BACHELOR THESIS
COMPUTING SCIENCE

Fia:

a
é\9 Ny
S
orrer

MiNe €

RADBOUD UNIVERSITY

A security analysis of the TP-Link
TL-WRS802N Router

Author: First supervisor/assessor:
Ciske Harsema dr. Buhan, L.R. (Ileana)
51010048 ileana.buhan@ru.nl

Second assessor:
dr. ir. Poll, E. (Erik)

e.poll@cs.ru.nl

January 6, 2022

Abstract

With the rise of cheap internet connected devices, there has also been a rise
of incidents related to such devices. While not very powerful in isolation, the
combined power of these devices can lead to significant real-world impact.
One clear example of this impact are record breaking Distributed Denial
of Service attacks, performed by infected devices part of botnets, through
malware such as the Mirai family. Devices are frequently infected through
common security vulnerabilities, such as default credentials. There is a clear
need to improve the security by eliminating such vulnerabilities. As vendors
have been slow to react, external research highlighting vulnerabilities is a
useful tool to both put pressure on vendors to address the issues, but also
help inform consumers in making safer choices when purchasing such de-
vices. In this research project we investigate the state of security for one
such device: the TP-Link TR-WR802N Router. The goal of this research
project is to ascertain to what degree the device is at risk from vulnera-
bilities commonly found in similar devices, and document the results in a
report.

Contents

1 Introduction 3
2 Preliminaries 5
3 Scope 7
4 Research 9
4.1 Physical analysiso 9
4.1.1 Interpreting the bootlog 14

4.2 Wireless scanning L oo 15
4.3 Obtaining the firmware 15
4.3.1 Extracting firmware from the device 17

4.3.2 Interpreting extracted firmware 17

4.4 Initial filesystem analysis 18
4.4.1 Cracking the admin password 20

4.4.2 Overview of dependencies 21

4.5 Known vulnerabilities Lo 21
4.5.1 OpenSource CVEs. 21

452 GDPRsystem 21

4.5.3 Command injections 24

4.5.4 Buffer overflows 0oL 24

4.6 Comparison of firmware versions 30
4.6.1 Firmware header 31

4.6.2 Bootloader, 32

463 Kernel 33

4.6.4 Filesystemo oo 35

4.7 Decrypting config files oL 40
4.8 Generation of sensitive information 50
4.8.1 [Initial device parameters. 51

4.8.2 WPS Web Interface 51

4.8.3 Dropbearo 58

4.9 Firmware update process 63
4.10 Dynamic analysis 72

4.11 Findingso 75

4.11.1 Summary to research questions 75

4.11.2 Overview of vulnerabilities 76
Related Work 79
Future work 81
Conclusions 82
Appendix 88
A1l TL-WR802N Boot log 88
A2 idwlist scanresults 108
A3 TCP portscanresults. 109
A4 UDP portscan results 112
A.5 Third party dependencies 113
A.6 List of closed source binaries 113
A.7 Config decompression tool 114
A.8 Firmware filesystem compare script 116

Chapter 1

Introduction

Research has shown that the state of IoT security is lacking, with some
researchers even going as far as calling it a mess[17]. The state of router
security is also worrisome, as shown by numerous results that found firmware
vulnerabilities in 83%][5] of investigated routers.

Botnets pose a serious threat to internet connected users and systems[9].
Malware families such as Mirai have abused default credentials in IoT de-
vices in order to infect vulnerable devices, turning them into bots[10]. These
botnets have been used to launch devastating DDoS attacks, eventually ex-
ceeding 1 Thps, that caused outages in several important services, resulting
in substantial real-world impact[10, 7].

TP-Link is a major producer of network products, including over at least
80 routers[28]. One of their products is the TR-WR802N (EU, v4) router,
introduced in 2019[29]. Prior research has shown that TP-Link routers too
suffer from vulnerabilities[15]. As such, the subject of this research is to
conduct a security analysis of the TP-Link TR-WR802N router, with the
purpose of gaining a better understanding of the state of security for this
particular device. The scope of the research, along with specific research
questions, is elaborated in Chapter 3.

Performing such security analyses is not just a useful tool for informing
potential customers. By collaboration with vendors any found vulnerabilities
can be patched, resulting in safer devices. As new devices are routinely
introduced, it is also important that these analyses continue to occur.

The remainder of this research paper is structured as follows:

e Chapter 2 covers the preliminary knowledge needed to understand this
thesis.

e Chapter 3 covers the scope of the security analysis, along with concrete
research questions.

Chapter 4 covers the investigation conducted to answer the research
questions, and presents the findings.

Chapter 5 covers how this research relates to the broader academic
field.

Chapter 6 covers directions for additional follow up research.

Chapter 7 covers the conclusion of the research, presenting the key
findings.

Chapter 2

Preliminaries

Embedded devices roughly speaking consist of two parts: the hardware, and
the software it runs. The software in this context is frequently referred to
as firmware, as it is closely integrated with the hardware in question, as
opposed to more general purpose software than can run on a large number
of devices with various hardware support. This is not to say the firmware
may not also contain more general purpose software, but by enlarge the
nature of it means it runs fairly directly on the hardware; there are not
many abstraction layers.

The hardware can vary to a large degree, such as devices with wireless
capability requiring hardware to provide this capability, but there are some
common elements that are also relevant for the security analysis.

Most notable is the existence of some kind of processor unit, which executes
the software instructions. Various architecture families exist, such as x86,
ARM, and MIPS. The processor can be integrated with other components,
such as input/output ports, memory, and co-processors, into a single chip.
Such a chip is called a System on a Chip (SoC).

The WR802N device in question contains a MIPS based processor. MIPS
is a Reduced Instruction Set Computer (RISC), which compared to a Com-
plex Instruction Set Computer (CISC) is less complex. This is achieved
through means such as less instructions, typically of lesser complexity, fixed
size instruction encodings, and a load/store architecture. A load/store ar-
chitecture means that outside of dedicated load and store instructions, no
instruction uses memory operands. Instead all operands are either registers,
or constant values (called immediate values). This reduced complexity al-
lows for a simpler hardware implementation, which makes it well suited for
a constrained and low power context such as embedded devices.

Besides a processor, it is also common to find a flash storage chip that
provides persistent storage. It is used to store the firmware, as well as
persistent backing for file systems. The size of the flash storage varies greatly,

but is usually on the order of megabytes for devices comparable to the
WRS02N.

The PCB connecting all the components might also expose debug pads
and/or pins (called an interface) for protocols such as JTAG and UART.

UART is a basic protocol for serial data transfer. It consists of a ground
pin (GND), a transmit pin (TX), a receive pin (RX), and sometimes also a
voltage pin (VCC), typically 3.3 or 5 volts. Voltage changes of the RX/TX
pins are used to signal logical zeros and logical ones, allowing a single bit to
be communicated. These voltage changes occur with a certain rate, called
the baud rate. Both the sender and the receiver must use the same baud
rate in order to correctly interpret the signals.

Some devices that expose a UART interface use it for debugging purposes.
It might be used to output debugging information, such as real-time log
outputs, or even provide an interactive shell to the device, similar to an
SSH session.

The contents of firmware vary, but typically contain three key components:
a bootloader, a kernel, and one or more file systems. Once the device powers
on, control is handed to the bootloader. The bootloader is responsible for
setting up the device, and loading the kernel. Once the kernel is loaded, the
file system(s) can be mounted. These file systems can contain configuration
files, applications, and various other resources.

Chapter 3
Scope

As with any analysis, it is important to define the scope of the analysis
taking place. A complete analysis would involve a detailed investigation of
not only the entirety of the firmware, but also the hardware components
contained in the device. This not only requires a broad range of knowledge,
and specialized equipment to analyze the hardware components, but also a
significant amount of time. In the context of a Bachelor Thesis, conducted
by a sole researcher, this is simply not feasible. A decision therefore has to
be made what is included in the security analysis, and what is omitted.

To aid us with this decision we first define our attacker model, which doc-
uments the presumed capabilities of an attacker/threat actor. This has
significant impact on the scope of the research, as a nation state actor has
far more capabilities (in terms of personal, knowledge, and equipment) com-
pared to an individual attacker that only has access to knowledge and meth-
ods in the public domain, and does not possess expensive equipment. Our
chosen threat actor is an individual attacker, with capabilities that closely
mimic those of the researcher. The motivation for this is to make the find-
ings of this research representable for real-world scenarios. The capabilities
of the attacker are: access to relevant knowledge in the public domain,
physical access to the device during research, possession of configured cre-
dentials during research, and access to cheap equipment such as UART USB
adapters and multimeters. Notable limitations to the attacker capabilities
are: attacks that require active hardware manipulation, and attacks on the
web interface outside of aspects that directly interact with the device, such
as firmware updates and WiFi pin code generation. We also exclude any
hardware based side channel attacks on cryptography, such as (differential)
power analysis. The goal of the attacker is to gain access to devices, so that
they can be taken over and infected with malware, turning the devices into
bots under the control of the attacker.

The focus is placed on investigating common security vulnerabilities, in ad-
dition to enumerating basic security features and dependencies. This results

in the following research questions, henceforth referred to as RQ n, where
n is replaced by the respective number listed below:

1.

10.

Does the hardware expose debug ports, such as UART or JTAG, that
can be used to obtain debug output?

Is it possible to obtain the firmware of the device, either through debug
interfaces, vulnerabilities, or other means?

Is it possible to flash custom firmware onto the device, not signed by
the vendor?

What network services are running on the device by default?

Does a comparison of available firmware versions reveal any changes
relevant to security, such as (undocumented) vulnerability patches?

Have prior publicly known vulnerabilities been addressed by the ven-
dor, or does a known vulnerability remain?

Which software products, and specifically which versions, are used by
the firmware?

Does the firmware expose sensitive information, such as keys, certifi-
cates, password, or other such information?

How is sensitive information, such as the WiFi pin code, generated?

How does the firmware update process work from a security perspec-
tive?

While investigating the above research questions, any security relevant in-
formation is also documented.

Not only do these research questions give an immediate overview of the
current state of security, and susceptibility to common attack vectors, but
it also aids in retaining a future overview of potential susceptibility. This is
achieved by identifying and enumerating the dependencies of the device. It
is possible that some of these dependencies are also used in other products
or devices, for instance popular open source software. If at a later time
a vulnerability is discovered in a specific version of a dependency, one can
retroactively see the device in question is also vulnerable without first having
to re-conduct a complete security analysis.

Chapter 4

Research

4.1 Physical analysis

Initial inspection of the device shows there are no screws or glue that hold
the case together. In order to open the device the blue top cover, shown in
Figure 4.1 must be pried open.

&
/

Figure 4.1: TL-WRS802N

Afterwards the PCB can be removed from the plastic casing; there are no
screws or glue to hold it in place. The front of the PCB, with part of the
heat sink removed, is shown in Figure 4.2. The back of the PCB, with some
leads soldered to pads, is shown in Figure 4.3.

At the front of the PCB we can see the SoC in Figure 4.4, which is a Mediatek
MT7628NN chip. This chip is specifically designed for AP /router devices,
and integrates amongst other features 2.4GHz WiF1i 4 (n) and Ethernet[30].

2 AN, 94Y-G
119210558 E£248237
[= %) kB-6160

2050500885

-

— —_—

Figure 4.3: Back of the PCB

It contains a single 32-bit MIPS 24KEc core that runs at 575/580MHz[30].
Also noteworthy is the mention of UART(3) under the I/O section, which
is a possible hint that the PCB could expose a UART interface.

Figure 4.5 shows an XMC QH64AH16 flash chip, which presumably con-
tains the firmware. Other TL-WR802N boards have been observed with
Winbond flash chips rather than XMC flash chips, but these parts seem
interchangeable.

10

—
x
v

SO N R RN NN .

oo <
62y

-

§1I=08)
o

|
1l
ot' 1Pas

A~
" -

P = PRLALLALLLLLA LI . gy

—mil)
[)

)
:

»

6

Figure 4.5: XMC QH64AH16 Flash memory chip

At the back of the PCB we observe pads labeled TP1, TP2, TP3, and TP5,
as shown in Figure 4.6. Somewhat curiously, no pad labeled TP4 exists.
Since we know the SoC support UART, and no other pads or pins on the
PCB are labeled with anything resembling a UART interface, a hypothesis
is made that the TP label stands for ”Test Pad”, and that these pads are
related to UART. In order to test this hypothesis, we can either use a device
called a logic analyzer to try and identify the interface automatically, or we
can attempt to do this manually using a multimeter[8, 2].

11

-~ s

Figure 4.6: TP pads

After checking with a multimeter in continuity mode, it appears TP1 is
GND (ground). Switching to DC mode and power cycling the device, we
then observe that TP3 and TP5 fluctuate between 0 and 5 Volts as the device
boots. This indicates that TP3 and TP5 are possibly TX (transmit) and
RX (receive). TP2 appears to have no function, which would be consistent
with the Mediatek specifications of the SoC supporting UART(3), which is
likely a variant of UART only featuring TX/RX/GND, and no Vce.

The next step is to confirm that TP1, TP3 and TP5 indeed expose a UART
interface. We solder leads to the pads, and connect them to the GND, TX
and RX pins of a TTL USB UART adapter. As we do not know whether
TP3 and TP5 are TX and RX, or RX and TX, and do not know at which
baud rate the UART interface operates, we begin identifying this by trial
and error. As long as we guess RX and TX correctly, we should at least

12

observe output, even if scrambled due to an incorrect choice of baud rate,
giving us only two options to test. For the baud rate we assume that a
common value such as 115200 or 9600 is used, but scripts do exist that can
help to automate the process[2].

With the guess that TP1 is GND, TP5 is RX, TP3 is TX, and the baud
rate is 115200 we observe log output from the boot process of the device
after power cycling, and are eventually dropped in an interactive shell as
root. This means we effectively have full control over the device; there is
no authentication whatsoever. A snippet of the output is shown below. See
Appendix A.1 for the full output. It is now clear that the device does indeed
expose debug information through the UART interface, providing a positive
answer to RQ 1.

$ sudo screen /dev/ttyUSBO 115200

U-Boot 1.1.3 (Jun 23 2020 - 17:33:43)

Board: Ralink APSoC DRAM: 64 MB
relocate_code Pointer at: 83fb8000
flash manufacture id: 20, device id 70 17

Warning: un-recognized chip ID, please update bootloader!

Ralink UBoot Version: 4.3.0.0

ASIC 7628_MP (Port5<->None)

DRAM component: 512 Mbits DDR, width 16
DRAM bus: 16 bit

Total memory: 64 MBytes

Flash component: SPI Flash

Date:Jun 23 2020 Time:17:33:43

13

4.1.1 Interpreting the boot log

From the boot log we can infer several important facts. First it is clear
that U-Boot 1.1.3 is used as the bootloader, specifically the Ralink 4.3.0.0
variant adopted from the mainline 1.1.3 version. U-Boot is an open source
bootloader, commonly used in embedded Linux systems. As expected, after
decompressing the kernel, we see Linux boot, and then greet us with a
version string, showing it is running a 2.6.36 kernel.

Linux version 2.6.36 (jenkins@mobile—System) (gcc version 4.6.3
(Buildroot 2012.11.1)) #1 Tue Jun 23 17:35:59 CST 2020

Throughout the boot process numerous memory addresses are printed that
could aid in reverse engineering. One such example is Memory Technology
Device (MTD) output, which reveals the memory partitioning of the 8 MiB
address space.

mtd .name = raspi, .size = 0x00800000 (8M) .erasesize = 0
x00010000 (64K) .numeraseregions = 0

Creating 7 MID partitions on ”raspi”:

0x000000000000—-0x000000020000 : ”boot”

0x000000020000—-0x000000160000 : ”kernel”
0x000000160000—-0x0000007c0000 : "rootfs”
mtd: partition ”"rootfs” set to be root filesystem
0x0000007c0000—-0x0000007d0000 : ”config”

0x0000007d0000—-0x0000007e0000 : "romfile”
0x0000007e¢0000—-0x0000007£f0000 : "rom”
0x0000007f0000—-0x000000800000 : ”radio”

Lastly, we observe Dropbear, a popular open source lightweight SSH2 server,
is used to provide SSH access to the device. 1024 bit RSA and DSS (DSA)
keypairs are generated, which can be used to authenticate. The SSH server
is then started on port 22, using the file /var/tmp/dropbear/dropbearpwd
for password authentication.

[util_execSystem | 141: prepareDropbear cmd is ”dropbearkey —t
rsa —f /var/tmp/dropbear/dropbear_rsa_host_key”

Will output 1024 bit rsa secret key to ’/var/tmp/dropbear/
dropbear_rsa_host_key’

Generating key, this may take a while...

[util_execSystem | 141: prepareDropbear cmd is ”dropbearkey —t
dss —f /var/tmp/dropbear/dropbear_dss_host_key”

Will output 1024 bit dss secret key to ’/var/tmp/dropbear/

dropbear_dss_host_key ’
Generating key, this may take a while...

14

[util_execSystem | 141: prepareDropbear cmd is ”dropbear —p 22
—r /var/tmp/dropbear/dropbear_rsa_host_key —d /var/tmp/
dropbear/dropbear_dss_host_key —A /var/tmp/dropbear/
dropbearpwd”

4.2 Wireless scanning

During the wireless analysis of the device in default configuration we first
scan for wireless networks on another device using iwlist wlp59s0 scan.
The full scan output is shown in Appendix A.2. From the output we observe
that the device is broadcasting a network under ESSID TP-Link B488, and
uses WPA2 Version 1, CCMP/PSK for the wireless security.

The default wireless password, which is a sequence of eight numeric digits,
is printed on a label attached to the case of the device. It is unclear at this
point how this default password was generated. Assuming it is generated
as a sequence of eight independent digits with uniform probability, there
are a total of 10® possible combinations. This would mean an entropy of
log,(10%) ~ 26.6 bits, which offers little protection against an attacker that
has access to GPU accelerated password cracking, conducting a bruteforce/-
dictionary attack as outlined by numerous researchers [14, 11].

After connecting to the wireless network we note from our default gateway

and DNS parameters that the IP address of the device is 192.168.0.1. We

now conduct TCP and UDP portscans with Nmap, using commands nmap

-sV -sC -oA scan -p1-65535 192.168.0.1 and nmap -sV -sC -oA scan-udp
-sU 192.168.0.1 respectively. The full output of the TCP scan is shown

in Appendix A.3, whereas the UDP scan output is shown in Appendix A.4.
From the output we conclude that the device is running a DNS service on

port 53, UPnP on port 1900, DHCP on port 67, SSH on port 22, and HTTP
webserver on port 80, which provides our answer to RQ 4.

4.3 Obtaining the firmware

In order to obtain the firmware of the device we have two main approaches.
We can either try to extract the firmware from the device itself, or obtain
a copy from an external source, such as the vendor. In our case the vendor
lists three firmware updates [31], which after extraction contain a .bin file
of roughly 8 MiB. While uncertain at this point, this is a strong indication
that the update files contain a full copy of the firmware, as the size roughly
equals the in memory size observed from the boot log.

