not using our protocol in accordance with
the predefined procedures. We argue that the chance of misuse is very slim,
because our protocol is fully automated using JavaScript. We therefore do
not identify a possibility for a user to incorrectly use the protocol.

3.5 Limitations

We have noted that our protocol has several limitations. These limitations
will be discussed in this section, after which we will give our recommendation
on how these limitations could be handled.

3.5.1 LevelDB

In Section 3.3 we saw that even though marking the private key as non-
extractable upon generation using the Web Cryptography API, the private
key could still be extracted from the underlying storage that is used by the
IndexedDB. As a consequence it cannot be guaranteed that the private key
can be used to uniquely identify a browser, and thus the private key should
not be stored using the IndexedDB.

3.5.2 Persistence of the IndexedDB

At any point in time the IndexedDB might be deleted, this can be done by
the user itself, the browser, or by other applications. As a consequence, our
protocol must be aware of this specific property of the IndexedDB. In other
words, our protocol relies on the expectation that a user owns a private
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key, however the user could lose this key at any point of time. Therefore a
fallback option must be put in place to overcome the loss of the private key.

3.5.3 Private Browsing

Directly related with the previous limitation, most browser have a built-in
option which allows users to use the Internet without the browser storing
information about their browsing session. During such private browsing
sessions, the browser will not store, among other things, caches, cookies
and browsing history. Furthermore, private browsing sessions create a new,
temporary, IndexedDB for the specific private browsing sessions. Whenever
users use our protocol in a private browsing sessions, this temporary In-
dexedDB version will be used. Once the private browsing session has ended,
the temporarily created IndexedDB and the private key will be deleted.

3.5.4 Shared Browsers

Since our protocol uses the browser to uniquely identify a user, the browser
should only be used by that specific user to authenticate to the service
provider. Giving access to a private key, by sharing a browser, defeats the
purpose of our protocol. The browser is unable to uniquely identify a user
once the browser is shared between users.

3.6 Recommendations

We recommend that our protocol as defined in Protocol 1 should not be
used as two factor authentication. This is because said protocol relies on a
strong connection between the browser and the generated private key. This
is essential because if a private key can be extracted from browser, and
then be used in another browser, the private key can no longer be used to
uniquely identify a user. As a consequence, ownership over the private key
can no longer be used as a factor during two-factor authentication. We have
shown that a private key stored in the IndexedDB can be retrieved in the
Google Chrome browser by inspecting the underlying LevelDB file.
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Chapter 4

Conclusions

This thesis proposes a protocol that describes the interaction between a
user and a service provider during authentication. The protocol provides
two-factor authentication in the browser, which optionally supports multi-
ple browsers to be used for authentication. Before the protocol, that is based
on ECDSA, can operate in a secure manner a strong and reliable connection
between the browser and the private key is crucial. It should not be possible
to extract the private key from the browser. In our protocol the Web Cryp-
tography API is used for elliptic curve key pair generation, and ECDSA
signature generation. The generated key pair could not be extracted in the
JavaScript environment, however we have shown that a private key stored
in the IndexedDB could be extracted. Thus, the underlying storage mech-
anism of the IndexedDB in the Google Chrome browser can be exploited
to extract the private key. Therefore the IndexedDB should not be used to
securely store a private key.

4.1 Further Research

In this section we will touch upon some of the topics that remain unanswered
in this thesis.

• Private key storage in the IndexedDB.
As of now the most critical flaw in our protocol is the storage of the pri-
vate key. We have shown that the private key can easily be extracted
from the Google Chrome browser’s underlying LevelDB. Another tech-
nique for storing the private key, such that it can easily be used in the
browser, has to be found. Another option that could be researched is
how the IndexedDB could be altered in such a way that it does provide
the needed connection between the browser and the private key.
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• Persistence of the IndexedDB.
We described how the IndexedDB may, for several reasons, loose the
data that was previously stored. This also includes the private key. To
overcome the in-persistence of the IndexedDB, a mechanism must be
put into place to overcome the loss of a private key. This mechanism
has to be secure and resistant to any possible exploitations. Further
research is needed to overcome this issue.

