
Bachelor thesis

Computing Science &
Mathematics

Radboud University

Transducer Degrees

Author:
Steven Bronsveld
steven.bronsveld@student.ru.nl

s1020191

Supervisor/assessor:
Prof. Dr. J.H. Geuvers
h.geuvers@cs.ru.nl

Second assessor:
Prof. Dr. H. Zantema
h.zantema@cs.ru.nl

January 10, 2021

Abstract

We explore the structure of transducer degrees. This is a partial order on in-
finite sequences known as streams. One stream σ is considered to be greater
than another stream τ if there exists a finite state transducer (FST) that trans-
duces σ to τ . We show properties of this order and show what techniques were
used to prove these properties. Our main focus is the fact that the degree of
〈n2〉 = 1001011041091016... is an atom. This means that all transducts of 〈n2〉
can be transduced back to 〈n2〉 or to the zero stream 0.

Contents

I Introduction 2

II Preliminaries 5
1 Prerequisites . 5
2 About our proofs . 5
3 Notation . 5
4 Citing . 5

III Definitions 7
5 Streams . 7
6 Finite state transducers . 10
7 Transducer degrees . 11

IV Initial investigation 12
8 Basic statements . 12
9 Function streams . 15
10 Upper bounds . 18
11 Atoms . 20

V Exploring transducts 21
12 Properties of spiralling functions . 22
13 FST pumping lemma . 26
14 Transducts of spiralling function streams. 29
15 Transition ambiguities . 34
16 Masses . 37

VI Deep results 42
17 [〈n2〉] is an atom . 42
18 Countably many atoms . 44
19 Suprema . 45

VII Conclusion and future work 47

1

Chapter I

Introduction

Ordering streams

In this thesis, we explore the structure of transducer degrees. This is a largely
unexplored topic in the field of theoretical computing science and automata theory.
The concept was first introduced by Jörg Endrullis and his coworkers in the paper
Degrees of Streams [1].

Transducer degrees are a way to order infinite sequences, also known as streams.
Some streams can be transformed into other streams by a finite state transducer
(FST). This is a kind of automaton that reads symbols from one stream and outputs
symbols to a new stream. See the figure below.

q0 q1

1 | 101

0 | 010

1 | 11
0 | 1

An example of a FST

The state transitions can be read as “input | output”. We will demonstrate how
this FST produces an output stream from an input stream. In the beginning, the
FST will be in state q0, because this is the initial state (indicated by the arrow left
of q0). If we have a stream, for example, the alternating stream A := 10101010...,
this FST will read the first symbol (1) and output 101 and change the current state
from q0 to q1. It will then read the second symbol (0), output 1 and change the
state from q1 to q1 (so the state stays the same). Next, it will read the third symbol
(1) and output 11, and again keep in the same state. This process continues forever.
The resulting output stream O looks like O = 101111111....

Notice that we always read one symbol per transition, but can output multiple
symbols at once. We call the act of transforming one stream into another using
a FST transduction. Furthermore, the transducts of a stream σ are all streams

2

that can be generated from σ by some FST. So the stream O above is one of the
transducts of A.

We can order all streams using these transducers. We say that one stream σ is
“bigger” than another stream τ if we can construct a FST that transduces σ to τ .
Some streams can be transduced to each other. Whenever this is the case, we call
the streams equivalent. Transducer degrees are the ordering of all streams where
we treat equivalent streams as “the same”. We call a set of equivalent streams a
transducer degree and their collection transducer degrees.

Related work

These transducer degrees are similar to the well-known concept of Turing degrees
also known as degrees of unsolvability [2, 3]. Their similarity is the topic of the paper
Degrees of Transducibility [4]. This paper also compares Mealy Degrees, the degrees
produced by Mealy Machines. These are finite state transducers that only output a
single symbol per transition. This structure is the topic of [5].

Transducer degrees are created to gain more insight into the relation of streams.
We know for example that the famous Thue-Morse stream can be transduced to the
period doubling stream. The definition of these streams are given in Example 5.6 and
a FST that can be used to transduce the Thue-Morse stream to the period doubling
stream can be found in Example 6.3. It is argued that finite state transducers are a
natural way to compare the complexity of different streams [1].

There are still a lot of open questions concerning transducer degrees as listed on the
excellent website [6]. This website also gives a nice overview of papers related to
this topic and the current state of the research. We highly encourage the reader to
visit this site at:

http://joerg.endrullis.de/research/finite-state-transducers/

We will go over some of the open questions in the last chapter.

It is also possible to look at permutation transducers. These are similar machines
to FSTs but with an additional requirement on the state transitions. In a FST,
each state must have a transition that reads each input symbol. You cannot have
a situation where you can get “stuck”. A permutation transducer also requires
that each state has incoming transitions for each input symbol. The example FST
given above is not a permutation transducer, because the state q0 does not have any
incoming transitions. The properties of these permutation transducers have been
studied in the paper Classifying Non-periodic Sequences by Permutation Transducers
[7].

3

http://joerg.endrullis.de/research/finite-state-transducers/

Research question

In this thesis we will be looking at the question:

What are the properties of transducer degrees?

To answer this question, we will delve into the work of Jörg Endrullis; the authority
on this topic. We will explore the fine details of the proofs given in the papers
written by him and his coworkers [1, 8, 9]. Some properties that we explore are:

� There exists a bottom degree.

� Every countable set of degrees has an upper bound.

� There are countably many atom degrees, these are degrees that only have the
bottom degree below them.

� There are sets of degrees that do not have a supremum.

We fill focus mostly on the fact that a particular degree of streams is an atom namely,
the degree of 〈n2〉.

Thesis overview

We will briefly go over the contents of each chapter.

Chapter III: Definitions We give some definitions that we will use throughout
this thesis. We give examples and make the reader familiar with the notation.

Chapter IV: Initial investigation We prove some simple facts about transducer
degrees. We solidify a few claims that were made in this introduction and
prove a number of elementary facts.

Chapter V: Exploring transducts We look at the transducts of a certain class
of streams, namely, those generated by spiralling functions. We work towards
an elegant way to describe these transducts.

Chapter VI: Deep results We show some facts that are more difficult to prove.
We will be using the results derived in Chapter V to show that the degree of
the stream 〈n2〉 is an atom. We quickly go over the fact that the transducer
degrees do not possess the supremum property.

4

Chapter II

Preliminaries

1 Prerequisites

We assume familiarity with basic automata theory. We will speak a lot about fi-
nite state transducers. These transducers are very similar to deterministic finite
automata, as known in automata theory. We assume that the reader is familiar
with mathematical proofs. Most of the proofs are not too difficult. However, the
majority of this thesis consists of mathematics, so be warned.
Some of the mathematical concepts we assume the reader to be familiar are: equiv-
alence relations, partially ordered sets (posets), the pigeonhole principle, the greatest
common devisor (gcd) and the least common multiple (lcm).

2 About our proofs

In this thesis we will try to prove as many statements as possible, but we have to
draw the line somewhere. When we require a FST for a proof, we will give the
mathematical notation and in most cases a visual representation. If we want to be
really precise, we would have to prove that a FST truly gives the required result by
induction on the stream. We will not do this because this is quite tedious and does
not give much additional insight.

3 Notation

We say that 0 ∈ N. Whenever we define an inline variable such as n ≥ 0 or x < n,
we assume this variable to be an integer (∈ Z) unless explicitly stated otherwise.
Sometimes, when we define a new variable we denote this using the := sign to stress
the fact that we define something and not derive something.

4 Citing

In this thesis, we heavily rely on the work of Jörg Endrullis. The primary focus
of this thesis, the proof that the degree of squares is an atom, was shown in [8].
Whenever a definition, proposition, corollary, lemma or theorem is similar to one
stated in another paper, we will link the source. All proofs that we give are of our

5

own making, although they are often heavily inspired by their original versions. In
many cases, we have introduced more examples, elaborated on parts that we thought
were not clear, or introduced new concepts. We encourage the reader to look at the
original papers.

6

Chapter III

Definitions

5 Streams

We start with a few definitions. We have intentionally made this section less math-
ematical, as we think this helps to get an intuitive sense of the notions introduced.

Definition 5.1. Words and streams.
A stream is a function σ : N → Σ, where Σ is a set of symbols, also called the
alphabet. We define ΣN to be the set of all streams over alphabet Σ. We call the
stream that only contains zeros the zero stream denoted as 0 := (n 7→ 0). Because
streams are functions, we say that σ(n) is the symbol at index n for each n ≥ 0. A
word is a finite list of symbols. Let Σ∗ be the set of words over the alphabet Σ. Let
ε be the empty word. If n ≥ 0, we denote a prefix of σ by σ<n. This is the word of
length n at the start of the stream. Similar definitions hold for σ≤n, σ>n and σ≥n.
We can likewise define prefixes and suffixes of words instead of streams. We consider
two streams, σ, τ ∈ ΣN to be the same if for all n ≥ 0 we have σ<n = τ<n.

For most of this thesis, we consider streams of two symbols, such that Σ = {0, 1}.
We denote this by 2 := {0, 1}. We will use 2 in the next definitions in favor of
uniformity, but keep in mind that we could use any set of symbols Σ.

Definition 5.2. Word and stream operators.
Let σ ∈ 2N be a stream v, w ∈ 2∗ words, s ∈ 2 a symbol and k ≥ 0 an integer.

1. The shift operator.

S .(.) : N× 2N → 2N

Sk(σ) := n 7→ σ(n+ k)

2. The infix cons operator that is overloaded to take streams and words as its
second argument.

(:) : 2× 2∗ → 2∗

s : w := (s, w(0), w(1), ..., w(|w| − 1))

(:) : 2× 2N → 2N

(s : σ)(n) :=

{
s if n = 0

σ(n− 1) if n > 0

7

3. The infix concatenation operator defined by induction on the first argument.
Note that this definition works for words and streams.

(·) : 2∗ × 2∗ → 2∗

ε · v := v

w · v := w(0) : (w>0 · v) if |w| > 0

(·) : 2∗ × 2N → 2N

ε · v := v

w · v := w(0) : (w>0 · v) if |w| > 0

We introduce a product notation to make working with streams a lot more elegant.

Notation 5.3. Let n, k ≥ 0 be integers, u ∈ 2∗ a word and ~v ∈ (2∗)n a list of words.

1. uk :=

k times︷ ︸︸ ︷
u · u · ... · u

2.
∏k
i=0 vi := v0 · v1 · ... · vk−1

3. vω := v · vω

(Note that the ω symbol in the superscript of Notation 5.3.3 is a lowercase omega)

In practice, the definitions of streams and words are quite intuitive. We show some
examples below:

Example 5.4. Some words and streams.

ε ∈ {A, B, C, D}∗ A : BBA = ABBA ∈ {A, B, C, D}∗

01010011 ∈ 2∗ 1001 · 0110 = 10010110 ∈ 2∗

101010101... ∈ 2N
∞∏
i=0

10i ∈ 2N

Although we will not focus on individual streams in this thesis, we will give some
well-known streams to get familiar with the notation. These streams and their
formal definitionswhere also mensioned in [1].