We download the latest version, at the time of writing 200623, and extract
the zip archive!. Using binwalk [50] we conduct a --signature scan:

1SHA1 checksum of .bin file is 13d5b9583472eeedc72a779bb86977dfdad0221

15

DECIMAL HEXADECIMAL DESCRIPTION

82048 0x14080 U-Boot version string , "U-Boot
1.1.3 (Jun 23 2020 — 17:33:43)”
132096 0x20400 LZMA compressed data, properties:

0x5D, dictionary size: 8388608 bytes, uncompressed size:
3286220 bytes

1442304 0x160200 Squashfs filesystem , little endian
, version 4.0, compression:xz, size: 4481884 bytes, 672
inodes, blocksize: 131072 bytes, created: 2020—06—23 09:41:13

We can see the bootloader is detected, as is a blob of LZMA compressed
data, which is likely the compressed Linux kernel. In addition we see a
Squashfs filesystem, so we attempt to ——extract it. This not only extracts
the Squashfs filesystem, but also places the LZMA blob in a separate file.
Conducting another signature scan on it using binwalk reveals it is indeed
the Linux kernel:

DECIMAL HEXADECIMAL DESCRIPTION

818514 0xC7D52 PGP RSA encrypted session key —
keyid: 801000 205242C RSA Encrypt—Only 1024b

2482280 0x25E068 Linux kernel version 2.6.36

2482452 0x25E114 CRC32 polynomial table, little
endian

2522064 0x267BDO0 DES SP2, little endian

2522576 0x267DDO0O DES SP1, little endian

2541392 0x26C750 CRC32 polynomial table, little
endian

2792924 0x2A9DDC xz compressed data

2844540 0x2B677C Neighborly text, ”
NeighborSolicits6InDatagrams”

2844560 0x2B6790 Neighborly text, ”
NeighborAdvertisementsorts”

2848027 0x2B751B Neighborly text, ”neighbor %.2x%.2
x.%pM lostrename link %s to %s”

3113520 0x2F8230 Certificate in DER format (x509 v3
), header length: 4, sequence length: 12160

3280896 0x321000 ASCII cpio archive (SVR4 with no

CRC), file name: ”/dev”, file name length: ”0x00000005”, file
size: 70x00000000”

3281012 0x321074 ASCII cpio archive (SVR4 with no
CRC), file name: ”/dev/console”, file name length: "0
x0000000D”, file size: ”0x00000000”

3281136 0x3210F0 ASCII cpio archive (SVR4 with no
CRC), file name: ”/root”, file name length: ”0x00000006" ,
file size: ”0x00000000”

3281252 0x321164 ASCII cpio archive (SVR4 with no
CRC), file name: "TRAILER!!!” , file name length: ”0x0000000B

16

7, file size: ”0x00000000”

4.3.1 Extracting firmware from the device

While optional at this point as we presumably already have access to the
complete firmware, we will still attempt to extract it from the device itself
to see if it possibly contains more information, and ascertain the presence
of any security measures.

Gaining access to a U-Boot shell would allow us to dump arbitrary memory
over the serial interface through a command such as md (memory dump).
There seems to be a wide variety amongst embedded devices using U-Boot
however when it comes to accessing this shell. Some devices boot straight
to it, others provide a countdown during which a key has to be pressed, or
pressing /holding a certain key during the boot process will cause the device
to boot into the U-Boot shell. Unfortunately none of these methods worked
for the device in question, causing this avenue to be abandoned.

An alternative approach is to de-solder the flash chip itself, physically remov-
ing it from the PCB, and placing it in an external flash programmer. This
programmer is then used to extract the memory contents. Afterwards the
flash chip can be re-soldered onto the PCB. As this is a destructive method
that can potentially damage the board, or even outright brick it if done
incorrectly, this avenue was not explored further, favoring other methods
instead.

Next we consider a SPI (Serial Peripheral Interface) based method, which
is outlined by Chantzis et al. [2]. We connect a SOIC clip to the pins
of the flash chip, which is subsequently connected to a Bus Pirate [52].
This Bus Pirate acts as a USB to serial adapter, and allows us to interface
with the flash chip as if we had de-soldered it and placed it in an external
programmer. Finally we use Flashrom [53], and issue a read operation using
the Bus Pirate as an adapter. This produces an 8 MiB file containing the
device firmware.

4.3.2 Interpreting extracted firmware

Now that the firmware has been extracted, we must verify we did so correctly.
It is possible that the memory content extracted is encrypted, or otherwise
protected. We again use binwalk to conduct a signature scan:

DECIMAL HEXADECIMAL DESCRIPTION

81536 0x13E80 U-Boot version string , "U-Boot
1.1.3 (Jun 23 2020 — 17:33:43)”

17

131584 0x20200 LZMA compressed data, properties:
0x5D, dictionary size: 8388608 bytes, uncompressed size:
3286220 bytes

1441792 0x160000 Squashfs filesystem , little endian
, version 4.0, compression:xz, size: 4481884 bytes, 672
inodes, blocksize: 131072 bytes, created: 2020—06—23 09:41:13

The output is nearly identical to our first signature scan of the downloaded
firmware, but seems shifted by 512 (0x200) bytes. After creating a copy of
the downloaded firmware, skipping the first 512 bytes, and comparing this
to the extracted firmware using the diff mode in binwalk we observe that
the first 0x7c0000 bytes are identical. After this the downloaded firmware
file ends, but the extracted file contains a further 0x40000 bytes.

Taking our knowledge regarding the mtd memory layout into account, we
know that the memory sections up to 0x7c0000 contain the bootloader,
kernel, and root filesystem. This indicates that the firmware extraction was
successful, and that the downloaded firmware only contains those sections,
preceded by a 512 byte header.

The remaining 0x40000 bytes in the extracted firmware contain the config,
romfile, rom, and radio sections. Except for the config section, these are
nearly entirely filled with 0x00 or Oxff bytes. The config section does not
contain any immediately readable data. The entropy graph of the firmware,
generated by binwalk and shown in Figure 4.7, reflects these observations.
The first two entropy spikes are the kernel and root filesystem sections,
which are both compressed. The last spike is the config section, followed by
the remaining sections that clearly have very little entropy. The fact that
the config section has an entropy of close to 1 suggest it is either compressed
or encrypted. Figure 4.8 shows the entropy of the config section in isolation.
Only about 60 percent of the section is filled with data; the remainder is
filled with zeros, explaining the low entropy. The section does not appear to
be compressed with any conventional compression algorithm, which likely
means it is encrypted.

We conclude that the answer to RQ 2 is yes. It is possible to obtain the
firmware, either by extracting it from the device, or downloading it from
the vendor. Extracting it from the device does provide access to the config
section, but we currently do not know how to decrypt it.

4.4 Initial filesystem analysis

Now that we can extract the root filesystem, we begin our analysis of its
contents. Under /bin we find all the common system utilities such as 1s and
cp, which are just symbolic links to one busybox binary that implements all
this functionality. Busybox is a popular open source choice on embedded

18

Entropy

Entropy

Offset le6

Figure 4.7: Entropy of extracted firmware binary

Entropy

Entropy

40000 50000 60000

0 10000 20000 30000
Offset

Figure 4.8: Entropy of config section

devices as it eliminates much of the overhead of having many small appli-
cations. Using the strings tool on this binary, we are able to identify the

version as v1.19.22.

Under /sbin, /usr/bin, and /usr/sbin we find more binaries, as well as
more symbolic links to busybox.

In /web we find all the files related to the web interface, and in /1ib we
find common system libraries. Under /1lib/modules we find various kernel
modules. Some of these modules have source code included in the GPL code
released, but not all. As these are firmware/drivers related to networking?
they are considered out of scope for this research.

Lastly, under /etc we find various configuration files, as well as several .dat
files that seem to originate from mtk_ApSoC_4320/wireless/lib/firmware
in the GPL code released. This again suggests binaries related to net-
working firmware, and thus considered out of scope. More interestingly
are default_config.xml and reduced_data model.xml. Both files are not
plain XML files, but rather have an entropy near 1. This likely means they
are encrypted, possibly with the same encryption scheme as the config mtd
section in the extracted firmware. Especially interesting is /etc/passwd.bak,
which contains an entry for the admin account, along with a hashed pass-
word. In a further attempt to discover any sensitive information such as
credentials, crypto keys, or certificates, we run firmwalker [51]. This yielded
no results not already noted however.

4.4.1 Cracking the admin password

In /etc/passwd.bak we observe that the admin account has a password hash
of $1$$iC.dUsGpxNNJIGeOm1dFio. From the structure we can infer that this
is an unsalted MD5 hash®. In an attempt to crack the password we use
John the ripper to launch a bruteforce attack against this hash. Nearly
instantaneously the password (1234) is cracked:

Created directory: /home/ubuntu/.john

Loaded 1 password hash (md5crypt [MD5 32/64 X2])

Press ’q’ or Ctrl-C to abort, almost any other key for status

1234 (admin)

lg 0:00:00:00 100% 2/3 3.030g/s 15496p/s 15496c¢/s 15496C/s
1234..qwerty

Use the "——show” option to display all of the cracked passwords
reliably

Session completed

*BusyBox v1.19.2 (2020-06-23 17:38:24 CST)
3raeth.ko, rt_rdm.ko, and mt_wifi.ko
“See the crypt(3) manpage

20

4.4.2 Overview of dependencies

Cross referencing all application and library binaries to the GPL open source
code package by the vendor [32], as well as conducting internet searches on
binary names or detected strings, reveals a significant portion of the binaries
originate from open source projects. Appendix A.5 shows the list of all open
source dependencies, their versions, and release dates, providing an answer
to RQ 7. Appendix A.6 shows the list of presumably closed source binaries.

For the web interface, it seems /web/js/cryptoJS.min. js is a minimized
version of the crypto-js library [33]. The version used is unknown. Inves-
tigating /web/js/encrypt.js reveals it appears to be a concatenation of
TrippleDES code found online [35], and jsbn by Tom Wu [39)].

4.5 Known vulnerabilities

4.5.1 Open Source CVEs

Looking at the list of open source dependencies, shown in Appendix A.5,
we observe that many of the release dates are over a decade old. Some
of these dependencies simply do not have a more recent version, such as
bpalogin. Others do have way more recent version, such as busybox, with
stable releases in late 2021.

Conducting a CVE search reveals several dependencies have documented
CVEs, namely busybox, uClibc, dropbear, openssl, iptables, U-Boot,
and Linux [37, 40, 43, 44, 45, 46, 47]. While it is possible that security
fixes have been (selectively) back-ported, as appears the case for at least
one pppd vulnerability (CVE-2020-8597, see Section 4.5.4), it is unclear to
what extend this has occurred.

4.5.2 GDPR system

Prior research results have found several vulnerabilities in the GDPR system
of the TP-Link Archer [24]. These vulnerabilities include weak entropy
leading to bruteforce attacks recovering plaintext credentials. Inspecting
/web/js/tpEncrypt.js reveals this device uses the same vulnerable key
generation:

AES. prototype.genKey = function () {

var key = (new Date().getTime() + 7”7 + Math.random ()
%1000000000) . substr (0, KEYLEN) ;

var iv = (new Date().getTime() + ”” + Math.random ()
x1000000000) . substr (0, IV_.LEN);

this.key = key;

this. _keyUtf8 = CryptoJS.enc.Utf8.parse(key);

this.iv = iv;

21

this._ivUtf8 = CryptoJS.enc.Utf8.parse(iv);

return {
key: key,
iv: iv

}

};

Other vulnerabilities relate to the generation of RSA parameters in httpd,
which if fails falls back to hardcoded values:

undefined4 http_rsa_getPubKey (char *xparam_1,undefined4 sparam_2
,int param_3) {
int iVarl;

if ((g-rsa_n_hex_str = (undefined4 *)0x0) || (param.3 !=
DAT_004315f0)) {
iVarl = FUN_00413260 (param_3);
if (ivarl != 0) {
g_rsa_n_hex_str = &g_hardcoded_rsa_n;
g_rsa_e_hex_str g_hardcoded_rsa_e;
g_rsa_d_hex_str g_hardcoded_rsa_d;

}
}
sparam_1 = g_rsa_e_hex_str;
xparam_2 = g._rsa_n_hex_str;

return 0;

}

As noted, failure can occur due to malloc failing to allocate memory:

undefined4 FUN_00413260(int param_-1) {
void *__ptr;
void *pvVarl;
size_t __size;

__size = ((int) (((uint)(param_1 >> 0x1f) >> Oxle) + param_1)
>> 2) 4+ 1;
DAT_004315f0 = param_1;
__ptr = malloc(-_size);
g_rsa_n_hex_str = __ptr;
if (__ptr != (void %)0x0) {
pvVarl = malloc(-_size);
g_rsa_e_hex_str = pvVarl;
if (pvVarl != (void *)0x0) {
g-rsa_d_hex_str = malloc(__size);
if (g-rsa_d_hex_str != (void x)0x0) {
rsa_gdpr_generate_key (param_1, __ptr ,pvVarl,
g-rsa_d_hex_str);
return 0;
}
free(-_ptr);
__.ptr = pvVarl;

22

free(__ptr);

}
fputs (” Malloc_.RSA_key._buffer_failed '\n” ,stderr);

return Oxffffffff;
}
Furthermore we see the b64_decode function is unchanged, as this Base64
decode function still truncates once it encounters a space character. This
matters as extra spaces are used during a replay attack to increase the data
length and a sequence value, but due to the truncation does not lead to
invalid decoding. The function is shown below:

int b64_decode(byte *param_1,int param_2,byte xinput,size_t

input_len) {

byte bVarl;

int iVar2;

byte xpbVar3;

uint uVar4;

uint uVarb;

byte xpbVar6;

iVar2 = 0;
if (input != (byte *)0x0) {
if ((int)input_len < 0) {
input_len = strlen ((char x)input);

while ((0 < (int)input_len && ((*(ushort *)(__ctype-b + (

uint)*input * 2) & 0x20) != 0))) {
input_len = input_len — 1;
input = input + 1;

}

And finally, we also see aes_tmp_decrypt_buf nopadding new has not been
modified, which suffers from a minor implementation flaw regarding padding;:

if (-1 < iVarl) {
AES _cbc_encrypt (param_1,param_2,iVar2 + 0x10,& AStack288,
auStack360,0) ;
_.n = remove_padding (param_2,iVar2,0x10);
if (-on != Ox{fffffff) {

iVar2 = iVar2 — __n;

memset (param_2 + iVar2,0,_.n);
}
sparam_3 = iVar2;
return 0;

}

We conclude none of these vulnerabilities published some 8 months ago at
the time of writing have been fixed. While this is understandable for the
firmware version investigated, as it was released prior to these vulnerabilities
being published, there has not been a new firmware release to address these
vulnerabilities either.

23

4.5.3 Command injections

A command injection vulnerability has been found in earlier TP-Link de-
vices [25], which revolves around a vulnerable execFormatCmd function in
httpd. No such function exists in our httpd binary, nor are any calls to
vsprintf made, which was the root cause of the vulnerability. As such, this
vulnerability is no longer present.

Another command injection works by restoring a config file [42]. A config file
is first exported, and then the Description key of the DeviceInfo section
is modified to include an injected command. A script is used to convert
between the encrypted and plaintext XML formats. After uploading and
restoring the modified config, the injected command is executed.

Attempting to re-create this exploit was somewhat troublesome. Export-
ing and converting the encrypted config to plaintext was easy, but the
Description key was not present by default. Luckily we had already de-
crypted reduced_data model.xml which shows it was present, and had the
following default value:

TP—-Link Wireless N Nano Router WRS802N

So to inject a command we add the following line under the DeviceInfo
section of our exported config:

<Description val="TP-Link Wireless N Nano Router WR802N‘cp /etc/
passwd /var/pwned‘” />

With this injection we utilize backticks (command substitution), as the
string is presumably passed to a system call. Using the provided script
to re-encrypt the modified config did not work out of the box. After at-
tempting to restore it, we are greeted with an MDb5 checksum mismatch
error. This was due to the script first computing the MD5 checksum, and
then padding the output length to a multiple of 8, rather than first padding
and then computing the checksum. After this tweak the new config was ac-
cepted, but did not seem to have triggered the command injection. It turned
out the command injection is triggered by upnpd, which was not running
as the device was configured in Access Point mode for testing. Turning
the device into the default Router mode did start upnpd, and successfully
triggered the command injection, copying /etc/passwd to /var/pwned, and
thus providing proof that the command injection still works.

4.5.4 Buffer overflows

Multiple buffer overflows have been found in TP-Link routers [21, 27, 26, 41].
We will now check whether these buffer overflows are still present in this
device.

24

17

19
20

21
22
23
24

25

26
27
28
29
30
31
32
33
34
35
36
37

The first overflow occurs in httpd in a function called ipAddrDispose [21].
This function no longer seems to exist, nor any function resembling that
name. The vulnerability has also been fixed, with updated firmware released
on 2019-03-12, which predates the release date of the firmware version we
are investigating. Whether it was not susceptible to begin with, or has been
fixed due to a patch since, it appears this vulnerability no longer exists.

The second overflow was found quite recently [27], only 6 months ago at the
time of writing. The vulnerability exists in the dm_fi110bjByStr function
(line 67), found in libcmm.so, shown below:

int dm_fillObjByStr (int param_1,uint param_2,void *xparam_3,char
xparam_4 , uint param_5) {
bool bVarl;
int iVar2;
char *xend_idx;
char xsep_idx;
int iVar3;
char xpcVar4;
undefined4 uVar5;
uint uVar6;
char key_buf [64];
char val_buf [1304];
char *xlocal_30;
size_t key_len;

uVar6 = param_2 & O0xffff;
iVar2 = 0;
if (xparam_4 != ’\0’) {
iVar2 = dm_getObjNode (uVar6) ;
if (iVar2 = 0) {
cdbg_printf(8,”dm_fillObjByStr” ,0x794 ,” Get_object (oid .=-%u
)oinfo.node_failed.” ,uVar6);
iVar2 = 1;
} else if (param_5 < *(ushort x*)(iVar2 + 6)) {
cdbg_printf(8,”dm_fillObjByStr” ,0x79e,
7object (%s, coid .="%u) _buf_will _exceed , _object .
size_is Ju, _but_buf_is %u” ,
x(undefined4 x)(iVar2 4+ 8),uVar6,(uint)x*(
ushort x)(iVar2 + 6),param._5);
iVar2 = 0x2650;
} else {
end_idx = strchr (param_4,L’\n’);
bVarl = false;
do {
if ((end.idx = (char *)0x0) && (bVarl)) {
return 0;

}
sep_idx = strchr (param_4 ,L’=");
if (sep-idx = (char *)0x0) {

cdbg_printf(8,”dm_fillObjByStr” ,0x7aa,
”String _format._error:_name_and._value.is.

25

separated _by.\"=\"\n");

38 return 0x232b;

39 }

40 key_len = (int)sep_idx — (int)param_4;

41 /* copy KEY from ’KEY=val$’ into key_buf x/

42 strncpy (key_buf ,param_4 ,key_len);

43 key_buf[key_len] = "\0’;

44 if ((*(byte =*)(iVar2 + 2) & 0x10) = 0) {

45 iVar3 = dm_checkAccessPermissions ((short)uVar6,param_3
,key_buf ,param_1);

46 pcVard = key_buf;

47 if (ivar3 = 0) {

48 uVarb = 0x7b9;

49 end_idx = ”Parameter(%s)._deny_access_by . %d”;

50 goto LAB_00088f04;

51 }

52 }

53 local_-30 = dm_getParamNode(uVar6, key_buf);

54 if (local_-30 = (char =*x*)0x0) {

55 cdbg_printf (8,”dm_fillObjByStr” ,0x7c0,” Get_parameter %
s\’s.infomation._failed .” /key_buf);

56 return 0x232d;

57 }

58 if ((*(ushort *)(local_-30 + 3) & 1) = 0) {

59 cdbg_printf(8,”dm_fillObjByStr” ,0x7c¢6 ,” Parameter(%s) .
deny._to_be_written.” jkey_buf);

60 return 0x2329;

61

62 if (end_idx = (char *)0x0) {

63 bVarl = true;

64 /x copy VAL from ’key=VAL$’ into wval_buf x/

65 strepy (val_buf ,sep_idx + 1);

66 } else {

67 /x copy VAL from ’key=VAIL\n$’ into wval_buf

*
/

68 strncpy (val_buf ,sep_idx + 1,(size-t)(end-idx + (-1 — (
int)sep_idx)));

69 key_buf[(int)(end_idx + (=1 — (int)sep.idx) + 0x40)] =

N0

70 param_4 = end_idx + 1;

71 if (end_idx[1] = ’\0’) {

72 bVarl = true;

73 end_idx = (char *)0x0;

74 } else {

75 end_idx = strchr (param_4,L’\n’);

76 }

77 }

78 iVar3 = dm_setParamNodeString(local_30 ,val_buf);

79 uVarb = 0x7e4;

80 } while (iVar3 = 0);

81 pcVard = xlocal_30;

82 end_idx = ”Set.parameter %s\’s.value_.to_.object_error.”;

83 LAB_00088f04:

84 key_-len = iVar3;

26

85
86
87
88
89
90

cdbg_printf(8,”dm_fillObjByStr” ,uVar5,end_idx ,pcVar4);
iVar2 = key_len;
}
}

return iVar2;

}

The param 4 parameter seems to contain a string of the form key=val,
where the value either continues to the end of the string, or until a newline
character is found. The value part of this parameter is isolated, and copied
to a local buffer of 1304 bytes called val_buf using a call to strncpy. As
no length checks occur, this creates a potential buffer overflow, which was
found by CVE-2021-29302.

