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Abstract
Multi-agent epistemic modal logics, such as S5n, have a wide variety of
use cases, including artificial intelligence, proofs of cryptographic protocols,
database theory, and economics. In any logic, the main goal is usually to
prove that a statement holds, using for instance natural deduction. How-
ever, constructing natural deduction proofs by hand can be quite tedious. In
this thesis, we present an S5n Coq implementation, based on an S5 imple-
mentation by Benzmüller and Woltzenlogel Paleo [2]. We adapt the natural
deduction proof rules as presented in Huth and Ryan [12] to the Gentzen-
style to better suit Coq, and we extend these rules with proof rules for
distributed knowledge. We also provide proof tactics with our Coq imple-
mentation matching these proof rules. We conclude with multiple examples
showcasing how our Coq implementation can be used to prove statements
with distributed knowledge.
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Chapter 1

Introduction

Epistemic modal logic is all about reasoning about knowledge. Within epis-
temic modal logic we are often interested in the logic of multi-agent systems:
systems where multiple knowledge agents, often thought of as people, have
different knowledge about their situation.

One particular type of knowledge, introduced by Halpern and Moses
[9], is distributed knowledge. The distributed knowledge of a group of agents
is the knowledge that these agents could know if they were to combine all
the knowledge of every agent in that group. This is useful for determining
what a group of agents could potentially know if they would all share their
knowledge with each other in a mathematically perfect manner.

Distributed knowledge and multi-agent epistemic modal logic in gen-
eral have a wide variety of applications, ranging from game theory within
economics [1, 5], to program verification [11] and proofs of cryptograhic pro-
tocols [8, 21], to database theory [13, 24], distributed systems [4, 6, 9] and
AI in general [17, 10].

In this thesis, we will have a look at how the multi-agent epistemic
modal logic S5n can be implemented in Coq, with a special focus on dis-
tributed knowledge. The main research question that we will be answering
is: “How can multi-agent epistemic modal logic with distributed knowledge
be implemented in Coq?” To answer this question, we will have to answer
the following subquestions:

• How can existing proof rules be adapted for Gentzen-style proofs?
• What proof rules apply to distributed knowledge?
• How can these proof rules be implemented in Coq?

The Coq proof assistant [20] is a formal proof management system
that can help us with performing natural deduction proofs. Other Coq
implementations of epistemic modal logic do exist, but these usually focus
on common knowledge, rather than distributed knowledge.
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We present an S5n Coq implementation that contains all four knowl-
edge operators, as defined in Huth and Ryan [12], which includes knowledge
operator Ki, shared knowledge operator EG, common knowledge operator CG,
and distributed knowledge operator DG. We also provide proof tactics for
both the Gentzen-style deduction rules for the knowledge operators, as well
as for the normal natural deduction rules for the predicate operators, based
on ProofWeb [14].

We will start by having a closer look at some of the theoretical aspects
of epistemic modal logic and multi-agent systems. After that, we will dis-
cuss how existing deduction rules for multi-agent epistemic modal logic, as
seen in Huth and Ryan [12], can be adapted for Gentzen-style natural de-
duction proofs. Then we will define natural deduction rules for distributed
knowledge since these are often left out in the literature. And finally, we
will discuss our S5n Coq implementation, which is based on an S5 im-
plementation by Benzmüller and Woltzenlogel Paleo [2], and we will show
some examples of how it can be used to prove statements about multi-agent
systems with natural deduction.

In Chapter 2 we will go over the details of epistemic modal logic and
multi-agent systems. In Chapter 3 we will have a closer look at Gentzen-style
proofs and the natural deduction rules that apply to distributed knowledge,
and in Chapter 4 we will discuss how we implemented these proof rules in
Coq. In Chapter 5 we show some example proofs using our Coq implemen-
tation. Finally, in Chapter 6 we will talk a bit more about related works,
with different approaches to distributed knowledge, and other existing Coq
implementations of modal logics.

A summary of the natural deduction rules can be found in Appendix A,
and our Coq implementation can be found in Appendix B, as well as online at
https://gitlab.science.ru.nl/mphilipse/coq-multi-agent-systems.
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Chapter 2

Preliminaries

2.1 Epistemic modal logic (S5)

Before we get into distributed logic and multi-agent systems, we first have
to take a closer look at modal logic, or more specifically epistemic modal
logic. All the definitions in this chapter are based on Chapter 5 of Huth and
Ryan [12], unless otherwise specified.

Modal logic is an extension of propositional logic. It adds the necessity
(�) and the possibility (♦) operators to the well-known propositional oper-
ators (¬, ∧, ∨, →, ↔). Here �p means that the statement p is necessarily
true, and ♦p means that the statement p is possibly true. What that means
exactly, depends on the type of modal logic that you are talking about.

Epistemic modal logic is a type of modal logic in which we reason about
the knowledge of agents. You can think of an agent as just a person who
knows certain things. If we think of ourselves as an agent, then if �p holds
for us, it means that we know that p holds, and on the other hand if ♦p
holds for us, it means that p does not contradict our knowledge, so p could
hold according to us.

2.1.1 Kripke models

In order to mathematically reason about modality, we need semantics to de-
scribe what something like ♦p actually means. So how do we mathematically
reason about the necessity and possibility of propositions?

For this, we use so-called Kripke semantics, also known as possible world
semantics, to reason about what “worlds” are possible. However, before we
can get into the details of Kripke semantics, we first have to take a look
at Kripke models. These Kripke models are used to specify how worlds
relate to each other, and this will allow us to reason about the necessity and
possibility of propositions.
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Definition 2.1. A Kripke model M is a tuple (W,R,L), consisting of:
• A set W of worlds,
• An accessibility relation R ⊆W ×W over the worlds,
• A labeling function L : W → P (atoms), that maps each world to a

set of atomic propositions.
The accessibility relation R links worlds together. For example, xR y

means that world y is accessible from world x, meaning that it is possible
to transition from world x to world y. Note that xR y is just an alternative
notation for (x, y) ∈ R. Within epistemic modal logic, a world y being
accessible from a world x, means that when we are in world x, we cannot
know whether or not we actually are in world x or if we are in world y. Or
in other words, if x is the “real” world, y could also be the “real” world
according to our knowledge.

The labeling function L is used to specify which atomic propositions (i.e.
named variables, so propositions without operators) hold in each world. For
instance, p ∈ L(x) says that atomic proposition p holds in world x.
Example 2.1. Say we have two atomic propositions p and q, then we could
construct a Kripke model such as shown in Figure 2.1.

p

x1

p, q

x2

x3

q

x4

Figure 2.1: An example of a Kripke model

In this model, we have four worlds, W = {x1, x2, x3, x4}, which all have
been labeled with a set of atomic propositions that hold in those worlds.
For example, in world x1 atomic proposition p holds, but q does not hold,
because the labeling function maps x1 to the singleton set containing only
p, so L(x1) = {p}. World x3 may seem to not have a label, but this means
that here non of the atomic propositions hold, so L(x3) = ∅.

Note that, while we have one world for every combination of atomic
propositions, this is not required. You could have multiple worlds labeled
with the same set of atomic propositions, and you could have combinations
of atomic propositions that do not occur in any world.
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The accessibility relation R is depicted in Figure 2.1 with arrows. As
you can see in world x3, it is possible that a world is accessible from itself, as
shown with the arrow that loops from x3 to x3, thus describing that x3 R x3.
In this example model, the arrows represent R = {(x2, x3), (x3, x3), (x3, x4),
(x4, x3)}. We will later see in Section 2.1.3 that, because of the fact that we
are reasoning about epistemic modal logic, there are some properties that
the accessibility relation should have in order to really make sense.

2.1.2 Kripke semantics

Definition 2.2. Kripke semantics define a satisfaction relation x  ϕ over
a Kripke model M = (W,R,L), which is used to evaluate whether or not a
proposition ϕ holds in a world x ∈W . For any atomic proposition a, x  a
holds if and only if a ∈ L(x). For all the operators that we have in modal
logic, the relation is defined inductively for any proposition ϕ and ψ:

x  a iff a ∈ L(x)
x  ¬ϕ iff x 6 ϕ

x  ϕ ∧ ψ iff x  ϕ and x  ψ

x  ϕ ∨ ψ iff x  ϕ or x  ψ

x  ϕ→ ψ iff x 6 ϕ or x  ψ

x  ϕ↔ ψ iff (x  ϕ if and only if x  ψ)
x  �ϕ iff for each y ∈W with xR y, we have y  ϕ

x  ♦ϕ iff there exists a y ∈W such that xR y and y  ϕ

This means that we now know how to evaluate a statement like ♦ϕ for
some world in a model. By applying the definitions above, we know that
♦ϕ only holds in a world x, if there is another world y, which is accessible
from x, in which ϕ holds. For example, ♦q holds for x3 in the model from
Example 2.1, because x4 is accessible from x3, since (x3, x4) ∈ R, and x4  q
holds, because q ∈ L(x4).

Often, we do not care as much about which world is the “real” world.
Instead, it can be more useful to check if the Kripke model as a whole
satisfies a formula.
Definition 2.3. A Kripke model M = (W,R,L) satisfies a formula ϕ, if
every world x ∈W satisfies ϕ.

In an even more general sense, we often do not even care about the
specifics of a Kripke model. Instead, we would often just like to discuss
whether a formula is valid in general.
Definition 2.4. A formula ϕ is valid, if it is satisfied by every possible
Kripke model.
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2.1.3 Axioms for epistemic modal logic

In Example 2.1 we have shown an example of a Kripke model. However, if we
think about what the accessibility relation R represents in epistemic modal
logic, then this model does not make much sense. To make sure that R
makes sense with our logic, we have axioms that specify extra requirements
for R, depending on the type of modal logic we are using.

Axiom name Property of R Formula Scheme
K distributivity - �(ϕ→ ψ)→ (�ϕ→ �ψ)
D seriality ∀x ∈W , ∃y ∈W,xR y �ϕ→ ♦ϕ

T reflexivity ∀x ∈W,xR x �ϕ→ ϕ

4 transitivity ∀x, y, z ∈W,xR y ∧ yR z → xR z �ϕ→ ��ϕ

5 Euclidean ∀x, y, z ∈W,xR y ∧ xR z → yR z ♦ϕ→ �♦ϕ

B symmetry ∀x, y ∈W,xR y → yR x ϕ→ �♦ϕ

Table 2.1: Summary of the different axioms and their formula schemes

Every axiom has a corresponding formula scheme, that should be valid
if this axiom is part of the axiomatic system we are using. The relation
between the properties of R and the formula schemes is based on correspon-
dence theory.

In epistemic modal logic, it turns out that all the above axioms should
hold, which gives us an axiomatic system called S5. While we will skip
over some of the details of correspondence theory, we will discuss why these
properties of R and these formula schemes make sense in epistemic modal
logic.

Distributivity (K)

In all normal modal logics the distributivity axiom (K) holds. In fact, we
can prove that its formula scheme is valid, based on Definition 2.2 of the
satisfaction relation. If we assume that for some arbitrary x it holds that
x  �(ϕ→ ψ) ∧�ϕ, then we can prove that x  �ψ must hold:

x  �(ϕ→ ψ) ∧�ϕ ⇐⇒ x  �(ϕ→ ψ) and x  �ϕ

⇐⇒ ∀y ∈W,xRy → (y  ϕ→ ψ) and
∀y ∈W,xRy → (y  ϕ)

=⇒ ∀y ∈W,xRy → (y  ψ)
⇐⇒ x  �ψ
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Seriality (D)

Epistemic modal logic reasons about idealized knowledge agents that cannot
have contradicting knowledge. So if an agent knows something (�ϕ), then it
must be that it does not contradict their knowledge (♦ϕ). So, in epistemic
modal logic, we expect the seriality axiom (D) to hold.

But unlike axiom K, this axiom is not enforced by the Kripke semantics.
Instead, if we want to make sure that this axiom holds, we have to make
sure that the accessibility relation R has a certain property. For seriality,
this means that for every x ∈W , there must exist a y ∈W such that xR y,
which means that there should always be a world that could be the actual
world according to our knowledge.

The example model from Example 2.1 does not yet satisfy the seriality
axiom, because there is no world that is accessible from x1. If we add the
relation (x1, x1) to R, then it does satisfy the seriality axiom, as shown in
Figure 2.2.

p

x1

p, q

x2

x3

q

x4

Figure 2.2: A Kripke model that satisfies axioms K and D

Reflexivity (T)

Again, because idealized knowledge agents cannot have contradicting knowl-
edge, they can only know true things. This means that every world should
be accessible from itself, since idealized knowledge should not contradict the
“real” world. This is what the reflexivity axiom (T) describes.

Note that this reflexivity axiom implies the seriality axiom (D), since if
for every world x ∈W it is the case that xR x, then it automatically follows
that there exists a y ∈W for every world x ∈W such that xR y.

To make our example model also satisfy the reflexivity axiom, we need
to also add reflexive relations to worlds x2 and x4, as shown in Figure 2.3.
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p

x1

p, q

x2

x3

q

x4

Figure 2.3: A Kripke model that satisfies axioms K, D and T

Transitivity (4)

If y could be the real world according to our knowledge at x (so xR y), and
z could be the real world according to our knowledge at y (so yR z), then it
would make sense that z could be the real world according to our knowledge
at x (so xR z). This also means that if we know something (�ϕ), then
we know that we know that thing (��ϕ). Thus the transitivity axiom (4)
should also hold in epistemic modal logic.

This means, that in our example model, because we have x2 R x3 and
x3 R x4, we must make it such that x2 R x4, as shown in Figure 2.4. The
axiomatic system that combines the axioms K, D, T, and 4 is called S4, so
we say that Figure 2.4 represents an S4 Kripke model.

p

x1

p, q

x2

x3

q

x4

Figure 2.4: An S4 Kripke model
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Symmetry & Euclidean (B & 5)

The symmetry axiom (B) says that if y could be the real world according
to our knowledge at x (i.e. xR y), then x could be the real world according
to our knowledge at y (i.e. yR x). This also means that if ϕ holds, then we
know that ϕ does not contradict our knowledge (i.e. �♦ϕ), which means
that for all accessible worlds, there exists a world where ϕ holds.

The Euclidean axiom (5) says that if y and z both could be the real
world according to our knowledge at x (i.e. xR y and xR z), then z could
be the real world according to our knowledge at y (i.e. yR z). This also
means that if ϕ does not contradict our knowledge (i.e. ♦ϕ), then we know
that ϕ does not contradict our knowledge (i.e. �♦ϕ).

These last two axioms are quite similar. In fact, axioms T and 5 imply
axiom B. If you assume that xR y, then we know because of reflexivity (T)
that xR x, and because of the Euclidean axiom (5), it must be that yR x,
because xR y ∧ xR x→ yR x, thus proving symmetry (B).

