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Abstract

The large amount of publicly accessible image data has been key to the suc-
cess of machine learning. However, the publicly accessible data also raises
privacy concerns about unauthorized data exploitation. To protect per-
sonal images from unauthorized neural network training, error-minimizing
noise has been proposed. The error-minimizing noise can be added to per-
sonal images making them unusable for training neural networks. Therefore,
these images are also referred to as unlearnable examples. This thesis aims
to improve the performance of deep neural networks trained on data with
added error-minimizing noise, and thereby give a direction on how to im-
prove the noise. The research explores the strength of error-minimizing noise
by focusing on the following two aspects: its resistance against adversarial
training, and its resistance against data augmentation. We show that the
effects of the noise are highly dependent on the presence of color by con-
ducting experiments on grayscale images. We demonstrate that generating
error-minimizing noise on grayscale image does not improve its resistance
against grayscale transformations. Furthermore, we verify that the effect of
error-minimizing noise can be compensated by using adversarial training.
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Chapter 1

Introduction

The rise in computing resources and the growing amount of publicly acces-
sible image data are the foundations of the progress that has been made
in research related to neural networks. However, the large amount of pub-
licly accessible image data also raises concerns regarding how the images are
collected. A party could easily create a dataset by collecting images from
social media platforms, without asking for the consent of the owners of the
images. A real-world examples of this is the MegaFace dataset. This is a
facial dataset consisting of millions of images taken from Flickr without the
owners being aware of it. This example shows that the need for data is
colliding with the privacy of internet users.

Luckily there is awareness for the privacy and data protection concerns
in research related to machine learning [11][16][19][22][23]. Huang et al.[7]
made a great step to protect image data from unauthorized machine learn-
ing by proposing a method to generate error-minimizing noise. The goal
of this noise is to make images someone uploads to the internet deteriorate
the training process of a neural network. Therefore, images with such noise
added to them are referred to as unlearnable examples. Since these unlearn-
able examples deteriorate the training process of neural networks, they are
less useful and therefore the chance of the images being collected without
consent is reduced. Although the method is a good direction in achiev-
ing its goal, it has not been shown that the error-minimizing perturbations
truly make images unusable for training neural networks. In this research
we explore the unlearnable examples by experimenting with their resistance
against adversarial training and data augmentation.

Huang et al. show that the noise is fairly resistant against adversarial
training under specific conditions. However, in these conditions, the scale
of the error-minimizing perturbations is much larger than that of the adver-
sarial noise added during training. This motivates us to further explore the
resistance of error-minimizing perturbations against adversarial training.

It has also been shown that the error-minimizing perturbations are re-
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sistant against four data augmentation techniques: Cutout [2], Mixup [27],
Cutmix [26], and Fast Augmentation [15]. The resistance against other data
augmentation techniques like JPEG compression, which is known to offer
protection against small adversarial perturbations [3], has not been tested.
Therefore, we are motivated to further explore the resistance of the error-
minimizing noise against data augmentation.

Before we can apply the error minimizing noise in real real-world sce-
narios, we must ensure that the method makes data unusable under a wide
variety of training methods. The goal of the research is to show the weak
points of the error-minimizing noise and thereby give a direction on how to
improve the method. To show the weak points, we have to improve the per-
formance of neural networks trained on data with added error-minimizing
noise. This translates to the following research question:

How can we improve the performance of deep neural networks trained on
data with added error-minimizing noise?

To answer this research question we focus on adversarial training and data
augmentation. To test the effects of adversarial training, we train using an
FGSM-, or PGD-based objective function on an error-minimizing perturbed
dataset. We test the effects of data augmentation by conducting experiments
with the following data augmentations: JPEG compression, grayscale trans-
formation, course dropout, median blur, and Gaussian noise. The research
makes the following contributions:

• We show that error-minimizing noise as proposed by Huang et al. [7]
is highly dependent on color. By transforming images with added
error-minimizing noise into grayscale images, the effectiveness of the
noise significantly drops. The effectiveness of the noise can be further
degraded by combining grayscale transformation with applying JPEG
compression or adding Gaussian noise.

• We show that generating error-minimizing noise on grayscale images
does not make the noise much more resistant against grayscale trans-
formations during training. Similar to the original error-minimizing
noise, the combination of grayscale transformation with JPEG com-
pression or Gaussian noise effectively counteracts the effects of error-
minimizing noise generated on grayscale images.

• We verify that adversarial training improves the performance of models
trained on data with added error-minimizing noise. Using PGD-style
adversarial training on error-minimizing perturbed datasets, a model
can achieve similar performance to models adversarial trained on clean
datasets.
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Chapter 2

Related Work &
Preliminaries

In this chapter, we cover existing literature and discuss principles that we
will use in the remainder of the thesis. First, two basic mathematical princi-
ples are explained. Second, relevant work and principles of neural networks
are explained. After this, we introduce the concept of adversarial attacks
and training. Finally, we explain how error-minimizing noise is generated,
and describe the knowledge gap.

2.1 Mathematical Foundations

Gradients

A gradient is vector containing the partial derivates of a multi-dimensional
function with respect to all of its variables. Like derivates of a one-dimensional
function, the gradient gives us the slope of a function at a given point. Let
f : Rn → R be a n-dimensional function, and x = [x0, x1, . . . , xn−1] be the
input to function f . The gradient of f with respect to input x, denoted by
∇xf(x), is computed as follows:

∇xf(x) =

[
∂f(x)

∂x0
,
∂f(x)

∂x1
, . . . ,

∂f(x)

∂xn−1

]>
. (2.1)

Gradients are useful for the optimization of neural networks. They are used
to determine how to update the parameters of a network. The exact process
for this optimization as well as a definition of network parameters is given
in Section 2.2.2.

Norms

A norm is a kind of measure for the size of a mathematical object. Through-
out this thesis we use the Lp-norm, which is a popular norm used in the field
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of adversarial machine learning [5]. In this thesis, the norm is used to com-
pute the difference between a clean image and an image containing noise.
Let x be an vector of n elements representing an image, then the Lp-norm
for x is defined as follows:

‖x‖p =

(
n−1∑
i=0

|xi|p
) 1

p

. (2.2)

Norms that are often used are the L1-, L2-, and the L∞-norm. In our ex-
periments we use the L∞-norm, which is equivalent to taking the maximum
element of the vector. The L∞-norm one of the optimal norms for this task
[5] and is therefore commonly used when generating adversarial perturba-
tions.

2.2 Neural Networks

Neural networks are commonly used for classification, regression, and clus-
tering. In this research, we will focus on neural networks used as a classifier.
A neural network consists of a sequence of layers, where each layer consists
of neurons. The general structure of a neural network can be seen in Figure
2.1.

A neural network consists of one input layer, k ≥ 0 hidden layers, and one
output layer. Neurons in one layer are mapped to neurons in the proceeding
layer via weight values. Each neuron in the network computes the weighted
sum of all of its inputs. If the resulting value is below a certain threshold
it does not pass its value to the next layer. This threshold is determined
by an activation function. A bias is added to each neuron, shifting the
activation of that neuron. For example, when a positive bias is added to
a neuron, the threshold shifts down, making the neuron activate at lower
values. The weighted sum with added bias is what is given as input to the
activation function. We refer to all the weights and biases in the network as
the network parameters.

In case the model is used for classification, the values of neurons in
the output layer correspond to the probability the input data belongs to a
specific class. Take for example an output node i with a value of 0.7, this
implies there is a chance of 0.7 the input corresponds to class i.

2.2.1 Classification

A model classifies input by forwarding it through its layers. Let us demon-
strate the calculations done during the classification of input x using 2 layers
of a neural network, a(0) and a(1). For demonstration purposes, assume both
layers consist of m neurons. The computation of the value of neuron i in
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Figure 2.1: General structure of a neural network

layer a(1) is as follows:

a
(1)
i = σ(a

(0)
0 · w(0,i) + a

(0)
1 · w(1,i) · . . . · a(0)m w(m,i) + bi). (2.3)

In this formula, σ denotes a squishing function, σ : R→ (0, 1). The weight
value between neurons i ∈ a(0) and j ∈ a(1) is denoted by wi,j . The bias

of neuron a
(1)
i is denoted by bi. The same computation is repeated for each

pair of adjacent layers from the input layer to the output layer. If we rewrite
the weights between all neurons of two layers as a matrix W, the inputs and
biases as vectors a and b respectively, we can write the full transition from
a layer to the next layer in the following, more compact form:

a(n+1) = σ(Wa(n) + b). (2.4)

2.2.2 Training

The parameters of a network are optimized during the training of the net-
work, commonly stochastic gradient descent is used for this. Before we give
a formal description of this process, we introduce some notations. We will
use these notations throughout the remainder of the thesis. First, let us
define X as the input space of a model. We define a model, hθ : X −→ Rk,
as a mapping from input space to a k-dimensional output vector, where k
is the number of classes, and θ the parameters of the model.