Inspecting the function further reveals that in the case where the param-
eter does not include a newline character, the strcpy alternative, shown
in line 64, also suffers from a similar buffer overflow. This minor —but
non-discussed— variant is closely related to the prior CVE, but unless also
addressed could remain as a separate vulnerability.

Looking at how the key is processed, we observe a similar situation where
the key part is extracted, and copied into a local buffer using strncpy, as
shown in line 41. The length of the string copy is again determined by the
length of the key part, without any length checks. This makes it possible
to overflow the destination buffer key_buf, which is only 64 bytes in size,
creating yet another buffer overflow not discussed in the CVE.

This means that not only the device is most likely still susceptible to the
published vulnerability, but also that several closely related buffer overflow
vulnerabilities exist in the same function.

The third overflow was found in the /admin/syslog endpoint handler in
httpd [26]. A call to httpGetEnv retrieves a parameter string, which is
then copied into a local buffer using strcpy without any length validation,
resulting in a potential buffer overflow.

The /admin/syslog endpoint no longer seems to exist in our device binary,
nor does the httpGetEnv function. As such, we presume the device is not
susceptible to this buffer overflow.

While httpGetEnv no longer exists, a function called http_parser_getEnv
does. Quickly inspecting some call sites of this function looking for nearby
calls to string copy functions revealed the following function:

int FUN_0040b640(int param-1,undefined4 param_2,undefined4
param_3 ,undefined4 param_4) {
undefined4 test_arg;
char *pcVarl;
size_t sVar2;

27

int iVar3;

int xpiVar4;
undefinedl xpuVarb;
undefined arg_buf [64];
char msg_buf [2052];

puVard = & _mips_gp0_value;

test_arg = http_parser_getEnv (” testarg”);
http-tool_jsEscape(test_arg ,arg_buf);
sprintf(msg_buf,”var_testarg=\"%s\";\n” ,arg_buf ,param_4,puVarh

piVard = x(int =*x)(param_-1 4+ 0x84);

if (((piVard = (int *)0x0) || (*piVard != 1)) ||
(pcVarl = strstr («(char xx)(param_1 + Oxc),”/cgi_gdpr”),
pcVarl = (char %)0x0)) {
iVar3 = http_io_output (param.1,msg_buf);
iVar3 = —(uint) (iVar3d = —1);
else {

}

pcVarl = (char *)http_buf_getptr(piVard [7],0);

sVar2 = strlen (msg_buf);

strncpy (pcVarl ,msg_buf,sVar2);

iVar3 = #(int %) (*(int *)(param_-1 + 0x84) + Oxlc);

sVar2 = strlen (msg_buf);

x(size_t *)(iVar3 + Oxc) = x(int x)(iVar3 + Oxc) + sVar2;
sVar2 = strlen (msg_buf);

http_buf_incrpos(iVar3,sVar2);

iVar3d = 0;

return iVar3;

}

While a completely different function compared to the previously discovered
vulnerability, it suffers from a similar vulnerability pattern. The testarg
parameter is returned by a call to http_parser_getEnv, and assigned to
test_arg. A subsequent call to http_tool_jsEscape is made with test_arg
as the source parameter, and local buffer arg buf as the destination param-
eter. The implementation of this function is shown below:

void http_tool_jsEscape(char xsrc,char xdest) {
char c;

while(true) {

C = *STC;

src = src + 1;

if (¢ = ’\0’) break;

if (((c="\"") [l (e ="\\")) [l (¢="\"7)) {
xdest = "\\’;
dest = dest + 1;

}

xdest = c;

dest = dest + 1;

28

xdest = "\07;
return;

}

The function essentially behaves as a strcpy, except that the characters
>\, and " are copied as \’, \\, and \" respectively. Most importantly:
there is no length limiting or validation. This means that the function will
happily overflow our arg buf buffer, which is only 64 bytes large, as long
as the —escaped— string length of the test parameter exceeds 63 characters.
This means a test parameter of a mere 32 characters is potentially enough
to trigger the buffer overflow.

After the escape call, the escaped output is copied into another local buffer,
called msg_buf. While this buffer is 2052 bytes large, there are again no
length checks, and thus could result in a potential second buffer overflow.

Presumably the device is not vulnerable to the discovered overflow in the
/admin/syslog handler, but by investigating this we have seemed to stumble
onto a novel buffer overflow by accident. It remains to be seen if this overflow
can be actively exploited, resulting in denial of service attack, or even remote
code execution, which is left as future work.

The fourth buffer overflow is known under CVE-2020-8597, and occurs in
pppd versions 2.4.2 through 2.4.8 [41]. Inspecting the strings of our pppd
binary reveals the version to be 2.4.5, and thus potentially vulnerable. The
overflow occurs on a local buffer called rhostname in functions eap_request
and eap_response. The relevant snippet of eap_request is shown below:

/* Not so likely to happen. x/

if (vallen >= len + sizeof (rhostname)) {
dbglog ("EAP: _trimming._really _long._peer._name._down”) ;
BCOPY(inp + vallen, rhostname, sizeof (rhostname) — 1);

rhostname [sizeof (rhostname) — 1] = "\0’;

} else {
BCOPY(inp + vallen, rhostname, len — vallen);
rhostname [len — vallen] = "\0’;

}

Note that BCOPY is just a macro for memcpy, but reverses the source and
destination parameters. Here inp is an input parameter of the function,
acting as the source, and rhostname is the destination. While it appears
a length validation occurs, it is flawed, as len + sizeof (rhostname) can
overflow and wrap around back to below vallen. This means that the
subsequent copy, which uses len - vallen as the length, could result in a
buffer overflow. To fix the vulnerability, the length check has been changed
as shown below:

if (len — vallen >= sizeof (rhostname)) {

29

} else {

/).
}

Investigating our pppd binary in Ghidra reveals that FUN_00431b48 is eap_request.
The relevant snippet is once again shown below:

if (len — 0x16 < 0x100) {
memcpy (rhostname ,inp 4+ 0x16,len — 0x16);
auStack644 [len + 0x52] = O0;
} else {
dbglog ("EAP: _trimming._really .long._peer . _name_down”) ;
(**(code #*x)(local_2a0 + —0x7720)) (rhostname ,inp + 0x16,0 xff);
uStack285 = 0;

}

While the code looks slightly different as vallen and sizeof (rhostname)
have been replaced by constants 0x16 and 0x100 respectively, and the BCOPY
macros have been expanded to their memcpy form, we can still see the re-
semblance. More importantly, we can see that the length check uses the
fixed, non-vulnerable, form. Even though the version reports 2.4.5, which
according to the CVE is vulnerable, it appears security patches have been
back-ported. Looking at the relevant code from the pppd binary of the prior
firmware version 190428 reveals the equivalent of the relevant snippet is as
follows:

memcpy (rhostname ,inp + 0x12,len — 0x12);
auStack644 [len + 0x56] = O0;

Clearly the trimming of long peer names was not yet implemented, whether
securely or not. This complete lack of length validation makes it trivially
vulnerable to a buffer overflow. Based on this we conclude the device is
not vulnerable to this CVE as of the latest firmware (200623), but was
susceptible in prior firmware versions.

4.6 Comparison of firmware versions

The vendor lists three available firmware updates for the device [31]. Besides
a release date, we are also provided with a short changelog, as summarized
below:

e TL-WRB02N(EU) _V4_200623, released 2020-08-05.

1. Optimize online detect function on AP mode.
2. Improve the stability and security of device.

3. Optimize remote management function.

30

4. Optimize the security and change the login mode.
e TL-WRB02N (EU) _V4_.190428, released 2019-05-16.

1. Support 32 characters on username and password.

2. Improve the stability and security of device.
e TL-WR802N(EU) _V4_190218, released 2019-04-29.

Add Reboot Schedule function.

Add display of port status.

Add Lock to AP functions in RE/Client mode.

Add the support for https.

Add the support for static gateway configuration in AP mode.
Optimize NTP and PPPoE function.

Fix the issue that L2TP connection is unstable in some scenarios.
Fix the CSRF/XSRF vulnerability.

S A

We will now compare the contents of the firmware updates, and cross refer-
ence that to the published changelog. All three updates have a similar struc-
ture, as detected by binwalk and our earlier investigation of the firmware:

0x000000-0x000200: Firmware header

0x000200-0x020200: Bootloader

0x020200-0x160200: Compressed kernel

[]
o
"
—_
D
o
[\)
o
@
o
>
~
~
~
~
~
9
=5
=
]
5}
<
w0
=
2

4.6.1 Firmware header

Isolating the firmware headers and comparing them using binwalk yields the
differences shown in Figures 4.9, 4.10, and 4.11. Green indicates identical
values across all files, red different values across all files, and blue different
values across some files.

Cross referencing the differences to public information [38] regarding the
firmware header format reveals that the changes at 0x40-0x50 are an MD5
checksum, and that the changes at 0x94-0x98 are some unknown field, per-
haps another type of checksum over the header. The field at 0x78-0x7c
determines the compressed header length, which has a maximum difference
of 397 bytes, indicating only minor changes occurred in kernel. Finally the
field at 0x80-0x84 determines the filesystem length, from which we conclude

31

198218-header.bin

080028
Bx00000030

Bx008001B0
Bxe0eee1ce

Figure 4.9: 190218 Firmware header hexdump

version 200623 caused a slight increase in filesystem length, whereas version
190428 did not.

Interestingly the header contains fields for two 1024 bit signatures [38], but
in both the firmware header and the kernel header these fields are zeroed
out, indicating the firmware is not signed.

4.6.2 Bootloader

Using the same binwalk compare method to compare the bootloader sections
we see only minor changes in offsets 0x13e80-0x13ea0, 0x14610-0x14630, and
0x15f40-0x14f50. Closer inspection reveals these changes are only of strings,
as shown below:

e Version 190218

1. U-Boot 1.1.3 (Feb 18 2019 - 09:53:38)
2. Date:Feb 18 2019 and Time:09:53:38
3. I_.MTK-1169

e Version 190428

32

190428-header.bin

03 76 6
FF FF
FF FF
FF

00
FF
00

Figure 4.10: 190428 Firmware header hexdump

1. U-Boot 1.1.3 (Apr 28 2019 - 17:31:18)
2. Date:Apr 28 2019 and Time:17:31:18
3. I_.MTK-1201

e Version 200623

1. U-Boot 1.1.3 (Jun 23 2020 - 17:33:43)
2. Date:Jun 23 2020 and Time:17:33:43
3. I_MTK-1440

Presumably these time and date strings were automatically updated during
the build process, as the bootloader otherwise remains unchanged.

4.6.3 Kernel

Comparing the uncompressed kernels of 190218 to 190428 reveals that again
a date string has changed from Mon Feb 19 09:55:55 CST 2019 to Sun

33

208623 -header.bin

03 00 00 00 76 65
FF FF FF FF

FF FF

Figure 4.11: 200623 Firmware header hexdump

Apr 28 17:33:31 CST 2019. The only other changes are three occurrences
of 6A102E changing to C572F0, possibly also some kind of timestamp, but
inconsequential change.

Comparing 190428 to 200623 reveals a substantial amount of changes, which
is likely caused by the inclusion of new data that unsynchronized the diff
tool, causing it to report more changes than actually present. Comparing
the strings found in both kernels reveals that besides the expected date
string changes, the newer kernel also includes some new strings:

tplink /internet_status
tcp_.min_snd_mss
TCPWqueueTooBig

Both are still 2.6.36 kernels, but perhaps TP-Link has made some modifi-
cations, updated modules/drivers, or compiled using different settings. The
extend of these changes are unknown, but presumably relatively minor, given
how the compressed kernels did not have a large variation in size.

34

4.6.4 Filesystem

To compare the filesystem contents, we first extract all filesystems using bin-
walk, and then write a Python3 script, shown in Appendix A.8, to automate
the comparison. This script not only detects added and removed files, but
also detects changes to files by comparing SHA256 hashes.

The output from comparing 190218 to 190428 is shown below:

Comparing version 190218 to 190428
— Old version has 471 files
— New version has 471 files
— Files added: 0
— Files removed: 0
— Files modified: 23
— /bin/busybox
— Jetc/reduced_data_model .xml
— /lib/libcmm. so
— /lib/libcrypto.so.0.9.8
— /lib/modules/kmdir/kernel /drivers/net/wireless /mt_wifi_ap/
mt_wifi.ko
— Jusr/bin/cli
— /usr/bin/cos
— /Jusr/bin/dropbearmulti
— /usr/bin/httpd
— /usr/bin/tdpd
— /usr/bin/tmpd
— /Jusr/bin/traceroute
— /web/frame/login .htm
— /web/help /ChangeLoginPwdHelpRpm . htm
— /web/help /ManageCtrl_h.htm
— /web/help /QsChangeLoginPwdHelpRpm . htm
— /web/js /help.js
— /web/js/lib . js
— /web/js/oid_str.js
— /web/js/str.js
— /web/main/manageCtrl.htm
— /web/main/password . htm
— /web/main/qspassword . htm
— Files kept: 448

We see some changes to various binaries, and some changes related to the
web interface, as expected from the changelog reporting increased username
and password length limits. Comparing busybox reveals only a partial ver-
sion string change of 2019-02-18 09:58:11 to 2019-04-28 17:35:48. A
similar story applies to 1ibcrypto.so0.0.9.8, traceroute, and mt_wifi. jk
In reduced data model.xml we only see minor changes, namely 14 blocks
of 8 bytes. These changes occurring in blocks is explained by DES crypto
in ECB mode, as will be shown when investigating the config files.

In 1ibcmm. so, cli, cos, httpd, tdpd, and tmpd we see only minor changes,
indicating likely small modifications made to the source code. Quick manual

35

inspection of function FUN_00403f3c of cli revealed some of these changes
are minor tweaks, likely related to the mentioned stability improvements:

cstr_strncpy (g-cliUsrAccCfg ,0x4279b8,0x10); —> cstr_strncpy (
g-cliUsrAccCfg ,0x4279b8 ,0x21);

cstr_strncpy (0x427be8 ,0x4279¢8 ,0x10) ; —> cstr_strncpy (0
x427bd9 ,0x4279d9 ,0x21) ;

cstrostrncpy (0x427bd8,0x4279d8,0x10) ; —> cstr_strncpy (0
x427bfa ,0x4279fa ,0x21) ;

cstr_strncpy (0x427be8 ,0x4279e8 ,0x10) ; —> cstr_strncpy (0
x427clb ,0x427alb ,0x21);

cstr_strncpy (0x427bf8 ,0x4279f8 ,0x10) ; —> cstr_strncpy (0
x427c3c,0x427a3c ,0x21) ;

cstrostrncpy (0x427c08 ,0x427a08 ,0x10) ; —> cstr_strncpy (0
x427¢5d ,0x427a5d ,0x21);

cstr_strncpy (0x427¢18 ,0x427a18 ,0x40) ; —> cstr_strncpy (0

x427c7e ,0x427a7e ,0x40) ;

It is possible other changes, especially those to 1ibcmm.so and httpd are
security improvements, though it could also be related to the increase of
password and username size. A tool such as BinDiff [57] could prove valu-
able, but for the sake of scope reduction this is left as future research. In
dropbearmulti we see more changes, but this could again be due to the
diff tool desynchronizing. Comparing the version string stills lists both as
version 2012.55.

Inspecting the changes to the web interface reveals that the old password and
username limit of 15 characters has indeed been increased to 32. Notably an
additional check is now performed on the password to ensure it only contains
ASCII characters, using a function defined by /web/js/1ib. js:

checkAscii: function(str, unalert) {
for (var i = 0, 1 = str.length; i < 1; i++)
if (str.charCodeAt(i) < 33 || str.charCodeAt(i)
> 126) return $.alert (90201, unalert);
return 0;

})

The output from comparing 190428 to 200623 is shown below:

Comparing version 190428 to 200623
— Old version has 471 files
— New version has 478 files
— Files added: 7

— /web/help /cwmp_h.htm
/web/img/login/icons.png
/web/img/login/info .png
/web/img/login /ok.png
— /web/img/login /unview.png

36

— /web/img/login /view.png
— /web/img/login /wrong . png
— Files removed: 0
— Files modified: 48
— /bin/busybox
— Jetc/reduced_-data_-model .xml
— /lib /libcmm. so
— /lib/libcrypto.so.0.9.8
— /1lib/libos .so
— /lib/libupnp.so
— /lib /modules/kmdir/kernel /drivers /net/raeth/raeth.ko
— /1lib /modules/kmdir/kernel /drivers/net/wireless /mt_wifi_ap/
mt_wifi.ko
— /usr/bin/ated_tp
— Jusr/bin/cli
— /usr/bin/cos
— /usr/bin/dhcpe
— /usr/bin/dhcpd
— /usr/bin/dnsProxy
— /Jusr/bin/dropbearmulti
— /Jusr/bin/ebtables
— /usr/bin/httpd
— /Jusr/bin/ntpc
— /Jusr/bin/tddp
— /usr/bin/tdpd
— /usr/bin/tmpd
— Jusr/bin/traceroute
— /usr/bin/wlNetlinkTool
— /usr/sbin/dhcpbe
— /Jusr/sbin /pppd
— /web/frame/login .htm
— /web/frame /menu. htm
— /web/help /NetworkCfgHelpRpm_AP . htm
— /web/help/RestoreDefaultCfgHelpRpm . htm
— /web/js/help.js
— /web/js/language.js
— /web/js/lib.js
— /web/js/oid_str.js
— /web/js/vlancfg.js
— /web/main/backNRestore . htm
— /web/main/cwmp. htm
— /web/main/lanEditAP . htm
— /web/main/manageCtrl.htm
— /web/main/password . htm
— /web/main/portTrigger . htm
— /web/main/qsWI5G . htm
— /web/main/qspassword . htm
— /web/main/status .htm
— /web/main/wlAcl.htm
— /web/main/wlAcl5G . htm
— /web/main/wlAclMssid . htm
— /web/main/yandexDns . htm
— /web/qr.htm
— Files kept: 423

37

After investigation we again see the changes to busybox, traceroute, and
libcrypto.so0.0.9.8 are only due to the bump of a version string. In
raeth.ko only a single byte is changed, and wlNetlinkTool only seems to
bump numbers 5105/5134 to 5106/5135. In ntpc we observe some minor
changes that seem to suggest a change in NTP server IPs. The rest of the
non-web files contain more extensive modifications, which again are left as
future research.