Definition 5.5. To give a formal definition of the streams below, we introduce the
szip2 function. Let σ, τ ∈ 2N.

szip2 : 2N × 2N → 2N

szip2(s : σ, τ) := s : szip2(τ, σ)

The szip2 creates a new stream by alternating symbols of the two input streams. In
Definition 10.3 we define a generalized version of szip.

Example 5.6 ([1]). Well-known streams.

8

� Thue-Morse stream (A010060 [10]) This stream is obtained by starting
with 0 and then repeatedly appending the boolean complement of the stream
so far. We start with 0, add the boolean complement of 0, which is 1, so we get
01. We take the boolean complement of 01, which is 10, so we get 0110 and so
on. We can give a formal definition. Note that this definition is different from
the one given above. We encourage the reader to see that this other definition
yields the same stream.

M := 0 : X

X := 1 : szip2(X,Y)

Y := 0 : szip2(Y,X)

M = 0 1 10 1001 10010110 10010110011010...

� Period doubling stream (A096268 [10]) This stream is generated by start-
ing with 01 and then repeatedly appending the stream so far to it, but taking
the binary complement of the last symbol. So you start with 01 and then flip
the last bit, so you get 00, and append this. Continue this to infinity and you
get the period doubling sequence. We give a formal definition below. Note
that, this definition differs from the one described above.

PD := szip2(0, inv(PD))

inv(1 : σ) := 0 : σ

inv(0 : σ) := 1 : σ

PD = 01 00 0101 01000100 01000101010001...

� Paperfolding stream (A014577 [10]) This stream is generated by starting
with 1 and then inserting an alternating stream of 1 and 0 between the previous
terms (including the start and end). So in the first iteration, you add 1 before
the initial 1, and 0 after it so you get 110. The next iteration, you insert 1 in
front, 0 between the first and the second symbol, 1 between the second and
third symbol, and 0 at the end. So you get 1101100. The formal definition
below resembles this idea.

PF := szip2(alt, PF)

alt = 1 · (0 : alt)

PF = 110110011100100111011000110010

9

6 Finite state transducers

Definition 6.1. Finite state transducer (FST).
A finite state transducer (FST) is a tuple (Q, qs, δ, λ) where

� Q is a set of states.

� qs is the initial state.

� δ : Q× 2→ Q the transition function.

� λ : Q× 2→ 2∗ the output function.

Definition 6.2. We extend the definition of the input function δ and output func-
tion λ of a FST T := (Q, qs, δ, λ) such that we can give a word or a stream as input.
Let σ ∈ 2N ∪ 2∗ be a stream or a word.

δ(q, ε) := q δ(q, s : σ) = δ(δ(q, s), σ)

λ(q, ε) := q λ(q, s : σ) = λ(q, s) : λ(δ(q, s), σ)

We say that a transducer T transduces a stream σ ∈ 2N to τ ∈ 2N if λ(qs, σ) = τ .
We write σ ≥T τ and T (σ) = τ .

The best way to get familiar with this definition is by looking at an example.

Example 6.3. We define a finite state transducer T := (Q, qs, δ, λ) where Q :=
{qs, q0, q1} is the set of states, qs is the initial state and the transition and output
functions δ, λ are defined by:

δ(qs, 0) := q0 λ(qs, 0) := ε

δ(qs, 1) := q1 λ(qs, 1) := ε

δ(q0, 0) := q0 λ(q0, 0) := 0

δ(q0, 1) := q1 λ(q0, 1) := 1

δ(q1, 0) := q0 λ(q1, 0) := 1

δ(q1, 1) := q1 λ(q1, 1) := 0

This transducer is visualised below in Figure 6.4. This particular FST transduces the
Thue-Morse stream (M) to the period doubling stream (PD) defined in Example 5.6

qs

q0

q1

0 | ε

1 | ε

0 | 0

1 | 0

1 | 10 | 1

Figure 6.4: A FST that transduces the Thue-Morse stream (M) to the period doubling
stream (PD).

The period doubling stream can be generated from the Thue-Morse stream by it-
erating through every symbol (starting with the second symbol), and checking if it
is equal to the previous symbol. If so, output a 0, otherwise ouput a 1. One can
consider state q0 to be “the last symbol was a 0” and q1 “the last symbol was a 1”.

10

7 Transducer degrees

We can finally define the main topic of this thesis: transducer degrees. We start by
defining an order on streams called “≥”.

Definition 7.1. For streams σ, τ ∈ 2N we say that σ ≥ τ if and only if there exists
a FST T such that σ ≥T τ . We say that σ ≡ τ if and only if σ ≥ τ ∧ τ ≥ σ.

This definition makes (2N,≥) a partially ordered set, poset for short. We show
this in Proposition 8.6. Furthermore, “≡” is an equivalence relation, as we show
in Proposition 8.7. This makes it possible to speak about the equivalence classes
of the quotient (2N/≡). We denote the equivalence class of a stream σ ∈ 2N by
[σ] ∈ (2N/≡).

Definition 7.2. Transducer degree.
A transducer degree is an element of the set of equivalence classes [σ] ∈ (2N/≡) of
the equivalence relation ≡ defined above. We call this set of equivalence classes
transducer degrees.

We can again define a partial order, this time on transducer degrees.

Definition 7.3. For transducer degrees [σ], [τ] ∈ (2N/≡) we say that [σ] ≥ [τ] ⇐⇒
σ ≥ τ . Note that we use the same symbol to denote the order on transducer degrees
and streams.

We must show that this definition is well defined: that it does not depend on the
specific representatives σ, τ . We must show that, for streams σ, σ′, τ, τ ′ ∈ 2N, if
σ ≡ σ′ and τ ≡ τ ′, then [σ] ≥ [τ] ⇐⇒ [σ′] ≥ [τ ′]. This follows directly from the
definition of ≡ and the fact that ≥ (as order on streams) is transitive.
In this thesis, we will mainly speak about facts of streams, but because of the above
definition, we can directly translate this to facts about transducer degrees.

11

Chapter IV

Initial investigation

8 Basic statements

Now that we have the initial definitions out of the way, we can start with some basic
properties of streams and transducers.

Proposition 8.1. Basic inequalities.
For any stream σ ∈ 2N we have:

1. σ ≥ 0.

2. σ ≥ σ.

3. σ ≥ Sk(σ) for any k ≥ 0.

4. σ ≥ w · σ for any w ∈ 2∗.

Proof.

1. The proof is given by a single FST that will transduce any stream σ ∈ 2N to
0. Recall that 0 =

∏∞
i=0 0 = 0ω. Let T := ({q}, q, δ, λ) be a FST where

δ(q, 0) := q λ(q, 0) := 0

δ(q, 1) := q λ(q, 1) := 0

This transducer is shown in Figure 8.2.

q

0 | 0

1 | 0

Figure 8.2: A FST that transduces any stream to 0.

It is trivial that this transducer gives the required result.

12

2. We can create a FST that copies the input stream. Define the FST T :=
({q}, q, δ, λ) where

δ(q, 0) := q λ(q, 0) = 0

δ(q, 1) := q λ(q, 1) = 1

This transducer is shown in Figure 8.3. It is clear that this transducer provides
us with the required result.

q
1 | 1
0 | 0

Figure 8.3: A transducer that copies the input stream.

3. Let T := (Q, q0, δ, λ) be a FST where Q := {q0, q1, ..., qk−1, qk} and

δ(qi, 0) := qi+1 λ(qi, 0) := ε for all i < k

δ(qi, 1) := qi+1 λ(qi, 1) := ε for all i < k

δ(qk, 1) := qk λ(qk, 1) := 1

δ(qk, 0) := qk λ(qk, 0) := 0

This transducer is shown in Figure 8.4.

q0 q1
1 | ε
0 | ε

qk−1 qk
1 | ε
0 | ε

1 | 1
0 | 0

Figure 8.4: A transducer that shifts a stream by k symbols.

This transducer skips the first k symbols and then starts copying the stream.

4. Let w ∈ 2∗ be a word and σ ∈ 2N a stream. We will show that σ ≥T w · σ by
the FST T := ({q0, q1}, q0, δ, λ) where

δ(q0, 0) := q1 λ(q0, 0) := w · 0
δ(q0, 1) := q1 λ(q0, 1) := w · 1
δ(q1, 0) := q1 λ(q1, 0) := 0

δ(q1, 1) := q1 λ(q1, 1) := 1

The FST T is shown in Figure 8.5.

q0 q1

1 | w · 1

0 | w · 0

1 | 1
0 | 0

Figure 8.5: A transducer that prepends a word w.

13

We will now prove that “≥” forms a partial order and that “≡” is indeed an equiv-
alence relation.

Proposition 8.6. The relation “≥” is a partial order on the set of streams 2N.

Proof. We give a sketch of the proof. Let σ, τ, κ ∈ 2N be streams.
(reflexivity) σ ≥ σ follows directly from Proposition 8.1.2.
(antisymmetry) σ ≥ τ ∧ τ ≥ σ =⇒ τ ≡ σ as per the definition of “≡” given
in Definition 7.1.
(transitivity) σ ≥ τ ∧ τ ≥ κ =⇒ σ ≥ κ. Suppose σ ≥ τ ∧ τ ≥ κ. Then can
find two transducers T = (Q, qs, δ, λ) and T ′ = (Q′, q′s, δ

′, λ′) such that T (σ) = τ ∧
T ′(τ) = κ. We can now construct the wreath product : T̂ := (Q×Q′, (qs, q′s), δ, λ)
where

δ((q, q′), s) := (δ(q, s), δ′(q, s)) for s ∈ 2

λ((q, q′), s) := λ′(q′, λ(q, s)) for s ∈ 2

We claim that this construction gives the required result, namely that σ ≥T̂ κ.
We will not prove this.

Proposition 8.7. The relation “≡” is an equivalence relation on the set of streams
2N.

Proof. Let σ, τ, κ ∈ 2N be streams.
(reflexivity) σ ≡ σ follows directly from Definition 7.1 and the reflexivity of “≥”
as shown in Proposition 8.6.

σ ≥ σ ∧ σ ≥ σ =⇒ σ ≡ σ

(symmetry) σ ≡ τ =⇒ τ ≡ σ follows directly from Definition 7.1:

σ ≡ τ =⇒ σ ≥ τ ∧ τ ≥ σ =⇒ τ ≥ σ ∧ σ ≥ τ =⇒ τ ≡ σ

(transitivity) σ ≡ τ ∧ τ ≡ κ =⇒ σ ≡ κ follows from the transitivity of “≥” as
shown in Proposition 8.6.

Theorem 8.8. There exists a bottom degree, namely:

[0] = {uvω | u, v ∈ 2∗, |v| > 0}

Proof. We give a sketch. The fact that [0] is a bottom degree follows from the fact
that every stream can be transduced to 0 as shown in Proposition 8.1. We will not
prove the fact that [0] is equal to the set of all ultimately periodic streams.

14

9 Function streams

In this section we define function streams, a way to transform a function f : N→ N
into a stream σ.

Definition 9.1. Function stream.
Let f : N→ N be a function. We define the function stream 〈f〉 by:

〈f〉 :=
∞∏
i=0

10f(i) (9.2)

We will call each sequence 10f(i) a block. Sometimes we will refer to function streams
as block streams.