Second, we define the loss function, J : Rk × Z+ −→ R+, as a mapping
from model predictions and true labels to a positive real number. The loss of
model hθ on input x, with true labels y, can now be defined as J(hθ(x), y).
This tells us how far the model’s predictions are from the true class labels.
A high loss indicates the predictions of the model are far from the true class
labels. Commonly the cross-entropy loss is used as the loss function.
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Now that we have defined the model and loss function we are able to
give a more formal description of how stochastic gradient descent updates
the model parameters. It does so by minimizing the loss function, performing
the following update each time a batch is forwarded through the model:

θi+1 = θi − α∇θJ(hθ(xr), yr), (2.5)

where hθ(xr) denotes the model prediction of a random sample from the
batch, yr the true class label corresponding to sample xr, and α the step
size, also referred to as the learning rate. The learning rate determines how
much we want the model parameters to change. To compute the gradient
of the loss function, we use the chain rule from calculus to compute the
derivative of the model parameters. This is done in reverse order, from the
output layer to the input layer. The loss is propagated back through the
model, which is why the method of parameters optimization is referred to
as backpropagation [13].

When we are close to a local minimum, a small learning rate is preferred
to prevent stepping over the local minimum. This is why we want to lower
the learning rate as the model converges. There are numerous scheduling
methods available that update the learning rate of stochastic gradient de-
scent during the training of a network. In our experiments we use a cosine
annealing scheduler [17]. The strategy this scheduler uses is to let the learn-
ing rate drop rapidly, after which it is increased rapidly. This enlarging
of the learning rate simulates a restart of the learning process with better
model parameters. The resetting of the learning rate is also referred to as a
warm restart.

2.2.3 Convolution and Pooling

A convolutional neural network, or CNN, uses the fact that pixels that are
close to each other within a picture, are related to one another. The first
published CNN which got attention was the model introduced by LeCun et
al. [14]. The model was designed specifically for learning from image data.

The main idea of a convolutional layer is to slide a m × n filter, also
called a kernel, over the input tensor. We refer to a convolutional layer with a
kernel of size m×n, as an m×n convolutional layer. The values of the output
tensor are computed by taking the dot product between the values in the
kernel, and the values of the input image the kernel is currently considering.
In Figure 2.2 an example of a computation of a 2× 2 convolutional layer on
a 3 × 3 image is shown. In this example, the top-left value of the output
image is computed as follows:

0 · 1 + 1 · 3 + 2 · 4 + 5 · 6 = 0 + 3 + 8 + 18 = 29

It is possible to have multiple kernels in a single convolutional layer. If this
is the case we do the same computation as in Figure 2.2 for each of the
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kernels. Each computation results in a matrix. These matrices are summed
and returned as the result of the convolutional layer with multiple kernels.

Figure 2.2: Example of a 2 × 2 convolutional layer. The input image is of
size 1× 3× 3.

Pooling layers are specific cases of convolutional layers and are used to
reduce the size of the representation. A pooling layer achieves this by sliding
a kernel over the input image, performing an aggregation on the pixels under
the kernel. Two commonly used aggregations are taking the average, and
taking the maximum of all pixels under the kernel. The pooling layers that
use these aggregations are called average-pooling layers and max-pooling
layers respectively. There are more aggregations we can perform, but since
we will not be using them in our experiments, we do not list them here.

2.2.4 Batch Normalization

The concept of a batch-normalization layer is proposed by Sergey Ioffe and
Christian Szegedy [9]. It is designed to accelerate and stabilize the training
of neural networks. The motivation behind the design of batch normaliza-
tion is the claim that neural networks suffer from internal covariate shifts.
This is the same as saying a neural network suffers from changes in input
distribution of the hidden layers.

When training a model the distribution of the inputs of hidden layers
can change due to changes made in the model parameters. Batch normal-
ization layers counteract this effect, by normalizing all of its input data to a
unit normal distribution, i.e. a distribution with zero mean and a standard
deviation of one. The batch normalization layer does this by estimating
the mean and standard deviation of the batch that is forwarded through
the model, these are the parameters of a batch normalization layer that are
learned. The data is normalized by subtracting the mean from the data
and dividing the data by the standard deviation. Note that this is the most
basic implementation of a batch normalization layer.

2.2.5 ResNet18

In our experiments, we will be using a specific neural network referred to as
ResNet18. The model was found by He et al. [6] and uses the same structure
of residual blocks as the model which won the ImageNet Large Scale Visual
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Recognition Challenge in 2015 [21]. The ResNet18 model consists of a 7 ×
7 convolutional layer, followed by a batch normalization layer and eight
residual blocks. The last residual block is followed by a fully connected
layer of size 512. A fully connected layer is a standard layer as in Figure 2.1,
in which each neuron is connected to each neuron in the previous layers.

A residual block as considered by He et al. [6], consists of two 3 × 3
convolutional layers followed by a batch normalization layer, and a ReLU
activation function. The input of the residual block is added directly before
the final ReLU function. The ReLu function is defined as follows:

f(x) = max(0, x), (2.6)

Both convolutional layers in a residual block have the same number of
output channels. To change the number of channels, before the addition, a
1×1 convolutional layer is introduced. This convolution before the addition
is done in the third, fifth, and seventh residual blocks.

In total, the model consists of 8 residual blocks, a 7 × 7 convolutional
layer, and a fully connected layer. Each residual block consists of two con-
volutional layers. This adds up to a total of 18 layers, which is why the
ResNet18 model is named as such.

2.3 Adversarial Attacks

In 2014, Szegedy et al. [24] found that deep neural networks can be confused
by adding adversarial generated noise to the inputs of the network. We
describe two adversarial attack methods that can be used to generate noise,
which if added to the input data, maximize the loss of a neural network on
the perturbed data.

Both methods are based on the claim that many small changes in input
can add up to a large change in output. Say we have an adversarial exam-
ple x̃ = x + δ corresponding to a natural example x. When forwarding x̃
through a linear model, the dot product between a weight vector w and the
adversarial example x̃ is computed. This is computed as follows:

w>x̃ = w>x+ w>δ. (2.7)

From Equation 2.7 follows that perturbation δ causes the activation to grow
by w>δ. If we use the L∞-norm as a distance metric, and our perturbation
is bounded by ‖δ‖∞ ≤ ε, for some ε ∈ R, the activation can be maximized by
assigning δ = ε sign w. If w has n dimensions and the average of the absolute
values of the weight vector is m, the activation will grow by ε ·m · n.

Since ‖δ‖∞ does not grow with the dimensionality, but the activation
does, a simple linear model can have adversarial examples if its input has
sufficient dimensionality. This and the claim of Goodfellow et al.[5] that
neural networks are too linear to resist linear adversarial perturbations, are
the cornerstone for both FGSM and PGD.
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2.3.1 Fast Gradient Sign Method

The fast gradient sign method, or FGSM, was first described by Goodfellow
et al. [5]. As the name suggests, the method is based on the gradient of the
loss function. To maximize the loss, we change the parameters of the model
by setting a single step of predefined size ε in the direction of the gradient
of the loss function with respect to the input. Note how this is opposite to
Equation 2.5, where we try to minimize the loss by subtracting the gradient
of the loss function with respect to the model parameters.

Let us describe the process of generating the adversarial noise FGSM in
a more formal way. We define x as the input to the model, and y the labels
corresponding to input x. The goal of the adversarial attack is to find δ,
such that δ maximizes J(hθ(x + δ), y). Let ε be the allowed perturbation,
then the fast gradient sign method computes δ as follows:

δ = ε sign(∇xJ(hθ(x), y)). (2.8)

Because we are using the sign function, each input has either ε added
to or subtracted from its original value. The effect can be seen in Figure
2.3b, especially in the dark area of the image, where we can only see two
different grayscale values. By using the sign function we can increase the
loss by a significant amount while only having to step once in the direction
of the gradient. This means that to compute δ for an input x, we only
need to backpropagate through the model once, which makes the method
computationally efficient.

(a) Natural (b) FGSM (c) PGD

Figure 2.3: Example from the MNIST dataset: (a) shown without pertur-
bation, (b) with perturbation generated by FGSM, (c) with perturbation
generated by PGD. For both, PGD and FGSM, ε = 0.3.

2.3.2 Projected Gradient Descent

Projected Gradient Descent, or PGD, is another method that can be used to
generate adversarial noise. It is more powerful than the previously described
fast gradient descent method, as concluded by Madry et al. [18]. PGD is
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essentially a multi-step variant of FGSM which computes δ at iteration t+1
in the following way:

δt+1 = P(δt + α sign(∇xJ(hθ(x+ δt), y))), (2.9)

where P denotes the projection onto the desired ball of interest, e.g. clipping
in the case of L∞, and α denotes the step size. The step size tells us how
much we want delta to change each iteration. Choosing the step size is
extremely important, as choosing a too large step size results in the method
taking a step too large in the direction of the boundary, making the method
act like FGSM. Choosing a too small step size results in the method exploring
only a small section of the loss landscape, reducing the chance of finding
good local maxima. To prevent these problems the step size is often a small
fraction of ε, e.g. α = ε/10.