Looking at the web interface changes, some of the changes are just cosmetic
changes to the login page. We do also see some fundamental changes however
that relate to security. One of these changes is that when visiting the login
page for the first time, the user is asked to create a new password, rather
than keeping the default password, as controlled by /web/frame/login.htm:

if (isFirstLogin == 71") {
createPwd () ;
} else {
PCSubWin () ;
}

The createPwd function is shown below:

function createPwd() {

if (isFirstLogin == 70" || $.hasClass($.id(”createBtn”)
, "disabled”)) {
return;
}
var re = /["\x00—-\x19\x21—-\xff]/;
var password = $.id (”change—pcPassword”).value;
var confirmPassword = $.id (” confirm—pcPassword”) . value;
var userName = "admin” ;

if (re.test(password)) {
$.alert (ERR.USER.PWD_HAS SPACE) ;
return false;

if (password == "7) {
$.alert (ERR.USER PWD_EMPTY) ;
return false;

if ($.asc(password, true)) {

$.alert (ERR.USER_PWD_ASCII) ;
return false;

if (password.length > 32) {
alert (localString [lang] . CHANGE PWD_TITLE) ;
return false;

if (password !== confirmPassword) {

38

$. alert (ERR.USERNAME PWD_CONFLICT) ;
return false;

}
if (!checkSpace(password) || !checkLength(password) || !
checkChar (password))
{
return false;
}

$.act (ACT_CGI, ”/cgi/auth”, null, null, {
name: userName,
oldPwd: ”admin” ,
pwd: password

b

if (!$.exe(null, null, 0)) {
doLogin (userName, password);
}

}

The new password has to meet certain requirements, such as not containing
spaces or non-ASCII characters, and have a length between 6 and 32 char-
acters. Notably it must also meet certain complexity requirements, which
in this case means contain at least characters from two different characters
classes, where classes are letters, digits, and special characters. A lot of the
checks seem duplicated, likely due to incremental development adding new
features and requirements. The username is also forced to admin, rather
than being chosen by the user. Some of the helper functions are shown
below:

function checkSpace(value) {
var re = /["\x00—-\x19\x21-\xff]/;
if (re.test(value)) return false;
return true;

}

function checkLength(value) {
if (value.length > 5 && value.length < 33) return true;
return false;

}

function checkChar(value) {
var patternNum = /[0—-9]/g;
var patternLetter = /[A-Za—z]/g;
var patternSign = /[\ “\T\N\NQ\F\S\ %\ "\&\+\ (\V)\-\=\ -
VANV ATNNATA <A >\ x20] / g5

uuuuuuuu var_.level .=.0;
uuuuuuuu if . (patternNum. test (value))._level++;

uuuuuuuu if .(patternLetter.test(value))_level4++;
uuuuuuuu if .(patternSign.test(value))_level4++;

39

uuuuuuuu return_level .>_1;

Other changes of note include the addition of HTML string encoding, as
performed by the following function in /web/js/1ib.js:

htmlEncodeStr: function(str) {

if (str =undefined || str=="") return str;
return str.replace(/[<>&”]/g, function(c){return {’<’:’&
1t;7,7> 7" & gt ", &7 "& 7,77 7 & quot s e })

b

Here we see the <>&™ characters are replaced by their HTML encoded equiv-
alent. This function is used in the following files:

e /web/main/wlAcl.htm
e /web/main/wlAcl5G.htm
e /web/main/wlAclMssid.htm

e /web/main/yandexDns.htm

The usage pattern for this function is the same across all these files. Instead
of cell.innerHTML being assigned with description, it is now assigned
with htmlEncodeStr(description), serving as a rudimentary input san-
itation. Note that the function only partially HTML encodes input, as
characters > and / are not replaced.

4.7 Decrypting config files

Going back to the presumably encrypted config files, we conduct some
searches on the internet to see if other TP-Link devices have similar con-
structions. Based on several results, this appears to be the case [23, 24]. We
will now attempt to mimic this path to key recovery for this device.

The first step is to check if 1ibcmm. so contains string references to the XML
files, which appears to be the case:

$ strings lib/libcmm.so | grep —F ”.xml”
/etc/default_config.xml
/etc/reduced_data_model .xml

/var /tmp/wsc_upnp /WFAWLANConfigSCPD . xml

/var /tmp/wsc_upnp_5G /WFAWLANConfigSCPD_5G . xml
/var /tmp/wsc_upnp/WFADeviceDesc . xml

/var /tmp/wsc_upnp_5G/WFADeviceDesc_5G . xml
<SCPDURL>WFAWLANConfigSCPD . xml< /SCPDURL>

40

Next we load 1libcmm.so into Ghidra, a reverse engineering tool published
by the NSA [54]. After the analysis has finished, we see a function called
dm_decryptFile exists in the export symbols. Decompilation of this func-
tion into pseudo-C yields:

int dm_decryptFile(uint param_1,undefined4 param_2,uint param-3,
int param_4) {
int iVarl;
undefined auStack40 [8];
int local_20;

memcpy (auStack40,&DAT_000c9a60,8) ;
if (param_-3 < param_1) {
cdbg_printf(8,”dm_decryptFile” ,0xbbb,
” Buffer _exceeded , .decrypt._.buf_size_is %u, _but.dm
~file._.size.is %u” ,param_3 ,param_1);
local_20 = 0;
} else {
local_-20 = cen_desMinDo (param_2,param_1,param_4 ,param_3,
auStack40,0) ;
iVarl = local_20;
if (local_-20 = 0) {
cdbg_printf(8,”dm_decryptFile” ,0xbc2,”DES_decrypt._error\n”
)
} else {
do {
local_20 = iVarl;
if (((undefined x*)(param_4 + local_20))[—1] != ’\0’)
break;
iVarl = local_20 + -—1;
} while (local_20 != 0);
x(undefined x*)(param_4 + local_20) = 0;
}
}

return local_20;

}

The function is clearly using DES as expected, and we see 8 bytes being

copied into a local buffer auStack40, which originate from DAT_000c9a60.

This symbol resides at address 0x000c9a60 in the .data section of the ELF

binary, and could possibly be our decryption key. Inspecting the contents

reveals the data is identical to the decryption key found for the TP-Link

Archer C20 [24], as shown in Figure 4.12.

At this point we assume the config is encrypted with DES in ECB mode, us-

ing key 478DA50FFOE3D2CB. To confirm this we attempt to decrypt /etc/default_config.xml
using CyberChef [34] and the recipe shown below”:

From_Hexdump ()

A hexdump of the file is used as input

41

DAT_000c9a60 KREF[1]: dm_decryptFile: 0009047c (*)

J00c9abl 47 7E 47h G
000c9a6l 8d ?? 80h
000c9a62 a5 ?? Ash
000c9a63 Of ?? 0Fh
000c9a64 f9 ?? Fsh
000c9a65 e3 ?? E3h
000c9a66 d2 ?? Dzh
000c9a67 ch 77 CBh

Figure 4.12: Config decryption key

DES_Decrypt ({’option ’: "Hex’, ’string ’: "4 78 DAS0FFIE3D2CB '} ,{’
option ’: "Hex’,’string ’: '’} ,’ECB’, ’Raw’ , ’Raw’)
This successfully decrypts the config file, as well as /etc/reduced_data model.xml.
In the decrypted default config we find several entries for password fields,
one of which is populated with a plain text password:

<StorageService>
<UserAccount instance=1 >
<Enable val=1 />
<Username val=admin />
<Password val=admin />
<X_TP_Reference val=0 />
<X_TP_SupperUser val=1l />
</UserAccount>
<UserAccount instance=2 >
<Enable val=0 />
<Username val="" />
<Password val="" />
<X_TP_Reference val=0 />
<X_TP_SupperUser val=0 />
</UserAccount>

Attempting to decrypt the config mtd section from the firmware flashdump
does yield successful decryption after cutting off the trailing zeroes, but the
output appears gibberish, as reflected by the entropy shown in Figure 4.13.
Decompressing using wel-known compression algorithms such as deflate did
not recover meaningful output. This likely means the section is encrypted
with a different key, or possibly even a different scheme altogether.
Assuming libcmm.so is responsible for encrypting and decrypting this con-
fig section, we resume our analysis of it in the hopes of finding the code
responsible. After looking at the defined strings, we note ” Write user config
to flash error.” at address 0x000c216¢. This string is cross-referenced by the
rsl_sys_restoreCfg function, shown below:

undefined4 rsl_sys_restoreCfg(void s*param_1,int param_2) {
bool bVarl;
int iVar2;

42

Scanning Entropy

P Y A T P P) 1Y T T W P W A W P
] \r v WA J

Entropy

o T T T T T T T 1

Block

Figure 4.13: Entropy of decrypted config section

uint uVar3;

int iVar4;

uint __n;

uint uVarb;

int xpiVar6;
undefined4 uVar7;
int xpiVar8;

char *pcVar9;
void *pvVarlO;
undefined4 uVarll;
uint uVarl2;

iVar2 = cmem_getSharedBuffSize () ;
pvVarl0 = (void x)((int)param_1 + param_2);
memset (pvVarl0,0,iVar2 — param._2);
uVar3 = cen_desMinDo (param_1,param_2 ,pvVarl0,iVar2 — param_2,&
DAT_000ef2¢0,0) ;
if (uvVar3 = 0) {
uVar7?7 = 0x7e8;
pcVar9 = "DES_decrypt_error\n”;
LAB_0002c76¢c:

uVarll = 1;
cdbg_printf(8,”rsl_sys_restoreCfg” ,uVar7,pcVar9);
} else {

if (uVard < 0x11) {
cdbg_printf(8,”rsl_sys_restoreCfg” ,0x7fc,” File_size %d_is.

43

too.small\n” ,uVar3);
} else {
uVar3d = uVar3d — 0x10;
uVarl2 = iVar2 — 0x41830;
if (uVarl2 < uVar3d) {
uVar7?7 = 0x806;
LAB_0002c¢874:
cdbg_printf (8,7 rsl_sys_restoreCfg” ;uVar7,
”Compress.data.is_too_long ,_available_size.
is %d.bytes,_now._is %d_bytes” ,uVarl2,
uVar3);
return 0x1194;
}
iVar4d = cen_md5VerifyDigest (pvVarlO,(void) ((int)pvVarl0
+ 0x10) ,uVar3);
if (iVard = 0) {
uVar7 = 0x80d;
pcVar9 = 7 Config_file MD5.check.fail\n”;
} else {
memcpy (param_1 ,(void x*) ((int)pvVarl0 + 0x10) ,uVar3);
pvVarl0 = (void) ((int)param-1 4+ uVar3);
memset (pvVarl0,0,iVar2 — uVar3);
_.n = cen_uncompressBuff(param_1,pvVarl0,iVar2 — uVar3);
if (_..n = 0) {
uVar5 = dm.restoreCfg (pvVarlO,__n,1);
if (uVarb = 0) {
dm_cleanupCfg () ;
uVar5 = dm.restoreCfg (pvVarlO,__n,0);
if (uVarb = 0) {
if (_.n < Oxfff1) {
memset (param_1,0 ,uVar3) ;

*(uint =) ((int)pvVarl0 + —0x10) = __n;
x(undefined4) ((int)pvVarl0 + —0Oxc) = 0
x98765432 ;

*(undefined4 «) ((int)pvVarl0 + —4) = 0;
x(undefined4) ((int)pvVarl0 + —8) = 0;
x(undefined x) ((int)pvVarl0 + __n) = 0;
LAB_0002c908:
piVar6 = (int x*)((int)pvVarl0 + —0x10);
iVar2 = 0;
uVar3d = 0;
piVar8 = piVar6;
while (bVarl = uVar3 != xpiVar6 + 0x10U >> 2,
uVar3 = uVar3 + 1, bVarl) {
iVard = xpiVar8;
piVar8 = piVar8 + 1;
iVar2 = iVar2 + iVar4;

}
x(int x) ((int)pvVarl0 + —8) = —iVar2;
iVar2 = oal_sys_writeCfgFlash (piVar6 ,«xpiVar6 + 0

x10U) ;
if (iVar2 = 0) {
return 0;

}

44

cdbg_printf(8,”rsl_sys_restoreCfg” ,0x8bb,” Write.
user._config._to_flash_error.”);
return 0;
}
memcpy (param_1 ,pvVarl0, __n);
pvVarl0 = (void x) ((int)param_-1 + __n);
memset (pvVarl0,0,iVar2 — __n);
uVar3 = cen_compressBuff(param_1,__n,(int)param_1
+ iVar2 4+ —0x8000,pvVarl0Q);
if (uVard != 0) {
if (uVarl2 < uVar3d) {
uVar7 = 0x887;
goto LAB_0002c¢874;

}
memset (param_1,0,__n);
x(undefined4 x) ((int)pvVarl0 + —0Oxc) = 0

x98765432;
*(uint *) ((int)pvVarl0 + —0x10) = uVar3;
x(undefined4 x) ((int)pvVarl0 + —4) = 1;
*(undefined4 x) ((int)pvVarl0 + —8) = 0;
x(undefined x*) ((int)pvVarl0 + uVard) =
goto LAB_0002c¢908;

)

}
uVar7 = 0x87f;
pcVar9 = ”compress.data_error!”;
goto LAB_0002c76¢;
}
uVar7?7 = 0x8be;
} else {
uVar7 = 0x855;
}
pcVar9 = ”Set_config_into DM_error\n”;
goto LAB_0002c76¢c;
}
uVar7 = 0x82c;
pcVar9 = ”uncompress.data_error!\n”
}
cdbg_printf(8,”rsl_sys_restoreCfg” ,uVar7,pcVar9);
}
uVarll = 0x1195;
}
return uVarll;

}

We see a similar DES decryption code, but this time using a key at ad-
dress 0x000ef2c0. Inspecting this address reveals the encryption key is
478DA50BFOE3D2CF, as shown in Figure 4.14. The rest of the function then
uses the first 16 bytes of the decrypted pvVar10 buffer as an MD5 checksum
for the remainder of the buffer. If the checksum is correct, the remainder of
the buffer is decompressed, and written to flash using oal_sys_writeCfgFlash.
Attempting to decrypt the config flash memory section using this new key
did not work. After inspecting oal_sys writeCfgFlash, shown below, we

45

DAT_000ef2ec0 KREF[2]: rs1_sys_backupCfq: 0002c4d4(*),
rsl_sys_restoreCfg: 0002c5da (*)

J0Gef2co 47 B 47h G
ooef2cl 8d 77 80h
000ef2c2 a5 77 ASh
000ef2c3 Ob 77 0Bh
000ef2c4 fo 7 Feh
000ef2cs e3 PP Esh
ooef2cE dz 7 0zh
000ef2c7 cf 77 CFh

Figure 4.14: Exported config decryption key

see why:

undefined4 oal_sys_writeCfgFlash (int xparam_1,int param_2) {

}

int iVarl;

undefined4 uVar2;

uint uVar3;

int local_60;

undefined auStack92 [36];
undefined auStack56 [44];

local_60 = 0;
memset (auStack56 ,0,0x21) ;
memset (auStack92,0,0x21);
memcpy (auStack56 ,gKey,0x20) ;
memcpy (auStack92 , glv ,0x20) ;
local_60 = param_2 + —0x10;
iVarl = aes_cbc_encrypt_intface_bypart (param_1 + 4,&local_60 ,
auStack56 ,auStack92);
if (iVarl < 0) {
cdbg_printf(8,” oal_sys_writeCfgFlash” ,0x6a0,” Encrypt.flash.
error %d” ,iVarl);

param_1[3] = param_1[3] + 2;
sparam_1 = local_60;
uVar3 = local_60 + 0x10;
if (uVar3 < 0x10001) {
iVarl = FUN_00097d0c(0x7¢0000 ,uVar3,param_1);
uVar2 = 0;
if (iVarl < 0) {
cdbg_printf (8,7 oal_sys_writeCfgFlash” ,0x6b0,” Write_config.
error\n”);
uVar2 = 0x232a;
}
} else {
cdbg_printf(8,” oal_sys_writeCfgFlash” ,0x6aa,” Config.file.
length _too.long.— %d\n” ,uVar3);
uVar2 = 0x1194;

}

return uVar?2;

Before writing the config to flash, it is encrypted using AES in CBC mode.

46

This likely means the config section we obtained from the flashdump is
encrypted with this scheme. Thankfully we see two symbols, gkey and gIv,
being copied into local buffers auStack56 and auStack92 respectively. Their
contents are ASCII strings 1528632946736109 and 1528632946736539, as
shown in Figure 4.15.

gIv XREF[6] : Entry Point(¥),
oal_sys_writeCfgFlash:00098d38(R...
oal_sys_readCfgFlash:00098fbc (R),
oal_sys gdprEncrypt:0009a0f4(R),
oal_sys_gdprDecrypt:0009a220(R),
0eef2710(*)
208f2530 80 55 Od 60 addr s_1528632946736539_000d5580

gkey XREF[6]: Entry Point(*).
oal_sys_writeCfgFlash:00098d1c (R..
oal_sys_readCfgFlash:00098f9c(R),
oal_sys_gdprEncrypt:0009a0ds(R),
oal_sys_gdprDecrypt:0009a204(R),
0o0f3180(*)
000f2534 94 55 0d 00 addr s_15286320946736109_000d5584

Figure 4.15: Flash memory config encryption parameters

Using these parameters in a new CyberChef recipe, shown below, does yield
successful decryption®.

From_Hexdump ()

AES_Decrypt ({ ’option ’: "UTF8’ | *string ’:’1528632946736109 "} ,{’
option ': "UTF8’ , ’string ’:'1528632946736539 '}, CBC’ , "Raw’ , 'Raw
",{ option ’: "Hex’,’string ’: '’} ,{ ’option ’: "Hex’, ’string ': ' ' })

This decrypted config contains several pieces of sensitive information, such
as the WLAN configuration, including SSID and the 8 digit password (Pre-
SharedKey) in plaintext, as shown below:

<WLANConfiguration instance=1 >
<__.apLastStatus val=3 />
<Enable val=1 />
<Name val=wlan0 />
<Channel val=10 />
<AutoChannelEnable val=1 />
<X_TP_PreSSID val=TP-Link />
<SSID val=TP-Link FC66 />
<BeaconType val=11i />
<X_TP_MACAddressControlRule val=deny />
<X_TP_Band val=2.4GHz />
<X_TP_Bandwidth val=Auto />
<Standard val=n />
<WEPKeyIndex val=1 />
<BasicEncryptionModes val=None />
<BasicAuthenticationMode val=None />

5There are some leading and trailing garbage bytes in the output, but the XML is
clearly readable

47

<WPAEncryptionModes val=TKIPandAESEncryption />
<WPAAuthenticationMode val=PSKAuthentication />
<IEEE1lliEncryptionModes val=AESEncryption />
<IEEE1liAuthenticationMode val=PSKAuthentication />
<X_TP_PreSharedKey val=15265258 />
<SSIDAdvertisementEnabled val=1 />
<TransmitPower val=100 />
<RegulatoryDomain val="DE ” />
<DeviceOperationMode val=InfrastructureAccessPoint />
<WMMEnable val=1 />
<X_TP_ShortGIEnable val=1 />
<WPS>
<Enable val=1 />
<DevicePassword val=15265258 />
<ConfigurationState val=Configured />

</WPS>

Presumably the rsl_sys_restoreCfg function is responsible for importing
an XML configuration that has been exported via the web interface, which
apparently uses a different (but hardcoded) encryption key compared to the
other XML config files. In order to test this we use the web interface to
export a config, and attempt to decrypt it with this new DES key. This
does appear successful, and the output is partly readable XML, as shown in
Figure 4.16, but as expected we need an additional decompression step to
recover the proper XML.

.375.11686.5.V.&j..<..2xm]l version="1...0"?>

<DslCpeConf..ig>

<InternetG. .atewayDevice.

1[](Baseli’ .ne:1, Eth'LA’.N:1)" /RLA.PN3NumberOf..Entries]1..&#Info.@. B75 <Ser+.ial[V.!@5BASE. . HardwareV.

oft.350.9.1 2.17.. ve@e1.? Build 2..00623 Rel.63672n. JUpTime3.A251¢ 1.<X_TP_isFD. e..r1P.92.168°..0.100:/.0;¢/. "¢
alettxhzx OTiNHcet.dNSC{E\..£2.254,0.P8.V.P.ifAliasx _ipoe_da. (Curr[.. '4261587136..&].

