
Bachelor’s Thesis Computing Science

Radboud University Nijmegen

Weighted Negative Selection

Algorithm imitates life

Author:
Abel Lucassen
s4477464

First supervisor/assessor:
dr. Johannes Textor

Second supervisor:
Gijsbert Schröder, MSc
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Abstract

Negative Selection is a classification algorithm based on the identically
named mechanism in the human immune system. This algorithm classi-
fies based on strict grouping into anomalous or non-anomalous parts, and
does not make a more nuanced assessment than that. This means that any
information about the degree of anomalousness of any given part of the data
is lost. By incorporating weights based on the frequency of the matching
parts, we want to improve the performance. We have shown that there
are notable increases in performance at lower word matching lengths, but at
higher word lengths this algorithm performs as well as or slightly worse than
the unweighted approach. Even though this addition to negative selection
did not completely have the desired effect on performance, the produced
results and insights help with finding an approach that does.
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Chapter 1

Introduction

Many people will have heard of artificial intelligence, and how neural net-
works are based on how the human brain and its neurons function. However,
the human brain is not the only intelligent system in the human body. The
immune system is capable of learning, memory and pattern recognition [5],
and specifically the system of T-cell negative selection allows the immune
system to also learn to generalize [12]. Just like how artificial neural net-
works are learning systems inspired by the workings of neurons and the
human brain, are artificial immune systems learning systems inspired by
the workings of the human immune system and its components.
Research into these artificial immune systems has two potential benefits. On
the one hand, the immune system is a learning system that has evolved to
classify in situations with noise and adversarial input, which could add in-
sights to the field of artificial intelligence. On the other hand, immunologists
can gain insights on how the immune system learns. One of the tasks that is
interesting for both these fields of research is the task of anomaly detection.
The task of anomaly detection is detecting anomalies with only knowledge
of what is normal or non-anomalous. The immune system’s solution for this
is negative selection.
In negative selection, a set of classifiers is filtered based on whether they rec-
ognize the “self” and is removed if it does. This results in a set of classifiers
which does not react with the “self”, but if it does react with something
else, it is likely that thing is anomalous. In the human immune system,
this happens based on specific cells called T-cells and their ability to bind
to other cells. In artificial immune systems, this translates to strings and
functions that determine whether two strings match or bind. An artificial
implementation of negative selection is simply and similarly called a negative
selection algorithm. Such algorithms have been produced before, and it has
been shown that a negative selection algorithm can perform competitively
in respect to other algorithms on the task of anomaly detection [9].
However, the negative selection algorithm is very binary in its classification,
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something is either anomalous or it is not. This is a very strict classification
that loses potential information about how anomalous something is. For ex-
ample, a measure of how anomalous something is can be based on how often
it occurs in the non-anomalous training data. It has not been researched
whether incorporating matching that uses values based on the frequency of
occurring in the training data can lead to increased performance.
Intuitively, it does seem advantageous to distinguish between different strengths
in matching for the negative selection algorithm, and it could help improve
its performance. Therefore, our research question is: will incorporating
weighted matching improve the performance of the negative selection algo-
rithm?
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Chapter 2

Preliminaries

In this chapter, we present some of the underlying theory used in the rest
of the research. Because we are going to test and evaluate our algorithms
on the task of anomaly detection, we will first discuss what this task is and
how we can evaluate the effectiveness of algorithms on this task. Because
of our use of sequential data and looking at small sequences of this data,
we will discuss the basics of n-grams and how they are generated for use
in the algorithms in this research. And finally, for better understanding of
the general concepts, we will explain negative selection in the immune sys-
tem and how this inspired and translates to the negative selection algorithm.

2.1 Anomaly Detection

We evaluate the performance of various algorithms on the task of anomaly
detection. Anomaly detection is the task of detecting anomalous data from
a data set containing both anomalous and non-anomalous data. While it
seems similar to binary classification at first glance, the challenge in the task
of anomaly detection is that only training data of the non-anomalous class
is available, the algorithm does not train with any anomalous data.
Some examples tasks of anomaly detection are: recognizing a different lan-
guage in a text, detecting malicious behaviour by programs of an antivirus
program or the identification of foreign cells in the human body by the im-
mune system. The latter of these is of interest in particular because we will
be using the negative selection algorithm in this research, which is based on
the similarly named process in the human immune system.
For measuring the performance of the anomaly detection task, we will use a
metric called “AUROC” (Area Under Receiver Operating Characteristics).
For this we will first have to plot an ROC curve, by plotting the TPR (True
positive rate, also known as recall) values against the FPR (false positive
rate) values. These values are gained by moving through each index of a