To improve the performance of PGD, we can run PGD multiple times
from random initial noise. By doing so, PGD can find different local maxima
in the loss landscape. We set δ to the perturbation resulting in the highest
local maxima. In Figure 2.3c, an MNIST example with adversarial noise
generated using PGD with four random restarts each with ten iterations
is shown. We can see that the noise consists of more than two different
grayscale values and therefore looks more random than the noise generated
by FGSM. This effect can be explained by the multiple small steps we take
to generate the adversarial noise, instead of the one large step we take when
using FGSM.

2.4 Adversarial Training

Goodfellow et al. [5] described that training a model with an adversarial
objective function results into regularization, meaning that such a trained
model performs well on both natural and adversarial data. They refer to this
training method as adversarial training. The following objective function is
proposed:

J̃(hθ(x), y) = αJ(hθ(x), y) + (1− α)(hθ(x+ δ), y). (2.10)

It is shown that models trained with this objective function, where the
perturbation, δ, is based on the fast gradient sign method, reduces the error
on images perturbed using the same adversarial attack. On the downside,
training with such an objective function does not offer protection against
the PGD attack.

PGD proves to be more useful in adversarial training than FGSM. Mod-
els trained to be robust against PGD adversaries are robust against a wide
range of first-order adversaries [18]. PGD generalizes well on both natural
and perturbed data. This implies that we can choose α = 0 in Equation
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2.10, resulting in a objective function based on only the perturbed data. It is
important to note that the capacity of the network should be large enough,
as a small capacity results in the model sacrificing performance on natural
examples to learn from the adversarial examples.

In adversarial training, the goal of the adversarial attack is to maximize
the loss, while the goal of the model is to minimize the loss. This gives us
the following saddle point problem, which an ideal robust classifier should
achieve:

min
θ

max
δ
J(hθ(x+ δ), y), (2.11)

such that ‖δ‖p ≤ ε. For both inner, and outer optimization problems, we
use the gradient of the loss function in solving the problem. A natural way
to compute the gradient for the outer minimization problem is to replace
the inputs of the model with their corresponding adversarial perturbations,
and natural train the model on the perturbed data.

One important assumption that is made here is that Danskin’s theorem
holds even though the preconditions of the theorem do not hold. From
Danskin’s theorem follows that for continuously differentiable models, the
outer minimization of Equation 2.11 can be solved by replacing the input
of the model with its corresponding adversarial input and normally training
the inner maximization. Madry et al. [18] suggest that the gradients can be
used to solve Equation 2.11, despite the fact non-continuously models are
used. Therefore, we make the same assumption in our experiments.

2.5 JPEG Compression

JPEG compression is a lossy compression format that exploits the fact that
human perception is able to discriminate the brightness of images better
than the color of images. Lossy implies that decompressed images might
be different than the original images that have been compressed. The com-
pression format is mainly used to reduce the size of images without making
a visible difference. Research has shown that the compression format can
also be used to offer protection against small adversarial perturbations [1][3].
The compression method consists of the following five steps:

1. Color space transformation
The RGB image is transformed to Y CbCr, where Y denotes the lumi-
nance component, and Cb and Cr the blue and red chromatic compo-
nents respectively. This is done to isolate the luminance component,
which humans can better discriminate than colors, from the color com-
ponents.
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2. Downsampling
The chromatic channels of the Y CbCr image are downsampled. This
downsampling has little, to no effect on the perception of the image.

3. Cosine transformation
The pixel values of the image are centered by subtracting 128 from its
original value. The resulting pixels are put in 8 × 8 blocks. Each of
the blocks is transformed using a discrete cosine transformation [20].

4. Quantization
The resulting matrices from step 3 are quantized using a quantization
matrix, Q. This is done by the following computation:

Bi,j = round

(
Gi,j
Qi,j

)
∀i, j ∈ {0, 1, . . . , 7}, (2.12)

where i denotes the horizontal coordinate, j the vertical coordinate, G
a matrix obtained in the previous step, and B the quantized matrix.
The degree of compression the user chooses determines the values of Q.
A larger degree of compression implies larger values in the quantization
matrix, and therefore greater compression.

5. Huffman encoding
The components of B are arranged in a single vector by going through
B in a zigzag pattern. The resulting vector is shrunk down using
Huffman encoding [8].

The main advantage of using JPEG compression as a defense against
adversarial attacks is that it is computationally inexpensive, especially com-
pared to PGD-style adversarial training. On the downside, JPEG compres-
sion offers little to no protection against larger, still barely visible, adversar-
ial perturbations [3]. For examples of an image compressed using different
degrees of compression, see Figures A.5f, A.5g, and A.5h of the Appendix.

2.6 Unlearnable Examples

The research in protecting personal data from being exploited for the pur-
pose of training neural networks is sparse. Shan et al. [22] made one of
the first attempts to protect personal data against unauthorized data col-
lection by designing a system called Fawkes. One year later, Huang et al.
[7] proposed a method with the same objective as the Fawkes system. The
method uses so-called error-minimizing noise to perturb the training data.
The objective of this noise is to keep the loss on the test and validation data
during the training of a model high while making the loss on the training
data drop exceptionally fast. This results in the model thinking there is
nothing left to learn from the training data while performing poorly on the
validation and test data.
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2.6.1 Generating Error-Minimizing Noise

To generate error-minimizing noise δ, we solve the following min-min prob-
lem:

min
θ

min
δ
J(hθ(x+ δ), y), (2.13)

such that ‖δ‖p ≤ ε. The inner minimization concerns optimizing the error-
minimizing noise. The outer minimization concerns finding the model pa-
rameters that minimize the loss. To solve this min-min problem, we first
optimize θ for M steps, after which we optimize δ for T steps. The alter-
nation of model training and noise optimization is repeated until the model
achieves an accuracy lower than a specified value, λ, on the perturbed im-
ages.

The inner minimization is solved by altering the definition of Equation
2.9. Instead of setting a step in the direction the gradient of the loss function
with respect to the input, we set a step in the negative direction. This
way we minimize the loss of the perturbed samples, which results in the
extremely fast drop of loss on the perturbed data during the training of a
model. Generating error-minimizing noise is an iterative process, the noise
at iteration t+ 1 is generated as follows:

δt+1 = P(δt − α sign(∇xJ(hθ(x+ δt), y))). (2.14)

Two different types of error-minimizing noise are proposed: class-wise
and sample-wise noise. Both use Equation 2.14 to generate the perturbation.
To generate sample-wise noise, we directly use Equation 2.14 on each sample
separately during the noise optimization step. An example of a CIFAR-10
image with sample-wise error-minimizing noise, generated using ε = 8

255 can
be seen in Figure 2.4

(a) Natural (b) Noise (c) Perturbed image

Figure 2.4: Sample-wise noise bounded by ‖δ‖∞ ≤ 8
255 , applied to a CIFAR-

10 image. Figure 2.4a shows the original image; Figure 2.4b the noise that
is applied; Figure 2.4c the CIFAR-10 image with the added noise. Note that
in order to visualize the noise in Figure 2.4b, it is multiplied by 250.

Class-wise noise is computed as a cumulative perturbation on all exam-
ples in the same class. This is done by adding all the noise masks belonging
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to the same class to each other, after the noise optimization step. For an im-
age in class k, the perturbation is generated by starting Equation 2.14 from
δk. The pseudo-code for both class-wise and sample-wise noise generation
can be found in Algorithm 1 of the Appendix.

2.6.2 Knowledge Gap

The error-minimizing noise method is a great step in the direction of mak-
ing personal data unlearnable. However, Huang et al. [7] also mention
some issues with the method. Our main concerns related to the proposed
method are the resistance of the error-minimizing noise against adversarial
training and data augmentation. Huang et al. [7] show that the error-
minimizing noise is fairly resistant to four different data augmentation tech-
niques, Cutout [2], Mixup [27], Cutmix [26], and Fast AutoAugment [15].
The highest accuracy achieved on CIFAR-10 [10] using a ResNet18 model
and the previously listed data augmentation techniques is 58.51%, which is
quite low compared to the reachable accuracy of 94.95% on clean data, as
obtained by Huang et al. [7]. Interestingly, only these four data augmenta-
tion techniques are mentioned in the experiments. For non of the four data
augmentation techniques, different parameters are explored. This lack of
exploration combined with the general effects of data augmentation moti-
vate us to test the resistance of the method against other data augmentation
techniques.