4GADD

L0CKUPNP.®. CEnablal..;A/)<Snm.p..y mP,(P.C.."Desc.1j/:Ay<Noip..0itat...3;.T.+dynupd..ate.no-ip.comi@*</

. <.Summa”.ry

.EUser.a. <AdminPw.’ dGpassword
JynDns-C.C. .Xmegs.dyndns.. .
D.V<Cmx..1PnsDa.exe.cnIp@7iFrl<d. |

5.5.L2Bridg. fa<.eR.WE.W
JReferencEC'd2..<_ f.u
LE3t7E.Rz.b.¢ . .| X6

.MinAddr[,es_lic..R(axxA(99(3.IPRoutD|fO.u". .L

V..Ra..../ /~ah. W.g7EGi A, /tOvedp/Ru*Up.
“tuie pis-vesi-.ge< .oy

BC¥E.0%. .Of#. *"£-.EP. .NoLinkp.£1BitR...1A. .%uplex. .Mod.HalfoR. 16 Qawi.s61/6180Auc«#

X5, 5PresSI~g.TP-.%

eacon”s-111,@.eMAC. ®MControlRuUA. denyM. /Ban. 302.4GHz1. width¥A.1#Sta
K)Authen A

bPSK~2.T.7IEEE11iC!U7sX 14CRVEC. 7p.Q. Khared. 138@5566Ht4 . . Qadvertissj_ d

fakgma(.x
...];cx{?.jeC@UB.Ra

Figure 4.16: Decrypted, but compressed, exported config

Initial trial and error skipping the first 16 bytes, and using raw inflate does

not decompress correctly. As such we investigate cen uncompressBuff to

see how the decompression works. This function is exported by /1ib/libcutil.so,
so we load that binary into Ghidra next. The decompilation of the function

is shown below:

uint cen_uncompressBuff(void *src,undefined *dest,uint len) {

48

bool bVarl;
byte bVar2;
uint uVar3;

int iVar4;

int iVarb;

byte xpbVar6;
char *__s;

uint uVar7;
uint local_38;
byte xlocal_34;
byte xlocal_30;
undefined4 local_28;

local_38 = 0;

if ((src == (void %)0x0) || (dest = (undefined *)0x0)) {
_.s = 7Invalid.params!”;
} else {

memcpy(&local_38 ,src ,4) ;
uVar3 = local_38;
if (local_38 <= len) {
uVar7 = 0;
if (local_38 != 0) {
local_34 = (byte *)((int)src + 5);
local_28 = 0;
xdest = x(undefined x*)((int)src + 4);
local_30 = dest + 1;
uVar7 = 1;
while (uVar7 < uVar3) {
iVard = FUN_00019540(&local_34);
if (iVard = 0) {
uVar7 = uVar7 + 1;
bVar2 = xlocal_34;
local_-34 = local_34 + 1;
xlocal_30 = bVar2;
local_30 = local_30 + 1;
} else {
iVar5 = FUN_0001959c(&local_34);
iVard = FUN_0001959c(&local_34);
bVar2 = xlocal_34;
local_34 = local_34 + 1;
pbVar6 = local_30 + —(bVar2 + 1 4+ (iVard + —2) * 0
x100);
iVard = iVarb + 2;
while (bVarl = 0 < iVar4, iVard = iVard + —1, bVarl)
{
bVar2 = xpbVar6;
pbVar6 = pbVar6 + 1;
x*local_30 = bVar2;
local_30 = local_30 + 1;

}
uVar7 = uVar7 4+ iVarb 4+ 2;

49

if (uVar7 = local_38) {
return uVar7;

}
printf(”Length.is_not.match_depackLen.=%d\tsrcDataLen.=%
d” ,uVarT7);
return 0;
}
__.s = 7Invalid.file_or_.file._.is_.too.long!”;
}
puts(-_s);

return 0;

}

Outside of calls to FUN_00019540 and FUN_0001959¢ (both small functions)
there do not seem to be any non-standard dependencies, or even global data
references. In FUN_00019540 we have no external calls or data references,
and in FUN_0001959c we only have calls to FUN_00019540, again no data
references. This means the entire decompression algorithm is fairly small,
and as such we wrote a simple C decompression tool based on the decompiled
pseudo C, shown in Appendix A.7.

Running this decompression tool on the decrypted config successfully recov-
ers the readable XML. Again this config contains sensitive information, even
including the password used to authenticate to the web interface:

<X_TP_UserCfg>
<AdminPwd val=password! />
</X_TP_UserCfg>

We conclude for the answer to RQ 8 that not only admin credentials are
easily recovered from /etc/passwd.bak, but that configuration files con-
taining potentially sensitive information (such as credentials) are encrypted
with a weak DES/ECB encryption scheme, using a hardcoded key that is
shared across various TP-Link products. Several hardcoded encryption keys
and parameters are used, but all can be extracted from the firmware, thus
offering little protection.

4.8 Generation of sensitive information

In this research section we direct our focus on the generation of sensitive
information, such as credentials. Any weakness here could allow attackers to
guess or derive this information, thus compromising security. We therefore
investigate how the initial device parameters, WPS key generation in the
web interface, and dropbear initialization work.

"Prior configs did not include this key because no password was configured yet

50

4.8.1 Initial device parameters

We do not know how the default WiFi pin, which is printed on a label
attached to the case, is generated. If a weak scheme is used that does
not have sufficient entropy, such as mainly using the SSID, MAC, or serial
number, it could be possible to predict the WiFi pin codes, as observed in
earlier products [36].

Looking at one of our own devices, we observe the following data:

e SSID: TP-Link B488
e MAC: 60-A4-B7-05-B4-88
e PIN: 80556640

e Serial: 22150C3004751

Immediately we spot the pattern where the SSID is constructed as TP-Link XXYY,
where XX and YY are the last two bytes of the MAC address. Unlike earlier
products however, the PIN (password) is not a segment of the MAC. No
immediate relation between the PIN code and other data could be inferred,
and looking for cross references to the string TP-Link in binaries did not
reveal any code responsible for the generation of these default pin codes.

4.8.2 WPS Web Interface

The WPS subsection of the Wireless section in the web interface offers two
buttons: one to restore the PIN, and one to generate a new PIN. These
buttons are defined in /web/main/wlQss.htm, shown below:

function getNewPIN(obj) {
$.addLoading (obj);
$.act (ACT-OP, ACT_-OP.-WLAN_GETNEW_PIN, wpsObj. __stack);
$.exe(function(ret){if (!ret) $.reload();});

}

function restorePIN (obj) {
$.addLoading (obj);
$.act (ACT-OP, ACT_OP.WLANRESTOREPIN, wpsObj. __stack);
$.exe(function(ret){if (!ret) $.reload();});

}

<input type="button” class="button _XL_T” wvalue=" Restore_PIN”
onclick="restorePIN (this)” id="restore” />

<input type="button” class="button.XL_.T” value=" Generate_New_PIN
” onclick="getNewPIN (this)” id="genNew” />

Due to the Javascript abstractions it is not immediately clear how these
requests work. Analyzing traffic with Burp Suite [55] reveals requests go

o1

through an encrypted channel via the /cgi_gdpr endpoint, as shown in
Figure 4.17.

Request

Pretty Hex \n (=

1 POST /fecgl_gdpr HTTR/L.1

2 Host: 192.168.2.175

2 Content-Length: 230

4 User-Agent: Mozilla/5.0 (Windows NT 10.0; Wing4; x84) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/96.0.4654.45 Safari/537.36

S Content-Type: text/plain

5 Accept: /%

origin: http://192.168.2.175

3 Referer: http://192.168.2.175/mainFrame.htm

ccept-Encoding: gzip, deflate

10 Accept-Language: en-US,en;q=0.9

11 Cookie: JSESSIONID=4958fh1125e30f994edd0sofes1628

12 Connection: close

1z

14 sign=
Se5c9c00f 726385a98b08aaaec50a89e3543659adcabo410af 77ad6eca7d1d2ac2f d927f 27d5138f daddbB8ae7caf 4c813377342f af febds
fa4706ce633ca5e3

15 data=allllcS+dgLlv+36] 9q7edlgxyG] SIW77odyZ5LE+UVZ1 xWT EEPZe tTw2LhsfNC /CoBEyuPN/eSk AL R3DEgEg==

15

n

Figure 4.17: Capture of new PIN request

This GDPR encrypted channel has been investigated for other products be-

fore [24], and appears to work identically here. Opening up the developer

tools of the browser used, and executing $.encrypt.encryptManager.encryptor.aes
in the console allows us to recover the AES key and IV used to encrypt the

request, as shown in Figure 4.18.

> $.encrypt.encryptManager.encryptor.aes
vAES {key: '1641235141009819', keyUtf8: t.init, iv: '1641235141009444', ivUtrd: t.init} @
iv: "1641235141809444"
key: "1641235141889819"
»_ivUtf8: t.init {words: Array(4). sigByt
»_keyUtf8: t.init {words: Array{4), sigl
» [[Prototype]]: Object

» $.encrypt.encryptManager.encryptor.rsa

wRSA {nn: '9734D82490E2AECT1COED67DFCACFEGCE2AS66F7838660013E..DB60384419872AC6F26664FD3FE0C144C0535F2990F766817", e: '016001'}
ee: "010081"
nn: "9734D8249BE2AECT1CAEDETDFCACFEGCA2ABG6F753866D813E8E9818D56A283ABBEAIT72CB156A3DB60384419872AC6F 26BB4FD3F60C144C0535F2990F768517"
» [[Prototype]]: Object

Figure 4.18: Recovery of AES key and IV, as well as RSA public parameters

Using an online AES decryption service® in 128-bit/CBC mode allows us
to decrypt the base64 encoded data string from the request in Figure 4.17,
using the AES key and IV shown in Figure 4.18. The decrypted request
data is shown below:

7[ACT_-WLAN_GET NEW_PIN#1,1,0,0,0,0#0,0,0,0,0,0]0,0

Further analysis of /usr/bin/httpd reveals http_cgi_gdpr main is the han-
dler for the /cgi_gdpr endpoint. After some expected AES decryption and
RSA signature verification code, we see a switch statement with 9 cases (1-8,

Shttps://www.devglan.com/online-tools/aes-encryption-decryption

92

and a default case). Given that /web/js/1ib.js defines 9 ACT X cases, as
shown below, there is a good chance these are directly related.

var ACT.GET =
var ACTSET =
var ACTADD =
var ACTDEL =
var ACT.GL = 5;
var ACT.GS = 6;
var ACTOP = T7;
var ACT_.CGI = 8;
var ACTSIG = 9

=W N =

)

)

The earlier Javascript code made calls using ACT_OP, which has value 7, and
shows up at the beginning of the decrypted request data. We thus assume
that case 7 is the handler for this particular act type, shown below:

case T7:

uVarl2 = rdp_action (acStack12376,&local_30bc);

if (0 < (int)uVarl2) goto LAB_00411c60;

iVarll = strcmp (acStack12376 ,” ACT_REBOOT”) ;

uVar6 = uVarl2;

if (iVarll = 0) {
param_1[7] = 0;

}

break;

A call to rdp_action is made that seems to do most of the heavy lifting,
which is defined in /1ib/libcmm.so, and shown below:

int rdp_-action(void #param_1,undefined4 param_2) {
int iVarl;
size_t sVar2;
int iVar3;
char *__s;
int iVar4;
undefinedl xpuVarb;

iVarl = dm_acquireLock(”rdp_action”);
if (iVarl = 0) {
puVars = l_actStringTable;
iVarl = 1;
do {
puVar5 = (undefinedl x)((int)puVars + 4);
__s = x(char xx)puVarb;
sVar2 = strlen(--s);
iVar3 = memcmp(param_1, __s ,sVar2 + 1);
iVard = iVarl + 1;
if (ivar3 = 0) {
iVar3 = (x*(code *x)(g_rsl_actFuncTable + iVarl * 4))(
param_2);

93

if (iVar3 != 0) {
cdbg_perror ("rdp_action” ,0xed ,iVar3);
dm_unLock () ;
return iVar3;

}
if (iVarl — 8U < 2) {
rsl_saveCfg ();

}
dm_unLock () ;

return 0;
}

iVarl = iVar4;
} while (iVar4 != Oxla);
cdbg_printf(8,”rdp_action” ,0xe6 ,” Wrong_action %s\n” ,param_1)

iVarl = 1;
dm_unLock () ;

}

else {
cdbg_printf(8,”rdp_action” ,0xde,”Can\’t_get_lock , _return . %d
An”,iVarl);

}

return iVarl;

}
The code appears to be iterating over a table called 1_actStringTable, and

calling functions through function pointers defined in g_rsl_actFuncTable.
Inspecting 1_actStringTable, shown in Figure 4.19, appears to indicate it
is a table of pointers.

XREF[3,2]: Entry Point(*), 0o0f2d44(*),
elfsectionHeaders::0o0002b4 (%),
fe8(R).

Lac tStringTable

200e 100 50 e2 Ob undefine...
00 Sc e2
6b 00 B8 ...
000ef100 50 undefinedl50h (o] XREF[3]: Entry Point(*), 000f2dd4(*),
_elfSectionHeaders: : 000002b4(*)
000ef101 e2 undefined1E2h [1]
000ef102 Ob undefined10Bh [2]
000ef103 60 undefined100h [3]
000ef104 Sc undefinedl5ch [4] XREF[1]: rdp_action: 00024fe8(R)
000ef105 e2 undefinedlezh [s]
000ef106 Ob undefinedl0Bh [6]
000ef107 0O undefinedloch [7]
000ef108 68 undefinedl&gh (el XREFI1]: rdp_action: 00024fe8(R)
000ef109 e2 undefinedlEzh [al

ANAAEI e A mdafieadAnk e

Figure 4.19: Raw string table

Inspecting the data at these pointer location reveals familiar strings, shown
in Figure 4.20.

We see the string ACT_WLAN_GET_NEW_PIN that appeared in our decrypted
request, as well as ACT_WLAN_RESTORE_PIN, presumably used when clicking
the restore PIN button. Inspecting g rsl_actFuncTable reveals it is also
a table of pointers, similar to the act string table. We assume the code
computes the index of the act string supplied by the request in the act
string table, and uses this index to call into the act function table. Manually

o4

[ooobe2s0 [actnul | ACT UL 5
000be25c ACT REBOOT "ACT REBOOT" ds
000be268 ACT FACTORY_RESET "ACT FACTORY_RESET" ds
000be27c ACT ERASE_RADIO_FLASH "ACT ERASE_RADIO_FLASH" ds
000be294 ACT_DHCP_RENEW "ACT_DHCP_RENEW" ds
000be2a4 ACT_DHCP_RELEASE "ACT_DHCP_RELEASE" ds
000be2bg ACT_PPP_CONN "ACT_PPP_CONN" ds
000be2c8 ACT_PPP_DISCONM "ACT_PPP_DISCOMN®" ds
000be2ds ACT WLAN_GET_NEW_PIN "ACT WLAN_GET_NEW_PIN" ds
000be2f0 ACT_WLAN_RESTORE_PIN "ACT_WLAN_RESTORE_PIN" ds
000be308 ACT WLAN_UPDATE_ASSOC "ACT WLAN_UPDATE_ASSOC" ds
000be320 ACT WLAN_WPS_PBC "ACT WLAN_ WPS_PBC" ds
000be334 ACT WLAN_WPS_PIN "ACT WLAN_WPS_PIN" ds
000be348 ACT WLAN_SCAN "ACT WLAN_SCAN" ds
000be3s58 ACT_NTP_REQUEST "ACT_NTP_REQUEST" ds
000be368 ACT_L2TP_CONN "ACT_L2TP_CONN" ds
000be378 ACT_L2TP_DISCONN "ACT_L2TP_DISCOMN® ds
000be38c ACT_PPTP_CONN "ACT_PPTP_CONN" ds
000be39c ACT_PPTP_DISCONN "ACT_PPTP_DISCONN" ds
000be3b0 ACT_WAN_TYPE_DETECT "ACT_WAN_TYPE_DETECT" ds
000be3c4 ACT BPA_CONN "ACT BPA_CONN" ds
000be3d4 ACT BPA_DISCONM "ACT_BPA_DISCOMN" ds
000be3ed ACT_OP_IPPING "ACT_OP_IPPING" ds
000be3f4 ACT_OP_TRACERT "ACT_OP_TRACERT" ds
000be404 ACT_IPV6_DISCONN "ACT_IPVE_DISCONN® ds
000be4l8 ACT_IPVE_CONN "ACT_IPVE_CONN" ds
000be428 ACT_END "ACT_END" ds

Figure 4.20: Corresponding string table strings

cross-referencing the indices for the pin generation and restore entries leads
us to functions rsl_wlan getNewPIN and rsl_wlan restorePIN, proving our
assumption correct.

We begin with analyzing rsl wlan restorePIN, shown below:

uint rsl_wlan_restorePIN (ushort sxparam_1) {
undefined4 uVarl;
ushort auStack104 [18];
uint auStack68 [13];
uint local_10;

memset (auStack104 ,0,0x54) ;
local_-10 = rsl_getObj(0x31,param_1,0x54,auStack104);
uVarl = Oxlacd;

if (local .10 — 0) {
local_-10 = FUN_00059fa0 (auStack68);
if (local 10 =— 0) {

local_ 10 = rsl_setObj(0x31,param_1,auStackl04,2);
uVarl = 0xlad9;
if (local 10 = 0) {

return 0;

}
} else {
uVarl = Oxlad3;

95

}

}
}

cdbg_perror (”rsl_-wlan_restorePIN” juVarl,local_10);
return local_10;

A call to rsl_getObj obtains the current config node from the data model,
which after modification is written back using rsl_setObj. It is not imme-
diately obvious, but FUN_00059fa0 performs the modification, and is shown
below:

int FUN_00059fa0 (uint *param_1) {

}

bool bVarl;

int iVar2;

undefined3 extraout_var;
ushort local_2d8;
undefined2 local_2d6 ;
undefined2 local_2d4;
undefined2 local_2d2;
undefined2 local_2d0;
undefined2 local_2ce;
undefined2 local_2cc;
undefined auStack712 [20];
uint local_2b4;

local_2d8 =
local_2d6
local_2d4
local_2d2 =
local_2d0 =
local_2ce = 0;
local_2cc = 0;
memset (auStack712,0,0x2b4) ;
iVar2 = dm_getObj(6,&local_2d8 ,0x2b4 , auStack712);
if (iVar2 = 0) {

bVarl = wlan_checkPIN (local_2b4);

[l
coococoo

)

if ((CONCAT31(extraout_var ,bVarl) = 0) || (local_-2b4d = 0))
local_2b4 = 0xbc6146;
}
sparam_1 = local_2b4;
} else {
cdbg_perror (”wlan_getRestoredPIN” ,0x13ef,iVar2);

}

return iVar2;

Here we see an additional call to dm_getObj to obtain the PIN, which is

subsequently checked. If the pin is not valid?, or zero, the pin is replaced
with Oxbc6146 (12345670).

9Based on the WPS PIN checksum

o6

Ghidra fails to properly decompile the code in these past two functions,
obscuring some of the data movements behind extraout variables, and not
correctly identifying that auStack104 and auStack68 are part of the same
data structure/buffer. Nevertheless we managed to infer the hidden data
flows, and conclude that resetting the PIN resets it to the value as obtained
from the data model. Noteworthy is the hardcoded fallback to 12345670 as
the PIN code in case of invalid data.