We can transform any function defined on the natural numbers into a stream. We
will (ab)use the 〈.〉 notation to denote the following:

Notation 9.3. Overloading the 〈.〉 notation.

1. We will sometimes write 〈f(n)〉 instead of 〈n 7→ f(n)〉. Examples:

� 〈n2〉 = 〈n 7→ n2〉
� 〈3n3 + 2n+ 1〉 = 〈n 7→ 3n3 + 2n+ 1〉

2. We introduce the following set-like notation: 〈f(n) | a ≤ n < b〉 :=
∏b−1
n=a 10

f(n).
Examples:

� 〈f(n) | 1 ≤ n < 4〉 for f(n) := 2n gives 〈f(n) | 1 ≤ n < 4〉 =
∏3
n=1 10

2n =
102104106 = 100100001000000

� 〈f(3 + 2n) | a ≤ n < b〉 for a, b ≥ 0 and f : N→ N gives 〈f(3 + 2n) | a ≤
n < b〉 =

∏b
n=a 10

f(3+2n)

Definition 9.4. Shift function.
We define the shift function Sk : (N × (N → N)) → (N → N) by Sk(f) := n 7→
f(n + k) for all k ≥ 0. As the name suggests, Sk shifts a given function k places,
for example S2(n 7→ 2n) = n 7→ 2n+ 2

Lemma 9.5. Simple facts about function streams.
Let f : N 7→ N be a natural function.

1. 〈Sa(f)〉 = 〈n 7→ f(n+ a)〉 ≡ 〈f〉 for all a ≥ 0.

2. 〈af(n)〉 ≡ 〈f(n)〉 for all a > 0.

3. 〈f(n) + a〉 ≡ 〈f(n)〉 for all a ≥ 0.

4. 〈f(n)〉 ≥ 〈f(an)〉 for all a > 0.

Proof.
As per Definition 7.1, we will seperately show “≥” and “≤” when we want to show
an equivalence “≡”.

15

1. (≥) We create a FST that skips the first k blocks of 〈f〉. Let T := (Q, q0, δ, λ),
where Q := {q0, q1, ..., qk+1}. Define δ and λ as follows:

δ(qi, 0) := qi λ(qi, 0) := ε for i < k + 1

δ(qi, 1) := qi+1 λ(qi, 1) := ε for i < k + 1

δ(qk+1, 0) := qk+1 λ(qk+1, 0) := 0

δ(qk+1, 1) := qk+1 λ(qk+1, 1) := 1

This transducer is shown below in Figure 9.7.

q0 q1
1 | ε

qk qk+1

1 | ε

1 | 1
0 | 00 | ε 0 | ε 0 | ε

Figure 9.6: A transducer that shifts a function stream by k blocks.

(≤) Let w := 〈f(n) | 0 ≤ n < k + 1〉 be the word equal to the first k blocks of
〈f〉. By Proposition 8.1.4 we know that 〈Sk(f)〉 ≥ w · 〈Sk(f)〉 = 〈f〉.

2. (≥) The following FST T replaces every factor of 0a by 0. Notice that we can
assume f(n) to be a multiple of a for each n ≥ 0. Let T := (Q, q0, δ, λ) with
Q := {q0, q1, ..., qa} and the input and output functions defined by

δ(qi, 0) := qi+1 λ(qi, 0) := ε for i < a

δ(qi, 1) := qi λ(qi, 1) := 1 for i < a

δ(qa, 0) := q0 λ(qa, 0) := 0

δ(qa, 1) := q0 λ(qa, 1) := 1

q0 q1
0 | ε

qa−1 qa
0 | ε

1 | 11 | 1 1 | 1 1 | 1

0 | 0

Figure 9.7: A transducer that replaces 0a by 0.

(≤) Let T be a FST that replaces each 0 by 0a defined by T := ({qs}, qs, δ, λ),
where

δ(qs, 0) := qs λ(qs, 0) := 0a

δ(qs, 1) := qs λ(qs, 1) := 1

16

3. (≥) This transduction is realised by a FST that removes a zeros from each
block.
(≤) Adding a zeros to each block can also be done by a FST.

4. A FST can output every a-th block, and replace the rest by ε. Notice that
the transduction back is not always possible because a FST cannot guess the
missing values of an arbitrary function.

17

10 Upper bounds

We will quickly go over the existence of upper bounds of a set of streams. An easy
way to create an upper bound is to zip the set of streams. We will define two zipping
functions, one that works on streams szip and one that works on functions: zip.

Definition 10.1. zip.
Let k > 0 and f0, f1, ..., fk−1 : N→ N be natural functions.
Define zipk(f0, f1, ..., fk−1) : N→ N by

zipk(f0, f1, ..., fk−1)(kn+ i) = fi(n) where i < k, n ≥ 0 (10.2)

Definition 10.3. szip (short for stream-zip).
Let k > 0 and σ0, σ1, ..., σk−1 ∈ (2N)k be natural streams.
Define szipk(σ0, σ1, ..., σk−1) ∈ 2N by

szipk(σ0, σ1, ..., σk−1) := zipk(σ0, σ1, ..., σk−1) (10.4)

Although the two definitions are identical, we want to stress that we sometimes zip
streams together and sometimes zip other functions together.

Example 10.5.

szip2(0, (1)ω) = (01)ω

zip2(n 7→ 2n, n 7→ n2) =

{
n 7→ n if n is even

n 7→ bn−12 c
2 if n is odd

Definition 10.6. If S ⊆ (2N/≡) is a set of transducer degrees. We say that [u] ∈
(2N/≡) is an upper bound of S, if for all [σ] ∈ S we have [u] ≥ [σ].

We can now highlight an important difference between the partial order on
streams (2N, ≥) and the partial order on transducer degrees (2N/ ≡, ≥). It only
makes sense to talk about upper bounds in the partial order of transducer degrees.
Within the poset of streams, any two equivalent streams would be each others upper
bound.

Lemma 10.7. If σ, τ ∈ 2N, then [szip2(σ, τ)] is an upper bound of {[σ], [τ]}.

Proof. We show that szip2(σ, τ) ≥T σ and szip2(σ, τ) ≥T ′ τ by giving FSTs T and
T ′:

T := ({q0, q1}, q0, δ, λ) T ′ := ({q0, q1}, q1, δ, λ)

δ(q0, s) := q1 λ(q0, s) := s for s ∈ 2

δ(q1, s) := q0 λ(q1, s) := ε for s ∈ 2

See Figure 10.8 for a visualisation. Note that the only difference between T and T ′

is the initial state.

18

q0 q1

0 | 0
1 | 1

0 | ε
1 | ε

q0 q1

0 | 0
1 | 1

0 | ε
1 | ε

Figure 10.8: A FST that drops every second symbol (T , left) and a FST that drops
every second symbol with an offset of one (T ′, right)

Lemma 10.9. If f, g : N→ N, then [〈zip2(f, g)〉] is an upper bound of {[〈f〉], [〈g〉]}.

Proof. We need to show that 〈zip2(f, g)〉 ≥ 〈f〉 and 〈zip2(f, g)〉 ≥ 〈g〉. This is easily
done by applying Lemma 9.5.

〈n 7→ zip2(f, g)(n)〉
9.5.4
≥ 〈n 7→ zip2(f, g)(2n)〉 = 〈f〉

〈n 7→ zip2(f, g)(n)〉 9.5.1≡ 〈n 7→ zip2(f, g)(n+ 1)〉
9.5.4
≥ 〈n 7→ zip2(f, g)(2n+ 1)〉 = 〈g〉

Lemma 10.10 ([1]). Every countable set of degrees {[σi]}∞i=0 has an upper bound.

Now that we have seen that upper bounds exist, we can wonder if two degrees have
a least upper bound also known as the supremum.

Definition 10.11. A set S ⊆ (2N/≡) of transducer degrees has a least upper bound
or a supremum [s] ∈ (2N/≡) if, for each upper bound [u] ∈ (2N/≡) of S we have
[u] ≥ [s].

In Section 19 we will illustrate that suprema do not always exist.

19

11 Atoms

We have seen that all streams can be transduced to the zero stream 0. A logical
next question is if there are atom degrees, that is, degrees that only have the zero
degree [0] strictly below them.

Definition 11.1. A degree [σ] ∈ (2N/≡) is called an atom if [σ] ≥ [τ] implies
[τ] = [σ] ∨ [τ] = [0]. Alternatively, [σ] is an atom if σ ≥ τ =⇒ τ ≥ 0 ∨ τ ≥ σ.

Theorem 11.2 ([1]). [〈n〉] is an atom.

We will not prove the above theorem here. We will focus on a bigger fish, namely
the fact that [〈n2〉] is an atom. To prove this, we have quite a way to go. We start
by introducing a new class of functions that will aid us in understanding transducts
of function streams.

20

Chapter V

Exploring transducts

In this chapter, we develop techniques to better characterize the transducts of some
streams. These techniques were shown in the paper The degree of squares is an Atom
[8]. We will use these techniques to conclude some deeper results about transducer
degrees in the next chapter. We will create an elegant form of the transducts of
some streams, namely, those created by spiralling functions. We will do this in the
following steps:

� We define the class of spiralling functions.

� We show that, when f is spiralling and σ is a transduct of 〈f〉 then:

σ = w ·
∞∏
i=0

l−1∏
j=0

xj · yϕ(i,j)j

� We show that this double product can be simplified to:

σ ≡
∞∏
i=0

l−1∏
j=0

10ϕ(i,j)

� We introduce the concept of mass products and weight displacements to derive
that:

σ ≡ 〈~β ⊕ (~α⊗ Sk(f))〉

The details of this derivation can be found in the next sections. It is good to keep
in mind that we are working towards an elegant form to characterize the transducts
of some streams.

21

12 Properties of spiralling functions

We define the class of spiralling functions and show some properties. We denote the
set of spiralling functions by “ ”. This class of functions is useful because we can
say a lot about the transducts σ of 〈f〉 whenever f is spiralling.

Definition 12.1 ([8]). A function f : N → N is called spiralling (f ∈) if and
only if

(a) For all m ≥ 0 there exists N ≥ 0 such that

f(n) ≥ m (for all n ≥ N)

(b) For all m > 0 there exists N ≥ 0, p > 0 such that

f(n+ p) ≡ f(n) mod m (for all n ≥ N)

This definition states that a function f is spiralling if limn→∞ f(n) =∞ (12.1.a) and
that, for any m > 0 the function n 7→ f(n) mod m is ultimately periodic (12.1.b).
We give some examples of spiralling functions, and their straightforward proofs.

Proposition 12.2.

1. IdN ∈

2. (n 7→ gn) ∈ where g > 1

Proof.

1. (a) Let m ≥ 0, take N := m, then for all n ≥ N we have

IdN(n) = n ≥ N = m

(b) Let m > 0, take N := 0 an p := m, then for all n ≥ N we have

IdN(n+m) = n+m ≡ n = IdN(n) mod m

2. (a) Let m ≥ 0. Then for all n ≥ m, we have gn ≥ gm ≥ m.