4



given ranked result list, which is in this case ranked on how anomalous data
is perceived to be. At every index the true positives (TP), false positives
(FP), false negatives (FN) and the true negatives (TN) up until that index
are counted (If two results were given the same score they are considered
as having an equal rank or index). Here true positives are data points with
positive labels that are correctly classified as positive, false positives are
data points with negative labels that are wrongly classified as positive, true
negatives are data points with negative labels that are correctly classified as
negative, and false negatives are data points with positive labels that were
wrongly classified as negative. These values are used to calculate the TPR
and FPR at a given index i as follows:

TPRi =
TPi

TPi + FNi

FPRi =
FPi

FPi + FNi

When you plot the TPR on the y-axis versus the FPR on the x-axis, you
create an ROC curve. The ROC curve itself is a graphical tool that helps to
show how well an algorithm is able to classify. AUROC is a concrete value
derived from the ROC curve. Since the TPR and FPR are always values
between 0 and 1 the ROC curve can at most have an AUROC of 1, which
is also a perfect score, since it means it has correctly classified all the data
points. If one were to randomly assign classification to all the data points,
the AUROC would be around 0.5 which is the worst possible score. If the
AUROC is much lower than 0.5 it probably means that your classifications
are inverted – or something else is creating systematic issues.
AUROC is a valuable metric in this case since it incorporates multiple vari-
ables and also accounts for relative positions in the ranking of the test data,
instead of just right and wrong. Since the algorithms used in this research
produce a ranking of results, we will use this metric to evaluate them.

2.2 N-grams

N-grams are a way of representing parts of a data sequence. We test our
implementations of various algorithms on a lot of sequential data, and will
be using n-grams to represent parts of this data. N-grams are a sequence
of n similar items, where the items are from a sequential source, like words
or characters in a text or base pairs in DNA sequencing. N can have any
value, but this is usually dependent on the problem it is used in. N-grams
can be generated from a sequential data source in multiple ways. But in
this research we will be using a sliding window approach.
In a sliding window approach, the first N items are copied starting from an
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index, before moving the index by one. If there are not N items available in
the remaining sequence, no further n-grams will be created. For example,
if we take the input string “ABCDE” and N = 3, it would be transformed
into the 3-grams: “ABC”, “BCD”, and “CDE”.

2.3 Negative Selection

The negative selection algorithm is inspired by a similarly named process
within the human immune system. Such an algorithm based on the human
immune system can also be referred to as an artificial immune system. To
understand the general principles of this negative selection algorithm, it is
useful to understand the processes in the immune system it is based on and
how it translates to a computer algorithm.
The human immune system consists of many complex parts. One of these
parts is capable of producing cells that bind and recognize to specific cells us-
ing receptors. The immune system uses this interaction to find and destroy
infected cells. But how do you get a set of receptors that can identify all
types of infected cells, without wrongly identifying and destroying healthy
cells?
The immune system uses negative selection to solve that problem. An illus-
tration of negative selection can be seen in figure 2.1. In the thymus, T-cells
(a type of white blood cell created in the bone marrow) mature and gain
random T-cell receptors (TCRs). What a T-cell’s TCRs bind to is different
for each T-cell. This creates a large selection of T-cells with a large selection
of TCRs. They are then, still in the thymus, shown a selection of cells that
are native to the human body. Any of the newly created T-cells that bind or
react to the ‘normal’ cells are destroyed, since this is unwanted behaviour.
The remaining T-cells do not react to the body itself but could still react to
cells it has not yet seen, like cells infected with a virus it has not seen before.
If the set of TCRs is large enough, it should theoretically be able to recog-
nize any anomalous cells without attacking its own body. In practice this is
not the case, since many viruses and other attackers have ways of evading
the immune system, like HIV (human immunodeficiency virus). However,
the immune system is still often able to distinguish between anomalous cells
and non-anomalous cells.
This ability to classify and distinguish is useful, and by mimicking the pro-
cess we can create a classification algorithm. Such an algorithm is called
a negative selection algorithm. In this algorithm, instead of using T-cells
with receptors and observing whether they bind or not, we transcribe our
sequential data to strings and perform string matching using some matching
function on the n-grams generated from the strings. By mimicking a pro-
cess from the immune system to create an algorithm, we can now use the
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same principles for classification tasks on digital data. An example of how
we can mimic the principle in a digital environment can be seen in figure 2.1.