• Electronic IDentification Authentication and trust Services.
Once a viable solution is found to store the private key such that it
cannot be extracted from the browser, an assessment of the assurance
level of the protocol could be made on the basis of the electronic IDen-
tification Authentication and trust Services (eIDAS). eIDAS is an Eu-
ropean regulation that specifies the minimum technical specifications
and procedures for assurance levels for electronic identification [15].
The eIDAS regulation could be used to allow our protocol to be used
in combination with European electronic identity cards to authenticate
European passport holders.
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Appendix A

Implementations

1 from f l a s k import Flask , render template , r e d i r e c t , r eque s t
2 from cryptography . hazmat . p r im i t i v e s . s e r i a l i z a t i o n import l oad pem publ i c key
3 from cryptography . hazmat . p r im i t i v e s import hashes
4 from cryptography . hazmat . p r im i t i v e s . asymmetric import ec
5 from cryptography . hazmat . p r im i t i v e s . asymmetric . u t i l s import en code d s s s i gna tu r e
6 from cryptography . except i on s import I nva l i dS i gna tu r e
7 from s e c r e t s import randb i t s
8
9 app = Flask ( name )

10 c o r r e c tC r e d en t i a l s = False
11 cha l l e n g e = None
12 password = ""

13
14 # Convert random bits to Uint8Array for convenience

15 def getUint8Array (number ) :
16 array = [ ]
17 for in range (64) : # 512/8

18 array . i n s e r t (0 , number % 256)
19 number = number >> 8
20 return array
21
22 @app . route ( ’/’ )
23 def index ( ) :
24 return r e d i r e c t ("/login" , code=302)
25
26 @app . route ( ’/login’ )
27 def l o g i n ( ) :
28 return r ender template ("login.html" )
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30 # Listens for the username and password of the user

31 # Responds with a 512 bits Uint8Array challenge

32 @app . route ( ’/credentials’ , methods=[’POST’ ] )
33 def c r e d e n t i a l s ( ) :
34 global c o r r e c tC r ed en t i a l s , cha l l enge , password
35 username = reques t . j s on . get ("username" )
36 password = reques t . j son . get ("password" )
37
38 # Check the username and password , in this case hardcoded

39 i f username == "admin" and password == "admin" :
40 c o r r e c tC r e d en t i a l s = True
41 password = "admin"

42
43 cha l l e n g e = randb i t s (512)
44 print ( c h a l l e n g e )
45 # Send a random (512 bits) challenge to the user

46 return {"challenge" : str ( getUint8Array ( cha l l e n g e ) ) }
47
48 # Verifies the signature , and responds wether or not the login attempt was successful

49 @app . route ( ’/verify’ , methods=[’POST’ ] )
50 def v e r i f y ( ) :
51 global c o r r e c tC r ed en t i a l s , c h a l l e n g e
52 # Public key should be compared with the expected public key in a database

53 publicKey = reques t . j son . get ("publicKey" )
54 r = reques t . j son . get ("r" )
55 s = reques t . j s on . get ("s" )
56
57 publicKey = load pem publ i c key ( bytes ( publicKey , encoding="utf -8" ) )
58 s i gna tu r e = encode d s s s i gna tu r e ( int ( r , base=16) , int ( s , base=16) )
59
60 try :
61 publicKey . v e r i f y (
62 s ignature ,
63 cha l l e n g e . t o by t e s (64 , byteorder=’big’ ) + password . encode ( encoding="utf

-8" ) ,
64 ec .ECDSA( hashes . SHA512 ( ) )
65 )
66 except I nva l i dS i gna tu r e :
67 c o r r e c tC r e d en t i a l s = False
68
69 # Both signature and login credentials are correct

70 i f c o r r e c tC r e d en t i a l s :
71 return {"result" : True}
72 return {"result" : Fa l se }
73
74 i f name == ’__main__’ :
75 app . run ( debug=True )

Figure A.1: Minimal server implementation.
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1 const databaseName = "loginDatabase" ;
2 const databaseVers ion = 1 ;
3 const objectStoreName = "crypto" ;
4 const indexName = "keyPair" ;
5 const keyName = "key"

6 var f i r s tU s e = fa l se ;
7 var numTries = 0 ;
8
9 // Solution:

10 // https://stackoverflow.com/questions /27359748/how-to-add-initial -data -in-indexeddb -

only -once/57534229

11
12 // Gets called when the user presses the login button.