Also, axioms 4 and B imply axiom 5. If you assume that xR y and
xR z, then we know because of symmetry (B) that yR x, and because of the
transitivity axiom (4), it must be that yR z, because yR x ∧ xR z → yR z,
thus proving the Euclidean axiom (5).

And thus, as pointed out by Fact 5.16 from Huth and Ryan [12], a
relation is reflexive (T), transitive (4), and Euclidean (5), if and only if it is
reflexive (T), transitive (4), and symmetric (B). And with all these axioms,
we get an axiomatic system called S5 (where the axioms K, D, T, 4, 5, and
B all hold), and our accessibility relation R becomes an equivalence relation.

To turn our example model from Figure 2.4 into a proper S5 Kripke
model, we need to add the relations (x3, x2) and (x4, x2), as shown in Fig-
ure 2.5. Because the accessibility relation R is now an equivalence relation,
you can see that our worlds have been split up into separate, all-connected
groups.

p

x1

p, q

x2

x3

q

x4

Figure 2.5: An S5 Kripke model
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2.2 Multi-agent systems (S5n)

In the previous section, we only reasoned about a singular knowledge agent.
To reason about groups of knowledge agents who all have potentially differ-
ent knowledge, we have to look at multi-agent systems.

2.2.1 Kripke models for multi-agent systems

To reason about the knowledge of multiple agents, we need a separate acces-
sibility relation Ri for every agent i in the set of agents A. This means that a
Kripke modelM for multi-agent systems consists of a tuple (W, (Ri)i∈A, L).

Each one of these separate accessibility relations should satisfy all the
axioms from S5. The axiomatic system where we have n relations for n
knowledge agents is called S5n.
Definition 2.5. An S5n Kripke modelM for a set A of n agents, is a tuple
(W, (Ri)i∈A, L) consisting of:

• A set W of worlds,
• For each i in A, an accessibility relation Ri ⊆W ×W over the worlds,
• A labeling function L : W → P (atoms), that maps each world to a

set of atomic propositions.
Now that we have separate accessibility relations for every agent i ∈ A,

the normal necessity operator is no longer sufficient. For multi-agent system
we usually use four different kinds of knowledge operators:

• Knowledge operator Ki for every agent i ∈ A
• Shared knowledge operator EG for a group of agents G ⊆ A
• Common knowledge operator CG for a group of agents G ⊆ A
• Distributed knowledge operator DG for a group of agents G ⊆ A

With knowledge operator Ki you can specify that a specific agent i knows
something. For instance, the statement K1ϕ means that agent 1 knows that
ϕ holds. This is similar to the �-operator that we have seen before, since
�ϕ means that we know that ϕ holds, while K1ϕ means that agent 1 knows
that ϕ holds.

Note that, unlike the necessity operator (�), the possibility operator
(♦) has no proper alternative for multi-agent systems. While this might
seem like a problem, it turns out that this is not a problem at all, since a
statement like ♦ϕ can be rewritten as ¬�¬ϕ. This is equivalent, because
saying that something is possible, is the same as saying something is not
always impossible.
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The shared knowledge operator EG can be used to say that every agent
in a group G knows that ϕ holds, which is written as EGϕ. This operator can
be seen as an abbreviation, since it can be defined in terms of the knowledge
operator Ki:

EGϕ :=
∧
i∈G
Kiϕ

The common knowledge operator CG is a bit more complex. It is an
extension of EG, where CGϕ means that every agent in G knows that ϕ holds,
but also every agent knows that every agent knows that ϕ holds, which in
turn is also known by every agent, and so on recursively. This operator can
be rewritten in terms of EG, however, since it consists of an infinite con-
junction it can technically not be seen as an abbreviation (because infinite
conjunctions are not part of the “language” of epistemic modal logic):

CGϕ :=
∞∧
i=1
E iGϕ, where EnGϕ =

ϕ if n = 0

EGEn−1
G if n ≥ 0

For instance CGϕ specifies that EGϕ ∧ EG(EGϕ) ∧ EG(EG(EGϕ)) ∧ . . .
and so on.

Lastly, we have the distributed knowledge operator DG, which is the
main focus of our thesis. It describes the distributed knowledge of the agents
in a group G, which is all the knowledge that can be deduced from the
combined knowledge of every agent in G. DG cannot easily be expressed in
terms of Ki, since it combines knowledge in a special way, where something
can be distributed knowledge, even though non of the agents have that
particular knowledge themselves, as illustrated in Example 2.2.
Example 2.2. As an example of distributed knowledge, say that agent 1
knows that p holds, and agent 2 knows that p → q holds, then we know it
is part of the distributed knowledge of agent 1 and agent 2 that q holds [9].
Or, written mathematically: K1p ∧ K2(p→ q)→ D{1,2}q holds.

2.2.2 Kripke semantics for multi-agent systems

To prove statements such as K1p∧K2(p→ q)→ D{1,2}q, we must first extend
the Kripke semantics to properly define what the knowledge operators mean.
Definition 2.6. The satisfaction relation  is defined as follows for the
knowledge operators:

x  Kiϕ iff for each y ∈W , xRi y implies that y  ϕ

x  EGϕ iff for each i ∈ G, it is the case that x  Kiϕ
x  CGϕ iff for each k ≥ 1, it is the case that x  EkGϕ
x  DGϕ iff for each y ∈W , we have y  ϕ, whenever xRi y for all i ∈ G

13



Hakli and Negri [7] provide a slightly different definition for the satis-
faction relation for DG:

x  DGϕ iff for each y ∈W such that (x, y) ∈ ⋂
i∈G Ri,

it is the case that y  ϕ

As you can see, the Kripke semantic definition of Ki is similar to that of
�, but with the addition of an agent-specific accessibility relation, and the
Kripke semantic definitions of EG and CG correspond to the previously given
mathematical definitions.

The definitions for DG are a bit more complex. While the definition
from Hakli and Negri looks quite different, it describes the same thing as
the definition from Huth and Ryan. The intersection from Hakli and Negri
is described by Huth and Ryan as “whenever for each i ∈ G we have xRi y”.

The satisfaction definition for DG is somewhat similar to that of Ki,
but it uses an intersection of the accessibility relation of all agents in group
G. The intersection combines the knowledge of the agents, by only leaving
the worlds accessible that do not contradict anyone’s knowledge.

If we try to come up with a Kripke model for Example 2.2, where we
say that K1p ∧ K2(p→ q)→ D{1,2}q, we could get something like shown in
Figure 2.6. You can see that every arrow has been annotated with either
R1, R2 or both, to show which relation Ri the arrow is part of.

p

x1

p, q

x2

x3

q

x4

R1

R2
R2

R1, R2

R1, R2 R1, R2

R1, R2 R1, R2

Figure 2.6: An example of an S52 Kripke model

Because the accessibility relation Ri is an equivalence relation, it can
often be convenient to leave out some of the details while drawing a Kripke
model. Since Ri is reflexive, we know that every world is accessible to itself,
so we can leave out the looping arrows for every world. And since Ri is
symmetric, we know that every arrow must go in both directions, so we can
just draw them as lines. This means that we can get a much cleaner-looking
Kripke model, as shown in Figure 2.7, which still represents the same model
as Figure 2.6.
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p

x1

p, q

x2

x3

q

x4

R1

R2
R2

R1, R2

Figure 2.7: An example of a simplified S52 Kripke model

You can see that for agent 1, we have chosen to differentiate the worlds
in which p holds (x1 and x2), and the worlds in which p does not hold (x3
and x4). Similarly, for agent 2 we have separated the worlds in which p→ q
holds (x2, x3 and x4) and the world where p→ q does not hold (x1).

Based on the assumption that K1p holds, we know that we must either
be in x1 or x2, since only from those worlds holds p in every accessible world
for agent 1. And based on the assumption that K2(p → q) holds, we know
that we must be in either x2, x3 or x4, since only from those worlds p → q
holds in every accessible world for agent 2.

This means, that it follows from the assumption that K1p and K2(p→
q) hold, that we must be in x2. The only world that is accessible from x2
for both agent 1 and agent 2, is x2 itself. And in x2 the atomic proposition
q holds, so it follows that D{1,2}q holds whenever K1p and K2(p → q) hold
in our model.

However, the Kripke model that we have shown here, is just one of
infinitely many possible Kripke models. So instead of showing that a state-
ment like K1p∧K2(p→ q)→ D{1,2}q holds for one specific model, we would
like to prove that it is valid in general. In the next chapter, we will show
how we can use proof rules and natural deduction to show that a formula
must hold for every world in every possible S5n Kripke model.
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Chapter 3

Knowledge Proofs

In propositional logic, we can prove a formula like p ∧ (p → q) → q using
natural deduction. We use derivation rules, such as the ones listed in Ap-
pendix A.1, to prove a formula based on certain premises. We write for
instance ϕ1, ϕ2 ` ψ to say that we want to prove ψ based on the premise
that ϕ1 and ϕ2 hold. To prove that a formula holds in general, we have to
show that for instance ` p ∧ (p→ q)→ q holds, without any premises.

The proof of a sequent like ` p∧ (p→ q)→ q can be shown visually as
a proof tree, as shown in Figure 3.1. Every horizontal line in such a proof
tree represents a deduction rule being applied. At the top of any branch in
a proof tree, you will often see the “hyp”-rule, which says that what we are
trying to prove is one of the premises on the left-hand side.

hyp
p ∧ (p→ q) ` p ∧ (p→ q)

∧e2
p ∧ (p→ q) ` p→ q

hyp
p ∧ (p→ q) ` p ∧ (p→ q)

∧e1
p ∧ (p→ q) ` p →e

p ∧ (p→ q) ` q
→i` p ∧ (p→ q)→ q

Figure 3.1: A proof of ` p ∧ (p→ q)→ q

Similarly, we would like to prove formulas about multi-agent systems
using natural deduction. For instance, we would like to prove the formula
K1p ∧ K2(p → q) → D{1,2}q from Example 2.2. For this, we need new
derivation rules for the knowledge operators.
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3.1 Natural deduction rules for S5

Before we have a look at the proof rules of the knowledge operators in S5n,
we shall first have a look at the proof rules of S5.

In the modal logic S5, we have the necessity operator (�) and the
possibility operator (♦). However, remember that the possibility operator
can be defined in terms of the necessity operator, e.g. ♦p ⇐⇒ ¬�¬p . So,
to prove things in S5 with natural deduction, it is sufficient to just have
proof rules for �.
Definition 3.1. Huth and Ryan [12] define a �-introduction rule and a
�-elimination rule as follows:

...
ϕ

�i�ϕ

�ϕ
�e

...
ϕ
...

Huth and Ryan use these rules in Fitch notation. We can rewrite them with
full sequents to better fit in Gentzen-style proof trees, as Hubbers has done
in the (unpublished) course material of the course “Logic and Applications”:

Γ, � ` ϕ
�iΓ ` �ϕ

Γ ` �ϕ
�e

Γ, � Γ ` ϕ
In these rules, you see dashed boxes labeled by �. These dashed boxes

mean that their contents apply to an arbitrary accessible world. This is
somewhat similar to the ∀i and ∀e rules, where you are also reasoning about
an arbitrary instance of a certain type.

The context Γ in these rules normally contains the premises that we
already have assumed to hold. However, with the addition of these “dashed
boxes”, the context Γ can now also contain the various nested dashed-boxed
that we might be in.
Definition 3.2. We define the modal context Γ as follows for S5:

Γ ::= · | Γ, ϕ | Γ, �

To make it easier to define this grammar, we only indicate the beginning
of a dashed box with � . These dashed boxes always reach to end of the
sequent, so it is sufficient to formally only indicate where they start, even
though we prefer to to draw the full box.

Note that we usually do not write the initial comma at the start of a
(non-empty) context or just after the beginning of a dashed box.
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When you are trying to prove something within in a dashed box, you
can only use the assumptions from inside of that dashed box in the context.
Assumptions outside (i.e. before the start) of the current dashed box are
related to a different world and thus cannot be used.

The Γ in the �e rule represents a normal context without dashed boxes
inside of it. This is because when you eliminate a dashed box, that dashed
box is allowed to have assumptions in it, but the dashed box that you are
eliminating should be the innermost dashed box, as you can not eliminate
multiple boxes at once.
Definition 3.3. We define the normal context Γ as follows:

Γ ::= · | Γ, ϕ

Using the rules �i and �e, we can now prove a formula like �p∧�(p→
q)→ �q, as shown in Figure 3.2.

hyp
�p ∧�(p→ q) ` �p ∧�(p→ q)

∧e2
�p ∧�(p→ q) ` �(p→ q)

�e
�p ∧�(p→ q), � ` p→ q

hyp
�p ∧�(p→ q) ` �p ∧�(p→ q)

∧e1
�p ∧�(p→ q) ` �p

�e
�p ∧�(p→ q), � ` p

→e
�p ∧�(p→ q), � ` q

�i
�p ∧�(p→ q) ` �q

→i` �p ∧�(p→ q)→ �q

Figure 3.2: A proof of �p ∧�(p→ q)→ �q

Based on the axioms that hold in S5, which we discussed in Sec-
tion 2.1.3, we can define some more proof rules. While the axioms K, D, B,
T, 4, and 5 all hold in S5, it is sufficient to have rules only for T, 4, and 5.
These three axioms imply that the accessibility relation R is an equivalence
relation, and thus they imply symmetry (B) and seriality (D).
Definition 3.4. The natural deduction rules based on S5’s axioms are
defined as follows:

Γ ` �ϕ
TΓ ` ϕ

Γ ` �ϕ
4Γ ` ��ϕ

Γ ` ¬�ϕ
5Γ ` �¬�ϕ

Again, these rules are based on Huth and Ryan [12], but have been
rewritten in Gentzen-style by Hubbers.
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3.2 Natural deduction rules for S5n

Now that we have seen the proof rules for S5, let us now see how we can
extend these to S5n. What proof rules can we define for the knowledge
operators Ki, EG, CG, and DG?

3.2.1 Natural deduction rules for Ki
The knowledge operator Ki is very similar to the necessity operator from
S5, with the only difference being that Ki has an argument for which agent
i knows something. Because of this, the rules that we have seen for S5 can
easily be adapted to fit the Ki operator.
Definition 3.5. The deduction rules for the knowledge operator Ki are
defined similarly to those of the necessity operator �:

Γ, Ki ` ϕ
KiΓ ` Kiϕ

Γ ` Kiϕ Ke
Γ, Ki Γ ` ϕ

Γ ` Kiϕ KTΓ ` ϕ
Γ ` Kiϕ K4Γ ` KiKiϕ

Γ ` ¬Kiϕ K5Γ ` Ki¬Kiϕ
Note that the dashed boxes here are labeled with Ki. This is because

these dashed boxes now say that we are reasoning about an arbitrary world
that is accessible to agent i.