Figure 2.1: An illustration of how negative selection works in the human
body, and an example of how we can mimic this process. On the left, we see
the separate parts that are used in the process of negative selection. In the
middle, we can see that these parts are allowed to bind or match depending
on the specific environment. On the right, we see how the receptors that
interacted with their respective non-anomalous parts are removed, so that
only the receptors that are detecting anomalous parts remain.
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Chapter 3

Methods

We compare the performance of a simple Naive Bayes classifier and two
versions of a negative selection algorithm, each with two different matching
functions. We test these algorithms with various n-gram lengths and dif-
ferent threshold values on the negative selection algorithms on 10 datasets.
For each combination of variables and matching functions we will calculate
the AUROC score to evaluate them.

3.1 Naive Bayes N-gram Classifier

One of the algorithms we implemented is an N-gram classifier. This algo-
rithm will serve as a baseline and point of comparison to the other algorithms
we will discuss later in this chapter. The N-gram classifier works by taking
a set of string-like objects as input and transforming this into a dictionary
of n-grams and how often they occurred in the input data.
When a string to be classified is then given, it is similarly converted into
n-grams of the same size as the training data was. Each of these n-grams
are then given a score that represents how anomalous these n-grams are,
using the following formula:

n–gramscore =
ci + 1

t+ n

where i represents a specific n-gram, ci is the number of times that n-gram i
is present in the dictionary, t is the total amount of n-grams in the training
set and n is the total number of unique n-grams in the dictionary. We take
the n-th root of the product of n-gram scores in a sequence, where n is the
number of separate scores:

score(X) = n
√
x1 × . . .× xn

where X = (x1, . . . , xn), a vector of anomaly scores of a sequence of n-
grams. This operation is also known as the geometric mean and we use this
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to remove the impact of length of the data on its final score. If we score
an entire set of sequences, we can then sort them by their score and gain a
ranking based on how anomalous a sequence is perceived to be, where lower
scores are perceived to be more anomalous.

3.2 Negative Selection

The negative selection algorithm is based on the similarly named process in
the human immune system, as discussed in the preliminaries. We use the
algorithm of Textor et al. [10] in regard to using finite state automata for
the creation of populations of classifiers, as will be discussed later.
In negative selection we determine a score based on how many ‘receptors’
in a trained ‘repertoire’ match with n-grams of a data sequence in the test
set. Even though the classifiers and n-grams are both strings in the same
language, we will call a set of characters from the data an n-gram, and a set
of characters used for matching a receptor or classifier. Whether a receptor
matches with an n-gram or not is determined by matching functions using
a specific set of rules. To generate the trained ‘repertoire’, a set of all pos-
sible receptors is created and the receptors that bind to the n-grams of the
training set are removed. The trained repertoire can no longer react with
the ‘self’, but can still react to everything else. Now we should be capable of
distinguishing from non-anomalous and anomalous data sequences by how
often receptors in the generated ‘repertoire’ bind to them.
The algorithm starts by training on non-anomalous data. LetN be a positive
integer value chosen to represent the size of n-grams to be used in training,
matching and classifying. Then we create a population of classifiers that
contains all possible n-grams. These classifiers are our receptors, the pop-
ulation is our repertoire and in our case the items used will be characters.
This means that every classifier is a string and every population is simply
a set containing these classifiers. For example, if we would make an initial
population of possible strings of lower case characters with a word length
of three, we would have a population that consists of 263 classifiers. This
means that there will be potential limitations due to memory or runtime
constraints when working with larger alphabets or higher word lengths.
We also create a “self-reactive” population of classifiers. This is realized
by creating a finite state automata (FSA) that only accept the words that
matches to an n-gram, for all n-grams in the training data. The FSAs and
operations on them are implemented using the OpenFST library [1]. We
will explain the exact workings of the matching functions and how the FSAs
are constructed later on.
Now that we have a total population and a self-reactive population, we can
create an anomaly-detecting population by simply using the total popula-
tion minus the intersection of the total and self-reactive populations (since
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the total population contains all possible classifiers, this is equal to the total
population minus the self-reactive population). The anomaly-detecting pop-
ulation only contains classifiers that do not match with any word or n-gram
in the training set, but are still able to react with anomalies.
Now that we have an anomaly-detecting population (a repertoire of classi-
fiers that do not react with the ‘self’, but can still detect anomalies), we
can start classifying. For every data sequence we want to test, we first split
that sequence into n-grams using the sliding window approach. Then for
each n-gram in this sequence we create a population of classifiers similar to
how we made the self-reactive populations. We then take the intersection
of this population and the anomaly-detecting population we created earlier
to create a population of matching classifiers for this word. The amount of
classifiers in the intersected population is the number of matches of this n-
gram in the anomaly-detecting population, which we will note down. Once
we have done this for each n-gram in the sequence, we take the arithmetic
mean of the amount of matches and this will also act as the score for this
sequence. A sequence with a higher score is therefore one that is considered
more anomalous to the original training set.