(b) Let m > 0. By the pigeonhole principle, there exists a, b > 0 such that
ga+b ≡ ga mod m, because there are more than m positive integers, so
that ga+b and ga must be equivalent modulo m for some a, b ≥ 0. We
choose p := b and N := a. For all n ≥ N , we can write n = c + a for
some c ≥ 0, such that we can derive:

gn+p = gc+a+p = gcga+b ≡ gcga = gc+a = gn mod m

We will now give closure properties of spiralling functions.

22

Theorem 12.3. Closure properties of .
Let f, g ∈ and c > 0. Then we have:

1. Sc(f) ∈

2. c+ f ∈

3. c ∗ f ∈

4. f + g ∈

5. f ∗ g ∈

Proof.

1. (a) Because f is spiralling, we can find a number N ≥ 0 such that for all
m ≥ 0 we have for all n ≥ N that f(n) ≥ m. For the shifted function
Sc(f) we can take the same number N ≥ 0.

(b) Here too, we can take the same values N ≥ 0 and p > 0 that exists
because f is spiralling.

2. The proof is analogous to the proof of property 3.

3. (a) It is well known that, if limn→∞ f(n) =∞ then limn→∞ f(n) ∗ c =∞.

(b) Let m > 0, then there exists p > 0, N ≥ 0 such that for all n ≥ N we
have f(n + p) ≡ f(n) mod m, but then for the same p and N , we have
c ∗ f(n+ p) ≡ c ∗ f(n) mod m.

4. The proof is analogous to the proof of property 5.

5. (a) It is trivial that, if limn→∞ f(n) = ∞ and limn→∞ g(n) = ∞, then
limn→∞ f(n) ∗ g(n) =∞.

(b) Let m > 0. Because f and g are spiralling, we can find pf , pg > 0 and
Nf , Ng ≥ 0 such that n ≥ Nf implies f(n + pf) ≡ f(n) mod m and for
all n ≥ Ng we have g(n + pg) ≡ g(n) mod m. Take N := max(Nf , Ng)
and p := pf ∗ pg, then for all n ≥ N :

(f ∗ g)(n+ p) = f(n+ p) ∗ g(n+ p) =

f(n+ pfpg) ∗ g(n+ pfpg) ≡ f(n)g(n) = (f ∗ g)(n) mod m

Theorem 12.4. Let f, g ∈ with g increasing, then f ◦ g ∈

Proof. The first property of the definition is a well-known result from analysis. We
will focus on the second property:
To Prove: ∀m > 0 ∃N ≥ 0, p > 0 ∀n ≥ N (f ◦ g)(n+ p) ≡ (f ◦ g)(n) mod m

Choose any m > 0. Because f and g are spiralling, we can find Nf , Ng ≥ 0 and
pf , pg > 0 such that:

∀n ≥ Nf f(n+ pf) ≡ f(n) mod m (12.5)

∀n ≥ Ng g(n+ pg) ≡ g(n) mod pf (12.6)

23

Choose N ≥ Ng such that ∀n ≥ N [g(n) > Nf]. This is possible because
limn→∞ g(n) =∞. By equation (12.5) we have that for all n ≥ N that f(n+ k ∗
pf) ≡ f(n) mod m.
By equation (12.6) we have that for all n ≥ Ng that g(n+ pg) ≡ g(n) + k ∗ pf for
some k ≥ 0. If we combine this, we get the required result for n ≥ max(N,Ng):

(f ◦ g)(n+ pg) = f(g(n+ pg)) = f(g(n) + k ∗ pf) ≡ f(g(n)) = (f ◦ g)(n) mod m

By application of Proposition 12.2 and Theorems 12.3 and 12.4, we find that the
following functions are spiralling.

Corollary 12.7. More spiralling functions.

1. Pk ∈ where Pk a polynomial of order k and positive coeficients.

2. (n 7→ 22
n
), (n 7→ 33

3n

) ∈
In particular, we know that n 7→ n2 is spiralling.

Example 12.8. Non-spiralling functions.
Finding a non-spiralling function that fails on the first requirement is easy. Take,
for example: n 7→ 37 or n 7→ bsin(n)c. Finding a non-spiralling function that fails
on the second requirement is a bit harder. For this, we must find a function f such
that limn→∞ f(n) = ∞ but that is not periodic modulo some m > 0. We can take
for example:

f(n) =

{
2n+ 1 if n = k2 for some k > 0

2n otherwise

If we consider g := n 7→ f(n) mod 2, we find:

g(n) =

{
1 if n = k2 for some k > 0

0 otherwise

We can easily see that g is not ultimately periodic modulo 2.

Lemma 12.9. Let k > 0 and f0, f1, ..., fk−1 ∈ . Then zipk(f0, f1, ..., fk−1) ∈ .

Proof. We have to show the two properties of Definition 12.1.

1. Choose m ≥ 0. Because for all i < k we have fi ∈ , we can find Ni ≥ 0 such
that for all n ≥ Ni we have fi(n) ≥ m. Take N := k ∗max(N0, N1, ..., Nk−1).
Then for all n ≥ N we can write n = ky + i for i < k and y ≥ 0. We derive
zipk(f0, f1, ..., fk−1)(n) = zipk(f0, f1, ..., fk−1)(ky + i) = fi(y) ≥ m.

2. Choose m > 0. Because for all i < k we have fi ∈ , we can find Ni ≥
0, pi > 0 such that for all n ≥ Ni we have fi(n + pi) ≡ fi(n) mod m.
Let N := k ∗ max(N0, N1, ..., Nk−1) and p̃ := lcm(p0, p1, ..., pk−1), the least
common multiple. Let kn+ i ≥ N , then:

zipk(f0, f1, ..., fk−1)(kn+ i) = fi(n) ≡
fi(n+ p̃) = zipk(f0, f1, ..., fk−1)(k(n+ p̃) + i) =

zipk(f0, f1, ..., fk−1)(kn+ i+ p̃k) mod m

Thus zipk is periodic modulo m with period p̃k.

24

25

13 FST pumping lemma

A FST has only finitely many states, say |Q|. So whenever the FST has read more
than |Q| symbols, it must be in a state it has already been in. In this way, we can
identify loops within the blocks of function streams.

Definition 13.1 ([1]). Zero loops.
Let T := (Q, qs, δ, λ) be a FST.

1. A zero loop Z of a FST is a sequence of states Z := (q0, q1, ..., ql−1) for some
l > 0, such that any two subsequent states qi and qi+1 are connected by a
zero-transition. Furthermore ql−1 and q0 are connected by a zero-transition
too, so that the states form a loop when you only read zeros. Finally, no state
may occur twice in Z. More formally:

δ(qj , 0) = qj+1 (for all j < l − 1) (13.2)

δ(ql−1, 0) = q0 (13.3)

if i 6= j then qi 6= qj (for all i, j < l) (13.4)

2. The length of a zero loop Z is the number l > 0 of distinct states in that loop.

3. Let Z(T) be the least common multiple of the lengths of all zero loops of T .
Notice that, because |Q| is finite, we have finitely many zero loops. Further-
more, for every zero loop Z, we have that length(Z) ∗ k = Z(T) for some
k > 0.

Before we prove some simple facts about zero loops, it is helpful to get a sense of
what a zero loop is by looking at the illustration in Figure 13.5.

qs q0 q1

q2ql−1

ending in
at least N
0-transitions

0 | w0

0 | w1

only 0-transitions

0 | wl−1

Figure 13.5: Illustration of a zero loop. The states (q0, ..., ql−1) form a zero loop.

We first notice that, after reading more than |Q| zeros, any FST will be in a zero
loop.

Proposition 13.6. Let T := (Q, qs, δ, λ) be a FST. Then for all w ∈ 2∗, q ∈ Q and
whenever n > |Q| we have δ(q, w · 0n) ∈ Z for some zero loop Z.

Proof. Without loss of generality, assume w = ε because we can replace q with
qw := δ(q, w). By the pigeonhole principle, and because n > |Q|, we have that some

26

state, say qr ∈ Q, has been visited twice. Thus qr = δ(q, 0r) = δ(q, 0r+l) for some
r, l ≥ 0 with r + l < n. Given r, we can choose l to be the minimal number for
which there is a state repetition. Then Z = (qr, δ(qr, 0), δ(qr, 0

2), ..., δ(qr, 0
l−1)) is a

zero loop, and δ(q, 0n) ∈ Z.

Next, we show some simple properties of zero loops. One can visualise them using
Figure 13.5.

Proposition 13.7. Properties of zero loops.
Let T := (Q, qs, δ, λ) be a FST. Let Z := (q0, q1, ..., ql−1) be a zero loop with length
l > 0. Let t ≥ 0 and w ∈ 2∗.

1. For any qi ∈ Z we have δ(qi, 0
l∗t) = qi.

2. For any qi ∈ Z we have λ(qi, 0
l∗t) = (λ(qi, 0

l))t.

3. For any q ∈ Q we have δ(q, w · 0n+Z(T)∗t) = δ(q, w · 0n) when n > |Q|.

4. For any q ∈ Q we have λ(q, w ·0n+Z(T)∗t) = λ(q, w ·0n) · (λ(qr, 0
l′))t∗k for some

qr ∈ Q and some k, l′ > 0, when n > |Q|.

Proof.

1. Let qi ∈ Z. Then we know that δ(qi, 0) = qi+1 when i < l− 1 and δ(ql−1, 0) =
q0. So after reading l zeros, we are back in the same state: δ(qi, 0

l) = qi. It is
obvious that repeating this t times yields the result. We will, however, show
that this can be proven more formal by means of induction on t. If t = 0, then
δ(qi, 0

l∗0) = δ(qi, ε) = qi. If we assume that δ(qi, 0
l∗(t−1)) = qi (IH). Then we

see that δ(qi, 0
l∗t) = δ(qi, 0

l∗(t−1)+l) = δ(δ(qi, 0
l∗(t−1)), 0l)

IH
= δ(qi, 0

l) = qi.

2. Let qi ∈ Z. We can use item 1 and see that:

λ(qi, 0
l∗t) = λ(qi, 0

l) · λ(δ(qi, 0
l), 0l) · ... · λ(δ(qi, 0

l∗(t−1)), 0l) =

λ(qi, 0
l) · λ(qi, 0

l) · ... · λ(qi, 0
l)︸ ︷︷ ︸

t times

= (λ(qi, 0
l))t

3. Let q ∈ Q. Then by Proposition 13.6 we know that qi := δ(q, w · 0n) ∈ Z for
some zero loop Z with length l. By Definition 13.1 we know Z(T) = l ∗ k for
some k > 0 and by item 1 we have δ(qi, 0

l∗(k∗t)) = qi. Thus δ(q, w ·0n+Z(T)∗t) =
δ(q, w · 0n+l∗(k∗t)) = δ(δ(q, w · 0n), 0l∗(k∗t)) = δ(q, w · 0n).