Using these rules, we can construct a proof similar to Figure 3.2 for the
formula K1p ∧ K1(p→ q)→ K1q, as shown in Figure 3.3.

hyp
K1p ∧ K1(p→ q) ` K1p ∧ K1(p→ q)

∧e2
K1p ∧ K1(p→ q) ` K1(p→ q)

Ke
K1p ∧ K1(p→ q), K1 ` p→ q

hyp
K1p ∧ K1(p→ q) ` K1p ∧ K1(p→ q)

∧e1
K1p ∧ K1(p→ q) ` K1p Ke
K1p ∧ K1(p→ q), K1 ` p

→e
K1p ∧ K1(p→ q), K1 ` q

Ki
K1p ∧ K1(p→ q) ` K1q

→i
` K1p ∧ K1(p→ q)→ K1q

Figure 3.3: A proof of K1p ∧ K1(p→ q)→ K1q
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3.2.2 Introduction and elimination rules for EG, CG, and DG

As Huth and Ryan [12] point out, the knowledge operators EG, CG and DG
are also “box-like” connectives. Just like x  Kiϕ, which holds if and only
if for each world y ∈ W with xRi y it is the case that y  ϕ, the EG, CG,
and DG operators can be defined in a similar manner.
Definition 3.6. We can define special accessibility relations REG

, RCG
, and

RDG
in terms of Ri:

xREG
y iff xRi y for some i ∈ G

xRCG
y iff xRk

EG
y for some k ≥ 1

xRDG
y iff xRi y for all i ∈ G

Note that our definition of RCG
is a bit different from the one by Huth

and Ryan, as we say that xRk
EG
y must hold for some k ≥ 1, while they

say that xRk
EG
y must hold for each k ≥ 1. This is most likely a mistake

by Huth and Ryan. In Lemma RCC in Appendix B.1, which will be further
discussed in Section 4.2.2, we prove that our definition makes sense.
Definition 3.7. Based on these relations we can define alternative defini-
tions of the knowledge operators EG, CG, and DG:

x  EGϕ iff for each y ∈W such that xREG
y, it is the case that y  ϕ

x  CGϕ iff for each y ∈W such that xRCG
y, it is the case that y  ϕ

x  DGϕ iff for each y ∈W such that xRDG
y, it is the case that y  ϕ

These alternative definitions are similar to the original definition ofKi in
Definition 2.6. Because of this, EG, CG, and DG are all what Huth and Ryan
call “box-like” connectives, which means that we can define introduction
and elimination rules similar to Ki and Ke for EG, CG, and DG, but with
appropriately labeled dashed boxes for each of the operators.
Definition 3.8. The introduction and elimination rules for EG, CG, and DG
are defined as follows:

Γ, EG ` ϕ
EiΓ ` EGϕ

Γ, CG ` ϕ
CiΓ ` CGϕ

Γ, DG ` ϕ
DiΓ ` DGϕ

Γ ` EGϕ Ee
Γ, EG Γ ` ϕ

Γ ` CGϕ Ce
Γ, CG Γ ` ϕ

Γ ` DGϕ De
Γ, DG Γ ` ϕ

Here the dashed boxes still indicate that we are reasoning about an
arbitrary accessible world, but how exactly the arbitrary world is accessible
depends on the operator. For example, in a DG-labeled dashed box, we
reason about an arbitrary world that is accessible through the RDG

relation.
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Note that, while Huth and Ryan [12] do mention the Ei, Ee, Ci, and Ce
rules, they do not mention the Di and De rules. This is because they chose
to only provide the rules for Ki, EG, and CG. However, the Di and De rules
are valid since DG is a “box-like” connective just like the other knowledge
operators.
Definition 3.9. Since we now have four different kinds of dashed boxes, we
define the modal context Γ for S5n as follows:

Γ ::= · | Γ, ϕ | Γ, Ki | Γ, EG | Γ, CG | Γ, DG

Again, we use partial boxes to indicate the beginning of the different
kinds of dashed boxes. For S5n, the normal context Γ remains the same as
Definition 3.3 for S5.

3.2.3 Axioms for EG, CG, and DG

We have seen that for Ki, just like as for �, the axioms T, 4, and 5 all hold
because Ri is an equivalence relation. Because of this, we have the rules
KT , K4, and K5 as shown in Definition 3.5. Now let us see if we can define
similar rules for the other operators.

Axioms for EG

As Huth and Ryan point out, axioms 4 and 5 do not hold for the operator
EG [12]. This becomes obvious if we look at the definition of REG

.
From Definition 3.6 we know that xREG

y holds if and only if xRi y for
some i ∈ G. So it can be that for G = {1, 2} we have xR1 y and yR2 z, which
means that we have xRE{1,2} y and yRE{1,2} z, but we do not necessarily have
xRE{1,2} z, which means that REG

is not necessarily transitive (axiom 4), as
shown in Figure 3.4. Similarly, the RE{1,2} in Figure 3.4 is not Euclidean
(axiom 5) either, since we have yRE{1,2} x and yRE{1,2} z, but we do not have
xRE{1,2} z.

x y z
R1,RE{1,2} R2,RE{1,2}

Figure 3.4: An example where REG
is not transitive and not Euclidean

This RE{1,2} is reflexive (axiom T), although the reflexive relations are
not shown explicitly in Figure 3.4. However, the reflexivity of REG

does not
always hold. In particular, if G = ∅, then there is no i ∈ G for which xRi y
holds for any worlds x and y. This means that if G = ∅, then xREG

x does
not hold which means REG

is not reflexive.
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Axioms for CG

For the CG operator, axioms 4 and 5 do hold. This is because RCG
is defined

in terms of Rk
EG

for some k ≥ 1, which means that RCG
is the transitive clo-

sure of REG
. As shown in Figure 3.5, you can see that RC{1,2} expands upon

RE{1,2} with the relations (x, z) and (z, x), making the relation transitive.
This is because (x, z) and (z, x) are in R2

E{1,2}
, since (x, y), (y, z), (z, y), and

(y, x) are in RE{1,2} .

x

y

zR1,
R E {1

,2}

R C {1
,2}

R
2 ,R
E{1,2}

R
C{1,2}

RC{1,2}

Figure 3.5: RCG
is transitive and Euclidean

The relation RCG
is also symmetric (axiom B) since it inherits this

property from REG
, which in turn inherits it from Ri. As we explained in

Section 2.1.3, any relation that is both symmetric (axiom B) and transitive
(axiom 4) is also Euclidean (axiom 5), so the relation RCG

is also Euclidean.
However, similar to REG

, RCG
is not reflexive when G = ∅, because RCG

cannot be reflexive if REG
is not reflexive.

Definition 3.10. Because RCG
is transitive (axiom 4) and Euclidean (axiom

5), we can have the following proof rules for CG:
Γ ` CGϕ C4Γ ` CGCGϕ

Γ ` ¬CGϕ C5Γ ` CG¬CGϕ

Axioms for DG

Huth and Ryan also point out that, unlike REG
and RCG

, RDG
is a proper

equivalence relation [12]. This is because the transitive, Euclidean, and
reflexive properties of Ri carry over to RDG

, since RDG
is the intersection of

multiple Ri’s.
Unlike for REG

and RCG
, which are not reflexive when G = ∅, RDG

is
always reflexive, even when G = ∅. This is because xREG

y holds if and only
if there exists some agent i ∈ G for which xRi y holds, which means that
if there are no agents in the group G, then xREG

y (and by extension also
xRCG

y) automatically does not hold. On the other hand, xRDG
y holds if

and only if for all agents i ∈ G we have that xRi y holds, which means that
if there are no agents in the group G, then xRDG

y automatically holds, so
in particular xRDG

x also holds for any world x.
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Definition 3.11. Because RDG
is reflexive (axiom T), transitive (axiom 4),

and Euclidean (axiom 5), we can have the following proof rules for DG:
Γ ` DGϕ DTΓ ` ϕ

Γ ` DGϕ D4Γ ` DGDGϕ
Γ ` ¬DGϕ D5Γ ` DG¬DGϕ

These rules are not mentioned by Huth and Ryan, but given the prop-
erties of the relation RDG

, they do make sense. In Section 4.2.3 we will prove
that these rules are indeed valid, using our Coq implementation.

3.2.4 Proof rules relating different knowledge operators

We have seen that we can have introduction and elimination rules for the
different knowledge operators. We have also seen that we can have a variety
of proof rules related to the axioms that hold for certain knowledge opera-
tors. In this section, we will see that we can also have proof rules that relate
certain knowledge operators to other knowledge operators.

Shared knowledge EG related to Ki

Based on Definition 2.6, we know that x  EGp holds if and only if x  Kip
for every i ∈ G. Because of this, we can prove that EGϕ holds by proving
that Kiϕ holds for every i ∈ G, which gives us the proof rule KE . We can
also prove that Kiϕ holds by proving that EGϕ holds, as long as agent i is
in group G, which gives us the proof rule EK.
Definition 3.12. We have the following natural deduction rules relating
shared knowledge EG to Ki:

Γ ` Kiϕ for each i ∈ G
KEΓ ` EGϕ

Γ ` EGϕ i ∈ G
EKΓ ` Kiϕ

Definition 3.13. To prove that an agent i is in a group G, we have the
proof rule ∈G, which says that i ∈ G holds if i appears in the set G:

∈GΓ ` i ∈ {. . . , i, . . .}

Common knowledge CG related to EG and Ki

Definition 2.6 also tells us that x  CGp holds if and only if x  EkGp for
every k ≥ 1. Because of this, we can prove that a sequence of one or more
repeated EG’s holds based on CG, which gives us the proof rule CE . With
the CE rule and repeated applications of the Ki, EK, and Ke rules, we can
also define a proof rule for any sequence of Kij ’s, as long as every agent ij
is in group G, which gives us the proof rule CK.
Definition 3.14. Natural deduction rules relating CG with EG and Ki:

Γ ` CGϕ CEΓ ` EG . . . EGϕ
Γ ` CGϕ ij ∈ G

CKΓ ` Ki1 . . .Kikϕ
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In Figure 3.6 you can see why the CK rule works. We can use repeated
applications of Ki, EK, and Ke to replace all Ki’s with EG’s, as long as every
agent ij is in group G. Finally, once all Ki’s have been replaced, we can use
the CE rule to prove the sequence of EG’s based on a single CG.

` CGϕ CE` EG . . . EGϕ ij ∈ G (EK,Ke)∗...
Ke

Ki1 . . . Kik−1 ` EGϕ ik ∈ G
EK

Ki1 . . . Kik−1 ` Kikϕ
(Ki)∗...
Ki

Ki1 ` Ki2 . . .Kikϕ
Ki` Ki1 . . .Kikϕ

Figure 3.6: The CK rule described using the Ki, EK, Ke, and CE rules

Distributed knowledge DG related to Ki, EG, and CG

Inspired by the rules from Huth and Ryan relating EG and CG to other
knowledge operators, we can also come up with some rules for relating the
distributed knowledge operator DG to other knowledge operators.

For the distributed knowledge operator DG, it makes sense that when
one agent i in a group G knows that ϕ holds, then ϕ is part of the distributed
knowledge of group G.

This is because for x  DGϕ to hold, as we have seen in Definition 2.6,
it must be that for each y ∈ W we have y  ϕ whenever we have xRi y for
all agents i ∈ G. If we know that x  Kiϕ holds, we know that for each
y ∈ W we have y  ϕ whenever we have xRi y. So if for a particular agent
j ∈ G it holds that Kjϕ, then it must be that DGϕ holds, because for each
y ∈ W such that xRj y it holds that y  ϕ, which means that y  ϕ must
also hold for each y ∈W where xRi y holds for all agents i ∈ G.
Definition 3.15. We define the following natural deduction rule for proving
DG based on Ki:

Γ ` Kiϕ i ∈ G
KDΓ ` DGϕ
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This property of DG is similar to axiom A9 by Halpern and Moses [10],
which is also discussed by Lambert [15], and axiom A11 by van der Hoek
[11]. However, these do not consider the distributed knowledge of a group
G, instead they consider the distributed knowledge of all agents. Hakli and
Negri [7] have also shown that this property of DG holds for their logic
G3KED as well.

Similarly, we could also define proof rules ED and CD. However, it turns
out that these proof rules are not necessary, since we can already construct
proofs for DG based on EG and CG using the proof rules we already have, as
shown in Figure 3.7 and Figure 3.8 respectively.

` EGϕ i ∈ G
EK` Kiϕ i ∈ G

KD` DGϕ

Figure 3.7: Proving DG based on EG (as long as there exists some i ∈ G)

` CGϕ CE` EGϕ i ∈ G
EK` Kiϕ i ∈ G

KD` DGϕ

Figure 3.8: Proving DG based on CG (as long as there exists some i ∈ G)

Notice that the ED and CD rules would only work if we know that there
exists some i ∈ G. This is again because an empty group G would cause
problems. When G = ∅, EGϕ, and by extension CGϕ, will always holds,
because EGϕ asks if Kiϕ holds for every i ∈ G, which it does if there are no
agents i ∈ G.

However, when G = ∅, DGϕ will most likely not hold. This is because
x  DGϕ asks if y  ϕ holds whenever we have xRi y for all agents i ∈ G.
Because G = ∅, for every x and y xRi y holds for all agents i ∈ G, because
there are no agents i ∈ G. Because of this, when G = ∅, DGϕ asks if every
world satisfies ϕ, which is most likely not the case in most Kripke models.

Because of the problems when G = ∅, and the fact that if G 6= ∅ then
the proof can be done in a couple of steps with other proof rules, we have
chosen not to include the ED and CD rules in the rest of our thesis.

In Appendix A.2 we have summarized all of the proof rules for S5n that
we have discussed in this chapter. In the next chapter, we will show how we
can implement these rules in the proof assistant Coq to verify the validity of
these proof rules, and to help us with the construction of knowledge proofs.
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Chapter 4

Knowledge Proofs in Coq

In this chapter, we will explain how we have implemented the multi-agent
epistemic modal logic S5n in the proof assistant Coq, based on Benzmüller
and Woltzenlogel Paleo [2].

Our implementation is a shallow embedding, which means that logical
formulas are written in the logic of the proof assistant, as opposed to a
deep embedding, where logical formulas are represented with custom-defined
datatypes [23, 19]. Because of this, our implementation is very expressive
and can easily be extended with more operators.

We will start with discussing our implementation of the knowledge op-
erators Ki, EG, CG, and DG, and after that we will discuss how we have
implemented the proof rules in Coq.

4.1 Knowledge operators in Coq

Our S5n implementation is based on an S5 implementation by Benzmüller
and Woltzenlogel Paleo [2]. They have implemented the necessity (�) and
possibility (♦) operators in Coq. Their implementation works by lifting
propositions to a type W → Prop, where W is the type for worlds, which
means that the truth value of a proposition depends on the world that you
are in.
Parameter W : Type. (* Type for worlds *)
Definition P := W -> Prop. (* Type of lifted propositions *)

This means that you can describe x  p for an x:W and a p:P as p x,
which is world x applied to lifted proposition p. So p x returns true if the
proposition p holds in world x.