3.2.1 Matching functions

The matching function in the negative selection algorithm is important to
determine which n-grams are considered a match to a specific classifier. A
simple choice would be to only consider an n-gram as a match if it is exactly
the same, but we want to have more options than just that. The two dif-
ferent matching functions we will be using are r-contiguous and Hamming
distance. Both of these functions take as input: the n-gram of which we
want to find the matching words and a threshold value, which is an integer
value of at least 1 and at most the length of the input n-gram.
In the r-contiguous function, a word is considered a match if a contiguous
sequence of at least the threshold value in size is equal to the input n-gram.
Note that the matching sequence needs to match on the same indices. For
example, if we have the alphabet consisting of A and B and our input N-
gram is “AAA” and a threshold value of 2 the matching n-grams would be:
“AAA”, “AAB” and “BAA”.
The Hamming distance function is similar to the r-contiguous function, ex-
cept that we do not require the matching parts to be a single sequence.
To be a match for the input n-gram, we only need a number of identical
items on the same index equal or higher than the threshold value. Using the
same example as with the r-contiguous function we would gain the matching
words: “AAA”, “AAB”, “BAA” and “ABA”.
We find the matches to a n-gram by creating an FSA according to the chosen
matching function, word length and threshold values. This FSA accepts only
those matches and can then be used to generate the population of matches.
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This is faster than creating a large list of strings directly.
For intuition, it helps to see the states of the FSA as if they were laid out
in a rectangular pattern, where the rows translate to the number of “hits”
(a successful match of the item in that index) so far. Secondly the columns
translate to the position in the word. When building the FSA, edges are
added for all items in the alphabet, with a “hit” translating to an edge that
goes down by one and a “miss” translating to either just going one node to
the right in the case of Hamming or resetting back to the top row in the
case of r-contiguous. For reachable edges in the bottom row that are not in
the last column, an edge will be created for the full alphabet to go one to
the right. The bottom most right most node is always the only finite state
in the FSA. In figure 3.1 you can see the respective FSAs for r-contiguous
and Hamming as used in the examples above.

Figure 3.1: Two examples of how FSAs can be used to create all matching
receptors of an n-gram and a threshold value: Left is r-contiguous, Right is
Hamming

3.2.2 Weighted Negative Selection

We made a slightly modified version of the negative selection algorithm that
incorporates weighted matching. For weighed matching we can make use of
WFSAs, FSAs where each edge has a weight. The weight of a classifier that
is accepted by an WFSA is equal to the product of the weights of the edges
along the path from the initial to the accepting state. We generally give
all edges a weight of 1 so that different values for word length or threshold
influence the score. If we want to change the weight of a classifier we can
do so by giving the accepting state an extra weight.
Classifiers in the population of all possible classifiers are created with a
weight of 1, Classifiers in the self-reactive population are created with a
weight equal to the negated frequency (a number between -1 and 0) of the
total amount of n-grams in the training set. Since we do not have a function
that can subtract the weights in the self reactive population from the total
population, we have to add the negated self-reactive population to the total
population instead. When both sets contain the same classifier, the weights
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of these classifiers are added up (and only one of these classifier remains).
The idea behind this approach is that the algorithm also takes into account
how often a certain n-gram appears in the training set. This should make
it so that the scores better represent how anomalous a sequence is.