13 // The function takes the following steps:

14 // 1. If this is the first login attempt by the user , the IndexedDB and a key pair

will be generated.

15 // 2. Else the (existing) IndexedDB will be openend.

16 // 3. If no errors occur in step 1 and 2, the function sendCredentials() will be

called.

17 function l o g i n ( ) {
18 i f ( ! window . indexedDB ) {
19 a l e r t ("IndexedDB is not supported by this browser , login unsuccessful!" ) ;
20 return ;
21 }
22
23 i f ( ! window . crypto | | ! window . crypto . sub t l e ) {
24 a l e r t ("Web Cryptography API is not supported by this browser , login

unsuccessful!" ) ;
25 return ;
26 }
27
28 i f ( ! window . i sSecureContext ) {
29 a l e r t ("The implementation is not run in a secure environment , login

unsuccessful. See https://developer.mozilla.org/en-US/docs/Web/Security/

Secure_Contexts for more info." ) ;
30 return ;
31 }
32
33 const r eque s t = indexedDB . open ( databaseName , databaseVers ion ) ;
34
35 reques t . onupgradeneeded = event => {
36 var db = event . t a r g e t . r e s u l t ;
37 // First time opening the database , and thus the first time to use our

algorithm.

38 i f ( ! db . objectStoreNames . conta in s ( objectStoreName ) ) {
39 var ob j e c tS to r e = db . c r ea t eObj ec tS to r e ( objectStoreName , { autoIncrement :

true }) ;
40 ob j e c tS to r e . c r ea te Index ( indexName , indexName , {unique : true }) ;
41 f i r s tU s e = true ;
42 }
43 }
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44 reques t . onsucces s = event => {
45 var db = event . t a r g e t . r e s u l t ;
46 i f ( f i r s tU s e ) {
47 window . crypto . sub t l e . generateKey (
48 {
49 name : "ECDSA" ,
50 namedCurve : "P-521" ,
51 } ,
52 false ,
53 [ "sign" ]
54 )
55 . then ( keyPair => {
56 window . crypto . sub t l e . exportKey ( ’spki’ , keyPair . publicKey )
57 . then ( function ( spk i ) {
58 pem = spkiToPEM( spk i ) ;
59 var ob j e c t = {
60 publicKey : keyPair . publicKey ,
61 privateKey : keyPair . privateKey ,
62 pem : pem
63 }
64 // Add the generated key pair to the database.

65 var t r an sa c t i on = db . t r an sa c t i on ( [ objectStoreName ] , "readwrite" ) ;
66 var ob jec tStoreReques t = t r an sa c t i on . ob j e c tS to r e ( objectStoreName )

;
67
68 var r eque s t = objec tStoreReques t . add ( object , keyName) ;
69 r eques t . onsucce s s = event => {
70 f i r s tU s e = fa l se ;
71 s endCredent i a l s (db ) ;
72 }
73 reques t . oner ro r = event => {
74 a l e r t ("Error adding the key pair to the IndexedDB." ) ;
75 }
76 }) ;
77 }) ;
78 } else {
79 sendCredent i a l s (db ) ;
80 }
81 }
82 reques t . oner ro r = event => {
83 a l e r t ("IndexedDB open error: " + reques t . e r r o r ) ;
84 }
85 reques t . onblocked = event => {
86 a l e r t ("IndexedDB request was blocked." ) ;
87 }
88 }
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90 // Receives an database object from the function login().

91 // Send the username and password to the server , and waits for a response.