Note that, while we do closely follow the ideas from Benzmüller and
Woltzenlogel Paleo, we have renamed some of their variable names to be
more consistent with Huth and Ryan [12].
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Because they use these lifted propositions, they also define alternative
versions of the predicate logic operators in order for them to work with these
lifted propositions. For example, they have defined an m/\ operator that
works the same as the normal /\ operator, but for lifted propositions:
Definition mand (p q:P)(w:W) := (p w) /\ (q w).
Notation "p m/\ q" := (mand p q) (at level 79, right associativity).

Similarly, definitions for m˜, m\/, m->, m<->, mforall, and mexists can
be found in the full implementation as seen in Appendix B.1.

4.1.1 Ki in Coq

To turn Benzmüller and Woltzenlogel Paleo’s S5 implementation into S5n,
we start by turning the their necessity operator (�) into the knowledge
operator Ki.

From Definition 2.2 we know that x  �ϕ holds if and only if for
each y ∈ W such that xR y, it is the case that y  ϕ. Benzmüller and
Woltzenlogel Paleo have implemented this as follows:
Parameter R: W -> W -> Prop. (* Accessibility relation *)
Definition box (p:P) := fun x => forall y, (R x y) -> (p y).

The accessibility relation R is defined as a function W → W → Prop,
meaning that R x y holds whenever world y is accessible from world x.

In S5n, we want to have a separate accessibility relation for every agent.
So we add the agent as an argument to the accessibility relation:
Parameter A: Type. (* Type for agents *)
Parameter R: A -> W -> W -> Prop. (* Accessibility relation *)

With this updated accessibility relation, R i x y now means that world
y is accessible from world x according to agent i. If we now update the
definition of the necessity operator (box) by adding an argument for an
agent i, we get the knowledge operator Ki:
Definition K (i:A) (p:P) := fun x => forall y, (R i x y) -> (p y).

You can see that this specification matches the original definition for
Ki in Definition 2.6, since K i p x holds if and only if for all worlds y we
have that R i x y implies p y.
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4.1.2 Groups of agents in Coq

To implement the other knowledge operators in Coq, we first need to think
about how we can represent a group of agents in Coq. We decided to use a
minimalistic approach, instead of using for instance Coq’s List module.

In our implementation, a group of agents is represented as a function
A→ Prop, which maps agents to true or false depending on whether or not
they are in the group.
Definition G := A -> Prop. (* Groups of agents *)

This means that g i holds if and only if agent i is in group g. We
chose this representation because sets can be seen as constants in our S5n

implementation, and representing sets of agents as functions A → Prop
makes proving certain properties a bit easier.

One downside of this representation of groups is that defining specific
groups can get a bit messy. That is why we have created a special notation
that allows you to easily define a group containing a specific set of agents:
Notation "[ ]" := (fun i:A => False) (format "[ ]").
Notation "[ i1 ]" := (fun i:A => i=i1).
Notation "[ i1 , i2 , .. , iN ]" := (fun i:A =>

(i=i1 \/ (i=i2 \/ .. (i=iN \/ False) ..))
).

This notation is based on Coq’s ListNotations, but instead of return-
ing a list structure, it returns a function that returns true only for agents in
the group. For an empty set, it will always return false. For a set containing
a single agent, it will return true only if the agent is that agent in the set.
For a set containing multiple agents, it will return true only if the agent is
equal to one of the agents in the set. Note that the \/ False in the notation
above is necessary for Coq to find the recursive pattern of the notation.

To make it even easier to prove that i ∈ G, we have made the following
proof tactic, which represents the ∈G rule from Definition 3.13:
Ltac minG :=

match goal with
| |- _ \/ _ => (left; reflexivity) || (right; minG)
| |- _ = _ => reflexivity
end ||
fail "(could not find equal element in disjunction)".

This proof tactic recursively looks for the part of the disjunction where
there is an equality that holds. Note that this proof tactic only works for
groups that are of the same form as the ones you get by using our list
notation.

Often we might want to say that something holds for all agents in a
group, or that there exists an agent in the group for which something holds.
For this we have also created special notation:
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Notation "’gforall’ i : g , p" := (forall i : A, g i -> p)
(at level 200, i ident, right associativity) : type_scope.

Notation "’gexists’ i : g , p" := (exists i : A, g i /\ p)
(at level 200, i ident, right associativity) : type_scope.

In the next section where we will define the knowledge operators EG,
CG, and DG, you will see how this notation makes it easy to quantify over
agents in a group.

4.1.3 EG, CG, and DG in Coq

Now that we know how we can represent groups of agents, we can start to
define the knowledge operators EG, CG, and DG according to their definitions
in Definition 2.6.

Definition 2.6 tells us that x  EGϕ holds if and only if for each agent
i ∈ G it is the case that x  Kiϕ. Using our gforall notation, this can be
implemented as follows:
Definition E (g:G) (p:P) := fun x => gforall i : g, K i p x.

We also know that x  CGϕ holds if and only if for each k ≥ 1 it is the
case that x  EkGϕ. So let us first define EkG:
Fixpoint E’ (n:nat) (g:G) (p:P) :=

match n with
| O => E g p
| S n’ => E’ n’ g (E g p)

end.

As you can see, we have defined EkG as a fixed point construction, where for
instance E’ 0 g p is equal to E g p, and E’ 1 g p is equal to E’ 0 g (E g p)
which is equal to E g (E g p).

Using this definition of E’ , we can define the common knowledge oper-
ator CG as follows:
Definition C (g:G) (p:P) := fun x => forall n : nat, E’ n g p x.

It is important to note that because we are using natural numbers, we
start at n = 0, while in Definition 2.6 we use k ≥ 1. You can see that our
definition of E’ 0 g p describes what would normally be E1

Gp, and E’ 1 g p
describes what would be E2

Gp, and so on. We decided to use natural numbers
for our implementation since they are easier to work with within Coq.

And last but not least, we have the distributed knowledge operator DG.
We know that x  DGϕ holds if and only if for each y ∈W such that for all
i ∈ G it is the case that xRi y, we have y  ϕ, which we can specify in Coq
as follows:
Definition D (g:G) (p:P) := fun x => forall y, (gforall i : g, R i x y) -> p y.
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4.1.4 Modal validity in Coq

Benzmüller and Woltzenlogel Paleo do not explicitly define Kripke models.
Instead, their embedding works by reasoning about arbitrary worlds. This
is because the main goal is to prove the validity of formulas, meaning that
we want to show that a formula must always hold in any arbitrary world of
any Kripke model.

From Definition 2.4 we know that a formula ϕ is valid if it is satisfied
by every possible Kripke model, and from Definition 2.3 we know that a
Kripke model satisfies a formula ϕ if every world satisfies that formula. So
in order to show that a formula is valid, we must show that it holds for every
arbitrary world w:
Definition Valid (p:P) := forall w : W, p w.

If we combine this validity definition with our previously defined knowl-
edge operators, we can for instance prove that Example 2.2 is valid by prov-
ing that the following theorem holds:
Theorem example2_2: Valid(

K i1 p m/\ K i2 (p m-> q)
m->

D [i1, i2] q
).

4.2 Deduction rules for S5n in Coq

To prove the previously shown Theorem example2_2, we first need to im-
plement the deduction rules from Section 3.2 in Coq.

However, we also need natural deduction rules for the normal proposi-
tional operators, such as the ones shown in Appendix A.1. For this, we will
be using a modified version of the proof rules provided by ProofWeb [14].
These rules, modified for the modal operators by Benzmüller and Woltzen-
logel Paleo, can be found in Appendix B.2.

4.2.1 Deduction rules for Ki in Coq

Introduction and elimination rules for Ki

Benzmüller and Woltzenlogel Paleo [2] have provided in their S5 implemen-
tation the proof tactics box_i and box_e, based on the deduction rules �i
and �e from Definition 3.1.
Ltac box_i := let w := fresh "w" in let R := fresh "R"

in (intro w at top; intro R at top).
Ltac box_elim H w1 H1 := match type of H with

((box ?p) ?w) => cut (p w1);
[intros H1 | (apply (H w1); try assumption)]

end.
Ltac box_e H H1:= match goal with | [ |- (_ ?w) ] => box_elim H w H1 end.

30



Based on these proof tactics, we would like to define tactics for the rules
Ki and Ke from Definition 3.5. For the Ki rule, the tactic is pretty much
the same as for �i:
Ltac mK_i := let w := fresh "w" in let R := fresh "R0"

in (intro w at top; intro R).

However, the box_e tactic is a bit more complicated, since it uses an
auxiliary tactic box_elim. Instead of modifying this complicated proof tac-
tic, we have chosen to implement the tactic for the Ke rule (and most of the
other rules that we will see later on as well) using lemmas.
Lemma Ke_lemma:
forall (i:A) (x:W) (p:P) (y:W), (K i p x) -> (R i x y) -> p y.
Proof.
intros i x p y H.
generalize y.
exact H.
Qed.

This lemma says that if x  Kip holds for any agent i, any world x,
and any proposition p, then y  p holds if xRi y holds. This means that we
can use this lemma to get out of a Ki-labeled dashed box, since we can show
that y  p holds for some arbitrary accessible world y, by showing that Kip
holds.
Ltac mK_e i w := match goal with

| |- _ ?w0 => apply (Ke_lemma i w); [> clear dependent w0 | try assumption]
end.

The proof tactic mK_e applies the Ke_lemma to the goal and gener-
ates two subgoals: K i p x and R i x y. On this second subgoal we call
try assumption, to have Coq prove this subgoal automatically if R i x y is
present in the current context. On the first subgoal we call clear dependent
w0, to remove all the assumptions in the context that depend on w0. The
assumptions that get removed are the ones that would be in the normal
context Γ within the dashed box that gets eliminated in the definition of Ke
in Definition 3.5.

Axiom rules for Ki

Benzmüller and Woltzenlogel Paleo [2] have also provided axioms for the
reflexivity (axiom T), transitivity (axiom 4), and symmetry (axiom B) of
accessibility relation R, as well as a theorem that proves that R must also
be Euclidean (axiom 5) based on these other axioms:
Axiom Rreflexivity: forall i x, R i x x.
Axiom Rtransitivity: forall i x y z, (R i x y) -> (R i y z) -> (R i x z).
Axiom Rsymmetry: forall i x y, (R i x y) -> (R i y x).
Theorem Reuclidean: forall i x y z, (R i x y) -> (R i x z) -> (R i y z).
Proof.
intros.
cut (R i y x).
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+ intro.
apply Rtransitivity with (y := x).
exact H1.
exact H0.

+ apply Rsymmetry.
exact H.

Qed.

These axioms can be used to prove lemmas for the KT , K4, and K5
rules. The proofs for these lemmas can be seen in the full implementation
in Appendix B.1, but these are the lemmas that we have proven to hold:
Lemma KT_lemma: Valid (mforall i, mforall p, (K i p) m-> p).
Lemma K4_lemma: Valid (mforall i, mforall p, (K i p) m-> (K i (K i p))).
Lemma K5_lemma: Valid (mforall i, mforall p, m˜ (K i p) m-> (K i (m˜ (K i p)))).

The proof tactics for the KT , K4, and K5 rules consist of straightfor-
ward applications of the lemmas above:
Ltac mKT := apply KT_lemma.
Ltac mK4 := apply K4_lemma.
Ltac mK5 := apply K5_lemma.

4.2.2 Relations REG
, RCG

, and RDG
in Coq

In order to define introduction and elimination rules for the operators EG,
CG, and DG, we need to be able to specify that a world is REG

, RCG
, or

RDG
-accessible. The relations REG

, RCG
, and RDG

are defined according to
their definitions in Definition 3.6:
Definition RE (g:G) (x y:W) := gexists i : g, R i x y.
Fixpoint RE’ (n:nat) (g:G) (x y:W) :=

match n with
| O => RE g x y
| S n’ => exists z:W, RE’ n’ g x z /\ RE g z y

end.
Definition RC (g:G) (x y:W) := exists n : nat, RE’ n g x y.
Definition RD (g:G) (x y:W) := gforall i : g, R i x y.

Similar to the definition of E’ and C in Section 4.1.3, there is again a
small difference in this definition of RE’ and RC as opposed to Definition 3.6,
since we use a natural number n instead of a k ≥ 1.

We can now also prove lemmas to show that the alternative definitions
of EG, CG, and DG, as seen in Definition 3.7, are equivalent to the original
definitions of EG, CG, and DG:
Lemma REE: forall g p x, (E g p x) <-> (forall y, (RE g x y) -> (p y)).
Lemma RE’E’: forall n g x p, (E’ n g p x) <-> (forall y, (RE’ n g x y) -> (p y)).
Lemma RCC: forall g x p, (C g p x) <-> (forall y, (RC g x y) -> (p y)).
Lemma RDD: forall g p x, (D g p x) <-> (forall y, (RD g x y) -> (p y)).
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The lemmas will be used in the proofs of the lemmas of the deduction
rules. Again, the proofs for these lemmas can be seen in the full implemen-
tation in Appendix B.1. The proof of Lemma RE’E’ helps us prove Lemma RCC
a little bit easier. It was while proving Lemma RCC, that we discovered the
error in Huth and Ryan [12] for the relation RCG

, as noted by Definition 3.6.

4.2.3 Deduction rules for EG, CG, and DG in Coq

Introduction and elimination Rules for EG, CG, and DG

For the introduction and elimination rules of EG, CG, and DG we will define
lemmas, just like we did for Ke. The lemmas for these different operators
are all really similar, the only difference being which relation they use. The
proofs of these lemmas are also really similar, since we did most of the hard
work already in proving lemmas REE, RCC, and RDD.

Here are the lemmas for the introduction rules Ei, Ci, and Di:
Lemma Ei_lemma:
forall (g:G) (x:W) (p:P), (forall y, (RE g x y) -> p y) -> (E g p x).

Lemma Ci_lemma:
forall (g:G) (x:W) (p:P), (forall y, (RC g x y) -> p y) -> (C g p x).

Lemma Di_lemma:
forall (g:G) (x:W) (p:P), (forall y, (RD g x y) -> p y) -> (D g p x).

The proofs of these lemmas all consist of an introduction of the variables
g, x, and p, an introduction of an assumption, an application of either REE,
RCC, or RDD, and an exact application of the main assumption.

And here are the lemmas for the elimination rules Ee, Ce, and De:
Lemma Ee_lemma:
forall (g:G) (x:W) (p:P) (y:W), (E g p x) -> (RE g x y) -> p y.

Lemma Ce_lemma:
forall (g:G) (x:W) (p:P) (y:W), (C g p x) -> (RC g x y) -> p y.

Lemma De_lemma:
forall (g:G) (x:W) (p:P) (y:W), (D g p x) -> (RD g x y) -> p y.

Here, the proofs consist of an introduction of the variables g, x, p, and
y, an introduction of an assumption, a generalization on y, an application of
either REE, RCC, or RDD, and an exact application of the main assumption.