3.3 Datasets

In this research we look at the performance on ten datasets from the work
of Chandola et al. [2] five of these datasets are protein family datasets
while the other five are intrusion detection datasets. The 5 protein family
datasets are HCV, NAD, RUB, RVP, and TET. Each of these datasets
consists of a training set, containing amino acid sequences of the respective
protein family, and three labeled testsets of differing size and anomaly ratios.
Anomalies in these testsets are amino acid sequences from other protein
families.
The five intrusion detection datasets are UNIX system calls translated to
a sequence of characters. These datasets also consist of a training set and
three different testsets. The anomalies in these sets are system calls made
by processes that are compromised from an attack.

3.4 Testing setup

We will evaluate the results of the Naive Bayes classifier and the two im-
plementations of our negative selection with two matching functions each.
We will do this by training and classifying the algorithms on 10 different
datasets and different values of the parameters word length and threshold.
An overview on what algorithms are run with which variables can be found
in table 3.1. Some additional results for the HCV and snc-cert en snd-unm
have also been produced and are discussed in the results chapter.
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Table 3.1: Overview of variables tested. There were more planned results,
but due to runtime constraints not everything has completed.

Algorithms Matching Function Word Length N Threshold R

Protein family datasets

Naive Bayes - 1-6 -

Negative Selection R-contiguous 1-6 R=N

Negative Selection Hamming 1-4 R=N, ..., R=N-3

Weighted Neg. Sel. R-contiguous 1-6 R=N

Weighted Neg. Sel. Hamming 1-4 R=N, ..., R=N-3

UNIX system calls

Naive Bayes - 1-6 -

Negative Selection R-contiguous 1-6 R=N

Weighted Neg. Sel. R-contiguous 1-6 R=N
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Chapter 4

Results

In this chapter, we will show and discuss the results of the performed tests.
We have run a Naive Bayes classifier and two versions of a negative selection
algorithm, each with two matching functions on 10 data sets. Each run has
produced a list of scores on test data, of which we have taken the AUROC
to evaluate their effectiveness and the effects of our tested variables. All
results can be found in appendix A, but we will summarize the most impor-
tant findings here.

4.1 General Observations

First, we will look at the specific case of exact matching (where the thresh-
old value is equal to the word length). Overall, one of the most important
variables here is word length. From the results we have obtained, we can
see that exact matching does not perform as well on lower word lengths
compared to higher word lengths, as can be seen in figure 4.1. The three
bsm datasets are a good example that show a general increasing trend with
word length. However, there are also datasets in which an optimum word
length is reached at word length 4 or 5, like the HCV and TET datasets,
as can be seen in figure 4.1. Even though an algorithm using higher word
lengths could learn more complex patterns, we hypothesise this is only true
as long as there is enough data that these patterns can be found, and that
the optimal word length is not only dependent on the data type and char-
acteristics but also the amount of data available for learning.
An unexpected result is that we have multiple AUROC values that are con-
siderably under 0.5. This means that in those runs, the algorithm might
be actively learning wrong or counterproductive information. This seems to
happen in runs with low word lengths on all three bsm datasets, and it only
occurs in the algorithms of the Naive Bayes classifier and the weighted neg-
ative selection, not in the regular negative selection. From this, we hypoth-
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esise it is related to the frequency of certain characters from the alphabet
in those datasets. Either there are characters in the alphabet that often oc-
cur in the training data and are considered to be very non-anomalous, even
though these are also common in anomalous data, or the opposite where
characters are not occurring often in the training data also do not occur of-
ten in anomalous data. This could result in the algorithm to be too strict or
not strict enough to certain characters, resulting in a biased scoring against
a certain class.