The resistance of the error-minimizing noise against adversarial training
as mentioned by Huang et al. [7] is also questionable. In the experiments the
error-minimizing noise is bounded by δ∞ ≤ 24

255 , while the attack used during
the adversarial training is bounded by δ∞ ≤ 8

255 . First, such large error-
minimizing perturbations become obviously visible in the images, which
breaks their requirement that the noise should be invisible. Second, even
which such large error-minimizing perturbations, a PGD adversarial trained
ResNet18 model can achieve an accuracy of 85%, as mentioned by Huang
et al. [7]. This is a similar performance of a model adversarial trained on
clean CIFAR-10 data. Therefore, we are motivated to further explore the
resistance of error-minimizing noise against adversarial training.
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Chapter 3

Research

We aim to improve the performance of models trained on error-minimizing
perturbed datasets. This will give us a direction on how to strengthen the
error-minimizing noise. In this chapter, we describe the experiments we
conduct in order do this. We start by describing our threat model, stating
the assumptions that we have made. These assumptions form the backbone
of any claims that are made in this chapter. We then describe our approach,
giving an overview of our experiments and the motivations behind them.
After this, we describe the experiments we conduct to further explore the
resistance of error-minimizing noise against adversarial training and data
augmentation. The code used for all experiments can be found at GitHub1.
The results of all experiments are discussed in the corresponding sections.

3.1 Threat Model

To be able to make any claims during the discussion of the experiments, we
first describe the threat model. The threat model contains any assumptions
that we have made, and therefore is an important foundation of claims
made in the remainder of this chapter. We make the distinction between a
defender and an attacker.

Defender

The objective of the defender is to generate noise in order to protect his or
her personal images from being used in training neural networks without
consent. The noise has two requirements:

1. The generated noise must be non-suspicious. This implies that it does
not affect the normal usage of the images. For example, a defender
does not want the noise to be obviously present on his or her Facebook

1https://github.com/TijnBerns/unlearnable-examples
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profile picture. To ensure to noise is non-suspicious we use the L∞-
norm to bound the noise. We bound the noise the defender generates,
δ, by ‖δ‖∞ ≤ 8

255 . This is equivalent to the bound mentioned by
Huang et al. [7] to generate non-suspicious noise.

2. When training a model on the perturbed images, the model must not
be able to learn to predict the classes corresponding to clean images.
This means that the performance of a model trained on perturbed
images is comparable to random guessing.

In reality, it would be ideal if the defender is able to generate noise using
a different dataset. However, this requires dataset selection such that the
classes of the dataset match with the classes of the images of the defender.
Because this is a challenging task in itself, we limit the defender by only
being able to perturb and upload entire datasets.

The defender has no knowledge of the training method or augmentations
the attacker uses and can only create an unlearnable dataset once. If the
images are uploaded to the internet, an attacker has access to it, and the de-
fender is not able to make changes in the images anymore. Furthermore, we
assume the defender only uses the L∞-norm to generate the perturbations.

Attacker

The goal of the attacker is to train a model on an unlearnable dataset. We
assume the attacker only has access to datasets of which all samples are
perturbed since Huang et al. [7] already showed that when only a small
portion is perturbed, models are able to learn from the data. The attacker
only uses datasets of which each data sample is made unlearnable to train
a model and is not able to generate error-minimizing noise.

When applying adversarial training, we limit the attacker by using per-
turbations, δ, such that ‖δ‖∞ ≤ 8

255 . We assume the attacker knows the
L∞-norm is used to generate the perturbations and knows whether sample-
wise or class-wise noise is added to the images. The attacker does not know
the method or model that is used to generate the error-minimizing noise
masks, and therefore cannot replicate the noise masks.

3.2 Approach

We aim to improve the performance of neural networks trained on data with
added error-minimizing noise. Ideally, a model trained on error-minimizing
perturbed data achieves a performance similar to a model trained on clean
data. By achieving this, we give a possible direction of improvement of the
error-minimizing noise. In this section, we describe our approach to achieve
this objective.
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We focus on the following two aspects of the error-minimizing noise:
its resistance against adversarial training, and its resistance against data
augmentation. We hypothesize the opposite objectives of these methods
compensate the effects of error-minimizing noise and therefore are able to
improve the performance of models trained on error-minimizing perturbed
data.

Before conducting experiments concerning our two identified aspects,
we verify the effectiveness of adversarial training and adversarial attacks on
clean data. These principles are closely related to error-minimizing noise
for two reasons. First, for both adversarial training and the generation of
error-minimizing noise, a similar bi-level optimization problem has to be
solved. Second, to generate error-minimizing noise we use an adapted form
of PGD. Therefore, the effectiveness of adversarial training and adversarial
attacks must be verified. To do this, we adversarially train using the fast
gradient sign method and projected gradient descent on an MNIST dataset
[12] and a CIFAR-10 dataset [10]. This allows us to identify the advantages
and disadvantages of both adversarial training techniques. Also, we can
use the results as a comparison for adversarial training on error-minimizing
perturbed data.

Our next step is to verify that error-minimizing noise deteriorates the
training process of a neural network. This verification is important because
without it, answering our research question might not be necessary. We
verify this by generating class-wise and sample-wise error-minimizing noise
for the CIFAR-10 dataset, using different sized L-balls. We then, train a
ResNet18 model on the resulting perturbed datasets.

After verifying the effectiveness of adversarial attacks, adversarial train-
ing, and error-minimizing noise, we are able to conduct experiments concern-
ing the error-minimizing noise. As previously mentioned, we hypothesize
that adversarial training and data augmentation are both able to improve
the performance of models trained on error-minimizing perturbed data. To
test the effect of adversarial training, A ResNet18 model is adversarially
trained on the perturbed datasets we obtained in the previous step. We
train using both FGSM and PGD. For both attacks we use two different
values for our perturbation size, ε = 4

255 and ε = 8
255 .

To test the resistance of the error-minimizing noise against data augmen-
tation, we train on perturbed data sets using a variety of data augmentation
techniques. The augmentation techniques are chosen by looking at a frac-
tion of all the noise masks. We identify two factors of the error-minimizing
noise: color and texture. Different data augmentation techniques are used
to break either of the two factors. The importance of the color factor is
tested by removing color from the perturbed images. The importance of the
texture is tested by applying JPEG compression, Gaussian noise, median
blur, or course dropout. If a data augmentation technique improves the
training of a ResNet18 model trained on error-minimizing perturbed data,
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without sacrificing much performance of a ResNet18 model trained on clean
data, we explore the data augmentation technique further. This exploration
is done by testing the effect of combining the data augmentation technique
with a grayscale transformation. We do not further experiment with less
promising data augmentation techniques.

Finally, we adapt our treat model by assuming the defender knows that
the attacker uses a grayscale transformation during training. This allows us
to identify whether the extra information helps generating error-minimizing
noise masks which are more resistant against a grayscale transformation. We
generate error-minimizing noise masks on a grayscale transformed dataset
and show that the resulting noise masks are dependent on the presence
of color. To further improve the performance of models trained on the
error-minimizing perturbed datasets, we use the data augmentations which
showed to be most effective at improving the learning process in our previous
experiments.

3.3 Adversarial Training

In this section, we describe the experiments that are conducted in order
to test the effect of adversarial training on the accuracy of deep neural
networks. We test the accuracy and loss of both regular and adversarial
trained networks on the CIFAR-10 [10] and the MNIST [12] data set. We
feed the trained models either clean or perturbed data. The perturbations
are done using either PGD or FGSM. For both datasets, the parameters
of the models we train are updated using stochastic gradient descent with
an initial learning rate of 0.1. We update the learning rate using a cosine
annealing scheduler.

3.3.1 MNIST

For the MNIST data set, we train a model consisting of two convolutional
layers with 32 and 64 filters respectively, and a fully connected layer of size
1024. Both convolutional layers are followed by a max-pooling layer. A
ReLu operation is applied after each of the convolutional layers and the
fully connected layer.

We train the model in three different manners: without perturbing the
data, by perturbing data using FGSM, and by perturbing data using PGD.
During the training of the model using FGSM or PGD, all images are per-
turbed using the specific method before they are forwarded through the
model. For each training manner, we train the model for 20 epochs. We
save the model which achieves the highest average accuracy of a clean val-
idation set, and a validation set that is perturbed during the evaluation of
the model. The perturbation during the evaluation is done using the same
adversarial attack as we are training the model with.
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For both FGSM and PGD, ε is set to 0.3. PGD examples are generated
using a random initial perturbation δ0, followed by ten iterations of PGD,
with a step size of 0.01. The average loss and average error of the different
trained models on the test set are shown in Table 3.1.

Regularly Trained FGSM Trained PGD Trained

Attack Average loss Average error Average loss Average error Average loss Average error

None 0.01906 0.65% 0.24363 8.44% 0.02886 1.00%

FGSM 8.94725 96.61% 0.00447 0.13% 0.12731 4.33%

PGD 13.54142 100.00% 5.58916 91.85% 0.15590 5.05%

Table 3.1: Test results of MNIST models trained in a regular manner, by
using PGD, or by using FSGM perturbed data.