The proof tactics are defined similar to mK_i and mK_e, but with appli-
cations of the correct lemmas:
Ltac mE_i := let w := fresh "w" in let R := fresh "RE0"

in (apply Ei_lemma; intro w at top; intro R).

Ltac mE_e g w := match goal with
| |- _ ?w0 => apply (Ee_lemma g w); [> clear dependent w0 | try assumption]

end.
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Ltac mC_i := let w := fresh "w" in let R := fresh "RC0"
in (apply Ci_lemma; intro w at top; intro R).

Ltac mC_e g w := match goal with
| |- _ ?w0 => apply (Ce_lemma g w); [> clear dependent w0 | try assumption]

end.

Ltac mD_i := let w := fresh "w" in let R := fresh "RD0"
in (apply Di_lemma; intro w at top; intro R).

Ltac mD_e g w := match goal with
| |- _ ?w0 => apply (De_lemma g w); [> clear dependent w0 | try assumption]

end.

Rules for relating Ki, EG, CG, and DG

To implement the proof rules KE , EK, KD, and CE we have proven the
appropriate lemmas and defined a proof tactic that applies those lemmas:
Lemma KE_lemma: forall (g:G) (p:P) (x:W), (gforall i:g, K i p x) -> E g p x.
Lemma EK_lemma: forall (g:G) (p:P) (x:W), E g p x -> gforall i:g, K i p x.
Lemma KD_lemma: forall (i:A) (g:G) (p:P) (x:W), g i -> K i p x -> D g p x.
Lemma CE_lemma: forall (g:G) (p:P) (x:W) (n:nat), C g p x -> E’ n g p x.

The KE rule requires you to prove that all agents in a group know
something. The proof tactic mKE will make sure that these turn into separate
goals by applying repeat destruct on the assumption which describes the
group. Because a group is represented as a disjunction of each agent in
that group, as described in Section 4.1.2, the repeat destruct will create
a separate subgoal for each agent in the group.
Ltac mKE := let i := fresh "i" in let H := fresh "H"

in apply KE_lemma; intros i H; repeat destruct H.

The tactics for the EK and KD rules apply the corresponding lemmas,
but also try to automatically solve the subgoals of the form i ∈ G using our
minG tactic.
Ltac mEK g := apply EK_lemma with g; [> | try minG].
Ltac mKD i := apply KD_lemma with i; [> try minG | ].

The lemma for the CE rule proves that E’ n g p x is implied by C g p x
for any natural number n. However, we normally do not use the E’ operator
in our definitions and proofs. Instead, we would like to be able to prove a
sequence of EG’s (e.g. EG(EG(ϕ))) based on CG.

The proof tactic mCE recursively turns a goal consisting of a sequence
of EG’s into a goal consisting of a single E ′G, and then it applies the lemma
from above:
Ltac mCE := match goal with

| |- E’ ?n ?g’ (E ?g’ ?p’) _ => unfold E’; fold (E’ (S n) g’ p’); mCE
| |- E’ ?n ?g’ ?p’ _ => apply CE_lemma
| |- E ?g’ (E ?g’ ?p’) _ => fold (E’ 1 g’ p’); mCE
| |- E ?g’ ?p’ _ => fold (E’ 0 g’ p’); apply CE_lemma

end.
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Finally we have the proof rule CK. Unlike the other proof rules, we did
not use a lemmas for this one. Instead, we constructed a proof tactic that
follows the structure from Figure 3.6, where we use the rules Ki, EK, Ke,
and CE to get the functionality of the CK rule.

We accomplished this by first defining a proof tactic mCK’, which turns
a goal consisting of a sequence of Ki’s into a single goal with EG for some
group G, and then we applied our mCE rule to turn goal with EG into a goal
with CG:
Ltac mCK’ g:= match goal with

| |- K ?i’ (K _ _) ?w’ => mK_i; mCK’ g; only 1 : mK_e i’ w’; only 1 : mEK g
| |- K ?i’ ?p’ _ => mEK g

end.
Ltac mCK g := mCK’ g; only 1 : mCE.

Since the mEK rule automatically applies the minG tactic, all the subgoals
of ij ∈ G for the CK rules can be solved automatically as well. However,
if they are not solved automatically, the only 1 notation will focus only on
the main goal, while keeping the other subgoals.

Axiom rules for CG and DG

Finally, we have also proven lemmas for the rules C4, C5, DT , D4, and D5.
The axiom rules for DG were not that hard to prove using the axioms for R.
However, the axiom rules for CG were a bit more difficult.

In order to prove the lemmas for C4 and C5, we first proved that the
relation RC is transitive (Lemma RCtransitivity) and Euclidean (Lemma
RCEuclidean). But to prove that this is indeed the case, we also had to
prove that the relation RE’ is transitive (Lemma RE’transitivity) and Eu-
clidean (Lemma RE’Euclidean).

To prove that RE’ is Euclidean, we had to prove two more auxiliary
lemmas. We have proven Lemma RE’symmetry, which shows that relation
RE’ is symmetric, and we have proven Lemma RE’reverse, whichs shows
the definition of RE’ also works in reverse. So while RE’ (S n) g x y is de-
fined as exists z:W, RE’ n g x z /\ RE g z y, it would be equivalent to use
exists z:W, RE g x z /\ RE’ n g z y.

The full implementation, including all the lemmas and proofs, can be
found in Appendix B.1.
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Chapter 5

Example Proofs

Now that we have seen which proof rules apply to the different knowledge
operators, and now we know how these can be implemented in Coq, we shall
have a look at a couple of example proofs. We will show some of these proofs
as Gentzen-style proof trees, and we will show the corresponding Coq proofs
using the proof tactics from Section 4.2.

5.1 Proofs of Logical Omniscience

As Huth and Ryan [12] point out, the operators Ki, EG, CG, and DG are all
closed under “logical consequence” since the distributivity axiom K (some-
times referred to as logical omniscience) holds for all of them.
Theorem 5.1. Ki, EG, CG, and DG are closed under logical consequence:

Kiϕ ∧ Ki(ϕ→ ψ)→ Kiψ
EGϕ ∧ EG(ϕ→ ψ)→ EGψ
CGϕ ∧ CG(ϕ→ ψ)→ CGψ
DGϕ ∧ DG(ϕ→ ψ)→ DGψ

We have already seen a proof of the first formula with Ki in Figure 3.3.
Using the Ki, →e, and Ke rules we can show that agent i knows that ψ
holds, since agent i knows that ϕ implies ψ, and agent i knows that ϕ holds:

hyp
Kiϕ ∧ Ki(ϕ→ ψ) ` Kiϕ ∧ Ki(ϕ→ ψ)

∧e2
Kiϕ ∧ Ki(ϕ→ ψ) ` Ki(ϕ→ ψ)

Ke
Kiϕ ∧ Ki(ϕ→ ψ), Ki ` ϕ→ ψ

hyp
Kiϕ ∧ Ki(ϕ→ ψ) ` Kiϕ ∧ Ki(ϕ→ ψ)

∧e1
Kiϕ ∧ Ki(ϕ→ ψ) ` Kiϕ Ke
Kiϕ ∧ Ki(ϕ→ ψ), Ki ` ϕ

→e
Kiϕ ∧ Ki(ϕ→ ψ), Ki ` ψ

Ki
Kiϕ ∧ Ki(ϕ→ ψ) ` Kiψ

→i
` Kiϕ ∧ Ki(ϕ→ ψ)→ Kiψ
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Of course we can also do this proof in Coq with our implementation. If
we define parameters p and q as lifted propositions and parameter i as an
agent, we can specify the following theorem:
Parameters p q: P.
Parameter i: A.

Theorem HR338_K: Valid(
K i p m/\ K i (p m-> q)

m->
K i q

).

To prove this theorem, we will use the Coq equivalents of the same
rules as used in the proof tree above. The two branches of the proof tree
are indicated with bullets, here using the symbol +:
Proof. mv.
mimp_i H.
mK_i.
mimp_e p.
+ mK_e i w.

mcon_e1 (K i (p m-> q)).
mhyp H.

+ mK_e i w.
mcon_e2 (K i p).
mhyp H.

Qed.

The proofs of the other formulas for EG, CG, and DG are really similar.
In fact, we use the same proof rules, but with Ei, Ci, or Di instead of Ki,
and Ee, Ce, or De instead of Ke. Here are the theorems and proofs of the
logical omniscience of the operators EG, CG, and DG:

Parameters g: G.

Theorem HR338_E: Valid(
E g p m/\ E g (p m-> q)

m->
E g q

).
Proof. mv.
mimp_i H.
mE_i.
mimp_e p.
+ mE_e g w.

mcon_e1 (E g (p m-> q)).
mhyp H.

+ mE_e g w.
mcon_e2 (E g p).
mhyp H.

Qed.

Theorem HR338_C: Valid(
C g p m/\ C g (p m-> q)

m->
C g q

).
Proof. mv.
mimp_i H.
mC_i.
mimp_e p.
+ mC_e g w.

mcon_e1 (C g (p m-> q)).
mhyp H.

+ mC_e g w.
mcon_e2 (C g p).
mhyp H.

Qed.

Theorem HR338_D: Valid(
D g p m/\ D g (p m-> q)long

m->
D g q

).
Proof. mv.
mimp_i H.
mD_i.
mimp_e p.
+ mD_e g w.

mcon_e1 (D g (p m-> q)).
mhyp H.

+ mD_e g w.
mcon_e2 (D g p).
mhyp H.

Qed.

While we have not drawn proof trees for these proofs, you can probably
imagine what they might look like, similar to the proof tree for Ki.
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5.2 Proof of Example 2.2

Now let us have a look at Example 2.2. This example is somewhat similar
to the formulas of logical omniscience that we have proven in Section 5.1,
but now showing that the knowledge of two agents can be combined in the
distributed knowledge of those two agents:
Theorem 5.2. Example 2.2 says that:

K1p ∧ K2(p→ q)→ D{1,2}q

In order to prove this, we need to make use of the KD rule to show that
D{1,2}p and D{1,2}(p→ q) both hold based on K1p and K2(p→ q):

hyp
K1p ∧ K2(p→ q) ` K1p ∧ K2(p→ q)

∧e2
K1p ∧ K2(p→ q) ` K2(p→ q)

∈G
2 ∈ {1, 2}

KD
K1p ∧ K2(p→ q) ` D{1,2}(p→ q)

De
K1p ∧ K2(p→ q), D{1,2} ` p→ q

hyp
K1p ∧ K2(p→ q) ` K1p ∧ K2(p→ q)

∧e1
K1p ∧ K2(p→ q) ` K1p

∈G
1 ∈ {1, 2}

KD
K1p ∧ K2(p→ q) ` D{1,2}p

De
K1p ∧ K2(p→ q), D{1,2} ` p

→e
K1p ∧ K2(p→ q), D{1,2} ` q

Di
K1p ∧ K2(p→ q) ` D{1,2}q

→i
` K1p ∧ K2(p→ q)→ D{1,2}q

With our implementation, the proof looks as follows in Coq:
Parameters p q: P.
Parameters i1 i2: A.

Theorem example2_2: Valid(
K i1 p m/\ K i2 (p m-> q)

m->
D [i1, i2] q

).
Proof. mv.
mimp_i H.
mD_i.
mimp_e p.
+ mD_e [i1, i2] w.

mKD i1.
mcon_e1 (K i2 (p m-> q)).
mhyp H.

+ mD_e [i1, i2] w.
mKD i2.
mcon_e2 (K i1 p).
mhyp H.

Qed.

As you can see, we do not need to use the ∈G rule in our Coq proof, as
Coq automatically applies our minG tactic when using the mEK, mCK, or mKD
tactics, as we explained in Section 4.2.3.
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5.3 Proof of Hakli and Negri’s example

Hakli and Negri [7] have given an example that is slightly more complex
than Example 2.2. In their example we have three agents: agent 1 knows
that p holds, agent 2 knows that p implies q, and agent 3 knows that p
and q together imply r. This should mean that it is part of the distributed
knowledge of these three agents, that r must hold:
Theorem 5.3. Hakli and Negri’s example says that:

K1p ∧ K2(p→ q) ∧ K3(p ∧ q → r)→ D{1,2,3}r

While we could construct a proof tree for this theorem, it is more con-
venient and less prone to errors to prove such formulas in Coq directly. For
a larger formula like this one, the proof tree would also become fairly big,
making it hard to read. So here we will only show the Coq proof:
Parameters p q r: P.
Parameters i1 i2 i3: A.

Theorem exampleHakliNegri: Valid(
K i1 p m/\ K i2 (p m-> q) m/\ K i3 (p m/\ q m-> r)

m->
D [i1, i2, i3] r

).
Proof. mv.
mimp_i H.
mD_i.
mimp_e (p m/\ q).
+ mcon_i.

* mD_e [i1, i2, i3] w.
mKD i1.
mcon_e1 (K i2 (p m-> q) m/\ K i3 (p m/\ q m-> r)).
mhyp H.

* mimp_e p.
- mD_e [i1, i2, i3] w.

mKD i1.
mcon_e1 (K i2 (p m-> q) m/\ K i3 (p m/\ q m-> r)).
mhyp H.

- mD_e [i1, i2, i3] w.
mKD i2.
mcon_e1 (K i3 (p m/\ q m-> r)).
mcon_e2 (K i1 p).
mhyp H.

+ mD_e [i1, i2, i3] w.
mKD i3.
mcon_e2 (K i2 (p m-> q)).
mcon_e2 (K i1 p).
mhyp H.

Qed.

As you can see, we used similar tactics as for the proof of Example 2.2,
but with a few more steps. Because Coq keeps track of everything that you
still need to prove and the assumptions that you can use, proving a larger
formula like this one is no problem at all in Coq.
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5.4 Proof of the Overlapping Birthday Case

For our final example, we will have a look at the birthday case as discussed
by Hakli and Negri [7], and also mentioned by e.g. van der Hoek [11]. The
birthday case says that it is distributed knowledge of a group of agents
whether or not two agents in that group have their birthday on the same
date, assuming that every agent knows their own birthday.
Theorem 5.4. In predicate logic the birthday case can be described as
follows:

DG (∃i ∈ G, ∃j ∈ G, ∃t : T, (B(i, t) ∧B(j, t) ∧ i 6= j))
∨
DG (¬∃i ∈ G, ∃j ∈ G, ∃t : T, (B(i, t) ∧B(j, t) ∧ i 6= j))

Here T represents the days in a year, and B(i, t) says that the birthday
of agent i is on day t. It is either the case that there do exist two agents i
and j in group G with overlapping birthdays, in which case that is part of
the distributed knowledge of G, or it is the case that there do not exist two
agents i and j in group G with overlapping birthdays, in which case that is
distributed knowledge of G.

If we define a type T for days, and a function B: A -> T -> P for B, then
we can define the assumption that every agent knows their own birthday as
follows:
Parameter T : Type.
Parameter B: A -> T -> P.

Axiom KB: forall (i:A) (t:T) (w:W), (B i t w -> K i (B i t) w).