Figure 4.1: Influence of word length N on performance in cases of r-
contiguous where r = N . Here we see the general increase of performance
(AUROC) with increasing word lengths on all three algorithms. These are
three of the protein family datasets (HCV, TET and NAD) and three of the
UNIX system call datasets (snd-cert, snd-unm and bsm-week3) chosen to
give a representative selection of the produced data. The axis on the bsm-
week3 plot has been altered to show all data points, and a line is plotted at
an AUROC value of 0.5 to demonstrate that this is an unexpected result.
We can see the increase in score with increase in word length all in graphs,
except for the HCV and TET plots, in which it seems an optimum word
length is achieved at a word length of around 4 or 5.
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4.2 Performance of weighted against unweighted
selection differs per dataset

In figure 4.1 we can see that with few exceptions the weighted version of
negative selection performs roughly equal or (slightly) worse than the base
version of negative selection at word lengths of 3 and higher when using exact
matching. However, we can also see that at lower word lengths on all protein
family datasets, there are significant result gains when using the weighted
negative selection. The algorithm performs worse on weighted negative se-
lection on lower word lengths on the bsm datasets, as mentioned earlier. On
snd-unm dataset, the weighted negative selection performs notably better at
all word lengths. On the snd-cert dataset however, the algorithm performs
somewhat worse when using weighted negative selection. Most of these ex-
amples are visible in figure 4.1, all other results can be found in appendix
A.
From this, it seems that the effect of the weighted negative selection versus
the base negative selection is heavily dependent on the data type, alphabet
size or word lengths. The bsm datasets have the largest alphabets of the
datasets by far, but at this point it is unclear whether this is the specific
reason for its performance or not.

4.3 Threshold value influences performance more
than word length

In figure 4.2 we see examples of Mamming runs on the HCV dataset, in the
figures the scores are coloured according to their threshold value. One of
the most noticeable results when looking at this figure, is that on runs using
a threshold value r lower than the word length n, the AUROCs seem to be
more dependent on the value of r than on the value of n.
We saw from our results that when running with r=n, that the unweighted
algorithm performed best on the HCV dataset at n=5 and the weighted al-
gorithm performed best at n=4. In figure 4.2 we see that regardless of word
length, the runs using those optimal word lengths as threshold value perform
the best or very close to it. For example, we see that for unweighted HCV
hamming at word length and threshold value of 3 the algorithm performs
better than any algorithm using word lengths of 2 or lower. For higher val-
ues of word length, the performance for algorithms using a threshold value
of 3 remains comparable.
It seems that at higher values of word length, it is no longer optimal to have
the threshold value be equal to the word length. But we would need further
testing at higher word lengths to see if this trend continues or that there
is an optimal threshold value, similar to how some datasets had an optimal

16



word length.

Figure 4.2: Here we see the influence of threshold value on performance.
Runs with the same threshold value have the same colour to illustrate the
strong relation between threshold value and performance. As we can see for
the dataset of HCV when using hamming matching for both weighted and
unweighted negative selection, is that word length influences the AUROC
results less than the threshold value. The y-axes (AUROC) are scaled dif-
ferently to improve readability.

4.4 Future research

We have seen that weighted negative selection can perform better than the
base version in certain situations. However, there are many situations where
this has not been the case. In future research, possible avenues of approach
could be attempting to improve weighted negative selection by determining
what causes the reduced performance of weighted negative selection, espe-
cially in the case of the bsm datasets. Testing different ways of incorporating
weight or changing how much the weight influences the scoring might result
in an improved version of the tested algorithms with more positives and/or
fewer drawbacks. For example, by reducing the impact of weights by a large
factor, you would get a performance closer to unweighted negative selection,
except in cases when negative selection would be scoring all data equally,
like in the case of lower word lengths, in which it would likely only be an
improvement.
It could also be useful to continue research on this subject with a larger pa-
rameter space, as it could give more definitive answers on some results and
hypotheses discussed earlier. Specific information that this could produce
would for example be if every dataset has an optimal word length and if
there are correlations between such an optimal word length and the size of
the alphabet and the training sets. It could also help predict what influences
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whether the weighted version performs better or worse on any given dataset.
Besides a larger parameter space, evaluating more data types like languages
and other approaches for generating n-grams like chunking instead of a slid-
ing window could help to understand, and in turn improve the performance
of weighted negative selection. Especially with the latter, it could be inter-
esting to see if the relation between the threshold and performance stays the
same for value of threshold that are lower than the word length.
Another line of research is to look at how much our understanding of the im-
mune system and how much our understanding of artificial immune system
can influence one another. By looking at how the immune system handles
some of the issues we are facing we could try to adapt those solutions to our
algorithms, and conversely if we notice a certain effect in our algorithms,
this could inspire new hypotheses on how the immune system deals with
certain issues or challenges. For example, we showed in our research that
weighted negative selection had significant impact on the results when look-
ing at lower word lengths. Maybe since we have found this to be a possible
solution for situations where we have limited information, the human im-
mune system has evolved to handle this problem similarly.
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Chapter 5