92 function s endCredent i a l s (db ) {
93 var username = document . getElementById ("username" ) . va lue ;
94 var password = document . getElementById ("password" ) . va lue ;
95
96 // Send the username and password wrapped in a JSON object to the server.

97 f e t ch ( ’http ://127.0.0.1:5000/ credentials’ , {
98 method : ’POST’ ,
99 headers : {

100 ’Content -Type’ : ’application/json’ ,
101 } ,
102 body : JSON. s t r i n g i f y ({
103 username : username ,
104 password : password
105 }) ,
106 })
107 . then ( re sponse => re sponse . j son ( ) )
108 . then ( data => {
109 // Receive a challenge that has to be signed.

110 signMessage (db , new Uint8Array (JSON. parse ( data . cha l l enge ) ) . bu f f e r , password ) ;
111 })
112 }
113
114 // Sign the challange , send it to the server , and wait for its response.

115 function s ignMessage (db , cha l l enge , password ) {
116 var t r an sa c t i on = db . t r an sa c t i on ( [ objectStoreName ] , "readonly" ) ;
117 var ob j e c tS to r e = t r an sa c t i on . ob j e c tS to r e ( objectStoreName ) ;
118 var r eque s t = ob j e c tS to r e . get (keyName) ;
119
120 reques t . onsucces s = event => {
121 keyObject = event . t a r g e t . r e s u l t ;
122
123 var utf8Encode = new TextEncoder ( ) ;
124 var pass = utf8Encode . encode ( password ) ;
125 var messagePassword = new Uint8Array ( cha l l eng e . byteLength + pass . byteLength ) ;
126 messagePassword . s e t (new Uint8Array ( cha l l eng e ) ) ;
127 messagePassword . s e t ( pass , cha l l enge . byteLength ) ;
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129 window . crypto . sub t l e . s i gn (
130 {
131 name : "ECDSA" ,
132 hash : {name : "SHA -512" } ,
133 } ,
134 keyObject . privateKey ,
135 messagePassword
136 )
137 . then ( s i gna tu r e => {
138 var r = new Int8Array ( s i gna tu r e . s l i c e (0 , 66) ) ;
139 var s = new Int8Array ( s i gna tu r e . s l i c e (67) ) ;
140 r = buf2hex ( r ) ;
141 s = buf2hex ( s ) ;
142
143 f e t ch ( ’http ://127.0.0.1:5000/ verify’ , {
144 method : ’POST’ ,
145 headers : {
146 ’Content -Type’ : ’application/json’ ,
147 } ,
148 body : JSON. s t r i n g i f y ({
149 r : r ,
150 s : s ,
151 publicKey : keyObject . pem
152 }) ,
153 })
154 . then ( re sponse => re sponse . j son ( ) )
155 . then ( data => {
156 // result tells us whether the login was successful or not.

157 // However , sometimes the signature verification fails when it should

not.

158 // So we retry for a maximum of 10 times.

159 i f ( data . r e s u l t ) {
160 numTries = 0 ;
161 a l e r t ("Successful login." ) ;
162 }
163 else {
164 i f ( numTries >= 10) {
165 a l e r t ("Try again!" ) ;
166 numTries = 0 ;
167 return ;
168 }
169 numTries+=1;
170 sendCredent i a l s (db ) ;
171 }
172 })
173 }) ;
174 }
175 reques t . oner ro r = event => {
176 a l e r t ("An error occured" + event . t a r g e t . r e s u l t ) ;
177 }
178 }
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180 // Helper functions:

181 // https://stackoverflow.com/questions /40314257/export -webcrypto -key-to-pem-format