4. Let q ∈ Q. By Proposition 13.6 we know that qr := δ(q, w · 0n) ∈ Z for some
zero loop Z with length l′. We know that Z(T) = k ∗ l′ for some k > 0. Then
by item 2 we have:

λ(q, w · 0n+Z(T)∗t) = λ(q, w · 0n) · λ(δ(q, w · 0n), 0Z(T)∗t) =

λ(q, w · 0n) · λ(qr, 0
l′∗(t∗k)) = λ(q, w · 0n) · (λ(qr, 0

l′))t∗k

27

After reading |Q| zeros, a FST must be in a state repetition, so that we have entered
a zero loop. Call the first repeated state qr. If we continue reading more zeros, we
remain in this loop. If we read Z(T) more zeros, we are once again in state qr. This
idea resembles the pumping lemma for regular languages [11].

Lemma 13.8 ([8]). FST pumping lemma.
Let T = (Q, qs, δ, λ) be a FST. For all t ≥ 0, q ∈ Q, n ≥ |Q| we have δ(q, 10n+t∗Z(T)) =
δ(q, 10n) and λ(q, 10n+t∗Z(T)) = xyt for some words x, y ∈ 2∗.

Proof. Because n > |Q| we have by Proposition 13.7.3 that δ(q, 10n+t∗Z(T)) =
δ(q, 10n)
Furthermore, by Proposition 13.7.4 we have that:

λ(q, 10n+t∗Z(T)) = λ(q, 10n) · (λ(qi, 0
l))kt = λ(q, 10n) · ((λ(qi, 0

l)k))t = xyt

where x := λ(q, 10n) and y := (λ(qi, 0
l))k for some k, l > 0 and qr ∈ Q.

28

14 Transducts of spiralling function streams.

Definition 14.1. Block loop.
Let T := (Q, qs, δ, λ) be a FST.
A block loop B of a function f and a FST is a sequence of states B := (q0, q1, ..., ql−1)
for l > 0, such that for some N ≥ 0 and any m ≥ 0:

δ(qi, 〈f(N + i+ l ∗m)〉) = qi+1 (for all i < l − 1) (14.2)

δ(ql−1, 〈f(N + l − 1 + l ∗m)〉) = q0 (14.3)

We call l the length of the block loop and N the start index of the block loop.

One can visualize block loops like zero loops, except that the transitions between
states of the loop are caused by reading whole blocks of the function stream 〈f〉
instead of single symbols. We also allow state repetitions in block loops. An impor-
tant thing to note is that the existence of block loops depends not only on the FST
but also on the function f . Notice that the factor m ≥ 0 is necessary. Without this,
one cannot guarantee that the transitions between states of the block loop remain
the same in the second and higher iterations of the loop! See Figure 14.4 for an
illustration of a block loop.

qs q0 〈f(N)〉 q1

〈f(N + 1)〉

q2

〈f(N + l − 1)〉

ql−1

〈f(N + n) | 2 ≤ n < l − 1〉

Figure 14.4: Illustration of the first iteration of a block loop. The states (q0, ..., ql−1)
form a block loop.

Lemma 14.5. Let T = (Q, qs, δ, λ) be a FST. Let f ∈ . Then there exists a block
loop B = (q0, q1, ..., ql−1) of length l with start index N . Moreover, q0 = δ(qs, 〈f(n) |
0 ≤ n < N〉) and for all i ≥ 0, n ≥ N we have f(n+ li) ≡ f(n) mod Z(T).

Proof. Because f is spiralling, we know that there are Nlimit, Nperiodic ≥ 0, p > 0
such that:

f(n) ≥ |Q| (for all n ≥ Nlimit) (14.6)

f(n+ p) ≡ f(n) mod Z(T) (for all n ≥ Nperiodic) (14.7)

Let sm ∈ Q be shorthand for sm := δ(qs, 〈f(n) | 0 ≤ n < m〉). This is the state that
T is in before reading the m-th occurrence of a one: the start of the m-th block.

29

By the pigeonhole principle, we can find N ≥ max(Nlimit, Nperiodic), b > 0 such
that sN+p∗b = sN .
We claim that B = (sN , sN+1, ..., sN+pb−1) is a block loop of length b.
Notice that by equation (14.7) we have that for any m ≥ 0 and for some k ≥ 0:

f(n+ pb ∗m) = f(n) + k ∗ Z(T) ∀n ≥ N (14.8)

We will show equation (14.2). Let m ≥ 0 then, by Lemma 13.8 we have for all b ≥ 0
and sN+i ∈ B that:

δ(sN+i, 〈f(N + i+ pb ∗m)〉) = δ(sN+i, 10
f(N+i+pb∗m))

14.8
=

δ(sN+i, 10
f(N+i)+k∗Z(T))

13.8
= δ(sN+i, 10

f(N+i)) = (14.9)

δ(sN+i, 〈f(N + i)〉) = sN+i+1

The last equality follows from the definition of sm. We can thus see that, when
reading blocks of a spiralling function, the transitions between the blocks remain
the same from some point on, due to Lemma 13.8. Equation (14.3) follows directly
from equation (14.9) and the fact that sN+p∗b = sN .

δ(sN+pb−1, 〈f(N + pb− 1 + pb ∗m)〉) 14.9
= sN+pb = sN

Theorem 14.10 ([8]). Transducts of spiralling function streams.
Let f ∈ . Then 〈f〉 ≥ σ if and only if

σ = w ·
∞∏
i=0

l−1∏
j=0

xj · yϕ(i,j)j where ϕ(i, j) :=
f(N + li+ j)− aj

z
∈ N

where we have N ≥ 0, z, l > 0, a list of numbers (aj)
l−1
j=0 ∈ Nl, a word w ∈ 2∗ and

lists of words (xj)
l−1
j=0, (yj)

l−1
j=0 ∈ (2∗)l.

Proof. (=⇒) If 〈f〉 ≥ σ then 〈f〉 ≥T σ, by some transducer T := (Q, qs, δ, λ). By
Lemma 14.5 we know that there exists a block loop B := (q0, q1, ..., ql−1) with start
index N and length l such that:

q0 = δ(qs, 〈f(n) | 0 ≤ n < N〉) (14.11)

f(n+ li) ≡ f(n) mod Z(T) (for all i ≥ 0, n ≥ N) (14.12)

30

We first rewrite σ. Note that we only apply the definition of a function stream and
the definition of the output funciton λ. At (∗) we use the definition of a block loop.

σ =
∞∏
i=0

λ(δ(qs, 〈f(n) | 0 ≤ n < i〉), 10f(i)) =

λ(qs, 〈f(n) | 0 ≤ n < N〉) ·
∞∏
i=0

λ(q0, 〈f(N + il + n) | 0 ≤ n < l〉) =

w ·
∞∏
i=0

λ(q0,

l−1∏
j=0

10f(N+il+j))
(∗)
=

w ·
∞∏
i=0

l−1∏
j=0

λ(qj , 10
f(N+il+j))

where w := λ(qs, 〈f(n) | 0 ≤ n < N〉)

(14.13)

Define aj := min{f(N + il + j) | i ≥ 0}. Then:

f(N + il + j) ≥ aj (for all i ≥ 0 and j < l) (14.14)

Let z := Z(T). We write f(N + il+ j) into another form by using equation (14.12):

f(N + il + j) ≡ aj mod Z(T) =⇒
f(N + il + j) = aj + ki,j ∗ Z(T) for some ki,j ∈ N =⇒
ki,j ∗ Z(T) = f(N + il + j)− aj =⇒

ki,j =
f(N + il + j)− aj

Z(T)
=⇒

ki,j =
f(N + il + j)− aj

z
=: ϕ(i, j)

Notice that ki,j ∈ N instead of ki,j ∈ Z because of equation (14.14).
Then we finally have by the FST pumping lemma (13.8) that:

σ
14.13
= w ·

∞∏
i=0

l−1∏
j=0

λ(qj , 10
f(N+il+j)) = w ·

∞∏
i=0

l−1∏
m

λ(qj , 10
aj+ki,j∗Z(T)) =

w ·
∞∏
i=0

l−1∏
j=0

λ(qj , 10
aj+ϕ(i,j)∗Z(T))

13.8
= w ·

∞∏
i=0

l−1∏
j=0

xjy
ϕ(i,j)
j

(⇐=) Let σ := w ·
∏∞
i=0

∏l−1
j=0 xj ·y

ϕ(i,j)
j where ϕ(i, j) is of the form described above,

so we have a list of numbers (aj)
l−1
j=0 ∈ Zl, a number N ≥ 0 and a number z > 0.

Futhermore, (xj)
l−1
j=0, (yj)

l−1
j=0 ∈ (2∗)l are lists of words and w ∈ 2∗ is a word. We

want to show that 〈f〉 ≥ w ·
∏∞
i=0

∏m
j=0 xj · y

ϕ(i,j)
j . We do this in several steps:

1. 〈f〉 ≥ 〈n 7→ f(N + n)〉
by Lemma 9.5.1

31

2. 〈n 7→ f(N + n)〉 ≥ 〈n 7→ f(N + n)− an mod l〉
Let j := n mod l. We want to show that we can find a transducer that removes
aj zeros from the j-th block. Define T := (Q, q0l−1, δ, λ). Let Q := {qj,h | j <
l, h ≤ aj}. Define for all j < l, the transition and output functions as follows:

δ(qj,0, 0) := qj,0 λ(qj,0, 0) := 0

δ(qj,0, 1) := q(j+1 mod l),aj λ(qj,0, 1) := 1

δ(qj,h, 0) := qj,h−1 λ(qj,0, 0) := ε (for all 0 < h ≤ aj)

Note that this partial description is sufficient, because we assume that 〈n 7→
f(N + n)〉 is given as input. See Figure 14.15 for an illustration.

qM,0 qM,1 qM,2 qM,aM

0 | ε 0 | ε

q1,0 q1,1 q1,2 q1,a1
0 | ε 0 | ε

q0,0 q0,1 q0,2 q0,a0
0 | ε 0 | ε

0 | 0

0 | 0

0 | 0

1 | 1

1 | 1

1 | 1

Figure 14.15: The FST T described above where M := l − 1.

3. 〈n 7→ f(N + n) − an mod l〉 ≥
∏∞
i=0

∏l−1
j=0 10

ϕ(i,j) We give a derivation below.
Note that we only introduce a division by z. This is possible by Lemma 9.5.2.

〈n 7→ f(N + n)− an mod l〉 =
∞∏
n=0

10f(N+n)−an mod l =

∞∏
i=0

l−1∏
j=0

10f(N+i+j)−aj
9.5.2
≥

∞∏
i=0

l−1∏
j=0

10
f(N+i+j)−aj

z =

∞∏
i=0

l−1∏
j=0

10ϕ(i,j)

4.
∏∞
i=0

∏l−1
j=0 10

ϕ(i,j) ≥
∏∞
i=0

∏l−1
j=0 xj · y

ϕ(i,j)
j . We must periodically replace 1 by

xj and 0 by yj . We give a FST to do this in the proof of Theorem 15.9.

32

5.
∏∞
i=0

∏l−1
j=0 xj · y

ϕ(i,j)
j ≥ w ·

∏∞
i=0

∏l−1
j=0 xj · y

ϕ(i,j)
j .

By Proposition 8.1.4.