Related Work

Artificial intelligence and the immune system initially seem like two different
concepts that do not overlap much. The combination of artificial intelligence
and the immune system is however not that new or niche. For example, as
early as 1986, Farmer et al. [5] recognized that the immune system is capa-
ble of learning, memorizing and recognizing patterns and that this process
was able to be simulated on a computer.
In 1994, Forrest et al. [6] researched the problem of discriminating between
self and nonself, specifically in the context of protecting computer systems.
They researched a solution based on the generation and behaviour of T cells
in the immune system and show how this approach could be used to solve
the problem of computer system protection.
Eventually however, criticism about the efficiency and scalability of negative
selection and other algorithms based on the immune systems were published.
Kim et al. [7] researched an artificial immune system for network intrusion
detection and concluded: “the computation time needed to generate a suf-
ficient number of detectors is completely impractical”. More research on
the complexity of the negative selection algorithm has been done by Stribor
et al. [8] and Timmis et al. [11] with similar concerns, and the latter of
these claims that the problem of generating detectors in a negative selection
algorithm is equivalent to an NP-complete problem. A property that would
confirm that the generation of detectors for negative selection is not practi-
cal.
Elberfield et al. [3] [4] have instead shown that negative selection can run in
polynomial time instead of exponential time. They have proven that if an
automata can be created in polynomial time, the detectors can be created
in polynomial time as well.
This approach has been implemented and evaluated by Textor [9]. They
compare the r-chunk and r-contiguous detectors versus various other tech-
niques on 14 datasets from real-world sources and found that these methods
performed as well or better. Textor et al. [10] continue this line of research
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with more detectors on various related algorithmic tasks.
We are building on this approach of the negative selection algorithm by
researching weighted matching and taking into account frequency in the
matching and scoring of the algorithm.
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Chapter 6

Conclusion

We have implemented negative selection with weights and tested how it
performed against the normal unweighted variant. We have shown that
weighted negative selection generally performs similarly or slightly worse
than the unweighted version. It can however improve performance when
using lower word lengths. In the future, we could evaluate whether weighted
negative selection can be improved by increasing or decreasing how much the
weights influence the final score, or how weighted negative selection performs
with different matching functions or using a chunking approach instead of a
sliding window for generating n-grams.
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Appendix A

Result Tables

We have ordered our results in six tables, corresponding to the word length
used for those runs. In each table we will have one column for the results of
the naive bayes classifier, one for the base version of the negative selection
algorithm, and one for the weighted negative selection algorithm. In tables
starting from word length 2, we will also be adding columns for the results of
both versions of negative selection that use a threshold value lower than the
word value. For some word lengths we have tested more threshold values,
but we have not tested for values that are more than 3 lower than the word
length, both because of runtime concerns and that initial testing showed
that these results did not perform competitively.

In these tables there are a number of missing results, this is because many
of these runs require an unexpectedly long runtime to complete. Run times
for the negative selection algorithms increase not only with word length, but
also when the threshold value is closer to half the word length. We have
tried to produce as many results as possible while also producing a set of
representative results that should be enough to show the differences between
algorithms and variables.
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Table A.1: Results for word length 1

Dataset NB NS WNS

HCV 0.862 0.540 0.895

NAD 0.626 0.510 0.583

RUB 0.309 0.500 0.416

RVP 0.898 0.500 0.988

TET 0.941 0.640 0.945

snd-cert 0.871 0.599 0.668

snd-unm 0.919 0.500 0.915

bsm-week1 0.308 0.500 0.353

bsm-week2 0.426 0.570 0.321

bsm-week3 0.402 0.599 0.310

Table A.2: Results for word length 2

Dataset NB NS WNS NSH-1 WNSH-1

HCV 0.972 0.538 0.968 0.540 0.899

NAD 0.650 0.587 0.574 0.510 0.578

RUB 0.793 0.498 0.774 0.500 0.423

RVP 0.989 0.627 0.987 0.500 0.988

TET 0.986 0.697 0.971 0.640 0.937

snd-cert 0.894 0.908 0.689 —– —–

snd-unm 0.947 0.699 0.926 —– —–

bsm-week1 0.319 0.497 0.526 —– —–

bsm-week2 0.415 0.627 0.510 —– —–

bsm-week3 0.464 0.697 0.537 —– —–
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Table A.3: Results for word length 3