Inspecting rsl_wlan getNewPIN, shown below, reveals a similar structure
where first rsl_get0bj is called to retrieve the relevant config code from
the data model, which is then modified and subsequently written back using
rsl_set(Obj.

uint rsl_wlan_getNewPIN (ushort xparam_1) {
int iVarl;
undefined4 uVar2;
char xpcVar3;
uint uVar4;
ushort auStack5096 [18];
undefined4 local_13c4;
undefined auStack5012 [3920];
int local_444;

memset (auStack5012,0,0x1380) ;
iVarl = FUN_000590f4 (param_1,auStack5012);
if (iVarl = 0) {
uVar2 = 0x1a99;
if (local_444 = 0) {
uVar2 = (*x*x(code xx)(local_444 + 0x78))(8);
memset (auStack5096 ,0,0x54) ;
uVard = rsl_getObj(0x31,param_1,0x54,auStack5096) ;
if (uVard = 0) {
local_13¢c4 = uVar2;
uVard = rsl_setObj(0x31,param_1,auStack5096 ,2) ;
if (uVard = 0) goto LAB_0005ad10;
uVar2 = Oxlaad;
} else {
uVar2 = 0Oxlaa6;
}
cdbg_perror ("rsl_wlan_getNewPIN” juVar2,uVar4) ;
goto LAB_0005ad10;
}
pcVar3 = ”Failed_to_get._Oal_Funcs\n”;
} else {
uVar2 = 0x1a92;
pcVar3 = ”Failed._.to_get .Wlan._.Cfg\n” ;
}
uVard = 1;
cdbg_printf (8,”rsl_.wlan_getNewPIN” juVar2,pcVar3);
LAB_0005ad10:
FUN_00057910 ((int)auStack5012);

o7

return uVar4;

}

Ghidra again seems to have issues accurately decompiling the code, but the
assignment of uVar2 to local_13c4 immediately before the rs1_set0bj call
is presumably what updates the PIN code. This uVar2 variable is assigned
from (**(code **) (local 444 + 0x78))(8);. Sadly Ghidra does not de-
tect what value local 444 has prior to this computed call. It is most likely
set as a side effect from calling FUN_000590f4, but manual inspection did
not reveal any obvious static value. As such we are unable to progress, and
have hit the limit of static analysis. Dynamic analysis through emulation
of the device, or running a gdb debug server on the device could reveal the
computed call location. Because neither of those methods are trivial to set
up, we abandon this avenue for the sake of scope reduction.

While we do not know how the function called is implemented, we do observe
it is called with a single 8 parameter. It is unlikely to be a coincidence that
the WPS PIN to be generated consists out of 8 digits, but without the
implementation we cannot say for sure whether the scheme is secure. At the
very least we did not find proof that information such as MAC addresses
or SSIDs are used during the generation of a new random PIN, though it
should be said that absence of proof is not proof of absense.

4.8.3 Dropbear

Cross referencing the dropbear strings found in the boot log to binaries
reveals matches in /1ib/libcmm.so. Specifically we see FUN_0009b3b8 is
the main source of these boot log entries:

void FUN_0009b3b8(void) {
int iVarl;
char *pcVar2;
ushort local_e8;
undefined2 local_e6 ;
undefined2 local_e4;
undefined2 local_e2;
undefined2 local_eO;
undefined2 local_de;
undefined2 local_dc;
char acStack216 [200];

local_e8
local_e6
local_e4
local_e2
local_e0
local_de
local_dc
sleep (5);

I
coocooocoo

o8

memset (acStack216,0,200) ;
pcVar2 = acStack216;
iVarl = dm_getObj(8,&local_e8 ,200,pcVar2);
if (ivarl != 0) {
pcVar2 = 7 get .OID_.USER_ CFG._error.\n";
cdbg_printf (8,” prepareDropbear” ,0x11a);
}
FUN_0009b1d0 ((int)acStack216);
util_execSystem ((int)” prepareDropbear” ,” dropbearkey —t.rsa.—f.

%S” ,
” /var /tmp/dropbear/dropbear_rsa_host_key”,
pcVar2);
util_execSystem ((int)” prepareDropbear” ,”dropbearkey —t.dss_—f._
%S” ,

” /var /tmp/dropbear/dropbear_dss_host_key” ,
pcVar2) ;
util_execSystem ((int)” prepareDropbear” ,” dropbear _—p %d._—r %s .—
d %s —A %s” ,0x16 ,
” /var /tmp/dropbear/dropbear_rsa_host_key”);
os_threadExit (0) ;
return;

}

The dropbearkey utility, part of Dropbear, is used to generate the RSA
and DSS key pairs. Function FUN_0009b1d0 is responsible for generating
the dropbearpwd file:

undefined4 FUN_0009b1d0(int param_1) {
undefined4 uVarl;
FILE *__stream;
size_t sVar2;
byte xpbVar3;
int iVar4;
char x__s;
char acStackl112 [36];
byte local_4c¢ [32];
undefined local_2c;
char xlocal_28;

memset (local_4c¢ ,0,0x21);
if ((*(char x)(param_1 + 0x44) = ’\0’) || (*(char *)(param_1
+ 0x65) = ’'\07)) {
cdbg_printf(8,”setDropbearLogin” ,0xe3 ,” uname._=_%s , .pswd .=_%s
\n” ,param_1 + 0x44 ,param_1 + 0x65);

uVarl = 1;
} else {
__stream = fopen(”/var/tmp/dropbear/dropbearpwd” ,”wh+”) ;
uVarl = 1;
if (__stream != (FILE %)0x0) {

fprintf(-_stream ,” username:%s\n” ,param_1 + 0x44);
local_28 = (char x)(param_1 + 0x65);

__s = acStackl112;

sVar2 = strlen (local_28);

99

iVard = 0;
cen_md5MakeDigest (local_4¢ ,local_28 ,sVar2);
memset (acStack112 ,0,0x21);
do {
pbVar3 = local_4c + iVar4;
iVard = iVard + 1;
sprintf(-.s ,”%02x” ,(uint)*pbVar3);
.8 = __.s + 2;
} while (iVar4 != 0x10);
memcpy (local_4c ,acStack112 ,0x21);
local_2¢c = 0;
fprintf(-_stream ,” password:%s\n” ,local_4c);
fclose (-_stream);
uVarl = 0;
}
}

return uVarl;

}

Here we see that the file is opened, and that a username:USER line is writ-
ten, where USER is the username. Next a password:PASS line is written,
where PASS is a hex-string of the MD5 checksum of the password. The user-
name and password are based on the parameter param_1, which is ultimately
obtained from a data model using a call to dm_getObj, as we saw before.
Plotting the function call graph of dm_init, as shown in Figure 4.21, reveals
a path to dm_set0bj, which first loads and then restores a config file, that is
apparently XML data. Based on our prior research regarding config files and
related dm X functions we know this data model data is thus sourced from
the (encrypted XML) configs, which include the plaintext SSH credentials.
Further analysis of dm_loadCfg, shown below, reveals that the config is
loaded from flash memory. Loading from flash memory simply means read-
ing the config mtd section at address 0x7c0000-0x7d0000, and decrypting it
using the AES parameters as previously discovered. The oal_sys_readCfgFlash
function is responsible for this. If this fails, the config is loaded from
/etc/default_config.xml instead.

uint dm_loadCfg(void) {
bool bVarl;
char xxppcVar2;
char xpcVar3;
int iVar4;
char xpcVarh;
uint uVar6;
char *pcVar7;
undefined4 uVar8;
char *pcVar9;
char *xxppcVarlO;
char xlocal_20 [3];

local_20 [0] = (char x)0x0;

60

dm_readFile

oal_sys_readCfgFlash

me}r‘nset dri_restoreCf
T A |

FUN_0008cad0
/ \ FUN_0008beb0

N

dm_setObj dm_numstackTostr

Figure 4.21: Data model call graph

ppcVar2 = (char xx)cmem_attachSharedBuff () ;

if (ppcVar2 = (char x*x)0x0

- 'd_mgi':ﬁ}-_..‘ -

S

~——cen_uncompressBuff

) |

dm_shminit - __'_..dm.’.|oadcfg dm_decryptFile NN : ™

) cdbg_printf

. stremp

xml_delTree

iml_ﬂndPrev

3
AN

xml_parseString

cdbg_printf(8,”dm_loadCfg” ,0x921,” attach_to_big._shared.

buffer _failed.”);
return 0x232a;

}

pcVar3 = (char x)cmem_getSharedBuffSize () ;

local_20 [0] = (char x)0x10;

iVard = oal_sys_readCfgFlash ((uint *)ppcVar2,(uint *)local_20)

if (iVard = 0) {
pcVarb = sxppcVar2;

if (local_20[0] = pcVarh) {

pcVar7 = ppcVar2[1];

if (pcVar7 != (char *)0x98765432) {

uVar8 = 0x93c;

pcVar9 = "software._version.is.not_match,_in_config ,.

version .=.%u” ;
goto LAB_00090674;
}
pcVar7 = (char *)0x0;
uVar6 = 0;
ppcVarl0 = ppcVar2;

61

while (bVarl = uVar6 != (uint)(pcVar5 4+ 0x10) >> 2, uVar6
= uVar6 + 1, bVarl) {
pcVar9 = xppcVarlO;
ppcVarl0 = ppcVarl0 + 1;
pcVar7 = pcVar7 + (int)pcVar9;

if (pcVar7 = (char *)0x0) {

if (ppcVar2[3] = (char *)0x0) {
ppcVarl0 = ppcVar2 + 4;
1 else {

if (pcVar3 + —0x41830 < pcVarb) {
cdbg_printf(8,”dm_loadCfg” ,0x9e3
” Compress.data.is_too.long ,_available.
size.is %d_bytes , _ now.is Fd_bytes”,
pcVar3 + —0x41830,pcVarh);
cmem_detachSharedBuff(ppcVar2);
return 0x1194;

}

ppcVarl0 = (char *x)((int)(ppcVar2 + 4) + (int)pcVarh)

memset (ppcVarl0,0,((int)pcVar3 — (int)pcVar5) — 0x10);
local_20 [0] = (char *)cen_uncompressBuff(ppcVar2 + 4,
ppcVarl0,(int)pcVar3 — (int)pcVard);

if (local_-20[0] == (char *)0x0) {

cdbg_printf(8,”dm_loadCfg” ,0x9f7 ,” Depack_config._from
flash_failed !\n”);

cmem_detachSharedBuff(ppcVar2);
return 0x232a;

*(char x) ((int)ppcVarl0 + (int)local_20[0]) = "\0’;

}

goto LAB_00090894;
}
cdbg_printf(8,”dm_loadCfg” ,0x94d ,” checksum.is .not.right”);

} else {

uVar8 = 0x935;
pcVar9 = ”length._is_not._match,_.in_config ,_length_=%u_byte

,.but.read Y%u_byte”;
pcVar7 = pcVarh;
LAB_00090674 :
cdbg_printf(8,”dm_loadCfg” ,uVar8,pcVar9,pcVar7);

iVard = 0x264a;
} else {
cdbg_printf(8,”dm_loadCfg” ,0x954 ,” Read.config._from.flash .
failed ..ret .=%d” ,iVar4);
}

pcVarb = dm_readFile(” /etc/default_config.xml” ,pcVar3,ppcVar2)

if (pcVarb5 = (char %)0x0) {
cdbg_printf (8,”dm_loadCfg” ,0x9be,” Read_default .config._file.
failed ,._.ret .=%d” ,iVar4);
cmem _detachSharedBuff(ppcVar2);
return 0x2649;

62

ppcVarl0 = (char *x)((int)ppcVar2 + ((uint)pcVar3 >> 1));
local_20 [0] = (char *)dm_decryptFile ((uint)pcVar5,ppcVar2,(
uint)pcVar3 >> 1,(int)ppcVarl0);
if (local_20[0] = (char *)0x0) {
return 0x232a;

}
LAB_00090894 :

uVar6 = dm_restoreCfg (ppcVarl0,local_20[0],0);
cmem_detachSharedBuff(ppcVar2);
return uVar6;

}

4.9 Firmware update process

After logging in to the web interface, the user is able to update the firmware
of the device by selecting and uploading a .bin file. The client side logic
for this is controlled in /web/main/softup.htm. A form is used that posts
a file parameter filename to the /cgi/softup endpoint, as shown below:

<form action="/cgi/softup” enctype="multipart/form—data” method=
7 post”>

<p><b class="item.T” id="t_file”>Firmware File Path<input
type="file” name="filename” id="filename” /></p>

</form>

A button labelled Upgrade is defined, which invokes the javascript function
doSubmit when clicked, both shown below:

<p class="tail”’><input type="button” class="button_L_.T” id="
t-upgrade” value="Upgrade” onclick="return.doSubmit()” /></p>

<script language="javascript” type="text/javascript”>
function doSubmit ()

{

1f($ id_(77 filename77) value — 7777)

$.alert (ERRFIRM_FILE NONE) ;
return false;

}

var regex = /".+\.bin$ /;

if (!regex.test($.id(”filename”).value)){
//alert ("Invalid._file _type.”);
$. alert (CMM.CFG_FILE FORMAT ERR) ;
return false;

}

var formObj = $.d.forms[0];

try

63

formObj. target = ”"up_frame”;
formObj. action = 7 /cgi/softup”;
formObj . submit () ;

}catch(e){}

$.guage (["<span._class="T_.T_uploading’>"+s_str .uploading+
7" , "<span.class="T_.T _wait_upload’>"+s_str .
wait_upload+”’”], 10, 300, function (){
$.guage (["<span.class="T.T_upgrading’>"+s_str .
upgrading+’", ”"<span.class="T.
T_wait_upgrade’>"+s_str . wait_upgrade+”’
7], 100, 1800, function(){$.deleteCookie(”
Authorization”); if (INCLUDE_LOGIN_GDPR_ ENCRYPT
){try{$.newencryptorManager.cleanStorage ()}
catch(e){} }window.parent.$.refresh();});
$.cgi(”/cgi/softburn”, null, function(ret){
if (ret && ret != ERRNETWORK && ret !=
ERR.EXIT && ret != ERRINONEFILE) $.
errBack (ret, ”softup.htm”);
}, false, true);

R
}
</script>

From this we conclude the only client side check being done is that a post
must include the filename parameter, which must end with .bin.

To better understand the firmware update process, and see if there are any
security mechanism in place, we investigate what occurs in the backend when
a post request to /cgi/softup is received. These requests are presumably
processed by /usr/bin/httpd, and thus we load that binary into Ghidra.
After analysis has completed, we look for string references to /cgi/softup,
and find one in http_init main:

undefined4 http_init-main(void) {
int iVarl;
int xpiVar2;
undefinedl xpuVar3;

http_inetd_init () ;
http_parser_init () ;
http-auth_init () ;
http-alias_init ()
http_session_init
http-menu_init ()
http_cgi_init () ;
http_cgi_gdpr_init ();
http-tool_init ();
for (piVar2 = &g_http_alias_conf_admin; xpiVar2 != 0; piVar2 =
piVar2 + 1) {
http-alias_addEntryByArg (0,*piVar2,0,0,g_http_author_admin);

7();

)

64

}

puVar3 = g_http_alias_conf_default;
while(true) {
if (#(int x)puVar3 = 0) break;
http_alias_addEntryByArg (0,+(int *)puVar3,0,0,
g-http_author_default);
puVar3 = (undefinedl x)((int)puVar3 + 4);
}
http-alias_addEntryByArg(2,”/cgi/conf.bin” ,0, http_-rpm_backup
g_http_author_default);
http_alias_addEntryByArg (2,” /cgi/confencode” ,0,
http-rpm_confencode , g_http_author_default);
http_alias_addEntryByArg(2,” /cgi/confup” ,0,http_rpm_restore ,
g_http_author_default);
http_alias_addEntryByArg (2,” /cgi/bnr” ,0,http_rpm_conferr ,
g_http_author_default);
http_alias_addEntryByArg (2,” /cgi/softup” ,0,http_rpm_update ,
g-http_author_default);
http_alias_addEntryByArg(2,” /cgi/softburn” ,0,http_.rpm_softerr ,
g_http_author_default);
http-alias_addEntryByArg(2,” /cgi/log” ,0,http_rpm_log_-main ,
g_http_author_default);
http_alias_addEntryByArg (2,” /cgi/info” ,0,http_rpm_info ,
g-http_author_default);
http_alias_addEntryByArg(2,” /cgi/lanMac” ,0,http_rpm_lanMac ,
g_http_author_default);
http-alias_addEntryByArg (2,” /cgi/auth” ,0 ,http_rpm_auth_main ,
g_http_author_default);
http_alias_addEntryByArg (2,” /cgi/pve” ,0,http_rpm_autoPvc,
g-http_author_default);
http_alias_addEntryByArg(2,” /cgi/ansi” ,0,http_-rpm_ansi,
g_http_author_default);
http-alias_addEntryByArg (2,”/cgi/logout” ,0,http_rpm_logout ,
g_http_author_default);
http_alias_addEntryByArg(2,” /cgi/route” ,0,http_-rpm_routeTbl,
g-http_author_default);
http_alias_addEntryByArg (2,” /cgi/updateWlThroughput” ,0,
http_rpm_updateWIlThroughput ,g_http_author_default);
http_alias_addEntryByArg (2,” /cgi/https” ,0,
http_-rpm_downloadCACert, g_http_author_default);
http_alias_addEntryByArg (2,” /cgi/getParm” ,0,http_rpm_getParm ,
g-http_author_default);
http_alias_addEntryByArg (2,” /cgi/login” ,0,http_rpm_login ,
g_http_author_default);
http-file_init () ;
iVarl = http-inetd_setMsgCtl () ;
if (ivarl != 0) {
/¥ WARNING: Subroutine does not return x/
exit(—=1);
}
signal (Oxd,(-_sighandler_t)0x1);
dm_shmInit (0) ;
FUN_00403ec4 () ;
http_-inetd_main () ;

65

return 0;

}

Here we see that http_rpm_update is registered as a handler for the /cgi/softup
endpoint. This handler function is shown below:

int http_rpm_update (int xparam_1) {
bool bVarl;
int iVar2;
undefined4 uVar3;
char *pcVar4;
size_t sVarb;
undefined xpuVar6;
uint uVar7;
int xpiVar8;
undefined4 local_a38;
undefined auStack2612 [256];
char acStack2356 [256];
char acStack2100 [2052];
int local_30;

local_a38 = 0;
DAT_00446db0 = 0;
if (x(int =) (xparam_1 + 0x1038) = 2) {
DAT_00446db0 = 0x1162b;
iVar2 = 0x193;
} else {
uVar7 param_1[6];
iVar2 = cmem_getUpdateBufSize () ;
if (iVar2 4+ 0x40bb8U < uVar7) {
DAT_00446db0 = 0x1162b;
iVar2 = 0x19d;
} else {
if ((DAT_00446db4 = (undefined =*)0x0) &&
(DAT_00446db4 = (undefined x*)
cmem_updateFirmwareBufAlloc () ,
DAT_00446db4 = (undefined =)0x0)) {
DAT_00446db0 = 0x232a;
return 500;
}
puVar6 = DAT_00446db4;
uVar3d = cmem_getUpdateBufSize () ;
bVarl = false;
while ((param_1[6] != 0 &&
(iVar2 = http_parser_illMultiObj (param_1,
acStack2356 ,0 ,puVar6,uVar3,&local_a38),
-1 < iVar2))) {
local_30 = iVar2;
iVar2 = strcmp (acStack2356 ,” filename”) ;
if (ivar2 = 0) {
DAT_00446db8 = local_30;
bVarl = true;
puVar6 = auStack2612;

66

}
}

uVar3d = 0x100;

}

}
if (bVarl) {
param_1[0xe] = (int)FUN_0040b7b0;
puVar6 = &DAT_00419e68;
} else {
DAT_00446db0 = 0x1162b;
iVar2 = cmem_updateFirmwareBufFree (DAT_00446db4) ;
if (iVar2 < 0) {
cdbg_printf (8,” http_-rpm_update” ,0xad ,” Detach_big.
buffer.error\n”);
}
DAT_00446db4 = (undefined =)0x0;
puVar6 = &DAT_0041a4c8;
}
sprintf(acStack2100 ,”’<html><head></head><body>%s</body></
html>” ,puVar6) ;
piVar8 = (int =*)param_1[0x21];

param_1[7] = 0;
param_1[0xf] = (int)g_http_file_.pTypeHTML;
if (((piVar8 = (int %)0x0) || (*piVar8 != 1)) ||