33

15 Transition ambiguities

By Theorem 14.10 we have seen that we can write the transducts of a spiralling
function stream as a double product:

〈f〉 ≥ w ·
∞∏
i=0

l−1∏
j=0

xjy
ϕ(i,j)
j

for lists of words (xj)
l−1
j=0, (yj)

l−1
j=0 ∈ (2∗)l a number l > 0 a function ϕ and a word

w ∈ 2∗. We want to simplify this representation without changing the degree of the
transduct. It would be nice if we could replace xj by 1 and yj by 0. In this section
we will show that this is indeed possible by showing the following equivalence:

w ·
∞∏
i=0

l−1∏
j=0

xjy
ϕ(i,j)
j ≡

∞∏
i=0

l−1∏
j=0

10ϕ
′(i,j)

for a different function ϕ′ of the same form as ϕ and number l′ > 0.
It is easy to construct a FST that transduces the right stream into the left stream
(≤). The other direction seems just as simple, but there is a difficulty here. It is
possible that there are transition ambiguities: points where a FST cannot detect the

transition form y
ϕ(i,j)
j to xj+1y

ϕ(i,j+1)
j+1 . We will first have to resolve these ambiguities,

before we can show this equivalence.

Definition 15.1. Transition ambiguities.
Let 〈f〉 ≥ σ with f ∈ and σ written as in Theorem 14.10:

σ = w ·
∞∏
i=0

l−1∏
j=0

xjy
ϕ(i,j)
j

for a number l > 0, lists of words (xj)
l−1
j=0, (yj)

l−1
j=0 ∈ (2∗)l a function ϕ of the form

described in Theorem 14.10 and a word w ∈ 2∗. Then we say that this product has
transition ambiguities if one of the following holds:

∃j < l − 1 yωj = xj+1y
ω
j+1 (15.2)

yωl−1 = x0y
ω
0 (15.3)

∃j < l xj = ε (15.4)

Example 15.5. A transition ambiguity.
Consider the words u, x, y := 10. Then uω = (10)ω = 10(10)ω = xyω. A FST
cannot recognise the transition between u and xy because they look “the same” as
streams. To illustrate this problem even more, consider the following stream with
x0, x1, y0, y1 := 10:

σ :=

∞∏
i=0

1∏
j=0

xiy
ϕ(i,j)
i =

∞∏
i=0

x0y
ϕ(i,0)
0 x1y

ϕ(i,1)
1

A FST cannot detect if ϕ(i, 0) = 2 and ϕ(i, 1) = 3 or ϕ(i, 0) = 3 and ϕ(i, 1) = 2 for
some i ≥ 0.

x0y
2
0x1y

3
1 = 10(10)210(10)3 = (10)7 = 10(10)310(10)2 = x0y

3
0x1y

2
1

34

We will resolve ambiguities of the form given in equations (15.2) and (15.3) in the
next lemma.

Lemma 15.6. Let u, x, y ∈ 2∗ with u, y 6= ε and i, j ≥ 0 such that ui = xyj . Then
there exists a word v ∈ 2∗ and a, b ≥ 0 such that umxyn = xvam+bn for all m,n ≥ 0.

Proof. We refer to [8].

Example 15.7. We use Lemma 15.6 to resolve the transition ambiguity posed in
Example 15.5. Let u, x, y := 10, then u2 = xy1. We can choose v := 10 and a, b := 1.
Then we have for all m,n ≥ 0 that (10)m(10)(10)n = (10)(10)m+n. The essential
difference is that we have merged two blocks together without changing the resulting

stream. To clarify, we have merged two blocks xjy
ϕ(i,j)
j and xj+1y

ϕ(i,j+1)
j+1 together

into one new block x̃j ỹj
ϕ′(i,j). Note that we also need to change the function ϕ to a

function ϕ′ in order for this to work. That this can be done without changing the
stream is shown in the Lemma 15.8.

Lemma 15.8. Let f ∈ and 〈f〉 ≥ σ. If we write σ in the form of Theorem 14.10,
then we can find a number l′ > 0, lists of words (x̃j)

l′−1
j=0 , (ỹj)

l′−1
j=0 ∈ (2∗)l, a word

w̃ ∈ 2∗ and ϕ′ such that

σ = w̃ ·
∞∏
i=0

l′−1∏
j=0

x̃j ỹj
ϕ′(i,j)

contains no transition ambiguities (Definition 15.1) and ϕ′ is of the form described
in Theorem 14.10.

Proof. For this we refer to [8]. The idea is to iteratively remove transition ambigui-
ties of the form given in equations (15.2) and (15.3) by means of Lemma 15.6. In a
similar manner ambiguities of the form given in equation (15.4) can be removed.

Theorem 15.9. Let f ∈ . Then 〈f〉 ≥ σ if and only if

σ ≡
∞∏
i=0

l′−1∏
j=0

10ϕ
′(i,j) where ϕ′(i, j) =

f(N + il′ + j)− ãj
z

∈ N

where ãj ≥ 0 for j < l and z, l′ > 0, N ≥ 0.

Proof. If f ∈ and 〈f〉 ≥ σ, then by Theorem 14.10 and Lemma 15.8 we can write

σ = w̃ ·
∞∏
i=0

l′−1∏
j=0

x̃j ỹj
ϕ′(i,j) where ϕ′(i, j) :=

f(N + l′i+ j)− aj
z

∈ N

(15.10)

for some integer N ≥ 0, integers z, l′ > 0, a list of numbers (ãj)
l′−1
j=0 ∈ (N)l

′−1, a

word w̃ ∈ 2∗ and lists of words (x̃j)
l′−1
j=0 , (ỹj)

l′−1
j=0 ∈ (2∗)l

′
, such that equation (15.10)

contains no transition ambiguities. We need to show that σ ≥
∏∞
i=0

∏l′−1
j=0 10

ϕ′(i,j)

and that σ ≤
∏∞
i=0

∏l′−1
j=0 10

ϕ′(i,j)

To Prove: (≥)

35

For this we refer to [8]. The idea is to find a kind of markers to notice the transition
between blocks of the stream. It is possible to find these markers because there
are no transition ambiguities.

To Prove: (≤)
We create a FST T that applies a periodic encoding to σ (see Figure 15.11).
Prepending w̃ is possible by Proposition 8.1.4. Define T := (Q, ql′−1, δ, λ) where
Q := {q0, q1, ..., ql′−1} and δ and λ defined for i < l′ by:

δ(qi, 0) := qi λ(qi, 0) := ỹi

δ(qi, 1) := qi+1 mod l′ λ(qi, 1) := x̃i+1 mod l′

q0 q1 q2 ql′−1
1 | x̃1 1 | x̃2

1 | x̃0

0 | ỹ0 0 | ỹ1 0 | ỹ2 0 | ỹl′−1

Figure 15.11: Transducer that applies a periodic encoding to a stream.

Together we get the required result:

∞∏
i=0

l′−1∏
j=0

10ϕ
′(i,j) ≥T

∞∏
i=0

l′−1∏
j=0

x̃j ỹ
ϕ′(i,j)
j

8.1.4
≥ w̃ ·

∞∏
i=0

l′−1∏
j=0

x̃j ỹ
ϕ′(i,j)
j

36

16 Masses

We introduce masses to simplify the function ϕ(i, j) in Theorems 14.10 and 15.9.
We shorten the double product of these theorems to a much more elegant form using
mass products. We start by giving a number of definitions.

Definition 16.1 ([9]). Weights and masses.

1. We define a weight as a tuple ~α := [a0, ..., an−1] ∈ Qn.

2. We define the length of a weight as |~α| := n.

3. We say that a weight ~α is positive if ~αi ≥ 0 for all i < |~α|.

4. We say that a weight ~α is constant if ~αi = 0 for all i < |~α|.

5. We define a mass as a tuple of positive weights ~α = (~α0, ..., ~αl−1).

6. We define the length of a mass as |~α| := l.

7. We say that a mass ~α is constant if ~αi is constant for all i < |~α|.

8. We define flat(~α) as the concatination of all weights of ~α. For example
flat(([1, 2], [3, 4])) = [1, 2, 3, 4].

9. We define the flattened length ‖~α‖ as the sum of the lengths of all weights in
a mass:

‖~α‖ :=

|~α|∑
i=0

|~αi|

Definition 16.2 ([9]). Weight and mass operations.
Let f : N→ N be a natural function and n ≥ 0.

1. We define the rotation of a weight ~β with |~β| = l recursively:

~β(0) := ~β

~β(n+1) := [~βl−1, ~β0, ..., ~βl−2]
(n)

2. We define the rotation of a mass ~α with |~α| = l recursively:

~α(0) := ~α

~α(n+1) := (~αl−1, ~α0, ..., ~αl−2)
(n)

3. We define the scalar product of a weight ~α = [a0, ..., aq−1] for some q > 0 as:

~α� f :=

q−1∑
i=0

ai ∗ f(i) = a0 ∗ f(0) + a0 ∗ f(1) + ...+ aq−1 ∗ f(q − 1)

4. We define the weight displacement of a weight ~β = [a0, ..., aq−1]. Notice that
we can write n = qk + i for i < q and k ≥ 0.

(~β ⊕ f) : N→ Q

(~β ⊕ f)(n) := (~β ⊕ f)(qk + i) = ai + f(qk + i)

37

5. We define the mass product of a mass ~α recursively:

(~α⊗ f) : N→ Q
(~α⊗ f)(0) := ~α0 � f

(~α⊗ f)(n+ 1) := (~α(1) ⊗ S |~α0|(f))(n)

6. We say that (~β ⊕ (~α⊗ f)) is natural if (~β ⊕ (~α⊗ f))(n) ∈ N for all n ≥ 0 and
likewise that (~α⊗ f) is natural if (~α⊗ f)(n) ∈ N for all n ≥ 0.

7. We say that a weight ~β is constant, if ~βi = 0 for all i < |~β|.

8. We say that a mass ~α is constant, if al its weights are constant.

Example 16.3. We will show ~β ⊕ (~α ⊗ f) for the function f(n) = 2n, the mass
~α := ([0, 1, 12], [3]) and the weight ~β := [2,−8]. Notice that ~β ⊕ (~α ⊗ f) is natural,
even though the mass contains a fraction and the weight contains a negative number.

n

f(n)

~α⊗ f

~β ⊕ (~α⊗ f)

0 1 2 3 4 5 6 7 8 9 10

0 2 4 6 8 10 12 14 16 18 20

4 18 16 42 28

×0

×1 ×1
2

×3
×0

×1 ×1
2

×3
×0

×1 ×1
2

6 10 18 34 30

+2 −8 +2 −8 +2

Figure 16.4: Example of a weight displacement applied to a mass product.

Lemma 16.5 ([8]). Let f : N → N be a function. Let ~α be a non-constant mass
with m := |~α|. Then there exists a list of non-constant weights (~βi)

m
i=0 such that:

~α⊗ f = zipm(g0, g1, . . . , gm−1) where gi = ((~βi)⊗ f) for i < m

Proof. We only show the basic idea. Let ~β be a mass such that |~βi| = ‖~α‖ for all
i < m. Define sl :=

∑l
i=0|~αi| for l < m. Define ~β by

~βi,sj+h :=

{
~αi,h if j = i

0 if j 6= i
where j < m and h < |~αi|

For example, if ~α = ([1, 2, 3], [1, 2], [0, 1, 0]) then

~β =

[1, 2, 3, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 2, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0]



38

Proposition 16.6 ([8]). Let f ∈ , let ~α be a non-constant mass and ~β a weight.
Then we have:

1. ~β ⊕ f ∈ if ~β ⊕ f is natural.