182 function spkiToPEM( keydata ) {
183 var keydataS = arrayBuf f e rToStr ing ( keydata ) ;
184 var keydataB64 = window . btoa ( keydataS ) ;
185 var keydataB64Pem = formatAsPem( keydataB64 ) ;
186 return keydataB64Pem ;
187 }
188
189 function arrayBuf f e rToStr ing ( bu f f e r ) {
190 var binary = ’’ ;
191 var bytes = new Uint8Array ( bu f f e r ) ;
192 var l en = bytes . byteLength ;
193 f o r (var i = 0 ; i < l en ; i++) {
194 binary += Str ing . fromCharCode ( bytes [ i ] ) ;
195 }
196 return binary ;
197 }
198
199 function formatAsPem( s t r ) {
200 var f i n a l S t r i n g = ’-----BEGIN PUBLIC KEY -----\n’ ;
201
202 while ( s t r . l ength > 0) {
203 f i n a l S t r i n g += s t r . sub s t r i ng (0 , 64) + ’\n’ ;
204 s t r = s t r . s ub s t r i ng (64) ;
205 }
206
207 f i n a l S t r i n g = f i n a l S t r i n g + "-----END PUBLIC KEY-----" ;
208
209 return f i n a l S t r i n g ;
210 }
211
212 // https://stackoverflow.com/questions /40031688/ javascript -arraybuffer -to-hex

213 function buf2hex ( a r rayBuf f e r ) {
214 return Array . prototype .map . c a l l (new Uint8Array ( a r rayBuf f e r ) , x => ( ’00’ + x .

toS t r i ng (16) ) . s l i c e (−2) ) . j o i n ( ’’ ) ;
215 }

Figure A.2: Minimal JavaScript implementation.
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1 < ! -- https://www.w3schools.com/howto/howto_css_login_form.asp -->
2 < !DOCTYPE html>
3 <html lang="en">
4 <head>
5 <meta charset="utf -8">
6 <t i t l e>Login Example Page</ t i t l e>
7 <l ink rel="stylesheet" href="{{ url_for(’static ’, filename=’style.css ’) }}">
8 <script type="text/javascript" src="{{ url_for(’static ’,filename=’script.js’) }}"

></ script>
9 </head>

10 <body>
11 <div class="container limitWidth">
12 <label for="username"><b>Username</b></ label>
13 <input type="text" p la c eho ld e r="Enter Username" id="username" r equ i r ed>
14
15 <label for="password"><b>Password</b></ label>
16 <input type="password" p la c eho ld e r="Enter Password" id="password" r equ i r ed>
17
18 <button onclick="login()">Login</button>
19 </div>
20 </body>
21 </html>

Figure A.3: HTML login page.
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1 /* https://www.w3schools.com/howto/howto_css_login_form.asp */

2 body { font−family: Arial , Helvetica , sans-serif;}
3 . l imitWidth {
4 border: 3px solid #f1f1f1;

5 max−width: 900px;

6 margin: 0 auto;

7 }
8
9 input [ type=text ] , input [ type=password ] {

10 width: 100%;

11 padding: 12px 20px;

12 margin: 8px 0;

13 display: inline-block;

14 border: 1px solid #ccc;

15 box−sizing: border-box;

16 }
17
18 button {
19 background−color: #4CAF50;

20 color: white;

21 padding: 14px 20px;

22 margin: 8px 0;

23 border: none;

24 cursor: pointer;

25 width: 100%;

26 }
27
28 button:hover {

29 opacity: 0.8;

30 }
31
32 . conta ine r {
33 padding: 16px;

34 }

Figure A.4: CSS page.
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1 def main ( ) :
2 i nF i l e = open("XXXXXX.ldb" , "rb" )
3 data = i nF i l e . read ( )
4 i nF i l e . c l o s e ( )
5 # Private key starts after 0xD63081D30201010442

6 s t a r t = bytes . fromhex ("D63081D30201010442" )
7 s tar tPr ivateKey = data . index ( s t a r t ) + len ( s t a r t )
8 privateKey = data [ s tar tPr ivateKey : s tar tPr ivateKey+66]
9 print ( int ( privateKey .hex ( ) , base=16) )

10
11 i f name == "__main__" :
12 main ( )

Figure A.5: Locating and printing the private EC key in a .ldb file.