(pcVard = strstr ((char x)param_1[3],”/cgi_gdpr”),
pcVard = (char x)0x0)) {

iVar2 = http_io_output (param_1,acStack2100);

iVar2 = —(uint) (iVar2 = —1);

} else {

pcVard = (char *)http_buf_getptr(piVar8[7],0);

sVarb = strlen (acStack2100);

strncpy (pcVard , acStack2100 ,sVarb);

iVar2 = #(int x*)(param_1{0x21] + Oxlc);

sVarb = strlen (acStack2100);

x(size_t x)(iVar2 + Oxc) = x(int x)(iVar2 4+ Oxc) + sVarh

sVarb = strlen (acStack2100);
http_buf_incrpos(iVar2,sVarb);
iVar2 = 0;

}

return iVar2;

}

This handler mostly deals with allocating a buffer for the firmware update,
and processing HTML parameters. Notable is that FUN_0040b7b0 is used as
a function pointer, which is assigned to param_1]0xe], and then passed to
http_io_output. Decompiling this function yields the code shown below:

undefined4 FUN_0040b7b0(void) {

int

iVarl;

iVarl = rdp-updateFirmware (DAT_00446db4 , DAT_00446db8) ;
if (iVarl = 0) {

67

}

rdp_action ("ACTREBOOT” ,0) ;
do {
/* WARNING: Do nothing block with infinite
loop =/
} while(true);

DAT_00446db0 = iVarl;
iVarl = cmem_updateFirmwareBufFree (DAT_00446db4) ;
if (iVarl < 0) {
cdbg_printf(8,” http_-rpm_softburn” ,0xd0,” Detach_big._buffer .
error\n”);
}
DAT_00446db4 = 0;
return 0;

Clearly rdp_updateFirmware is a call that starts the updating process,
where DAT_00446db4 is the previously allocated firmware update buffer, and
DAT_00446dDb8 is the contents of the .bin file. The rdp_updateFirmware
function is not part of /usr/bin/httpd, but some quick investigation re-
veals this function is exported by /1ib/libcmm. so, which subsequently calls
rsl_sys_updateFirmware after acquiring a lock, and is shown below:

undefined4 rsl_sys_updateFirmware(int param_1,uint param_2) {

int iVarl;

uint uVar2;

int iVar3;

uint uVar4;

uint uVarh;

uint uVar6;

code xpcVar7;

uint local_38;

undefined auStack52 [24];

local_38 = 0;
iVarl = oal_sys_getTagOffset ();
if ((param_2 < 0x30000) || (uVar2 = cmem_getUpdateFirmwareSize
(), uVar2 < param-2)) {
cdbg_printf(8,”rsl_sys_updateFirmware” ,0xc7f,” The_file\’s.
length_is._bad: %d\n” ,param_2);
return 0x1196;
}
uVar2 = cmem_getUpdateFirmwareSize () ;
if (uVar2 < param_2) {
return 0x1196;
}
iVarl = param_1 + iVarl;
memcpy (auStack52 , (void *)(iVarl + 0x40),0x10);
memcpy ((void =) (iVarl + 0x40) ,auStack52,0x10);
uVar2 = x(uint x)(iVarl + Oxa4);
uVar2 = uVar2 << 0x18 | uVar2 >> 0x18 | (uVar2 & 0xff0000) >>
8 | (uVar2 & 0xff00) << §;

68

cdbg_printf(8,”rsl_sys_updateFirmware” ;0xcc3 ,”—————=0x%08x
———— ,uVar2);
uVard = x(uint x)(iVarl 4+ 0x34);
uVar5 = rsl_dev_getProductld () ;
if ((uVard << 0x18 | uVard >> 0x18 | (uVard & 0xff0000) >> 8 |
(uVard & 0xff00) << 8) == uVarb) {
uVard = x(uint x)(iVarl + 0x38);
uVarb = rsl_dev_getProductVer () ;
if ((uVard << 0x18 | uVard >> 0x18 | (uVard & 0xff0000) >> 8
| (uVard & 0xff00) << 8) == uVar5h)
{

uVar2 = oal_sys_getAddHverFlash () ;

uVarb = uVar2 << 0x18 | uVar2 >> 0x18 | (uVar2 & 0xff0000)
>> 8 | (uVar2 & 0xff00) << 8;

printf(” flash_hver_is %d\n” ,uVar5);

uVard = x(uint x)(iVarl 4+ 0x3c);

printf(”image_hver.is %d\n” ,

uVard << 0x18 | uVard >> 0x18 | (uVard & 0xff0000)
>> 8 | (uVard & 0xff00) << 8);

uVard = x(uint =) (iVarl 4+ 0x3c);

if ((uVard << 0x18 | uVard >> 0x18 | (uVard & 0xff0000) >>
8 | (uVard & 0xff00) << 8) < uVarh)

{

cdbg_printf (8,”rsl_sys_updateFirmware” ,0xcfd ,
?Firmware_Additional _.HardwareVersion._check.
failed\n”);
return 0x119a;

*(uint *) ((int)& DT _REL[0x3c6].r_info + param_1) = uVar2;
#*(uint *)(iVarl + O0x3c) = uVar2;
system (”echo.0_>_/proc/tplink/led_sys”);
uVard = x(uint =) (iVarl 4+ 0x8c);
uVar2 = *(uint *)(iVarl + 0x90);
rsl_createSwSignature
(uVard << 0x18 | uVard >> 0x18 | (uVard & 0
xff0000) >> 8 | (uVard & 0xff00) << 8,
uVar2 << 0x18 | uVar2 >> 0x18 | (uVar2 & 0
xf£0000) >> 8 | (uVar2 & 0xff00) << 8,
&local_38);
uVard = x(uint x)(iVarl + 0x8c);
uVar2 = x(uint =) (iVarl 4+ 0x90);
uVar6 = uVard << 0x18 | uVard >> 0x18 | (uVard & 0xff0000)
>> 8 | (uVard & 0xff00) << 8;
uVard = uVar2 << 0x18 | uVar2 >> 0x18 | (uVar2 & 0xff0000)
>> 8 | (uVar2 & 0xff00) << 8;
uVar2 = local_38;
cdbg_printf(8,”rsl_sys_updateFirmware” ,0xdO0f,
"NEW: _swRevision —0x%x , .platformVer —0x%x , -
swSignature —0x%x\n” ,uVar6 ,uVar4,local_38);
uVar5 = rsl_getCurrSwSignature () ;
if (uVarb != local_38) {
rsl_sys_restoreDefaultCfg () ;

}

uVarb = *x(uint *)(iVarl + 0x8c);

69

iVar3 = rsl_checkSwVerRollBack

(uVarb << 0x18 | uVar5 >> 0x18 | uVarh
>> 8 & 0xff00 | (uVarbd & 0xff00) << 8

)

if (ivar3 = 0) {

cdbg_printf(8,”rsl_sys_updateFirmware” ,0xd2c,”
rsl_checkSwVerRollBack.ret_err.” ;uVar6,uVar4,
uVar2);

if ((x(int *)(iVarl + 0x84) = 0) && (*(int x)(iVarl + 0
x88) = 0)) {
pcVar7?7 = oal_sys_writeAppFlash;
} else {
pcVar7?7 = oal_sys_writeAppBootFlash;
param_1 = param_1 + 0x200;
param_2 = param_2 — 0x200;

}

iVarl = (*xpcVar7) (param_1,param_2);
if (iVarl = 0) {
return 0;

}

cdbg_printf(8,”rsl_sys_updateFirmware” ,0xd45,” Update.
firmware_error!\n”);
return 1;

}
}

cdbg_printf(8,”rsl_sys_updateFirmware” ,0xce9,” Firmware_version
~check._failed\n” ,uVar2);
return 0x1197;

}

We see various checks that validate the length of the firmware file, as well as
some inspection of firmware header fields, such as product id, product ver-
sion, hardware version, and a software signature field!?. Also note the two
memcpy calls at the beginning, which copies out the MD5 checksum header
field identified earlier into auStack52, but then immediately copies it back
without modifications or further references. One possible explanation for
this odd behaviour is that the original code base contains verification func-
tionality that has been conditionally disabled during compilation. Finally,
either oal_sys_writeAppFlash or oal_sys_writeAppBootFlash is called,
based on the firmware header, to flash the new firmware image to the de-
vice. Both these functions call FUN_00097d0c to perform the actual flashing,
shown below:

undefined4 FUN_00097d0c(undefined4 param_1,uint param_2,
undefined4 param_3) {
int __fd;
int iVarl;

0This is not a cryptographic signature or checksum, but rather an identifier used to
determine if the default configuration should be restored

70

undefined4 uVar2;

int iVar3;

undefined4 local_40;
undefined4 local_3c;

uint local_38

)

undefined4 local_34;
undefined4 local_30;

int local_2c;

iVar3d = 3;

do {
local_40 =
local_3¢c =
local_38 =
local_34 =
local_30 =
local_2c

)
)
)
)

)

(e R s R en o i e M an]

)

if (param_-2 < 0x800001) ({
__fd = open(”/dev/flash0” ,0);
if (_.fd < 0) {
cdbg_printf(8,” __writeFlash” ,0x141,”Open.flash .pseudo.
device.failed\n”);
uVar2 = Oxfffffffe;

} else {

local_40
local_3c
local_38

iVarl =

param_3;
param_1;
param_2;

ioctl (__fd ,2,&local_40);
if (iVarl < 0) {
cdbg_printf (8,” __writeFlash” ,0x14b,”FLASH_API: _ioctl.
error\n”);

uVar2 = Oxfffffffd;

close(-_fd);
} else {
close(__fd);
if (local_2c¢ != 10) {

return 0;

}

cdbg_printf(8,” __writeFlash” ,0x154,”OUT_-OF_SCOPE”) ;
uVar2 = Oxfffffffc;

}

} else {

cdbg_printf(8,” __writeFlash” ,0x13a,” write_flash : Too_many.
bytes.—%d.>.%d_bytes\n” ,param_2,0x800000) ;
uVar2 = Oxffffffff;

}

cdbg_printf(8,” writeFlash” ;0x164 ,” write_flash._error %d” ,

uVar2);

iVar3d = iVar3 + —1;
usleep ((--useconds_-t)”etFwld”);
} while (iVar3 != 0);

return uVar2;

}

71

Here we see that the /dev/f1lashO device is opened, and written to using an
ioctl call. The difference between writeAppFlash and writeAppBootFlash
is that the former only starts writing at offset 0x20000, the start of the
kernel mtd section —thus skipping the boot section—, whereas the latter starts
writing at offset 0.

Note that while the firmware header does suggest the possibility for sign-
ing [38], no such code was found in the update process. Interestingly a
rdp_verifyFirmware function does exist, but apart from the name change
it behaves identically to rdp_updateFirmware, in that it only acquires a lock,
and then calls rs1_sys_updateFirmware. No other functions or strings were
found that indicate any such verification functionality exists, but is unused,
or accessed via other code paths.

Now that we have fully traced the firmware update process we conclude
that there are only some minor sanity checks. There are no security checks
that validate the integrity of firmware updates, nor is there any requirement
that firmware updates must be cryptographically signed by the vendor, thus
providing our answer to RQ 10. This also means it is possible to flash our
own firmware, not signed by the vendor, thus providing a positive answer to
RQ 3.

4.10 Dynamic analysis

For the final part of our investigation we perform some dynamic analysis
of the device through the root shell obtained over the UART interface. We
begin by printing a list of running processes:

ps
PID USER VSZ STAT COMMAND

1 admin 1068 S init
2 admin 0 SW [kthreadd]
3 admin 0 SW [ksoftirqd /0]
4 admin 0 SW [kworker /0:0]
5 admin 0 SW [kworker /u:0]
6 admin 0 SW< [khelper)]
7 admin 0 SW [sync_supers]
8 admin 0 SW [bdi—default]
9 admin 0 SW< [kblockd]
10 admin 0 SW [kswapdO]
11 admin 0 SW< [crypto]
19 admin 0 SW [mtdblockO]
20 admin 0 SW [mtdblockl]
21 admin 0 SW [mtdblock2]
22 admin 0 SW [mtdblock3]
23 admin 0 SW [mtdblock4]
24 admin 0 SW [mtdblock5 |
25 admin 0 SW [mtdblock6 |

72

26 admin 0 SW [kworker/u:1]
33 admin 0 SW [kworker /0:1]
81 admin 3464 S cos
82 admin 1068 S /bin/sh
171 admin 2648 S igmpd —n
174 admin 2664 S mldProxy —n
175 admin 3464 S cos
176 admin 3464 S cos
177 admin 3464 S cos
180 admin 2612 S ntpc
183 admin 2620 S dyndns /var/tmp/dconf/dyndns. conf
186 admin 2620 S noipdns /var/tmp/dconf/noipdns. conf
189 admin 2620 S cmxdns /var/tmp/dconf/cmxdns. conf
233 admin 0 SW [RtmpCmdQTask]|
234 admin 0 SW [RtmpWscTask |
235 admin 0 SW [RtmpMlmeTask]
248 admin 1244 S wlNetlinkTool
251 admin 1244 S wlNetlinkTool
252 admin 1244 S wlNetlinkTool
254 admin 1064 S wsed —i ra0 —m 1 —w /var/tmp/wsc_upnp/
282 admin 5052 S < httpd
293 admin 2612 S dnsProxy
296 admin 1072 S < dhepd /var/tmp/dconf/udhcpd. conf
301 admin 3068 S snmpd —f /var/tmp/dconf/snmpd. conf
304 admin 3228 S tmpd
307 admin 3088 S tdpd
316 admin 988 S dhcpce
330 admin 2612 S diagTool
364 admin 2636 S pwdog
366 admin 3136 S tddp
378 admin 2636 S pwdog
381 admin 2636 S pwdog
397 admin 2608 S afcd
412 admin 1136 S dropbear —p 22 —r /var/tmp/dropbear/
dropbear_rsa_hos
1364 admin 1060 R ps

We can see that all processes run as admin, even potentially sensitive ap-
plication such as the web server. The principle of least privilege is not
being applied, opting instead to let everything run with all permissions.
This means any exploitation of the web server immediately means admin
privilege on the device; there is no need for subsequent privilege escalation
vulnerabilities.

Using Checksec [56] on httpd reveals that many exploit mitigation measures
such as RELRO, stack canaries, NX, PIE, and RPATH are not used. This
is reflected by reading from /proc/<httpd-pid>/maps:

00400000—-00422000 r—xp 00000000 1f:02 665 /usr/bin/httpd
00431000—-00432000 rw—p 00021000 1f:02 665 /usr/bin/httpd
00432000-00456000 rwxp 00000000 00:00 O [heap]

73

2b21a000—-2b220000
—0.9.33.2.s0
2b220000—-2b222000
2b22f000—-2b230000
—0.9.33.2.s0
2b230000—-2b231000
—0.9.33.2.s0
2b231000—-2b23d000
)
2b23d000—-2b24c000
2b24c¢000—-2b24d000
o)
2b24d000—-2b254000
2b254000—-2b263000
2b263000—2b264000
2b264000—-2b333000
2b333000—-2b342000
2b342000—-2b348000
2b348000—-2b361000
2b361000—2b365000
2b365000—2b374000
2b374000—-2b375000
2b375000—-2b381000
—0.9.33.2.s0
2b381000—-2b390000
2b390000—-2b391000
—0.9.33.2.s0
2b391000—-2b396000
—-0.9.33.2.s0
2b396000—-2b398000
2b398000—-2b399000
—0.9.33.2.s0
2b399000—-2b3a8000
2b3a8000—-2b3a9000
—-0.9.33.2.s0
2b3a9000—-2b3fd000
2b3fd000—-2b40d000
2b40d000—-2b418000
2b418000—-2b53f000
s0.0.9.8
2b53f000—-2b54e000
2b54e000—-2b564000
s0.0.9.8
2b564000—-2b566000
2b566000—2b5ac000
.0.9.8
2b5ac000—-2b5bb000
2b5bb000—-2b5bf000
.0.9.8
2b5bf000—-2b61£000
—0.9.33.2.s0
2b61f000—-2b62e000
2b62e000—-2b62f000
—0.9.33.2.s0

r—xp
rw—p
r—p
rw—p
r—Xp
—
r'w—p
r—Xxp
—P
rw—p
r—xp
—P
rw—p
Irw—p
r—Xp
—
Ir'w—p
r—Xp
— P
r—p
Ir'w—p
rw—p
r—Xp
—
Ir'w—p
r—Xxp
— P
r'w—p
r—xp
—
rw—p
rw—p
r—Xxp
—
rw—p
r—Xp
—Pp
r—p

00000000

00000000
00005000

00006000

00000000

00000000
0000b000

00000000
00000000
00006000
00000000
00000000
000ce000
00000000
00000000
00000000
00003000
00000000

00000000
0000b000

0000c000

00000000
00000000

00000000
00000000

00000000
00000000
00054000
00000000

00000000
00126000

00000000
00000000

00000000
00045000

00000000

00000000
0005f000

1f

00:
:02

1f

1f

1f

00:
:02

1f

1f

1f
1f

1f

1f

1f
1f

00:
:02

1f

1f

00:
:02

1f

00:
:02

1f

1f

1f
1f

00:
:02

1f

00:
:02

1f

00:
:02

1f

1f

00:
:02

1f

74

:02

00

:02

:02

00

:02
00:
:02
:02
00:
:02
00:
:02
00:
:02
:02

00

00

00

00

00

:02

00

00

:02
00:
:02
:02

00

00

00

00

:02

00

53

53

99

51

51
57

57

46

46
97

55

55
47

/1lib /ld—uClibc

/1lib /ld—uClibc
/1lib /1d—uClibc

/1ib /libcutil .

/1lib /libcutil .
/1lib/libos .so

/lib/libos .so
/1lib /libcmm . so

/1ib /libcmm . so
/1lib /libxml. so
/1lib /libxml. so
/1lib /libpthread
/lib /libpthread

/1lib /libpthread

/1ib /librt

/1ib /librt

/1lib /libgdpr . so
/1lib /libgdpr . so
/lib /libcrypto.
/lib /libcrypto.

/1lib/libssl.so

/1lib/libssl.so

/1ib /libuClibe

/1ib /libuClibe

2b62f000—-2b630000 rw—p 00060000 1f:02 48 /1lib /libuClibc

—0.9.33.2.s0

2b630000—2b635000 rw—p 00000000 00:00 O

2b635000—2b637000 r—xp 00000000 1f:02 88 /1lib /libdl
—0.9.33.2.s0

2b637000—-2b646000 ——p 00000000 00:00 O

2b646000—2b647000 r—p 00001000 1f:02 88 /1lib /libdl
—0.9.33.2.s0

2b647000—2b648000 rw—p 00002000 1f:02 88 /1lib /1libdl
—-0.9.33.2.s0

58800000 —-58864000 rw—s 00000000 00:04 32769 /SYSV000004d2 (
deleted)

7ffb5000 —7ffd6000 rwxp 00000000 00:00 O [stack]

7£f£7000 —7fff8000 r—xp 00000000 00:00 O [vdso]

We see that both the stack and heap have read, write, and execute permis-

sion bits set, whereas modern security practise would recommend marking

executable sections non-writable. Reading from /proc/sys/kernel/randomize _va _space
yields 1, rather than 2, meaning ASLR is only partially enabled.

4.11 Findings

In this section we summarize our findings of the conducted research. We be-
gin with providing summarized answers to our research questions, and then
provide an overview of vulnerabilities found, along with a short discussion
on their perceived impact.

4.11.1 Summary to research questions

RQ 1) A UART interface is exposed, that outputs debug information, and
provides an unauthenticated root shell.

RQ 2) Firmware can be extracted from the flash chip, and a very similar
version is also available on the vendor website.

RQ 3) It is possible to flash unsigned firmware onto the device through the
web interface, and firmware updates provided by the vendor are not
signed.

RQ 4) The device, in default configuration, runs DNS, UPnP, DHCP, SSH,
and HTTP services.