2. If ~β is positive and (~β)⊗ f is natural then (~β)⊗ f ∈ .

3. ~α⊗ f ∈ if ~α⊗ f is natural.

4. ~β ⊕ (~α⊗ f) ∈ if ~β ⊕ (~α⊗ f) is natural.

Proof.
Let q := |~β| and l := |~α| be the lengths of the weight and mass respectively.

1. We show properties (a) and (b) of Definition 12.1.

(a) Let m ≥ 0. Let M := min(~β0, ~β1, . . . , ~βq−1). Because f ∈ , we have,
for some N ≥ 0, that f(n) ≥ |M | + m for all n ≥ N . Write n = qk + i
for i < q and k ≥ 0.

(~β ⊕ f)(qk + i) = ~βi + f(qk + i) ≥ ~βi + |M |+m ≥ m

(b) Let m > 0. Then because f ∈ we have N ≥ 0, p > 0 such that for all
n ≥ N we have f(n+ p) ≡ f(n) mod m. Let p̃ := q ∗ p. Write n = qk+ i
for i < q and k ≥ 0.

(~β ⊕ f)(n) = (~β ⊕ f)(qk + i) = ~βi + f(qk + i) ≡
~βi + f(qk + i+ pq) = (~β ⊕ f)(n+ p̃) mod m

2. We show properties (a) and (b) of Definition 12.1. We can say

~β = [
a0
d
,
a1
d
, . . . ,

aq−1
d

]

where aj ≥ 0 for all j < q (because ~β is positive) and d > 0. Because the mass

“(~β)” only contains a single weight “~β” we can easily give an explicit form of
the mass product:

((~β)⊗ f)(n) = ~β � Snq(f) =

q−1∑
i=0

~βi ∗ (Snq(f))(i) =

q−1∑
i=0

~βi ∗ f(nq + i) = (16.7)

q−1∑
i=0

ai
d
∗ f(nq + i)

(a) Let m ≥ 0, then by f ∈ , we can find N ≥ 0 such that for all n ≥ N we
have f(n) ≥ m

b∗q where b := min(a0d ,
a1
d , . . . ,

aq−1

d). Because ~β is positive,
we have for n ≥ N ,

((~β)⊗ f)(n)
16.7
=

q−1∑
i=0

ai
d
∗ f(nq + i) ≥

q−1∑
i=0

b ∗ f(nq + i) ≥
q−1∑
i=0

b ∗ m

b ∗ q
= m

39

(b) Let m > 0, then by f ∈ , we can find N ≥ 0, p > 0 such that:

f(n+ p) ≡ f(n) mod dm (16.8)

Then we have for (ki) ∈ (Z)q that:

((~β)⊗ f)(n)
16.7
=

q−1∑
i=0

ai
d
∗ f(nq + i)

16.8
=

q−1∑
i=0

ai
d
∗ (f(nq + i+ pq) + kimd) =

q−1∑
i=0

ai
d
∗ (f(nq + i+ pq)) +

q−1∑
i=0

ai
d
∗ (kimd) =

q−1∑
i=0

ai
d
∗ (f(nq + i+ pq)) +

q−1∑
i=0

ai(kim) ≡

q−1∑
i=0

ai
d
∗ (f(q(n+ p) + i))

16.7
= ((~β)⊗ f)(n+ p) mod m

3. Let l := |~α|, then we have by Lemma 16.5 that:

~α⊗ f = zipl(g0, g1, . . . , gl−1) where gi = ((~βi)⊗ f) for i < l

for positive weights ~βi. In the previous item, we have seen that gi ∈ for
all i < l. The result follows from the fact that zip is spiralling when all its
arguments are spiralling as shown in Lemma 12.9.

4. This follows from the first and third item.

Lemma 16.9. [8] If f ∈ then 〈f〉 ≥ 〈~β ⊕ (~α⊗Sk(f))〉 for any mass ~α, weight ~β
and k ≥ 0 if ~β ⊕ (~α⊗ Sk(f)) is natural.

Proof. We give a sketch of this proof. Let f ∈ . Because (~α ⊗ Sk(f)) ∈ by
Proposition 16.6, we can seperately show that 〈f〉 ≥ ~α ⊗ Sk(f) and 〈f〉 ≥ β ⊕ f .
We can also ignore the shift of f because Sk(f) ∈ by Theorem 12.3 so that
Sk(f) ≡ 〈f〉 by Lemma 9.5.
To Prove: 〈f〉 ≥ ~α⊗ f

We start by writing out the mass ~α.

~α = (~α0, ~α1, ..., ~αl−1) where

~αi = [
ai,0
di
,
ai,1
di
, ...,

ai,qi
di

] for i < |~α| and where qi := |~αi|

We will create three seperate transducers T1, T2 and T3.

1. T1 multiplies each value of f by ai,j in a periodic way, such that:

〈f〉 ≥T1 〈n 7→ (flat(~α)n mod ‖~α‖) ∗ f(n)〉

40

2. T2 adds the values together that belong to one weight.

3. T3 divides the values of the resulting function by di.

To Prove: 〈f〉 ≥ ~β ⊕ f
This follows from a similar construction as shown in Figure 14.15 combined with
T3 of the previous proof sketch.

Theorem 16.10 ([8]). If f ∈ , then 〈f〉 ≥ σ if and only if σ ≡ 〈~β ⊕ (~α⊗Sk(f))〉
for some integer k ≥ 0, a mass ~α and a weight ~β.

Proof. (=⇒) By Theorem 15.9 we have that

σ ≡
∞∏
i=0

l−1∏
j=0

10ϕ(i,j) where ϕ(i, j) :=
f(N + li+ j)− aj

z

for a number l, z > 0 and aj ≥ 0 for all j < l. Let ~β := [−a0
z ,−

a1
z , ...,−

aj−1

z] and
~α := ([z]). Without loss of generality assume N to be a multiple of l. For all n ≥ N
write n = N + il + j where j < l and i ≥ 0.

(~β ⊕ (~α⊗ f))(n) = (~β ⊕ (~α⊗ f))(N + il + j) =

(~α⊗ f)(N + il + j)− aj
z

=
1

z
∗ f(N + il + j)− aj

z
=

f(N + il + j)

z
− aj

z
=
f(N + il + j)− aj

z
= ϕ(i, j)

We can use this derivation to write:

σ ≡
∞∏
i=0

l−1∏
j=0

10ϕ(i,j) ≡ 〈f(n) | 0 ≤ n < N〉 ·
∞∏
i=0

l−1∏
j=0

10(
~β⊕(~α⊗f))(il+j) 8.1.4≡

∞∏
n=0

10(
~β⊕(~α⊗f))(n) = 〈~β ⊕ (~α⊗ f)〉

(⇐=) If σ ≡ 〈~β ⊕ (~α ⊗ Sk(f)〉), then by Lemma 16.9 we have 〈f〉 ≥ 〈~β ⊗ (~α ⊗
Sk(f)〉) ≡ σ thus by transitivity 〈f〉 ≥ σ.

41

Chapter VI

Deep results

17 [〈n2〉] is an atom

In this section, we proof the fact that the degree [〈n2〉] is an atom. To do this, we
show some corollaries of Theorem 16.10.

Corollary 17.1 ([8]). Let f ∈ and 〈f〉 ≥ σ with σ 6≡ 0, then we have σ ≥
〈[b]⊕ ((~α)⊗ Sk(f))〉 for some k ≥ 0, a non-constant weight ~α and an integer b.

Proof. For this proof we refer to [8].

Proposition 17.2 ([8]). If Pk is a polynomial of degree k ≥ 0 with non-negative
integer coefficients and 〈Pk〉 ≥ σ with σ 6≡ 0, then σ ≥ 〈P ′k〉 for some polynomial P ′k
of the same degree k with non-negative integer coefficients.

Proof. By Corollary 17.1 we have that

σ ≥ 〈[b]⊕ ((~α)⊗ Sc(Pk))〉

for some c > 0, b ∈ Z and a non-constant weight ~α = [a0, a1, ..., al−1] with l > 0.
We can apply the definition of the mass product and weight displacement:

([b]⊕ ((~α)⊗ Sc(Pk))) = n 7→ ([b]⊕ ((~α)⊗ Sc(Pk)(n))) =

n 7→ ([b]⊕ ((~α)⊗ Pk(c+ n))) = n 7→ ([b]⊕ (
l−1∑
j=0

aj ∗ Pk(c+ nl + j))) =

n 7→ (b+
l−1∑
j=0

aj∗Pk(c+ nl + j))

it is clear that the last equation is a polynomial of degree k with non-negative integer
coefficients.

Corollary 17.3 ([8]). Let f : N→ N and a, b ∈ N, then 〈f(n)〉 ≥ 〈af(2n)+bf(2n+
1)〉

42

Proof. This follows from Lemma 16.9 where we take ~β := [0] and ~α := ([a], [b]) and
k := 0.

〈n 7→ f(n)〉 ≥

〈n 7→ (~β ⊕ (~α⊗ Sk(f)))〉 =

〈n 7→ ([0]⊕ (([a], [b])⊗ S0(f)))〉 =

〈n 7→ (([a], [b])⊗ f)〉 =

〈n 7→ af(2n) + bf(2n+ 1)〉 =

〈af(2n) + bf(2n+ 1)〉

Theorem 17.4 ([8]). The degree [〈n2〉] is an atom.

Proof. Let 〈n2〉 ≥ σ, with σ 6≡ 0. By Proposition 17.2 we know that σ ≥ 〈n 7→
an2 + bn+ c〉 for some a > 0 and b, c ≥ 0.

Without loss of generality, assume that 2a ≥ b. If not choose, d > 0 such that

2ad ≥ b and note that 〈an2 + bn+ c〉
9.5.4
≥ 〈ad2n2 + bdn+ c〉 = 〈a′n2 + b′n+ c〉 where

a′ = ad2 and b′ = bd.

We now derive:

〈an2 + bn+ c〉 9.5.3≡ 〈an2 + bn〉 9.5.1≡

〈a(n+ 1)2 + b(n+ 1)〉 = 〈an2 + 2na+ a+ bn+ b〉 9.5.3≡
〈an2 + (2a+ b)n〉 =: 〈f(n)〉

We define f(n) = an2 + (2a + b)n. Note that we have that 2a + b ≥ 0. By
Corollary 17.3 we can see that:

〈f(n)〉
17.3
≥ 〈b(f(2n)) + (2a− b)(f(2n+ 1))〉 =

〈b(a(2n)2 + (2a+ b)2n) + (2a− b)(a(2n+ 1)2 + (2a+ b)(2n+ 1))〉 =

〈8a2n2 + 16a2n+ 6a2 − ab− b2〉 9.5.3≡

〈8a2n2 + 16a2n〉 9.5.3≡ 〈8a2(n+ 1)2〉 9.5.2≡

〈(n+ 1)2〉 9.5.1≡ 〈n2〉

This shows that every transduct of 〈n2〉 is either equivalent to 0 or can be transduced
back to 〈n2〉.