1 indexedDB . databases ( ) . then ( database => {
2 // For each database

3 database . forEach ( element => {
4 // Delete it

5 indexedDB . de leteDatabase ( element . name) ;
6 }) ;
7 }) ;

Figure A.6: Deleting a database.
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1 indexedDB . databases ( ) . then ( databases => {
2 databases . forEach ( element => {
3 const r eque s t = indexedDB . open ( element . name , element . v e r s i on ) ;
4
5 r eques t . onsucce s s = event => {
6 var db = event . t a r g e t . r e s u l t ;
7 var objectStoreNames = db . objectStoreNames ;
8
9 f o r ( i =0; i<objectStoreNames . l ength ; i++){

10 var name = objectStoreNames . item ( i ) ;
11 var t r an sa c t i on = db . t r an sa c t i on (name , "readwrite" ) ;
12 var ob j e c tS to r e = t r an sa c t i on . ob j e c tS to r e (name) ;
13
14 ob j e c tS to r e . g e tA l l ( ) . onsucce s s = event => {
15 event . t a r g e t . r e s u l t . forEach ( index => {
16 // If this index holds a keypair ,

17 // it can then be used to generate signatures.

18 keyObject = index ;
19 window . crypto . sub t l e . s i gn (
20 {
21 name : "ECDSA" ,
22 hash : {name : "SHA -512" } ,
23 } ,
24 keyObject . privateKey ,
25 new Uint8Array ( )
26 )
27 . then ( s i gna tu r e => {
28 // Handle signature

29 }) ;
30 })
31 }
32 }
33 }
34 }) ;
35 }) ;

Figure A.7: Computing signatures.
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Appendix B

Proofs

Proof that a digital signature forgery can be performed if no hash function
is used.

• Let M be a message of length m bits, so |M | = m.

• Let F be a signature generation function, which takes a private key
pk and M .

• Let n be a maximum message length in bits of which F computes the
signature over.

• Let S be a signature generated by F .

The function F interprets M on its length m compared to n, we make a
case distinction based on m relative to n:

1. m < n. The message M is prepended with (n−m) 0s. Thus |M | = n,
and we are in case 3.

2. m > n. The rightmost (m−n) bits are truncated. Thus |M | = n, and
we are in case 3.

3. m = n. We know S and M such that S = F (pk,M).

• Let M ′ be M appended with an arbitrary bit sequence of length
greater than 0.

We can then created infinitely many signatures S′, such that S = S′,
by using M ′. This is because any of the bits that are appended to M
are truncated again by F :
S = F (pk,M) = F (pk,M ′) = S′.

Figure B.1: Digital signature forgery when no hash function is used.
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Proof that ECDSA is vulnerable to private key recovery. The private key
can be recovered, given that two signatures use same integer k to generate
a signature.

• Let (r, s) and (r, s′) be two distinct signatures.

• Let m and m′ be two distinct messages.

• Let h and h′ be a digest of a hash function H such that h = H(m)
and h′ = H(m′).

• In this proof we use the EC domain parameters as defined in Sec-
tion 2.1.

From the ECDSA signature generation algorithm we get:

• s ≡ k−1 · (h+ r · pk) (mod n) and
s′ ≡ k−1 · (h′ + r · pk) (mod n)

Multiplication by k gives us:

• s · k ≡ (h+ r · pk) (mod n) and
s′ · k ≡ (h′ + r · pk) (mod n)

Subtraction gives us:

• (s · k)− (s′ · k) ≡ (h+ r · pk)− (h′ + r · pk) (mod n)
(s− s′) · k ≡ h− h′ (mod n)

Rewriting for k gives:

• k ≡ (s− s′)−1 · (h− h′) (mod n)

We can know derive k from s, s′, h, h′, and n. Given k we can compute the
private key pk, by using either s or s′. Since s ≡ k−1(h + r · pk) (mod n),
we compute pk in the following way:

• s = k−1(h+ r · pk)
s · k = h+ r · pk
s · k − h = r · pk
pk = r−1(s · k − h)

Figure B.2: Computing the private key if the same k is used.
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