We can see that both adversarial attacks work well on the regular trained
model. When no attack is used the model achieves an error of nearly 0%
on the test data. The error raises to 96.61% in case the data is perturbed
using FGSM and even 1000% in case PGD is used.

The model trained using FGSM performs worse on clean MNIST data,
while reaching a nearly perfect accuracy on FGSM perturbed data. This
means that the model is overfitting on the FGSM perturbed data. The
accuracy on the PGD perturbed data slightly drops, compared to the regular
trained model, however, this accuracy is still extremely low.

The model trained using PGD performs well on clean data, and per-
turbed data using either FGSM or PGD. The conclusion we can draw from
this is that in order to train a model to be robust against both FGSM and
PGD, while also achieving high accuracy on clean data, it is better to train
it using PGD than to train it using FGSM.

3.3.2 CIFAR-10

For the CIFAR-10 dataset, we train a ResNet18 model for 200 epochs. We
regularly train the model or train the model using an adversarial objective
function. During the training, we augment the data using a random crop,
followed by a random horizontal flip.

In the case where we use an adversarial objective function, we train the
model using the same perturbation methods as we used in the training of
the previously described convolutional model. For both FGSM and PGD, ε
is set to 8/255. For PGD, we start from a random initial perturbation, δ0,
which is followed by 20 steps of PGD, with a step size of ε/10. The average
loss and average error of the different trained ResNet18 models are shown
in Table 3.2.

Just like for the MNIST dataset, we can see that both adversarial attacks
are effective. However, the difference between the two becomes more clear.
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Regular Trained FGSM Trained PGD Trained

Attack Average loss Average error Average loss Average error Average loss Average error

None 0.18333 4.83% 0.44405 9.70% 0.53570 16.62%

FGSM 3.75599 62.79% 0.93117 18.30% 1.92110 48.33%

PGD 15.31369 100.00% 26.39517 98.91% 2.39671 55.52%

Table 3.2: Test results of Resnet18 models trained in a regular manner, by
using PGD, or by using FSGM perturbed data.

When looking at the regularly trained model, we can see that projected
gradient descent is much more effective than the fast gradient sign method,
it achieves an error of 100% compared to 62.79% FGSM achieves.

The model trained using FGSM performs well on both clean and FGSM
perturbed data, although we see that some accuracy is sacrificed training
the model to be robust against FGSM. The model is not robust against
PGD perturbed data at all. The error of the FGSM trained model on PGD
perturbed data is still close to 100%.

More accuracy on clean data is sacrificed when the model is trained using
PGD. The accuracy on FGSM perturbed data drops as well, compared to
the FGSM trained model. However, the accuracy on PGD perturbed data is
much higher compared to both regularly and FGSM trained models. From
the results, we draw the following two conclusions. First, PGD is a much
stronger adversarial attack than FGSM. Second, training using PGD results
in more generalization on adversarial generated examples than training using
FGSM. However, the cost of this is that more accuracy on clean data samples
is sacrificed.

3.4 Unlearnable Examples

In this section, we first describe the experiments we conduct in order to test
the effectiveness of the error-minimizing noise. We then describe the differ-
ent experiments we conduct in order to test the effects of data augmentation
and adversarial training on data perturbed using error-minimizing noise.

To get an overview of the strength of the error-minimizing perturba-
tions, we generate both sample-wise and class-wise error-minimizing noise
bounded by ‖δ‖∞ ≤ ε, with ε ∈ { 2

255 ,
4

255 ,
8

255}. The exact pipeline for the
noise generation can be found in Section A.2. The perturbation masks are
generated on the CIFAR-10 dataset using data augmentation in the form of
a random crop followed by a random horizontal flip. The resulting masks
are applied to the CIFAR-10 dataset, giving us six different datasets (three
sample-wise perturbed datasets, and three class-wise perturbed datasets).
We use DSi and DCi , to denote the sample-wise and class-wise perturbed
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datasets respectively, where the noise is bounded by ‖δ‖∞ ≤ i
255 . These

datasets are referred to as “unlearnable datasets”.
In order to test the effectiveness of the noise of each of the unlearnable

datasets, we train a ResNet18 model for 200 epochs. The exact pipeline for
the training process can be found in Section A.1. We do not use any form of
data augmentation on the unlearnable datasets. The error and loss on both
the perturbed training set and the clean validation set during the first 20
epochs of the training on the sample-wise and class-wise perturbed datasets,
can be seen in Figure 3.1 and Figure 3.2 respectively. Most change in error
and loss occurs in the first 20 epochs, for the complete training curves on the
sample-wise perturbed datasets, refer to Figure A.1 of the Appendix. The
error on a clean test set of the trained models is reported in the rightmost
column of Table 3.3.

(a) Sample-wise error (b) Sample-wise loss

Figure 3.1: Error on the validation set and the training set during the first 20
epochs of training a ResNet18 model on sample-wise unlearnable CIFAR-10
datasets.
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(a) Class-wise error (b) Class-wise loss

Figure 3.2: Error on the validation set and the training set during the first
20 epochs of training a ResNet18 model on class-wise unlearnable CIFAR-10
datasets.

In Figure 3.1a and Figure 3.2a we can see that for all six unlearnable CIFAR-
10 datasets, the training error drops to approximately zero after the second
epoch, while the error on the clean validation set does not drop at all.
For each unlearnable dataset, the error on the clean validation set stays
around 82%, which makes the performance of the model almost as bad as
random guessing. A similar phenomenon can be seen in Figures 3.1b and
3.2b. The conclusion we draw from this is that when no augmentation
is used on the perturbed data set, even extremely small error-minimizing
perturbations, bounded by ‖δ‖∞ ≤ 2

255 , are strong enough to drop the
training error/loss exceptionally fast, making it impossible for the model to
update its parameters properly.

We further verify the effectiveness of error-minimizing noise by applying
basic data augmentation during the training process. The data augmenta-
tion consists of cropping and horizontally flipping the images. We train a
ResNet18 model using the same training pipeline as our previous experi-
ment. The test errors of the trained models on a clean test set are reported
in Table 3.3

As expected, the performance of the model is better when we apply data
augmentation. We can see that the augmentation results in more improve-
ment when the model is trained on sample-wise perturbed data, than when
it is trained on class-wise perturbed data. The results also verify that the
class-wise noise is more effective as it results in worse performance than
sample-wise noise. These results are used as a comparison for our following
experiments.
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Augmentation

Dataset Yes No

Clean CIFAR-10 4.83% 11.66%

DS2 18.72% 81.16%

DS4 74.58% 83.74%

DS8 75.78% 83.70%

DC2 21.10% 86.38%

DC4 81.14% 86.56%

DC8 84.98% 86.72%

Table 3.3: Error on a clean CIFAR-10 test set of ResNet18 models trained
on different unlearnable CIFAR-10 datasets using either data augmentation
in the form of a random crop followed by a random horizontal flip, or no
data augmentation.

3.4.1 Resistance Against Adversarial Training

In the previous section we have seen that the effect of unlearnable noise is
based on dropping the training loss and error exceptionally fast. To be able
to learn from an unlearnable dataset, we have to somehow increase the loss
on the training set, without sacrificing much accuracy on the clean validation
and test set. Our first suggestion to achieve this is by adversarial training.
The objective of an adversarial example is to maximize the loss with respect
to the input. We hypothesize that the effect of error-minimizing noise is
counteracted by the opposite objective of the adversarial attack used during
training. In order to test this we adversarially train a ResNet18 model with
the same training setting as in Section 3.3.2 on the unalienable CIFAR-10
datasets. During the training, we use a random crop followed by a random
horizontal flip to augment the data. We adversarially train the model using
both FGSM and PGD, where the attacks are bounded by ‖δ‖∞ ≤ 4

255 or
‖δ‖∞ ≤ 8

255 . The error on the clean CIFAR-10 test set the trained models
achieved are reported in Table 3.4. The best performances of models trained
on each of the datasets are highlighted.

We observe that PGD-style adversarial training on any of the unlearn-
able datasets, except for the model trained with ε = 4

255 on DC8 , results in
a similar performance to a model adversarial trained on clean data. There-
fore, we argue that PGD-style training fully counteracts the effects of error-
minimizing noise if the PGD perturbations are bounded by the same L-ball
as the error-minimizing perturbations. In all cases, except for the model
trained on DC8 , PGD-style training with ε = 4

255 results in better perfor-
mance, than PGD-style straining with ε = 8

255 . This can be explained, by
our previous observation that training using larger adversarial perturbations
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FGSM Trained PGD Trained

Dataset ε = 4/255 ε = 8/255 ε = 4/255 ε = 8/255

Clean CIFAR-10 11.62% 9.70% 12.56% 16.62%

DS2 12.10% 16.96% 12.42% 18.46%

DS4 10.84% 32.68% 12.18% 19.78%

DS8 44.52% 35.54% 15.70% 18.82%

DC2 11.98% 23.50% 12.26% 18.76%

DC4 22.88% 22.82% 12.01% 18.60%

DC8 46.40% 38.18% 66.82% 17.92%

Table 3.4: Error on a clean CIFAR-10 test set of ResNet18 models adversar-
ially trained using either PGD or FGSM on different unlearnable CIFAR-10
datasets.

results in more performance being sacrificed on the clean test set.
In case FGSM-style training is used, we observe that the performance is

better than PGD-style adversarial trained models in case of small error-
minimizing perturbations. However, in general, the performance of the
PGD-style trained models is better than, or similar to the performance of the
FGSM-style trained models. This is not unexpected, as a model trained to
be robust against PGD adversaries, is resistant to a wide variety of adversar-
ial attacks [18]. We argue that PGD-style adversarial training is the better
and more reliable method out of the two at improving the performance of
models trained on unlearnable datasets.