Here, the axiom KB that says that if the birthday of an agent i is on day
t, then agent i knows that their birthday is on day t. As you can see, there
is also a world w involved, this is because we are using lifted propositions.
It could be that in a different world an agent has a different birthday.

However, because Hakli and Negri are using propositional logic (and we
are too), they instead show that if for two arbitrary agents i1 and i2 their
birthdays happen to be on the same arbitrary day t, then it is distributed
knowledge for those two agents that they have the same birthday:
Parameters i1 i2: A.
Parameter t: T.

Theorem OverlappingBirthdaysSimplified: Valid(
B i1 t m/\ B i2 t

m->
D [i1, i2] (B i1 t m/\ B i2 t)

).
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We can prove this theorem by applying the KB axiom to prove that
K i1 (B i1 t) w and K i2 (B i2 t) w hold after using the KD tactic, which
allows us to prove that it is indeed distributed knowledge of two agents that
their birthdays overlap, if they do:
Proof. mv.
mimp_i H.
mD_i.
mcon_i.
+ mD_e [i1, i2] w.

mKD i1.
apply KB.
mcon_e1 (B i2 t).
mhyp H.

+ mD_e [i1, i2] w.
mKD i2.
apply KB.
mcon_e2 (B i1 t).
mhyp H.

Qed.

But since our embedding is a shallow embedding, we can also use pred-
icate logic in our proofs. Our implementation includes modal operators
mforall and mexists, as defined by Benzmüller and Woltzenlogel Paleo
[2], and our natural deduction tactics also include introduction and elimi-
nation rules for these operators, as seen in Appendix B.2.

To prove Theorem 5.4 with our implementation, we will also need a
lifted proposition for group membership, since the modal operators only
work for lifted propositions. Since groups are seen as constant and do not
depend on any specific world, we can simply add an argument for a world w
that does not get used:
Definition min (g:G) (i:A) (w:W) := g i.

Now we can extend the simplified version of the birthday case to say
that if there exist two agents with an overlapping birthday in some arbitrary
group g, then this is distributed knowledge for group g:
Parameter g: G.

Lemma BirthdaysDoOverlap: Valid(
(mexists i1, mexists i2, mexists t,

min g i1 m/\ min g i2 m/\ B i1 t m/\ B i2 t)
m->

D g (mexists i1, mexists i2, mexists t,
min g i1 m/\ min g i2 m/\ B i1 t m/\ B i2 t)

).

To prove this, we need to use the ∃i and ∃e rules from predicate logic.
Since our implementation is a shallow embedding, we can also use the default
Coq rules in our proofs, so for convenience we have also used the destruct
tactic. The proof can be found in Appendix C.
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To prove the other part of Theorem 5.4, we also need to specify that
every agent has only one birthday. We specify this by defining two axioms:
one which says that for every agent there exists a day that is that agent’s
birthday, and one that says that if two days are both the birthday of an
agent, then they must be the same day.
Axiom atLeastOneBirthday:

forall (i:A) (w:W), exists (t:T), B i t w.
Axiom atMostOneBirthday:

forall (i:A) (t1 t2:T) (w:W), ((B i t1 m/\ B i t2) w) -> t1 = t2.

Using these axioms we can prove the remaining of Theorem 5.4, which
says that if there do not exist two agents with overlapping birthdays, then
that is distributed knowledge:
Lemma BirthdaysDoNotOverlap: Valid(

m˜ (mexists i1, mexists i2, mexists t,
min g i1 m/\ min g i2 m/\ B i1 t m/\ B i2 t)

m->
D g (m˜ (mexists i1, mexists i2, mexists t,

min g i1 m/\ min g i2 m/\ B i1 t m/\ B i2 t))
).

The proof for this part of the theorem is even longer, and can again be
found in Appendix C.

Using the lemmas BirthdaysDoOverlap and BirthdaysDoNotOverlap
we can fully prove Theorem 5.4 using the Law of Excluded Middle (LEM):
Theorem OverlappingBirthdaysFull: Valid(

D g (mexists i1, mexists i2, mexists t,
min g i1 m/\ min g i2 m/\ B i1 t m/\ B i2 t)

m\/
D g (m˜ (mexists i1, mexists i2, mexists t,

min g i1 m/\ min g i2 m/\ B i1 t m/\ B i2 t))
).
Proof. mv.
mimp_e (

(mexists i1, mexists i2, mexists t,
min g i1 m/\ min g i2 m/\ B i1 t m/\ B i2 t)

m\/
(m˜ (mexists i1, mexists i2, mexists t,

min g i1 m/\ min g i2 m/\ B i1 t m/\ B i2 t))
).
+ apply LEM.
+ mimp_i H.

mdis_e (
(mexists i1, mexists i2, mexists t,

min g i1 m/\ min g i2 m/\ B i1 t m/\ B i2 t)
m\/

(m˜ (mexists i1, mexists i2, mexists t,
min g i1 m/\ min g i2 m/\ B i1 t m/\ B i2 t))

) w C1 C2.
* mhyp H.
* mdis_i1. apply BirthdaysDoOverlap. mhyp C1.
* mdis_i2. apply BirthdaysDoNotOverlap. mhyp C2.

Qed.
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Chapter 6

Related Work

There have been a variety of different approaches towards the proof theory
of distributed knowledge. For example, Hakli and Negri [7] present proof
theory for distributed knowledge within epistemic modal logic, using their
modal sequent calculus system G3KED.

An advantage of the sequent calculus systems G3KED is that the rela-
tions between different arbitrary worlds are clearly defined within the proof
rules, instead of using the more abstract dashed boxes which we used for
our S5n proof rules. For example, Hakli and Negri define the proof rules
RDG and LDG, which are similar to our introduction and elimination rules
Di and De:

Our proof rules Hakli and Negri [7]’s proof rules
Γ, DG ` ϕ

DiΓ ` DGϕ
{xRi y}i∈G,Γ⇒ ∆, y : ϕ

RDGΓ⇒ ∆, x : DGϕ
Γ ` DGϕ De

Γ, DG Γ ` ϕ
y : ϕ, x : DGϕ, {xRi y}i∈G,Γ⇒ ∆

LDG
x : DGϕ, {xRi y}i∈G,Γ⇒ ∆

As you can see, the Hakli and Negri [7]’s proof rules specify that a world
y is related to world x by {xRi y}i∈G, by which they mean that xRi y must
hold for every agent i ∈ G. This is similar to the RDG

relation we defined
in Definition 3.6, which is used internally in our DG-labeled dashed boxes.

Another approach to distributed knowledge is provided by Ghidini and
Serafini [6], who present a context-based calculus for a logic they define
called Distributed First Order Logic, which is used to reason about the belief
of agents rather than the knowledge of agents. This logic is used to reason
about subsystems in a distributed system, where knowledge can be shared
between the various subsystems.
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In this thesis, we instead provide a proof system for the epistemic modal
logic S5n, which is largely based on Huth and Ryan [12], but using Gentzen-
style proof trees. Note that while Huth and Ryan do provide proof rules for
shared and common knowledge, they omit the proof theory for distributed
knowledge for simplicity.

There also do already exist multiple Coq implementations of modal
logic. For example, Sadrzadeh [18] presents an embedding of linear modal
logic KDT4lin in Coq. Furthermore, De Wind [3] and Lescanne [16] have
both created embeddings of epistemic modal logic in Coq. An interesting
aspect of De Wind’s implementation is that she explicitly defines Kripke
models in Coq, which means that it can be used to also prove formulas
for specific Kripke models instead of being only able to reason about the
validity of a formula in general. These embeddings focus mostly on common
knowledge, which is used to for instance solve the Three Wise Men puzzle.
Lescanne does also implement shared knowledge, however, neither De Wind,
Lescanne, nor Sadrzadeh discuss distributed knowledge.

All of these previously mentioned Coq embeddings of modal logics are
deep embeddings, which means that they use custom datatypes to represent
modal formulas. Our implementation, based on Benzmüller and Woltzen-
logel Paleo [2], is a shallow embedding, which, as explained in Chapter 4,
means that we use and extend Coq’s default predicate logic operators to
construct modal formulas, which makes the embedding very expressive and
easily extendable.

Benzmüller and Woltzenlogel Paleo [2] provide the necessity (�) and
possibility (♦) operators of the modal logic S5, as well as proof tactics for
the introduction and elimination of these operators. We took this imple-
mentation as our starting point for our implementation since their necessity
operator can relatively easily be adapted to become the knowledge operator
Ki for multi-agent systems in S5n.
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Chapter 7

Conclusions

We have discussed the modal logic S5n, based on Huth and Ryan [12], and
we have shown how their proof rules can be adapted for Gentzen-style proofs.
We have extended this proof theory with deduction rules for the distributed
knowledge operator DG, which includes not only the introduction, elimina-
tion, and axiom-based rules, but also a useful KD-rule, which allows you
to prove that something is distributed knowledge in a group based on the
knowledge of one particular agent in that group.

We have implemented the logic S5n in the proof assistant Coq, based
on an S5 implementation by Benzmüller and Woltzenlogel Paleo [2], and
we have implemented all the previously described deduction rules as proof
tactics in Coq. Finally, we have shown some example proofs to showcase
what our implementation is capable of, but mainly focusing on distributed
knowledge.

Because our implementation is a shallow embedding, it not only works
for propositional logic but also for predicate logic. And while we have pro-
vided proof tactics that can be used for formal natural deduction proofs, the
default Coq tactics can also be used with our implementation.

The full implementation can be found in Appendix B, and the Coq code,
including some extra examples, can be found online at https://gitlab.
science.ru.nl/mphilipse/coq-multi-agent-systems.
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Appendix A

Natural Deduction Rules

In this appendix we give an overview of the proof rules that we have used in
this thesis. In Appendix A.1 you can see the deduction rules that we use for
propositional logic, and in Appendix A.2 you can see the additional rules
for the knowledge operators in S5n.

In these rules, the modal context Γ is defined as in Definition 3.9 for
S5n, while the normal context Γ is defined as in Definition 3.3. The symbols
ϕ, ψ, and ω represent propositions. In the rules for S5n, i represents an
agent and G represents a group of agents.
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A.1 Deduction rules for propositional logic

Here are the Gentzen-style natural deduction rules for propositional logic,
from the (unpublished) coursed material of the course “Logic and Applica-
tions” by Hubbers, based on “Logica voor Informatica” by Van Benthem et
al. [22]:

hyp
Γ, ϕ,Γ ` ϕ

Γ ` ϕ→ ψ Γ ` ϕ →eΓ ` ψ
Γ, ϕ ` ψ

→iΓ ` ϕ→ ψ

Γ ` ¬ϕ Γ ` ϕ ¬eΓ ` ψ
Γ,¬ψ ` ¬ϕ Γ,¬ψ ` ϕ ¬e∗Γ ` ψ

Γ, ψ ` ¬ϕ Γ, ψ ` ϕ
¬iΓ ` ¬ψ

Γ ` ϕ ∧ ψ
∧e1Γ ` ϕ

Γ ` ϕ ∧ ψ
∧e2Γ ` ψ

Γ ` ϕ Γ ` ψ
∧iΓ ` ϕ ∧ ψ

Γ ` ϕ ∨ ψ Γ, ϕ ` ω Γ, ψ ` ω ∨eΓ ` ω

Γ ` ϕ
∨i1Γ ` ϕ ∨ ψ

Γ ` ψ
∨i2Γ ` ϕ ∨ ψ

Γ ` ϕ↔ ψ Γ ` ϕ
↔e1Γ ` ψ

Γ ` ϕ↔ ψ Γ ` ψ
↔e2Γ ` ϕ

Γ, ϕ ` ψ Γ, ψ ` ϕ
↔iΓ ` ϕ↔ ψ
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A.2 Additional rules for S5n

These are the additional proof rules for the knowledge operators of S5n:

Γ, Ki ` ϕ
KiΓ ` Kiϕ

Γ ` Kiϕ Ke
Γ, Ki Γ ` ϕ

Γ, EG ` ϕ
EiΓ ` EGϕ

Γ ` EGϕ Ee
Γ, EG Γ ` ϕ

Γ, CG ` ϕ
CiΓ ` CGϕ

Γ ` CGϕ Ce
Γ, CG Γ ` ϕ

Γ, DG ` ϕ
DiΓ ` DGϕ

Γ ` DGϕ De
Γ, DG Γ ` ϕ

Γ ` Kiϕ KTΓ ` ϕ
Γ ` Kiϕ K4Γ ` KiKiϕ

Γ ` ¬Kiϕ K5Γ ` Ki¬Kiϕ

Γ ` CGϕ C4Γ ` CGCGϕ
Γ ` ¬CGϕ C5Γ ` CG¬CGϕ

Γ ` DGϕ DTΓ ` ϕ
Γ ` DGϕ D4Γ ` DGDGϕ

Γ ` ¬DGϕ D5Γ ` DG¬DGϕ

Γ ` Kiϕ for each i ∈ G
KEΓ ` EGϕ

Γ ` EGϕ i ∈ G
EKΓ ` Kiϕ

Γ ` CGϕ CEΓ ` EG . . . EGϕ
Γ ` CGϕ ij ∈ G

CKΓ ` Ki1 . . .Kikϕ

Γ ` Kiϕ i ∈ G
KDΓ ` DGϕ

∈GΓ ` i ∈ {. . . , i, . . .}

All of these rules, except those containing the distributed knowledge
operator DG and the rule ∈G, are from the (unpublished) coursed material
of the course “Logic and Applications” by Hubbers, based on Huth and Ryan
[12].
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Appendix B

Coq Implementation

B.1 S5n in Coq

Here is our full Coq implementation of the multi-agent epistemic modal
logic S5n, including the knowledge operators Ki, EG, CG, and DG, and the
proof rules from Appendix A.2. This implementation is based on the S5
implementation by Benzmüller and Woltzenlogel Paleo [2].
(*

Multi Agent Systems - S5ˆn Coq Implementation

Special thanks to Engelbert Hubbers and Freek Wiedijk

Based on Modal Logic implementation by Bruno Woltzenlogel Paleo and Christoph
Benzmueller

*)

Parameter W: Type. (* Type for worlds *)
Parameter A: Type. (* Type for agents *)

Definition P := W -> Prop. (* Type of lifted propositions *)

Parameter R: A -> W -> W -> Prop. (* Accessibility relation *)

Definition G := A -> Prop. (* Groups of agents *)
(* Return True iff the agent is in the group *)

(* Notation of sets of agents, based on ListNotation *)
Notation "[ ]" := (fun i:A => False) (format "[ ]").
Notation "[ i1 ]" := (fun i:A => i=i1).
Notation "[ i1 , i2 , .. , iN ]" := (fun i:A => (i=i1 \/ (i=i2 \/ .. (i=iN \/ False)

..))).

Notation "’gforall’ i : g , p" := (forall i : A, g i -> p)
(at level 200, i ident, right associativity) : type_scope.