43

18 Countably many atoms

In the previous section, we have seen that the degree of 〈n2〉 is an atom (Theo-
rem 17.4). We also stated that the degree of the stream 〈n〉 is an atom (Theo-
rem 11.2) as shown in [1]. In this section, we state some results from [12]. This
completes the current state of the research concerning atom degrees.

A surprising result is that, although the degrees of 〈n〉 and 〈n2〉 are atoms, the
degree of 〈n3〉 is not. In fact, the degree of 〈nk〉 is not an atom for each k ≥ 3.

Theorem 18.1 ([12]). For k ≥ 3, we have that [〈nk〉] is not an atom.

We will quickly highlight the main result of [12]. Namely, that we can find countably
many atom degrees!

Theorem 18.2 ([12]). Let k ≥ 1. Then there exists a polynomial Pk of degree k
such that [〈Pk〉] is an atom.

For the proofs of both statements, we refer to the paper Degrees of Infinite Words,
Polynomials and Atoms [12].

44

19 Suprema

As previously mentioned, not every set of transducer degrees has a supremum. This
was shown in [9] by giving an example of a set of two degrees that does not have a
supremum.

Definition 19.1. A set S ⊆ (2N/≡) of transducer degrees has a least upper bound
or a supremum [s] ∈ (2N/≡) if, for each upper bound [u] ∈ (2N/≡) of S we have
[u] ≥ [s].

We first give a definition of an equivalence relation on natural functions:

Definition 19.2 ([9]). Let f, h : N→ N. Then we define the relation “≈” as follows:

f ≈ h ⇐⇒ ∃c1, c2 > 0∃nf , nh ≥ 0∀n c1h(nh + n) ≤ f(nf + n) ≤ c2h(nh + n)

The idea of the next proof is that mass products, weight displacements and shifts
as defined in Definitions 9.4 and 16.2 do not change their equivalence by “≈”. So if
f ≈ h then f ≈ ~β⊕ (~α⊗Sk(h)) for every positive mass ~α, every weight ~β and each
k ≥ 0.

Theorem 19.3 ([9]). The set of degrees S := {[〈22n〉], [〈333
n

〉]} ⊆ (2N/≡) does not
have a supremum.

Proof. We will give a sketch of why this is the case.

t1 := 22
n

t1 := 33
3n

(19.4)

u1 := zip2(2
2n , 33

3n

) u2 := zip2(3
33

n

, 22
n
) (19.5)

τ1 := 〈t1〉 τ1 := 〈t2〉 (19.6)

µ1 := 〈zip2(t1, t2)〉 µ2 := 〈zip2(t1, t2)〉 (19.7)

One can clearly see that n 7→ 22
n 6≈ n 7→ 33

3n

.
By Lemma 10.9 we know that µ1 and µ2 are upper bounds of {[τ1], [τ2]}.

It was shown in Corollary 12.7 that t1, t2 ∈ . By Lemma 12.9 we know that
u1, u2 ∈ . We can therefore apply Theorem 16.10 and see that:

µ1 ≥ θ1 =⇒ θ1 ≡ ~β ⊕ (~α⊗ u1)) (19.8)

µ2 ≥ θ2 =⇒ θ2 ≡ ~β′ ⊕ (~α′ ⊗ u2)) (19.9)

for some weights ~β, ~β′ and masses ~α, ~α′.
Suppose that a supremum degree [γ] ⊆ (2N/≡) exists. By the definition of a supre-
mum we need to have that:

µ1 ≥ γ and γ ≥ τ1 ∧ γ ≥ τ1 (19.10)

µ2 ≥ γ and γ ≥ τ1 ∧ γ ≥ τ2 (19.11)

45

So we know that γ = 〈g〉 for some spiralling function g ∈ because of equa-
tions (19.8) and (19.9). In [9] it was shown that equation (19.10) implies u1 ≈ g and
that equation (19.11) implies u2 ≈ g but then by transitivity of ≈ we would have
that u1 ≈ u2, which contradicts the fact that u1 6≈ u2.

The above proof shows that not all sets of degrees have a supremum. This does
however not say that there do not exist sets of degrees with a supremum. We only
know that, in general, not all sets of degrees have a supremum. Whether there are
sets that do have a supremum is still an open question.

46

Chapter VII

Conclusion and future work

Conclusion

In this thesis, we have shown properties of transducer degrees. We showed the
concept of function streams as a way to create new streams. Furthermore, we gave
the definition of spiralling functions and some of their properties. We gave the
definition of zero loops and introduced block loops. We used these loops to give a
meaningful structure to the transducts of spiralling function streams. Moreover, we
have shown definitions concerning weights and masses and used this to compress the
transducts of spiralling function streams to a new form. We used this form to prove
that the degree of 〈n2〉 is an atom. We briefly sketched why not all sets of degrees
have a supremum. We list the properties that we touched upon in this thesis below.

Some properties

� There exists a bottom degree, namely, the degree of all ultimately periodic
sequences.

� Every countable set of degrees has an upper bound.

� The degree of 〈n〉 is an atom.

� The degree of 〈n2〉 is an atom.

� The degree of 〈nk〉 is not atom for k ≥ 3.

� There are countably many atoms.

� The set of of degrees S = {[〈22n〉], [〈333
n

〉]} does not have a supremum.

Future Work

There are still a lot of open questions around the topic of transducer degrees. Some
that are connected to the concepts explored in this thesis are mentioned below:

1. Is the degree of the Thue-Morse stream an atom?

47

2. Are there uncountably many atoms?

3. Are there degrees that only transduce to atom degrees or the zero degree?

4. Are there sets of degrees that do have a supremum. (We have seen that this
is not the case in general).

The research concerning transducer degrees is still very active. The proof that there
are degrees without a supremum was only published online in december of 2019. We
recommend to keep an eye on the website of Jörg Endrullis to be informed about
the latest discoveries in this field [6].

48

References

[1] J. Endrullis, D. Hendriks, and J. W. Klop. Degrees of Streams, journal, 2011.
Proceedings of the Leiden Numeration Conference 2010.

[2] H. B. Enderton. Elements of recursion theory. In J. Barwise, editor, HAND-
BOOK OF MATHEMATICAL LOGIC. Volume 90, Studies in Logic and
the Foundations of Mathematics, pages 527–566. Elsevier, 1977. doi: https:
/ / doi . org / 10 . 1016 / S0049 - 237X(08) 71114 - 5. url: http : / / www .

sciencedirect.com/science/article/pii/S0049237X08711145.

[3] L. P. Sasso. Joseph R. Shoenfield. Degrees of unsolvability. North-Holland
mathematical studies 2. North-Holland Publishing Company, Amsterdam-London,
and American Elsevier Publishing Company, Inc., New York, 1971, VIII 111
pp. Journal of Symbolic Logic, 40(3):452–453, 1975. doi: 10.2307/2272174.

[4] J. Endrullis, J. W. Klop, A. Saarela, and M. A. Whiteland. Degrees of Trans-
ducibility. In Proc. Conf. on Combinatorics on Words (WORDS 2015), vol-
ume 9304 of LNCS, pages 1–13. Springer, 2015. doi: 10.1007/978-3-319-
23660-5_1.

[5] A. Belovs. Some algebraic properties of machine poset of infinite words. en.
RAIRO - Theoretical Informatics and Applications - Informatique Théorique
et Applications, 42(3):451–466, 2008. doi: 10.1051/ita:2008009. url: www.
numdam.org/item/ITA_2008__42_3_451_0/.

[6] Jörg Endrullis. Research: automata. url: http://joerg.endrullis.de/

research/finite-state-transducers/.

[7] H. Zantema and W. Bosma. Classifying non-periodic sequences by permutation
transducers. In É. Charlier, J. Leroy, and M. Rigo, editors, Developments in
Language Theory, pages 365–377, Cham. Springer International Publishing,
2017. isbn: 978-3-319-62809-7.

[8] J. Endrullis, C. Grabmayer, D. Hendriks, and H. Zantema. The Degree of
Squares is an Atom. In Proc. Conf. on Combinatorics on Words (WORDS 2015),
volume 9304 of LNCS, pages 109–121. Springer, 2015. doi: 10.1007/978-3-
319-23660-5_10.

[9] J. Endrullis, J. W. Klop, and R. Bakhshi. Transducer Degrees: Atoms, In-
fima and Suprema. Acta Informatica, 57(3-5):727–758, 2020. doi: 10.1007/
s00236-019-00353-7.

[10] OEIS Foundation Inc. (2020). The on-line encyclopedia of integer sequences.
url: http://oeis.org/.

49

https://doi.org/https://doi.org/10.1016/S0049-237X(08)71114-5
https://doi.org/https://doi.org/10.1016/S0049-237X(08)71114-5
http://www.sciencedirect.com/science/article/pii/S0049237X08711145
http://www.sciencedirect.com/science/article/pii/S0049237X08711145
https://doi.org/10.2307/2272174
https://doi.org/10.1007/978-3-319-23660-5_1
https://doi.org/10.1007/978-3-319-23660-5_1
https://doi.org/10.1051/ita:2008009
www.numdam.org/item/ITA_2008__42_3_451_0/
www.numdam.org/item/ITA_2008__42_3_451_0/
http://joerg.endrullis.de/research/finite-state-transducers/
http://joerg.endrullis.de/research/finite-state-transducers/
https://doi.org/10.1007/978-3-319-23660-5_10
https://doi.org/10.1007/978-3-319-23660-5_10
https://doi.org/10.1007/s00236-019-00353-7
https://doi.org/10.1007/s00236-019-00353-7
http://oeis.org/

[11] J. Jaffe. A necessary and sufficient pumping lemma for regular languages.
SIGACT News, 10(2):48–49, July 1978. issn: 0163-5700. doi: 10.1145/990524.
990528. url: https://doi.org/10.1145/990524.990528.

[12] J. Endrullis, J. Karhumäki, J. W. Klop, and A. Saarela. Degrees of Infinite
Words, Polynomials and Atoms. In Proc. Conf. on Developments in Language
Theory (DLT 2016), volume 9840 of LNCS, pages 164–176. Springer, 2016.
doi: 10.1007/978-3-662-53132-7_14.

50

https://doi.org/10.1145/990524.990528
https://doi.org/10.1145/990524.990528
https://doi.org/10.1145/990524.990528
https://doi.org/10.1007/978-3-662-53132-7_14

	Introduction
	Preliminaries
	Prerequisites
	About our proofs
	Notation
	Citing

	Definitions
	Streams
	Finite state transducers
	Transducer degrees

	Initial investigation
	Basic statements
	Function streams
	Upper bounds
	Atoms

	Exploring transducts
	Properties of spiralling functions
	FST pumping lemma
	Transducts of spiralling function streams.
	Transition ambiguities
	Masses

	Deep results
	[n2] is an atom
	Countably many atoms
	Suprema

	Conclusion and future work