An interesting case to mention is the model trained using FGSM with ε =
4

255 on DS4 . We observe that training on this unlearnable dataset using the
specific training method results in better performance than when training
using the same training method on a clean dataset. This is unexpected
because adversarial training on unlearnable datasets results in two layers of
noise on top of the original images of a dataset, the adversarial noise, and
the error-minimizing noise. In case of adversarial training on clean data,
there is only one layer of noise on top of the original images. Therefore, we
expect the model trained on clean data to perform better than the model
trained on DS4 . We do not further explore this phenomenon in our research.

3.4.2 Resistance Against Data Augmentation

In the previous section, we have seen that adversarial training improves the
performance of a model trained on an unlearnable dataset. Although the
results are promising, there is still a significant drop in accuracy compared
to a model trained in a standard manner on a clean dataset. In this sec-
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tion, we will explore the effects of applying a variety of data augmentation
methods on the unlearnable CIFAR-10 datasets. To determine which data
augmentations are potentially effective we plot the first three noise masks of
the sample-wise generated masks in Figure 3.3. More examples of sample-
wise noise masks and examples of class-wise noise masks can be found in
Figure A.2 and Figure A.3 of the Appendix.

Figure 3.3: The first three sample-wise noise masks of the unlearnable
CIAFR10 dataset. Noise is bounded by ‖δ‖∞ ≤ 8

255 . In order to visual-
ize the noise, the masks have been multiplied by a factor of 255.

In these figures we can see that there are at least two clear patterns in the
noise masks. First, magenta and green are more prominent colors in the
noise masks than others. Second, there is often a dot or line pattern in
the masks, where magenta and green are alternated. The RGB values of
magenta and green are (255, 0, 255) and (0, 255, 0), which makes the colors
opposite from one another. We hypothesize that the opposite colors and the
alternation of the two colors in the patterns result in the textures being easy
for a model to detect. Therefore, a model trained on the perturbed data
focuses on learning the texture of the noise instead of learning the texture
of the original images.

We assume that both color and texture are an important factor of the
error-minimizing noise. To test the importance of color, we transform the
unlearnable datasets using a grayscale transformation. To test the impor-
tance of texture, we use the following data augmentation techniques in order
to distort it: JPEG compression, Gaussian noise, median blur, and course
dropout. In the remainder of this section we discuss the experiments we
conduct regarding these data augmentations in detail.

Grayscaling

Previous research has shown that color is not a critical feature for accurate
classification of images [4][25]. This, and our observation that there are
prominent colors in the noise masks motivates us to transform the images
of the unlearnable datasets into grayscale images. Before describing our
experiments, let us give some more intuition why grayscaling the unlearnable
datasets would have a positive effect on the performance of models trained
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on the resulting gray datasets. To transform an image into a grayscale
image, the weighted average of the RGB channels is computed as follows:

Y = round (0.299 ·R+ 0.587 ·G+ 0.114 ·B) , (3.1)

this computation is done for each pixel separately. The resulting value is
used for all RGB channels, removing the color from the image.

We compute the weighted average using Equation 3.1 for magenta and
green. This results in Ym = 105 for magenta, and Yg = 150 for green. The
difference between these two values is much less than the average difference
between the RGB values of magenta and green (45 vs. 255). Therefore,
in the colored perturbed images the textures of the noise are much more
noticeable than in the grayscale transformed images. We hypothesize that
due to the smaller difference in color values, and our observation that the
magenta and green are often alternated in the noise masks, the textures
in the noise masks become harder for a model to detect. This results in a
model focusing less on learning the noise textures, and more on learning the
actual images. Therefore, a model will perform better when it is trained on
grayscale unlearnable datasets, than when it is trained on colored unlearn-
able datasets.

To test our hypothesis, we transform all images in the unlearnable CIFAR-
10 datasets into grayscale images. We train a ResNet18 model on the result-
ing datasets according to the training pipeline described in Section A.1. To
further improve the training, we augment the data by cropping and horizon-
tally flipping the images. Errors on the colored clean test set of the ResNet18
model trained on the different unlearnable gray CIFAR-10 datasets are re-
ported in Table 3.5.

Dataset Test error

Clean CIFAR-10 7.10%

DS2 6.88%

DS4 6.62%

DS8 9.60%

DC2 11.08%

DC4 24.66%

DC8 37.84%

Table 3.5: Error on clean CIFAR-10 test set of a ResNet18 model trained
on different unlearnable gray CIFAR-10 training sets and a clean CIFAR-10
dataset. During training, images are transformed using a grayscale trans-
formation and augmented using a random crop and a random horizontal
flip.
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Comparing these results with the ones reported in Table 3.3, we observe that
the grayscale transformation greatly improves the performance of models
trained on the unlearnable datasets. The performances of models trained
on sample-wise perturbed datasets are similar to that of the model trained
on clean data. In case the model is trained on class wise perturbed data,
we observe that the performance of the model quickly drops as the allowed
perturbation size of the error-minimizing noise masks is increased.

From these results, we conclude that the colors of the noise masks are
an important factor in making the data unlearnable. However, for large
perturbations, the textures of the noise masks remain in the images after
grayscaling them. These textures become more obvious as we increase the
size of the perturbations. In case of class-wise noise, all images in the same
class contain the same noise pattern. Therefore, increasing the size of the
class-wise perturbations results in the model focusing more on learning the
correlation between the textures in the noise and the labels, instead of learn-
ing the correlation between the underlying images and the labels. Which
explains why performance weakens as the size of class-wise error-minimizing
perturbations is increased.

JPEG compression

JPEG compression is known to protect against small adversarial perturba-
tions [1][3]. This motivates us to apply JPEG compression on the unlearn-
able CIFAR-10 datasets. We compress both the clean CIFAR-10 dataset,
and the unlearnable datasets using JPEG compression with the following de-
grees of compression: 40, 60, and 80. Examples of a compressed CIFAR-10
image using the previously mentioned degrees of compression, can be found
in Figures A.5f, A.5g and A.5h of the Appendix. We train a ResNet18 model
using the training pipeline described in Section A.1 on each of the 21 com-
pressed datasets (three for each of the unlearnable datasets, and three for
the clean CIFAR-10 dataset). During training we augment the data using a
random horizontal flip and a random crop. The test errors of the ResNet18
model trained on each of the resulting datasets are summarized in Figure
3.4. These results should be compared to a test error of 4.83% a ResNet18
model is able to achieve when trained on clean CIFAR-10 data.

Compared to the results in Table 3.3, we observe that JPEG compression
greatly improves the performance of models trained on unlearnable datasets.
We see that as we increase the degree of compression, the error on the
unlearnable datasets drops. However, the error on the clean datasets rises
when increasing the compression. Since we want to achieve a performance
comparable to a ResNet18 model trained on a clean CIFAR-10 dataset, we
have to limit the degree of compression.

We argue that JPEG compression takes away the textures in the noise.
We hypothesize that due to the positive effects of JPEG compression and

29



Figure 3.4: Test error of a Resnet18 model trained on different unlearnable
CIFAR-10 datasets. Samples from the datasets have been compressed using
JPEG compression with different degrees of compression. The accuracy a
ResNet18 model trained on clean data is able to achieve is visualized by the
dotted line.

grayscale transformation on the training performance, combining JPEG
compression with grayscale transformation further improves the performance
of models trained on the unlearnable datasets. We grayscale all 21 previ-
ously obtained JPEG compressed datasets, and train a ResNet18 model on
the resulting 21 datasets. The test error of the trained model on each of the
resulting datasets can be found in Figure 3.5.

Comparing these results with the ones in Figure 3.4 and Table 3.3,
we observe that in case of large error-minimizing perturbations, combining
grayscale transformation with JPEG compression results in better perfor-
mance than when only one of the two methods is used. This effect the
strongest for models trained on DS8 and DC8 . In case a compression degree
of 40 is used, the performances of all models, with the exception of the model
trained on DC8 , are similar. To reduce the error of the model trained on
DC8 a larger degree of compression must be used. However, this results in
more performance being sacrificed on both the clean dataset and the other
unlearnable datasets. Although we are sacrificing performance by increasing
the degree of compression, we are able to achieve better performances using
these data augmentations than when using adversarial training. Therefore,
we argue that a grayscale transformation combined with JPEG compres-
sion is an effective method to improve performance of models trained on
unlearnable datasets.