Notation "’gexists’ i : g , p" := (exists i : A, g i /\ p)
(at level 200, i ident, right associativity) : type_scope.

(* Tactic for proving that an agent i is in group g *)
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Ltac minG :=
match goal with
| |- _ \/ _ => (left; reflexivity) || (right; minG)
| |- _ = _ => reflexivity
end ||
fail "(could not find equal element in disjunction)".

(* Modal connectives *)
Definition mequal {A: Type}(x y: A)(w:W) := x = y.
Notation "x m= y" := (mequal x y) (at level 99, right associativity).

Definition mnot (p:P)(w:W) := ˜ (p w).
Notation "m˜ p" := (mnot p) (at level 74, right associativity).

Definition mand (p q:P)(w:W) := (p w) /\ (q w).
Notation "p m/\ q" := (mand p q) (at level 79, right associativity).

Definition mor (p q:P)(w:W) := (p w) \/ (q w).
Notation "p m\/ q" := (mor p q) (at level 79, right associativity).

Definition mimplies (p q:P)(w:W) := (p w) -> (q w).
Notation "p m-> q" := (mimplies p q) (at level 99, right associativity).

Definition mequiv (p q:P)(w:W) := (p w) <-> (q w).
Notation "p m<-> q" := (mequiv p q) (at level 99, right associativity).

(* Modal quantifiers *)
Definition mA {t:Type}(p:t -> P)(w:W) := forall x, p x w.
Notation "’mforall’ x , p" := (mA (fun x => p))

(at level 200, x ident, right associativity) : type_scope.
Notation "’mforall’ x : t , p" := (mA (fun x:t => p))

(at level 200, x ident, right associativity,
format "’[’ ’mforall’ ’/ ’ x : t , ’/ ’ p ’]’")

: type_scope.

Definition mE {t:Type}(p:t -> P)(w:W) := exists x, p x w.
Notation "’mexists’ x , p" := (mE (fun x => p))

(at level 200, x ident, right associativity) : type_scope.
Notation "’mexists’ x : t , p" := (mE (fun x:t => p))

(at level 200, x ident, right associativity,
format "’[’ ’mexists’ ’/ ’ x : t , ’/ ’ p ’]’")

: type_scope.

(* Knowledge operators *)
Definition K (i:A) (p:P) := fun x => forall y, (R i x y) -> (p y).
Definition E (g:G) (p:P) := fun x => gforall i : g, K i p x.
Fixpoint E’ (n:nat) (g:G) (p:P) :=

match n with
| O => E g p
| S n’ => E’ n’ g (E g p)

end.
Definition C (g:G) (p:P) := fun x => forall n : nat, E’ n g p x.
Definition D (g:G) (p:P) := fun x => forall y, (gforall i : g, R i x y) -> p y.

(* Modal validity of lifted propositions *)
Definition Valid (p:P) := forall w : W, p w.
Ltac mv := match goal with [|- (Valid _)] => intro end.
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(* Accessibility relations R_E, R_D, and R_C (Huth & Ryan, page 338) *)
Definition RE (g:G) (x y:W) := gexists i : g, R i x y.
Fixpoint RE’ (n:nat) (g:G) (x y:W) :=

match n with
| O => RE g x y
| S n’ => exists z:W, RE’ n’ g x z /\ RE g z y

end.
Definition RC (g:G) (x y:W) := exists n : nat, RE’ n g x y.
Definition RD (g:G) (x y:W) := gforall i : g, R i x y.

(* RE accurately describes E *)
Lemma REE: forall g p x, (E g p x) <-> (forall y, (RE g x y) -> (p y)).
Proof.
intros.
unfold RE.
unfold E.
unfold K.
split.
+ intros.

destruct H0 as [i H0].
destruct H0.
cut (R i x y).
apply H.
exact H0.
exact H1.

+ intros.
apply H.
exists i.
split.
exact H0.
exact H1.

Qed.

(* RE’ accurately describes E’ *)
Lemma RE’E’: forall n g x p, (E’ n g p x) <-> (forall y, (RE’ n g x y) -> (p y)).
Proof.
intros n g x.
induction n.
+ split.

* intros.
unfold E’ in H.
unfold RE’ in H0.
cut (RE g x y).
generalize y.
apply REE.
exact H.
exact H0.

* simpl.
apply REE.

+ split.
* simpl.

intros.
destruct H0 as [z H0].
destruct H0.
generalize (IHn (E g p)).
intros.
destruct H2.
apply (proj1 (REE g p z)); auto.

* simpl.
intros.
generalize (IHn (E g p)).
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intros.
apply H0.
intros.
apply (REE g p y).
intros z H2.
apply H.
exists y.
split.
exact H1.
exact H2.

Qed.

(* RC accurately describes C *)
Lemma RCC: forall g x p, (C g p x) <-> (forall y, (RC g x y) -> (p y)).
Proof.
split.
+ intros H y H0.

unfold RC in H0.
destruct H0 as [n H0].
cut (RE’ n g x y).
generalize y.
apply RE’E’.
unfold C in H.
generalize n.
exact H.
exact H0.

+ intro H.
unfold C.
intro n.
apply RE’E’.
intros y H0.
apply H.
unfold RC.
exists n.
exact H0.

Qed.

(* RD accurately describes D *)
Lemma RDD: forall g p x, (D g p x) <-> (forall y, (RD g x y) -> (p y)).
Proof.
unfold D.
unfold RD.
split.
+ intros H y H0.

apply H.
exact H0.

+ intros H y H0.
apply H.
exact H0.

Qed.

(* Lemmas for proof tactics *)
Lemma Ke_lemma:
forall (i:A) (x:W) (p:P) (y:W),

(K i p x) -> (R i x y) -> p y.
Proof.
intros i x p y H.
generalize y.
exact H.
Qed.
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Lemma Ei_lemma:
forall (g:G) (x:W) (p:P),

(forall y, (RE g x y) -> p y) -> (E g p x).
Proof.
intros g x p H.
apply REE.
exact H.
Qed.

Lemma Ee_lemma:
forall (g:G) (x:W) (p:P) (y:W),

(E g p x) -> (RE g x y) -> p y.
Proof.
intros g x p y H.
generalize y.
apply (REE g p x).
exact H.
Qed.

Lemma Ci_lemma:
forall (g:G) (x:W) (p:P),

(forall y, (RC g x y) -> p y) -> (C g p x).
Proof.
intros g x p H.
apply (RCC g x p).
exact H.
Qed.

Lemma Ce_lemma:
forall (g:G) (x:W) (p:P) (y:W),

(C g p x) -> (RC g x y) -> p y.
Proof.
intros g x p y H.
generalize y.
apply (RCC g x p).
exact H.
Qed.

Lemma Di_lemma:
forall (g:G) (x:W) (p:P),

(forall y, (RD g x y) -> p y) -> (D g p x).
Proof.
intros g x p H.
apply (RDD g p x).
exact H.
Qed.

Lemma De_lemma:
forall (g:G) (x:W) (p:P) (y:W),

(D g p x) -> (RD g x y) -> p y.
Proof.
intros g x p y H.
generalize y.
apply (RDD g p x).
exact H.
Qed.

Lemma KE_lemma:
forall (g:G) (p:P) (x:W),

(gforall i:g, K i p x) -> E g p x.
Proof.
intros g p x H.
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exact H.
Qed.

Lemma EK_lemma:
forall (g:G) (p:P) (x:W),

E g p x -> gforall i:g, K i p x.
Proof.
intros g p x H.
exact H.
Qed.

Lemma CE_lemma:
forall (g:G) (p:P) (x:W) (n:nat),

C g p x -> E’ n g p x.
Proof.
intros g p x n H.
generalize n.
exact H.
Qed.

Lemma KD_lemma:
forall (i:A) (g:G) (p:P) (x:W),

g i -> K i p x -> D g p x.
Proof.
intros i g p x H H0.
unfold D.
intros y H1.
apply H0.
apply H1.
exact H.
Qed.

(* Convenient tactics for knowledge operators *)
Ltac mK_i := let w := fresh "w" in let R := fresh "R0"

in (intro w at top; intro R).

Ltac mK_e i w := match goal with
| |- _ ?w0 => apply (Ke_lemma i w); [> clear dependent w0 | try assumption]

end.

Ltac mE_i := let w := fresh "w" in let R := fresh "RE0"
in (apply Ei_lemma; intro w at top; intro R).

Ltac mE_e g w := match goal with
| |- _ ?w0 => apply (Ee_lemma g w); [> clear dependent w0 | try assumption]

end.

Ltac mC_i := let w := fresh "w" in let R := fresh "RC0"
in (apply Ci_lemma; intro w at top; intro R).

Ltac mC_e g w := match goal with
| |- _ ?w0 => apply (Ce_lemma g w); [> clear dependent w0 | try assumption]

end.

Ltac mD_i := let w := fresh "w" in let R := fresh "RD0"
in (apply Di_lemma; intro w at top; intro R).

Ltac mD_e g w := match goal with
| |- _ ?w0 => apply (De_lemma g w); [> clear dependent w0 | try assumption]

end.
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Ltac mKE := let i := fresh "i" in let H := fresh "H"
in apply KE_lemma; intros i H; repeat destruct H.

Ltac mEK g := apply EK_lemma with g; [> | try minG].

Ltac mCE := match goal with
| |- E’ ?n ?g’ (E ?g’ ?p’) _ => unfold E’; fold (E’ (S n) g’ p’); mCE
| |- E’ ?n ?g’ ?p’ _ => apply CE_lemma
| |- E ?g’ (E ?g’ ?p’) _ => fold (E’ 1 g’ p’); mCE
| |- E ?g’ ?p’ _ => fold (E’ 0 g’ p’); apply CE_lemma

end.

Ltac mCK’ g:= match goal with
| |- K ?i’ (K _ _) ?w’ => mK_i; mCK’ g; only 1 : mK_e i’ w’; only 1 : mEK g
| |- K ?i’ ?p’ _ => mEK g

end.

Ltac mCK g := mCK’ g; only 1 : mCE.

Ltac mKD i := apply KD_lemma with i; [> try minG | ].

(* Modal accessibility axioms *)
Axiom Rreflexivity: forall i x, R i x x.
Axiom Rtransitivity: forall i x y z, (R i x y) -> (R i y z) -> (R i x z).
Axiom Rsymmetry: forall i x y, (R i x y) -> (R i y x).
Theorem Reuclidean: forall i x y z, (R i x y) -> (R i x z) -> (R i y z).
Proof.
intros.
cut (R i y x).
+ intro.

apply Rtransitivity with (y := x).
exact H1.
exact H0.

+ apply Rsymmetry.
exact H.

Qed.

(* Modal axioms *)
Lemma KT_lemma: forall (w:W) (i:A) (p:P), K i p w -> p w.
Proof.
intros w i p.
intro H.
apply (Ke_lemma i w).
exact H.
apply Rreflexivity.
Qed.

Lemma K4_lemma: forall (w:W) (i:A) (p:P), K i p w -> K i (K i p) w.
Proof.
intros w i p H.
mK_i.
mK_i.
mK_e i w.
exact H.
apply Rtransitivity with (y := w0).
exact R0.
exact R1.
Qed.

Lemma K5_lemma: forall (w:W) (i:A) (p:P), (m˜ K i p) w -> K i (m˜ (K i p)) w.
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Proof.
intros w i p H.
mK_i.
unfold mnot in *.
unfold not in *.
unfold K in *.
intro.
destruct H.
intros.
apply H0.
apply Reuclidean with (x := w).
exact R0.
exact H.
Qed.

Lemma RE’transitivity: forall n m g x y z, (RE’ n g x y) -> (RE’ m g y z) -> (RE’ (1
+ n + m) g x z).

Proof.
intros n m i x y.
induction m.
+ intros.

simpl.
unfold RE’ in H0.
exists y.
split.
rewrite <- plus_n_O.
exact H.
exact H0.

+ intros.
simpl.
simpl in H0.
destruct H0.
destruct H0.
exists x0.
split.
* assert (n + S m = 1 + n + m).

- simpl.
rewrite <- plus_n_Sm.
reflexivity.

- rewrite H2.
apply IHm.
exact H.
exact H0.

* exact H1.
Qed.

Lemma RE’reverse: forall n g x y, (RE’ (S n) g x y) -> (exists z, RE g x z /\ RE’ n
g z y).

Proof.
intros n g.
induction n.
+ intros.

simpl in H.
destruct H.
destruct H.
exists x0.
split.
exact H.
exact H0.

+ intros.
simpl in H.
destruct H.
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destruct H.
destruct H.
destruct H.
destruct IHn with x x0.
* simpl.

exists x1.
split.
exact H.
exact H1.

* destruct H2.
exists x2.
split.
exact H2.
simpl.
exists x0.
split.
exact H3.
exact H0.

Qed.

Lemma RE’symmetry: forall n g x y, (RE’ n g x y) -> (RE’ n g y x).
Proof.
intros n g.
induction n.
+ intros.

simpl.
unfold RE’ in H.
unfold RE.
unfold RE in H.
destruct H.
destruct H.
exists x0.
split.
exact H.
apply Rsymmetry.
exact H0.

+ intros.
apply RE’reverse in H.
destruct H.
destruct H.
simpl.
exists x0.
split.
* apply IHn.

exact H0.
* unfold RE.

unfold RE in H.
destruct H.
destruct H.
exists x1.
split.
exact H.
apply Rsymmetry.
exact H1.

Qed.

Lemma RE’Euclidean: forall n m g x y z, (RE’ n g x y) -> (RE’ m g x z) -> (RE’ (1 +
n + m) g y z).

Proof.
intros n m g x y.
intros.
apply RE’transitivity with x.
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+ apply RE’symmetry.
exact H.

+ exact H0.
Qed.

Lemma RCtransitivity: forall g x y z, (RC g x y) -> (RC g y z) -> (RC g x z).
Proof.
intros g x y z H H0.
unfold RC in *.
destruct H.
destruct H0.
exists (1 + x0 + x1).
apply RE’transitivity with (y:=y).
exact H.
exact H0.
Qed.

Lemma RCEuclidean: forall g x y z, (RC g x y) -> (RC g x z) -> (RC g y z).
Proof.
intros g x y z H H0.
unfold RC in *.
destruct H.
destruct H0.
exists (1 + x0 + x1).
apply RE’Euclidean with (x:=x).
exact H.
exact H0.
Qed.

Lemma C4_lemma: forall (w:W) (g:G) (p:P), C g p w -> C g (C g p) w.
Proof.
intros w g p H.
mC_i.
mC_i.
apply (proj1 (RCC g w p)) with (y:=w1) in H .
exact H.
apply RCtransitivity with w0.
exact RC0.
exact RC1.
Qed.