Dataset NB NS WNS NSH-2 NSH-1 WNSH-2 WNSH-1

HCV 0.995 0.987 0.984 0.578 0.540 0.967 0.905

NAD 0.740 0.746 0.678 0.605 0.510 0.594 0.589

RUB 0.989 0.989 0.922 0.498 0.500 0.733 0.442

RVP 0.997 0.996 0.992 0.644 0.500 0.991 0.988

TET 0.996 0.930 0.991 0.717 0.640 0.963 0.931

snd-cert 0.910 0.957 0.881 —– —– —– —–

snd-unm 0.960 0.768 0.927 —– —– —– —–

bsm-week1 0.414 0.495 0.538 —– —– —– —–

bsm-week2 0.474 0.656 0.485 —– —– —– —–

bsm-week3 0.640 0.736 0.564 —– —– —– —–

Table A.4: Results for word length 4

Dataset NB NS WNS NSH3 NSH2 NSH1 WNSH3 WNSH2 WNSH1

HCV 0.998 0.999 0.988 0.990 0.578 0.540 0.988 0.961 0.908

NAD 0.901 0.902 0.875 0.746 0.605 0.510 0.644 0.604 0.592

RUB 0.997 0.997 0.994 0.990 0.498 0.500 0.890 0.709 0.451

RVP 0.998 0.998 0.994 0.996 0.751 0.500 0.995 0.991 0.988

TET 0.998 0.997 0.995 0.960 0.736 0.640 0.989 0.955 0.926

snd-cert 0.917 0.957 0.894 —– —– —– —– —– —–

snd-unm 0.970 0.847 0.928 —– —– —– —– —– —–

bsm-week1 0.554 0.643 0.566 —– —– —– —– —– —–

bsm-week2 0.614 0.705 0.460 —– —– —– —– —– —–

bsm-week3 0.779 0.775 0.566 —– —– —– —– —– —–
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Table A.5: Results for word length 5

Dataset NB NS WNS NSH4 NSH3 NSH2 WNSH4 WNSH3 WNSH2

HCV 0.999 0.999 0.982 0.999 0.990 —– 0.990 0.986 —–

NAD 0.966 0.966 0.941 —– —– —– —– —– —–

RUB 0.996 0.997 0.996 —– —– —– —– —– —–

RVP 0.997 0.997 0.996 —– —– —– —– —– —–

TET 0.996 0.996 0.995 —– —– —– —– —– —–

snd-cert 0.922 0.956 0.894 —– —– —– —– —– —–

snd-unm 0.970 0.848 0.934 —– —– —– —– —– —–

bsm-week1 0.584 0.642 0.604 —– —– —– —– —– —–

bsm-week2 0.685 0.745 0.419 —– —– —– —– —– —–

bsm-week3 0.840 0.805 0.575 —– —– —– —– —– —–

Table A.6: Results for word length 6

Dataset NB NS WNS NSH5 NSH4 NSH3 WNSH5 WNSH4 WNSH3

HCV 0.997 0.998 0.976 0.999 0.999 —– 0.985 0.991 —–

NAD 0.969 0.978 0.948 —– —– —– —– —– —–

RUB 0.998 0.997 0.996 —– —– —– —– —– —–

RVP 0.997 0.997 0.995 —– —– —– —– —– —–

TET 0.980 0.980 0.977 —– —– —– —– —– —–

snd-cert 0.935 0.956 0.919 —– —– —– —– —– —–

snd-unm 0.967 0.857 0.944 —– —– —– —– —– —–

bsm-week1 0.634 0.642 0.611 —– —– —– —– —– —–

bsm-week2 0.726 0.774 0.410 —– —– —– —– —– —–

bsm-week3 0.875 0.815 0.593 —– —– —– —– —– —–
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Appendix B

Code

Code can be found at:
https://gitlab.computational-immunology.org/alucassen/abel-bachelor-thesis-
ngram-classifier
There are three python files for naive bayes, negative selection and weighted
negative selection respectively. These files work at least with python version
3.6.9 and 3.9.7. More instructions can be found in the readme file in the
repository.
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