30



Figure 3.5: Test error of a ResNet18 model trained on different unlearnable
CIFAR-10 datasets. Samples from the datasets have been compressed using
JPEG compression with different degrees, and transformed into grayscale
images. The accuracy a ResNet18 model trained on clean data is able to
achieve is visualized by the dotted line. The results from Figure 3.4 are
visualized by the dashed bars.

.

Gaussian Noise

We have seen that by using a combination of grayscale transformation and
JPEG compression, we can remove the effect of unlearnable samples for a
large part. In this section we apply Gaussian noise, changing the distribution
of the unlearnable datasets.

We train a ResNet18 model according to the training pipeline described
in Appendix A.1 on all six unlearnable datasets, and a clean CIFAR-10
dataset. During the training, we augment the data by adding Gaussian
noise with zero mean and a standard deviation of 0.05, 0.1, or 0,2, to the
data samples. Besides adding Gaussian noise, we apply a random horizontal
flip and a random crop. The errors of the trained models on a clean test set
are summarized in Figure 3.6.

Compared to the results in Table 3.3, we observe that adding Gaussian
noise only slightly improves performance of models trained on unlearnable
data. Adding Gaussian noise with a larger standard deviation results in bet-
ter performance. This effect is the strongest for the models trained on DS2

and DS4 . We argue that the error-minimizing perturbations are fairly resis-
tant to Gaussian noise, especially considering the Gaussian noise we add to
the samples is much larger than the error-minimizing perturbations. How-
ever, since there is still a noticeable difference compared to models trained
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Figure 3.6: Test error of a ResNet18 model trained on different unlearnable
CIFAR-10 datasets. Samples from the datasets are augmented during train-
ing by applying Gaussian noise. The accuracy a ResNet18 model trained on
clean data is able to achieve is visualized by the dotted line.

on unlearnable datasets without adding noise, we will test the effect of trans-
forming the images with added Gaussian noise into grayscale images. We
train a ResNet18 model on the resulting gray images using the training
pipeline as described in Appendix A.1. During the training we add Gaus-
sian noise to the images and augment the data using a random crop followed
by a random horizontal flip. The error of the ResNet18 on the different un-
learnable datasets is summarized in Figure 3.7.

Comparing these results with the ones in Table 3.5 and Figure 3.6, we
observe that using a combination grayscale transformation and Gaussian
noise results in significantly better performance than when only one of the
two methods is applied. In case Gaussian noise with σ = 0.05 is applied,
the models trained on each of the unlearnable datasets, except for DC8 , are
able to achieve a comparable performance to a model trained on clean data.
To increase the performance of the model trained on DC8 , we need to apply
Gaussian noise with a larger standard deviation. Unfortunately, by enlarging
the standard deviation, performance of models trained on the other datasets
is sacrificed. Although we sacrifice performance by enlarging the standard
deviation, we argue that using the transformation is an effective method to
counteract the effect of error-minimizing noise.
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Figure 3.7: Test error of a ResNet18 model trained on different unlearn-
able CIFAR-10 datasets. Samples from the datasets are augmented during
training by adding Gaussian noise, and transformed into grayscale images.
The accuracy a ResNet18 model trained on clean data is able to achieve is
visualized by the dotted line. The results from Figure 3.6 are visualized by
dashed bars.

3.5 Adaptive Defender

In our previous experiments, we have shown that the effects of error-minimizing
noise depend on the presence of color. We have seen that the performance
of models trained on the unlearnable datasets improves by transforming the
images into grayscale images, especially when the grayscale transformation
is combined with Gaussian noise or JPEG compression. Therefore, our re-
search question has already been answered. In this section, we look beyond
our initial goal by adapting our threat model. We assume that the defender
knows the attacker uses a grayscale transformation to improve the training
on perturbed images. Other assumptions that are made in the threat model
remain the same.

The most intuitive way to prevent an attacker applying grayscale trans-
formation from learning from the error-minimizing perturbed data is to gen-
erate the error-minimizing noise masks on grayscale images. To simulate a
defender with such knowledge, we generate sample-wise and class-wise error-
minimizing noise using ε = 8

255 on a grayscale CIFAR-10 dataset according
to the pipeline described in Section A.2. During the generation of the noise
masks, the data is augmentation by cropping and horizontally flipping the
images. The resulting noise masks are added to a colored CIFAR-10 dataset.
We denote the sample-wise perturbed dataset by D∗S8

, and the class-wise per-
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turbed dataset by D∗C8
. The first 10 noise masks of D∗S8

, and all noise masks
of D∗C8

can be found in Figure 3.8

(a) Sample-wise (b) Class-wise

Figure 3.8: Noise masks generated on a grayscale CIFAR-10 dataset visu-
alized. Figure 3.8a shows the first 10 masks of D∗S8

; Figure 3.8b shows all
10 masks of D∗C8

. Note that in order to visualize the noise, it has been
multiplied by a factor of 255.

Similar to the noise masks generated on a colored dataset, there are clear pat-
terns and prominent colors in the masks. Note that, like we have seen with
the colors of the masks in Figures A.2 and A.3, in both sets of noise masks
the most prominent colors are opposite from each other. This strengthens
our hypothesis made in Section 3.4.2, stating that the fact that the colors
are opposite from each other makes it easier for the model to detect the
noise patterns. We speculate that when we have no color information when
generating the noise masks, the prominent colors in the mask will be two
random colors opposite from each other.

3.5.1 Effectiveness

First, we need to test whether D∗S8
and D∗C8

are unlearnable when we apply
data augmentation in the form of cropping and horizontally flipping. We do
this by training a ResNet18 model on D∗S8

and D∗C8
according to the training

pipeline described in Section A.1. The model trained on D∗S8
achieved an

error of 75.14%, the model trained on D∗C8
an error of 82.40%. Therefore,

both perturbed datasets are effective at deteriorating the training process
of a neural network when basic data augmentation is used.

3.5.2 Resistance Against Grayscale Transformation

To test whether applying a grayscale transformation is an effective way of
improving the performance of models trained on D∗S8

and D∗C8
, we train

a ResNet18 model using training pipeline A.1 on both datasets. During
the training, we transform the images using grayscale transformation and
augment the images using a random crop followed by a random horizontal
flip. The model trained on D∗S8

achieves an error of 23.96% on the clean
test set; the model trained on D∗C8

achieves an error of 49.66%. The er-
ror of the models trained on D∗S8

and D∗C8
is higher than the error of the
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models trained on DS8 and DC8 . Therefore, we conclude that generating
error-minimizing noise on a grayscale transformed dataset makes the noise
more resistant against grayscale transformation during training. However,
grayscale transformation is still an effective method to improve the training
process.

The next step is to test whether a grayscale transformation combined
with Gaussian noise or JPEG compression, is an effective method to improve
the performance of models trained on D∗S8

and D∗C8
. We do this by training a

ResNet18 model for 200 epochs on both unlearnable datasets. The training
process is according to the pipeline described in Section A.1. During the
training, we transform the perturbed images into grayscale images. We
then apply either Gaussian noise or perform JPEG compression. Which
is followed by a random crop and a random horizontal flip. For JPEG
compression we use the following degrees of compression: c = 40, c = 60,
and c = 80. The Gaussian noise has zero mean with a standard deviation of
0.05, 0.10, or 0.20. The test errors of the trained models on a clean test set
are reported in Table 3.6 and should be compared to the results in Figure
3.5 and Figure 3.7.

JPEG Compression Gaussian Noise

Dataset c = 40 c = 60 c = 80 σ = 0.05 σ = 0.10 σ = 0.20

Clean CIFAR-10 9.96% 10.76% 12.44% 7.36% 8.70% 13.04%

D∗S8
19.38% 18.68% 20.01% 14.64% 14.84% 17.46%

D∗C8
23.68% 17.76% 16.12% 43.46% 23.00% 16.98%

Table 3.6: Test error of ResNet18 model trained on different unlearnable
datasets. During training data is augmented by applying JPEG compression
or by adding Gaussian noise, both are followed by random cropping and
random horizontally flipping

We observe that by training using the data augmentations the ResNet18
model is still able to learn from the unlearnable datasets. By adding Gaus-
sian noise with a standard deviation of 0.05 to D∗C8

, the model is able to
achieve a test error of 43.46% on the clean test. For all data augmentation
techniques used in this section, noise masks generated on grayscale images
are more resistant to the data augmentations than the noise masks gener-
ated on colored images. However, the models are able to achieve a relatively
good performance. We conclude that even when the defender knows that
the attacker uses a grayscale transformation and adapts the noise generation
based on this, the grayscale transformation still compromises the effects of
the error-minimizing noise. Therefore, the error-minimizing noise as pro-
posed by Huang et al. [7] should be adapted to make it less dependent on
the presence of color.
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Chapter 4

Conclusions

This research aimed to improve the performance of neural networks trained
on data with added error-minimizing noise as proposed by Huang et al. [7].
By doing this we are able to show weak points of the error-minimizing noise
and thereby give a possible direction of strengthening the noise. Our ex-
periments focused on the resistance of the noise against adversarial training
and data augmentation. We have shown that by using either of the two
methods, a ResNet18 model trained on error-minimizing perturbed CIFAR-
10 data is able to achieve a performance close to that of a model trained on
clean CIFAR-10 data.