Lemma C5_lemma: forall (w:W) (g:G) (p:P), (m˜ (C g p)) w -> C g (m˜ (C g p)) w.
Proof.
intros w g p H.
mC_i.
unfold mnot in *.
unfold not in *.
intro H0.
apply H.
apply RCC.
intros w1 RC1.
apply (proj1 (RCC g w0 p)).
exact H0.
apply RCEuclidean with (x:=w).
exact RC0.
exact RC1.
Qed.

Lemma DT_lemma: forall (w:W) (g:G) (p:P), D g p w -> p w.
Proof.
intros w g p H.
unfold D in H.
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apply H.
intros.
apply Rreflexivity.
Qed.

Lemma D4_lemma: forall (w:W) (g:G) (p:P), D g p w -> D g (D g p) w.
Proof.
intros w g p H.
mD_i.
mD_i.
unfold RD in *.
unfold D in H.
apply H.
intros.
apply Rtransitivity with (y:=w0).
+ cut (g i).

generalize i.
exact RD0.
exact H0.

+ cut (g i).
generalize i.
exact RD1.
exact H0.

Qed.

Lemma D5_lemma: forall (w:W) (g:G) (p:P), (m˜ (D g p)) w -> D g (m˜ (D g p)) w.
Proof.
intros w g p H.
mD_i.
unfold mnot in *.
unfold RD in RD0.
unfold not in *.
unfold D in *.
intro H0.
apply H.
intros y H1.
apply H0.
intros.
apply Reuclidean with (x:=w).
+ cut (g i).

generalize i.
exact RD0.
exact H2.

+ cut (g i).
generalize i.
exact H1.
exact H2.

Qed.

Ltac mKT i := apply KT_lemma with i.
Ltac mK4 := apply K4_lemma.
Ltac mK5 := apply K5_lemma.
Ltac mC4 := apply C4_lemma.
Ltac mC5 := apply C5_lemma.
Ltac mDT g := apply DT_lemma with g.
Ltac mD4 := apply D4_lemma.
Ltac mD5 := apply D5_lemma.

Create HintDb modal.
Hint Unfold mimplies mnot mor mand K E C D mA mE Valid : modal.
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B.2 Natural deduction rules in Coq

Here are the proof tactics corresponding to the natural deduction rules from
Appendix A.1. These rules are based on ProofWeb [14], but they have been
modified to fit the modal operators from Appendix B.1.
(*

Natural deduction proof rules for Modal.v

Based on ProofWeb.v
*)

Require Import Modal.
Require Import Classical.

Ltac mcon_i :=
match goal with
| |- (_ m/\ _) _ => split
end ||
fail "(the goal is not a conjunction)".

Lemma mcone1:
forall right left w,

(left m/\ right) w -> left w.
Proof.
unfold "m/\ ".
intros r l w H.
destruct H.
assumption.
Qed.

Ltac mcon_e1 R := apply (mcone1 R).

Lemma mcone2:
forall left right w,

(left m/\ right) w -> right w.
Proof.
unfold "m/\ ".
intros r l w H.
destruct H.
assumption.
Qed.

Ltac mcon_e2 L := apply (mcone2 L).

Ltac mdis_i1 :=
match goal with
| |- (_ m\/ _) _ => left
end ||
fail "(the goal is not a disjunction)".

Ltac mdis_i2 :=
match goal with
| |- (_ m\/ _) _ => right
end ||
fail "(the goal is not a disjunction)".

Ltac mdis_e X w H1 H2 :=
match X with
| (_ m\/ _) =>

let x := fresh "H" in
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assert (x : (X w));
[ idtac | elim x; clear x; [intro H1 | intro H2] ]

end ||
fail "(the argument is not a disjunction or the labels already exist)".

Ltac mimp_i X :=
match goal with
| |- (_ m-> _) _ => intro X
end ||
fail "(the goal is not an implication)".

Lemma mimpe:
forall (prem conc:P) (w:W),

(prem w) -> ((prem m-> conc) w) -> (conc w).
Proof.
unfold "m->".
intros p c w H H0.
apply H0.
assumption.
Qed.

Ltac mimp_e X := apply (mimpe X).

Ltac miff_i H1 H2 :=
match goal with
| |- (_ m<-> _) _ =>
split; [ (intro H1) | (intro H2) ]
end ||
fail "(the goal is not a bi-implication)".

Lemma miffe1:
forall (L R:P) (w:W),

(L w) -> ((L m<->R) w) -> R w.
Proof.
intros L R w H H0.
apply H0.
exact H.
Qed.

Ltac miff_e1 L := apply miffe1 with L.

Lemma miffe2:
forall (L R:P) (w:W),

(R w) -> ((L m<->R) w) -> L w.
Proof.
intros L R w H H0.
apply H0.
exact H.
Qed.

Ltac miff_e2 R := apply miffe2 with R.

Ltac mall_i X :=
match goal with
| |- (mforall _, _) _ => intro X
end ||
fail "(the goal is not a universal quantification)".

Ltac mall_e X w A :=
match X with
| (mforall _ : _ , _) => refine ((_ : X w) A)
end ||
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fail "(the argument is not a universal quantification)".

Ltac mexi_i X :=
match goal with
| |- (mexists x : _ , _) _ => exists X
end ||
fail "(the goal is not an existential quantification)".

Ltac mexi_e X w a H :=
match X with
| (mexists x : _ , _) => refine ((fun x y => ex_ind y (x : X w)) _ _); [idtac |

intros a H]
end ||
fail "(the argument is not an existential quantification)".

Ltac mabsurd X w := absurd (X w); [
match goal with

| |- ˜ (?p’) ?w’ => fold ((m˜ p’) w’)
end

|].

Ltac mneg_i X w Y :=
match goal with
| |- (m˜ _) _ => intro Y; mabsurd X w
end ||
fail "(the goal is not a negation)".

Ltac mneg_e X w := mabsurd X w.

Ltac mnegneg_e :=
match goal with
| |- ?H => apply (NNPP H)
end.

Ltac mneg_e’ X w Y := mnegneg_e; intro Y; mabsurd X w.

Ltac mhyp X := exact X.
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Appendix C

Overlapping Birthday Case

Here are the complete proofs of both the simplified and the original version
of the overlapping birthday case, as discussed in Section 5.4:
Require Import Modal.
Require Import ModalRules.

(* Proof based on the birthday case, as discussed by Hakli and Negri *)

(* Type T for days *)
Parameter T : Type.

(* Birthday of agent i is on day n *)
Parameter B: A -> T -> P.

(* Every agent knows their own birthday *)
Axiom KB: forall (i:A) (t:T) (w:W), (B i t w -> K i (B i t) w).

Section Birthday_Case_Simplification.

(* Some arbitrary day t *)
Parameter t: T.

(* Some arbitrary agents i1 and i2 *)
Parameters i1 i2: A.

Theorem OverlappingBirthdaysSimplified: Valid(
B i1 t m/\ B i2 t

m->
D [i1, i2] (B i1 t m/\ B i2 t)

).
Proof. mv.
mimp_i H.
mD_i.
mcon_i.
+ mD_e [i1, i2] w.

mKD i1.
apply KB.
mcon_e1 (B i2 t).
mhyp H.

+ mD_e [i1, i2] w.
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mKD i2.
apply KB.
mcon_e2 (B i1 t).
mhyp H.

Qed.

Reset Birthday_Case_Simplification.

(* Some arbitrary group g *)
Parameter g: G.

(* Lifted proposition for group membership *)
Definition min (g:G) (i:A) (w:W) := g i.

Lemma BirthdaysDoOverlap: Valid(
(mexists i1, mexists i2, mexists t, min g i1 m/\ min g i2 m/\ B i1 t m/\ B i2 t
)

m->
D g (mexists i1, mexists i2, mexists t, min g i1 m/\ min g i2 m/\ B i1 t m/\ B
i2 t)

).
Proof. mv.
mimp_i H.
mexi_e (mexists i1 : A, mexists i2 : A, mexists t : T, min g i1 m/\ min g i2 m/\ B

i1 t m/\ B i2 t) w i1 H1.
mhyp H.
mexi_e (mexists i2 : A, mexists t : T, min g i1 m/\ min g i2 m/\ B i1 t m/\ B i2 t)

w i2 H2.
mhyp H1.
mexi_e (mexists t : T, min g i1 m/\ min g i2 m/\ B i1 t m/\ B i2 t) w t H3.
mhyp H2.
destruct H3. (* We use some default Coq tactics for convenience *)
destruct H3.
destruct H4.
mD_i.
mexi_i i1.
mexi_i i2.
mexi_i t.
mcon_i.
mhyp H0.
mcon_i.
mhyp H3.
mcon_i.
+ mD_e g w.

mKD i1.
mhyp H0.
apply KB.
mhyp H4.

+ mD_e g w.
mKD i2.
mhyp H3.
apply KB.
mhyp H5.

Qed.

(* Every agent has a birthday *)
Axiom atLeastOneBirthday: forall (i:A) (w:W), exists (t:T), B i t w.

(* Every agent has at most one birthday *)
Axiom atMostOneBirthday: forall (i:A) (t1 t2:T) (w:W), ((B i t1 m/\ B i t2) w) -> t1

= t2.
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Lemma BirthdaysDoNotOverlap: Valid(
m˜ (mexists i1, mexists i2, mexists t, min g i1 m/\ min g i2 m/\ B i1 t m/\ B
i2 t)

m->
D g (m˜ (mexists i1, mexists i2, mexists t, min g i1 m/\ min g i2 m/\ B i1 t
m/\ B i2 t))

).
Proof. mv.
mimp_i H.

mimp_e (
mforall t1, mforall t2, mforall i1, mforall i2,

min g i1 m/\ min g i2 m/\ B i1 t1 m/\ B i2 t2 m-> m˜ (t1 m=t2)
).
+ mall_i t1.

mall_i t2.
mall_i i1.
mall_i i2.
mimp_i H0.
destruct H0.
destruct H1.
destruct H2.
mneg_i (

mexists i1 : A, mexists i2 : A, mexists t : T, min g i1 m/\ min g i2 m/\ B i1 t
m/\ B i2 t

) w H4.
mhyp H.
mexi_i i1.
mexi_i i2.
mexi_i t1.
mcon_i.
mhyp H0.
mcon_i.
mhyp H1.
mcon_i.
mhyp H2.
replace t1 with t2.
mhyp H3.

+ mimp_i H0.
mD_i.
mneg_i (mforall t1 : T, mforall t2 : T, mforall i1 : A, mforall i2 : A,

min g i1 m/\ min g i2 m/\ B i1 t1 m/\ B i2 t2 m-> m˜ (t1 m= t2)) w N1.
* mexi_e (mexists i1, mexists i2, mexists t, min g i1 m/\ min g i2 m/\ B i1 t m/\

B i2 t) w0 i1 N2.
mhyp N1.
mexi_e (mexists i2, mexists t, min g i1 m/\ min g i2 m/\ B i1 t m/\ B i2 t) w0
i2 N3.

mhyp N2.
mexi_e (mexists t, min g i1 m/\ min g i2 m/\ B i1 t m/\ B i2 t) w0 t N4.
mhyp N3.
destruct N4.
destruct H2.
destruct H3.

mimp_e (mexists t1, B i1 t1).
apply atLeastOneBirthday.
mimp_i B1.
mexi_e (mexists t1 : T, B i1 t1) w t1 B1a.
mhyp B1.

mimp_e (mexists t2, B i2 t2).
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apply atLeastOneBirthday.
mimp_i B2.
mexi_e (mexists t2 : T, B i2 t2) w t2 B2a.
mhyp B2.

mneg_e (t1 m= t2) w.
- mimp_e (min g i1 m/\ min g i2 m/\ B i1 t1 m/\ B i2 t2).

++ mcon_i.
mhyp H1. (* Groups do not depend on worlds *)
mcon_i.
mhyp H2.
mcon_i.
mhyp B1a.
mhyp B2a.

++ mall_e (mforall i2 : A,
min g i1 m/\ min g i2 m/\ B i1 t1 m/\ B i2 t2 m-> m˜ (t1 m= t2)) w

i2.
mall_e (mforall i1 : A, mforall i2 : A,

min g i1 m/\ min g i2 m/\ B i1 t1 m/\ B i2 t2 m-> m˜ (t1 m= t2)) w
i1.

mall_e (mforall t2 : T, mforall i1 : A, mforall i2 : A,
min g i1 m/\ min g i2 m/\ B i1 t1 m/\ B i2 t2 m-> m˜ (t1 m= t2)) w

t2.
mall_e (mforall t1 : T, mforall t2 : T, mforall i1 : A, mforall i2 : A,

min g i1 m/\ min g i2 m/\ B i1 t1 m/\ B i2 t2 m-> m˜ (t1 m= t2)) w
t1.

mhyp H0.
- mimp_e (min g i1). (* Convert knowledge of group membership i1 and i2 to world

w *)
mhyp H1.
mimp_i H5.
mimp_e (min g i2).
mhyp H2.
mimp_i H6.
replace t1 with t.
replace t2 with t.
++ reflexivity.
++ apply atMostOneBirthday with i2 w0.

mcon_i.
mhyp H4.
mD_e g w.
mKD i2.
mhyp H6.
apply KB.
mhyp B2a.

++ apply atMostOneBirthday with i1 w0.
mcon_i.
mhyp H3.
mD_e g w.
mKD i1.
mhyp H5.
apply KB.
mhyp B1a.

* mhyp H0.
Qed.

Lemma LEM: forall (p:P) (w:W), (p m\/ m˜ p) w.
Proof.
intros p w.
mneg_e’ (m˜ (p m\/ m˜ p)) w H.
+ mneg_i (p m\/ m˜ p) w H0.

mhyp H0.
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mdis_i2.
mneg_i (p m\/ m˜ p) w H1.
mhyp H0.
mdis_i1.
mhyp H1.

+ mhyp H.
Qed.

Theorem OverlappingBirthdaysFull: Valid(
D g (mexists i1, mexists i2, mexists t, min g i1 m/\ min g i2 m/\ B i1 t m/\ B
i2 t)

m\/
D g (m˜ (mexists i1, mexists i2, mexists t, min g i1 m/\ min g i2 m/\ B i1 t
m/\ B i2 t))

).
Proof. mv.
mimp_e (

(mexists i1, mexists i2, mexists t, min g i1 m/\ min g i2 m/\ B i1 t m/\ B i2 t
)

m\/
(m˜ (mexists i1, mexists i2, mexists t, min g i1 m/\ min g i2 m/\ B i1 t m/\ B
i2 t))

).
+ apply LEM.
+ mimp_i H.

mdis_e (
(mexists i1, mexists i2, mexists t, min g i1 m/\ min g i2 m/\ B i1 t m/\ B i2
t)

m\/
(m˜ (mexists i1, mexists i2, mexists t, min g i1 m/\ min g i2 m/\ B i1 t m/\

B i2 t))
) w C1 C2.
* mhyp H.
* mdis_i1.

apply BirthdaysDoOverlap.
mhyp C1.

* mdis_i2.
apply BirthdaysDoNotOverlap.
mhyp C2.

Qed.
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