To test the effects of adversarial training on the error-minimizing per-
turbed data, we adversarially trained a ResNet18 model using PGD or
FGSM on error-minimizing perturbed CIFAR-10 data. PGD-style adver-
sarial training offers more robustness against larger error-minimizing per-
turbations. Using this training method we are able to achieve a perfor-
mance similar to that of a model trained in the same manner on clean
CIFAR-10 data. FGSM-style adversarial training training offers more ro-
bustness against smaller error-minimizing perturbations. Interestingly, in
case FGSM-style adversarial training is applied and the error-minimizing
perturbations are extremely small, the performance of the trained model is
better than when the same training method is applied on a clean dataset.
We did not further explore this phenomenon. Since adversarial training on
error-minimizing perturbed data results in similar performance to adversar-
ial training on clean data, we argue that the training method effectively
removes error-minimizing perturbations.

To the effects of data augmentation on error-minimizing perturbed data,
we identified two factors of the noise masks: color, and pattern. In our ex-
periments, we tested the importance of each of the factors separately. To
test the importance of the patterns in the noise masks, we applied JPEG
compression, Gaussian noise, course dropout, and median blur. Out of these
augmentation techniques, JPEG compression and Gaussian blur managed
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to improve the performance of models trained on unlearnable data. To test
the importance of color we transformed the perturbed data into grayscale
images. We have shown that by removing the color from the unlearnable
data, the performance of a model trained on the data greatly improves.
Therefore, the effect of error-minimizing noise highly depends on the pres-
ence of color. Generating error-minimizing noise on grayscale image, does
not make the noise more resistant against such transformations. In order to
make the noise more resistant against grayscale transformations, the method
of generating the noise must be adapted. Further, research is required for
this.

Our previous described training method can be further improved upon
by combining the idea of removing the color from the perturbed data, with
breaking the patterns in the noise masks. By adding Gaussian noise and
transforming the resulting images into grayscale images, we managed to
reduce the error of a model trained on the class-wise perturbed data from
89.48% to 13.74%. Note that this is the strongest type of non-suspicious
error-minimizing noise. Similar performance can be achieved by combining
JPEG compression with applying a grayscale transformation. Although
this performance is not as good as a model trained on clean data, we argue
that using these data augmentations we are able to break the effect of the
unlearnable noise.

The research showed that the error-minimizing noise proposed by Huang
et al. [7] is not resistant against adversarial training and data augmentation.
Applying grayscale transformation showed to be most effective, especially
when combined with applying JPEG compression or adding Gaussian noise.
Therefore, the noise highly depends on the presence of color. In order to
make the error-minimizing noise more resistant against both data augmen-
tation and adversarial training, further research is required.
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Appendix A

Error-minimizing noise

A.1 Training pipeline

For all of our experiments where we train a ResNet18 model, we train it
for 200 epochs using stochastic gradient descent. The initial learning rate
is 0.1, the momentum 0.9, and the weight decay 0.0005. A cosine annealing
scheduler is used to update the learning rate during the training process.
The cross-entropy loss is used to compute the loss of the model predictions
and the true labels. In all cases, the model which performs best on the clean
validation set, is used as the model to evaluate the performance on the test
set.

When training on CIFAR-10 or perturbed CIFAR-10 data, we normalize
the data by subtracting the mean and dividing by the standard deviation
of the data. The mean we used is (0.4914, 0.4822, 0.4465). The standard
deviation we used is (0.2023, 0.1994, 0.2010).

A.2 Pipeline for Generating Unlearnable Exam-
ples

The generation of error-minimizing noise masks follows Algorithm 1. We
use 20 epochs of model optimization (M = 20), followed by 20 steps of
perturbation optimization (T = 20) for each data sample in the training
set. These two steps are repeated until the error during the evaluation step
drops below 1% (λ = 0.01).

The model optimization is done using stochastic gradient descent with
an initial learning rate of 0.1, a momentum of 0.9 and weight decay of 0.0005.
The cross entropy loss is used to compute the loss of the predictions of the
model. The optimization of the perturbations is done by performing 20
iterations of Equation 2.14 with a step size of ε/10.
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Algorithm 1: Generating error-minimizing noise masks

input : Model hθ, Dataset D = (x, y), Bound ε, Stop error λ,
Training steps M , PGD steps T

output: Error-minimizing masks δ for dataset D
1 δ ← Uniform(−ε, ε)
2 error←∞
3 while error ≥ λ do
4 for train step ← 1 to M do
5 xi, yi ← Next(D) . Get the next batch

from D
6 x̃i ← AddNoise(xi, yi, δ)
7 hθ ← Optimize(hθ, x̃i, yi)

8 end
9 for (xi, yi) ∈ D do

10 x̃i ← AddNoise(xi, yi, δ)
11 for perturbation step← 1 to T do
12 η ← Perturbation(hθ, x̃i, yi) . Perform one step of

Equation 2.14
13 η ← Clip(η,−ε, ε)
14 η ← Clip(xi + η, 0, 1)− xi
15 end
16 if sample wise then
17 δi ← η
18 end
19 if class wise then
20 for ηj ∈ η do
21 c← Class(ηj) . Get the class corre-

sponding to mask ηj
22 δc ← Clip(δc + ηj ,−ε, ε)
23 end

24 end

25 end
26 error← Eval(hθ, x+ δ, y))

27 end

The add noise method in lines 6 and 10, adds noise to a batch xi. In case of generating
sample-wise noise, the noise is added in a sample-wise manner. In case of generating
class-wise noise, the noise is added according to the classes of the images in batch xi.
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A.3 Full Training Curve Unlearnable Data

The images in this section correspond to the experiments of Section 3.4.
They show the loss and error during the entire training process of a ResNet18
model trained on sample-wise perturbed datasets according to the training
pipeline described in Section A.1.

(a) Sample-wise error (b) Sample-wise loss

Figure A.1: Error on the validation set and the training set during the entire
training process of a ResNet18 model on sample-wise perturbed CIFAR-10
datasets.
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A.4 Error-Minimizing Noise Examples

Figure A.2: First 100 sample wise noise masks of the unlearnable CIFAR10
dataset. The error minimizing perturbations are bounded by ‖δ‖∞ ≤ 8

255

Figure A.3: All ten class wise noise masks of the unlearnable CIFAR10
dataset. The error minimizing perturbations are bounded by ‖δ‖∞ ≤ 8

255
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A.5 Alternative Data Augmentation Techniques

In this section we discuss the resistance of error-minimizing noise against
median blur and course dropout. For course dropout we tested two different
settings, one where the size of the squares that are dropped out are 11.11%
of the image size (course dropout 1), and one where the size of the squares
that are dropped out are 6.25% of the total image size (course dropout 2). In
both cases only one color channel is dropped out with a probability of 10%,
for each block in the image. The course dropout is visualized in Figures
A.5c and A.5d of the Appendix.

For median blur we used a kernel size of 3× 3. This kernel runs over the
image entry by entry, each time replacing the entry with the median of its
neighboring entries. The median blur is visualized in Figure A.5e.

We train a ResNet18 model on each of the unlearnable datasets using
one of the previously mentioned data augmentation techniques. The test
errors of the trained models on a clean test set are depicted in Figure Note
that besides course dropout or median blur, no other data augmentation
technique is used. Therefore, we have to compare these results to a model
trained on clean CIFAR-10 data, where no data augmentation is used. Such
a trained model achieves an error of 11.66% on clean test data.

Figure A.4: Test error of a ResNet18 model trained on different unlearn-
able CIFAR-10 datasets. Samples from the datasets are augmented during
training by applying course dropout or median blur. The error of a model
trained on clean CIFAR-10 data with no data augmentation is visualized by
the dotted line.

All unlearnable datasets are resistant against the three data augmentation
techniques. Median blur does improve the performance of the model trained
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on DS2 . However, by applying median blur we sacrifice a lot of performance
of the model trained on clean data. Therefore, we do not further explore
these data augmentation techniques.

A.6 Visualization of Data Augmentation

(a) Natural (b) Grayscale (c) Course Dropout 1 (d) Course Dropout 2

(e) Median blur (f) JPEG c = 40 (g) JPEG c = 60 (h) JPEG c = 80

(i) Noise σ = 0.05 (j) Noise σ = 0.1 (k) Noise σ = 0.2

Figure A.5: Visualization of a different data augmentation techniques used
in the experiments
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