RQ 5) We have identified which files have been modified, some of which are
due to security updates, but detailed analysis is considered out of
scope.

RQ 6) Several prior vulnerabilities have been fixed, but some still remain
unpatched.

75

RQ 7) See Appendix A.5.

RQ 8) We are able to extract default credentials, as well as hard coded (fall-
back) crypographic keys and parameters.

RQ 9) We have investigated how several credentials, and other pieces of sensi-
tive information, are generated, but were unable to confirm how WiFi
WPS pins are generated.

RQ 10) The firmware update process contains no real security checks, outside
basic sanity checks to prevent flashing firmware intended for different
hardware, based on fields in the firmware header.

4.11.2 Overview of vulnerabilities

See Table 4.1 for an overview of vulnerabilities found. Note that some
entries represent multiple closely related vulnerabilities, making the absolute
number of vulnerabilities higher than indicated by the VULNxx notation.

e VULNO1 has high impact, because it bypasses any security mecha-
nisms available if an attacker has physical access to the device.

e VULNO2 has moderate impact, as it is susceptable to bruteforce at-
tacks, but a stronger password can be configured to mitigate the issue.

e VULNO3 and VULNO04 have low impact, because these credentials
are already widely known, and a user is asked to configure a new
password at first login.

e VULNO5, VULNO06, VULNOS8, VULNO09, VULN10, and VULN11
have high impact, because these vulnerabilities can lead to Denial-Of-
Service attacks, or even Remote-Code-Execution.

e VULNO7 has moderate impact, as an attacker already needs admin
credentials to restore the config, but could be used to trick users into
restoring malicious configs that set up backdoors.

e VULN12 has low impact, as it is unclear if this leads to any ex-
ploitable vulnerabilities.

e VULN13, VULN14, and VULN18 have moderate impact, as ob-
taining config files normally requires admin credentials, but unknown-
ing users might expose their config files, and by extention their plain-
text credentials.

¢ VULN15, VULN16, and VULN17 have low impact, as the con-
tents of default configs are not that sensitive, and exported configs are
compressed before encryption, slightly reducing the risk of ECB mode.

76

Vulnerability | Description Impact
VULNO1 Unauthenticated UART root shell High
VULNO2 | WiFi protected by 8 digit WPS pins Moderate
VULNO3 | Unsalted MD5 hash in /etc/passwd.bak Low
VULNO04 | Weak default credentials (admin:1234) Low
VULNO5 Multiple outdated dependencies with known CVEs High
VULNO6 | Multiple known vulnerabilities regarding GDPR web High
system

VULNO7 | Command injection vulnerability when restoring con- | Moderate
fig file with UPnP enabled

VULNO08 | Known buffer overflow in High
libcmm.so:dm_fill0bjByStr

VULNO0O9 | Buffer overflow in 1libcmm.so:dm £fill0bjByStr High
(value part)

VULN10 | Buffer overflow in 1libcmm.so:dm fill0bjByStr High
(key part)

VULN11 | Buffer overflow in httpd:FUN_0040b640 (testarg) High

VULN12 Improper HTML encoding in Low
1ib.js:htmlEncodeStr

VULN13 | Plaintext user password in (exported) config Moderate

VULN14 | Plaintext WiFi password in (exported) config Moderate

VULN15 | Weak crypto (DES/ECB) in default configs Low

VULN16 | Weak crypto (DES/ECB) in exported configs Low

VULN17 | Hardcoded crypto key for default configs Low

VULN18 | Hardcoded crypto key for exported configs Moderate

VULN19 | Hardcoded crypto key/iv for in memory config Low

VULN20 | Hardcoded WiFi WPS pin fallback (12345670) Low

VULN21 | Unsalted MD5 hash in dropbearpwd Moderate

VULN22 | No option to validate signed firmware updates Low

VULN23 | All processes run as admin High

VULN24 | Exploit mitigation (RELO/stack canaries/NX/PIE) High
not used in binaries

VULN25 Stack and heap both have write and execute permis- High
sion bits set

VULN26 | ASLR only partially enabled (randomize va_space Low

1)

Table 4.1: Overview of vulnerabilites

77

VULN19 has low impact, as an attacker capable of capturing the
config memory block is likely also able to extract any per-device crypto
key, unless a hardware enforced security is used to prevent easy key
extraction.

VULN20 has low impact, as it is unlikely an attacker can trigger this
pin fallback easily.

VULN21 has moderate impact, as it can allow an attacker to recover
the user password via Rainbow tables, unless a strong password is
used, but requires admin access on the device.

VULNZ22 has low impact, as being able to flash custom firmware (e.g.
OpenWRT/DD-WRT) is desirable, but not having the option to see
if firmware is signed by the vendor to prevent flashing backdoored
firmware is a missed opportunity.

VULN23, VULN24, and VULN25 have high impact, as it greatly
simplifies exploitation of vulnerabilities such as Remote-Code-Execution.

VULN26 has low impact, because compared to mode 2, only the
layout of data segments is not randomized.

78

Chapter 5

Related Work

There has been a substantial amount of research into the state of IoT secu-
rity, embedded security, router security, and even TP-Link products specif-
ically, conducted by members of the academic community [17, 16, 18, 13,
7, 10, 1, 15], researchers via blog posts [21, 19, 20, 22], and even consumer
organizations [5]. A number of technical books have been released focusing
on practical skills regarding security research of IoT devices [8, 2].

Researchers have also identified the need for automated vulnerability as-
sessment, and have proposed methods to achieve this [13, 16, 18]. This is
still an active topic of research, and while some tools are available that can
automate parts of common tasks, such as extracting and performing rudi-
mentary analysis of firmware [50, 49, 48, 51], this is still an ongoing area of
research.

Weak IoT security is not a new phenomenon, and the associated risks were
long known [7]. The rise of botnets based on the Mirai malware family, and
later derivatives, have lead to record breaking DDoS attacks [7, 10]. The re-
sulting outages of important digital infrastructure has shown the significant
real world impact, and thus the dire need to address the state of security.
Researchers have stated that the responsibility for these DDoS attacks is of-
ten passed on to the end users of devices, but argue that the vendors instead
should assume responsibility [10].

While some research has been proposed to frustrate the reverse engineering
of either hardware and software [4, 3], this is not an answer to the prob-
lem at hand. By raising the bar in terms of skills, equipment, time —and
thus costs— needed to reverse engineer it is possible less motivated actors are
deterred. Evolution in the ransomware threat-scape has shown that major
ransomware gangs have undergone significant professionalization, and func-
tion much like authentic businesses [6]. This has lead to a Ransomware as a
Service (RaaS) model where actors with less technical capabilities buy the
services of more capable actors [12]. This illustrates how a small, but well

79

motivated and funded, group can still have substantial impact in a larger
ecosystem. Ultimately vulnerabilities should be fixed, rather than made
harder to find.

There is a clear need for effective, standardized, and automated analysis of
new IoT devices, including routers such as the TP-Link TR-WR802N. As
this is not yet a reality, but a topic for future research, it is vital security
researchers continue to perform semi-automated, or even manual, analysis of
these devices in the meantime, such as done in this research. This is further
exemplified by the fact that vulnerable devices already pose an active threat
today.

80

Chapter 6

Future work

This research has provided a broad overview regarding known vulnerabil-
ities and the general state of security. Future research directions include
closer inspection of proprietary closed source binaries. Given prior com-
mand injections and buffer overflow vulnerabilities, it is not unlikely more
vulnerabilities of this kind still linger. Dynamic analysis techniques such as
fuzzing and emulation, amongst other methods described in literature [13],
could provide to be powerful tools to aid in this process.

81

Chapter 7

Conclusions

This research has shown that there does seem to be some improvement in
the security of TP-Link products, as attempts are made to address previ-
ously discovered vulnerabilities. Well establish modern security practices
such as layered defenses, principle of least privilege, and exploit mitigation
techniques are not, or only partially, utilized. As a result, most vulnerabili-
ties give attackers the ability to completely take over the device, rather than
needing to chain multiple exploits to bypass layered security.

82

Bibliography

1]

Glenn Barrie, Andrew Whyte, and Joyce Bell. Iot security: Challenges
and solutions for mining. In Proceedings of the Second International
Conference on Internet of Things, Data and Cloud Computing, 1CC
17, New York, NY, USA, 2017. Association for Computing Machinery.

Fotios Chantiz, loannis Stais, Paulino Calderon, Evangelos Deirment-
zoglou, and Beau Woods. Practical IoT Hacking: The Definitive Guide
to Attacking the Internet of Things. No Starch Press, 2020.

Shuai Chen, Junlin Chen, and Lei Wang. A chip-level anti-reverse
engineering technique. In Special Issue on Frontiers of Hardware and
Algorithms for On-chip Learning, Special Issue on Silicon Photonics
and Regular Papers., volume 14, New York, NY, USA, 2018. Association
for Computing Machinery.

Jean-Luc Danger, Sylvain Guilley, and Florian Praden. Hardware-
enforced protection against software reverse-engineering based on an
instruction set encoding. In Proceedings of ACM SIGPLAN on Program
Protection and Reverse Engineering Workshop 2014, PPREW’14, New
York, NY, USA, 2014. Association for Computing Machinery.

The American Consumer Institute Center for Citizen Re-
search. Securing iot devices: How safe is your wi-fi router?
https://www.theamericanconsumer.org/wp-content/uploads/
2018/09/FINAL-Wi-Fi-Router-Vulnerabilities.pdf, 2018.

Samuel Greengard. The worsening state of ransomware. Commun.
ACM, 64(4):15-17, mar 2021.

Harm Griffioen and Christian Doerr. Examining mirai’s battle over the
internet of things. In Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security, CCS 20, page 743-756,
New York, NY, USA, 2020. Association for Computing Machinery.

Aditya Gupta. The IoT Hacker’s Handbook: A Practical Guide to
Hacking the Internet of Things. Apress, 2019.

83

[9]

[12]

[13]

[14]

[16]

Sheharbano Khattak, Naurin Rasheed Ramay, Kamran Riaz Khan, Af-
fan A. Syed, and Syed Ali Khayam. A taxonomy of botnet behav-
ior, detection, and defense. IEEE Communications Surveys Tutorials,
16(2):898-924, 2014.

Constantinos Kolias, Georgios Kambourakis, Angelos Stavrou, and Jef-
frey Voas. Ddos in the iot: Mirai and other botnets. Computer,
50(7):80-84, 2017.

Yonglei Liu, Zhigang Jin, and Ying Wang. Survey on security scheme
and attacking methods of wpa/wpa2. In 2010 6th International Confer-
ence on Wireless Communications Networking and Mobile Computing
(WiCOM), pages 1-4, 2010.

Routa Moussaileb, Benjamin Bouget, Aurélien Palisse, Hélene
Le Bouder, Nora Cuppens, and Jean-Louis Lanet. Ransomware’s early
mitigation mechanisms. In Proceedings of the 13th International Con-
ference on Availability, Reliability and Security, ARES 2018, New York,
NY, USA, 2018. Association for Computing Machinery.

Abdullah Qasem, Paria Shirani, Mourad Debbabi, Lingyu Wang,
Bernard Lebel, and Basile L. Agba. Automatic vulnerability detection

in embedded devices and firmware: Survey and layered taxonomies.
ACM Comput. Surv., 54(2), mar 2021.

Tamara Radivilova and Hassan Ali Hassan. Test for penetration in wi-fi
network: Attacks on wpa2-psk and wpa2-enterprise. In 2017 Interna-
tional Conference on Information and Telecommunication Technologies
and Radio Electronics (UkrMiCo), pages 1-4, 2017.

Franziska Schwarz, Klaus Schwarz, Daniel Fuchs, Reiner Creutzburg,
and David Akopian. Firmware vulnerability analysis of widely used
low-budget tp-link routers. Electronic Imaging, 2021(3):135-1-135-11,
2021.

Chin-Wei Tien, Tsung-Ta Tsai, Ing-Yi Chen, and Sy-Yen Kuo. Ufo
- hidden backdoor discovery and security verification in iot device

firmware. In 2018 IEEE International Symposium on Software Reli-
ability Engineering Workshops (ISSREW), pages 18-23, 2018.

John Viega and Hugh Thompson. The state of embedded-device se-
curity (spoiler alert: It’s bad). IEEE Security Privacy, 10(5):68-70,
2012.

Jueqi Wang, Hongshuai Li, Junyou Ye, and Jianchu Xiao. Research on
intelligent reverse analysis technology of firmware of internet of things.
In 2021 IEEFE International Conference on Power, Intelligent Comput-
ing and Systems (ICPICS), pages 164-169, 2021.

84

[19] Reverse engineering my router’s firmware
with binwalk. https://embeddedbits.org/
reverse-engineering-router-firmware-with-binwalk/.

[20] ‘amazon’s choice’ best-selling tp-link router ships with vul-
nerable firmware. https://cybernews.com/security/
amazon-tp-link-router-ships-with-vulnerable-firmware/.

[21] Buffer overflow vulnerability in tp-link routers can allow remote
attackers to take control. https://securityintelligence.com/
buffer-overflow-vulnerability-in-tp-link-routers-can-allow-remote-attackers-to-

[22] Unauthenticated root shell on tp-link tl-wr902ac
router. https://pwn2learn.dusuel.fr/blog/
unauthenticated-root-shell-on-tp-link-tl-wr902ac-router/.

[23] Using ghidra to extract a router configuration en-
cryption key. https://hackaday.com/2021/07/15/
using-ghidra-to-extract-a-router-configuration-encryption-key/.

[24] Tp-link’s attempt at gdpr compliance. https://hex.fish/2021/05/
10/tp-link-gdpr/.

[25] Hacking the tl-wpa4220, part 2: The command injections. https:
//the-hyperbolic.com/posts/hacking-the-tlwpa4220-part-2/.

[26] Hacking the tl-wpad220, part 4: The buffer overflow. https://
the-hyperbolic.com/posts/hacking-the-tlwpa4220-part-4/.

[27] Buffer Overflow in tp-link devices. https://github.com/
liyansong2018/CVE/tree/main/2021/CVE-2021-29302.

[28] Tp-link router products. https://www.tp-link.com/en/search/7q=
router&t=producté&p=1.

[29] Tp-link tl-wr802n. https://www.tp-1link.com/en/
home-networking/wifi-router/t1l-wr802n/.

[30] Mediatek mt7628k/n/a. https://www.mediatek.com/products/
homeNetworking/mt7628k-n-a.

[31] Download for tl-wr802n v4. https://www.tp-link.com/en/support/
download/t1l-wr802n/#Firmware.

[32] Download for tl-wr802n v4. https://www.tp-1link.com/en/support/
download/t1-wr802n/#GPL-Code.

[33] Cryptojs. https://github.com/brix/crypto-js.

85

[34]
[35]
[36]

[37]

[38]

[41]

[42]

[43]

[45]

Cyberchef. https://gchq.github.io/CyberChef/.
Des3.js source. https://www.yisu.com/zixun/179627 .html.

Tl-wr702n default password. https://twitter.com/LargeCardinal/
status/682591420969029632.

Cves for busybox. https://nvd.nist.gov/vuln/search/results?
adv_search=true&isCpeNameSearch=true&query=cpe/3A2.3%3Aa}
3Abusybox’3Abusybox’%3A1.19.2%3A*%,3A*%3A*%3A*%3A*,3A*),3A*.

Firmware format analysis for tp-link firmwares with the version 3 header
(0x03000000). https://github.com/xdarklight/mktplinkfw3.

Tom wu’s pure javascript implementation of arbitrary-precision integer
arithmetic. https://github.com/creationix/jsbn.

Cves for uclibc. https://nvd.nist.gov/vuln/search/results?
form_type=Advanced&results_type=overview&isCpeNameSearch=
true&seach_type=all&query=cpe:2.3:a:uclibc:uclibc:
0.9.33.2:kkikikrkik*k

pppd cve-2020-8597. https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2020-8597.

Command line utility to convert tp-link router backup config files.
https://github.com/sta-c0000/tpconf_bin_xml.

Cves for dropbear. https://nvd.nist.gov/vuln/search/results?
adv_search=true&isCpeNameSearch=true&query=cpe/3A2.3%3Aa}
3Adropbear_ssh_project%3Adropbear_ssh¥%3A2012.55%3A*%3A*%
3A*%3A*7%3A%Y,3A%),3A%.

Cves for openssl. https://nvd.nist.gov/vuln/search/results?
form_type=Advanced&results_type=overview&isCpeNameSearch=
true&seach_type=all&query=cpe:2.3:a:openssl:openssl:
0.9.8zh:*:kikikikrikix

Cves for iptables. https://nvd.nist.gov/vuln/search/results?
form_type=Advanced&results_type=overview&isCpeNameSearch=
true&seach_type=all&query=cpe:2.3:a:netfilter:iptables:
1.4, 17 kokekrkrkikok

Cves for u-boot. https://nvd.nist.gov/vuln/search/results?
form_type=Advanced&results_type=overview&isCpeNameSearch=
true&seach_type=all&query=cpe:2.3:a:denx:u-boot:1.1.3:*:%:
Kk Ik kK,

86

Cves for linux. https://nvd.nist.gov/vuln/search/results?form_
type=Advanced&results_type=overview&isCpeNameSearch=true&
seach_type=all&query=cpe:2.3:0:1linux:linux_kernel:2.6.36:
—IkIk Ik Ik Ik IXk,

Firmware modification kit. https://bitsum.com/firmware_mod_kit.
htm.

Firmware analysis toolkit. https://github.com/attify/
firmware-analysis-toolkit.

Binwalk. https://github.com/ReFirmLabs/binwalk.

Firmwalker. https://github.com/craigz28/firmwalker.

Bus pirate. http://dangerousprototypes.com/docs/Bus_Pirate.
Flashrom. https://www.flashrom.org/Flashrom.

Ghidra. https://ghidra-sre.org/.

Burp suite. https://portswigger.net/burp.

Checksec. https://github.com/s1imm609/checksec.sh.

Bindiff. https://www.zynamics.com/bindiff/manual/.

87

Appendix A

Appendix

A.1 TL-WRS802N Boot log

DDR Calibration DQS reg = 00008688

U-Boot 1.1.3 (Jun 23 2020 — 17:33:43)

Board: Ralink APSoC DRAM: 64 MB
relocate_code Pointer at: 83fb8000
flash manufacture id: 20, device id 70 17

Warning: un—recognized chip ID, please update bootloader!

Ralink UBoot Version: 4.3.0.0

ASIC 7628 MP (Port5<—>None)

DRAM component: 512 Mbits DDR, width 16
DRAM bus: 16 bit

Total memory: 64 MBytes

Flash component: SPI Flash

Date:Jun 23 2020 Time:17:33:43

88

icache: sets:512, ways:4, linesz:32 ,total:65536

dcache: sets:256, ways:4, linesz:32 ,total:32768

##HHE The CPU freq = 580 MHZ ##44

estimate memory size =64 Mbytes

continue to starting system.
0

disable switch phyport...

3: System Boot system code via Flash.(0xbc020000)
do_bootm:argc=2, addr=0xbc020000
Booting image at bc020000
Uncompressing Kernel Image ... OK
No initrd
Transferring control to Linux (at address 8000c¢150)

Giving linux memsize in MB, 64

Starting kernel

LINUX started ...

THIS IS ASIC
Linux version 2.6.36 (jenkins@mobile—System) (gcc version 4.6.3
(Buildroot 2012.11.1)) #1 Tue Jun 23 17:35:59 CST 2020

The CPU feqenuce set to 575 MHz

MIPS CPU sleep mode enabled.
CPU revision is: 00019655 (MIPS 24Kc)
Software DMA cache coherency
Determined physical RAM map:
memory: 04000000 @ 00000000 (usable)
Initrd not found or empty — disabling initrd
Zone PFN ranges:
Normal 0x00000000 —> 0x00004000

89

Movable zone start PFN for each node

early_node_map [1] active PFN ranges
0: 0x00000000 —> 0x00004000

Built 1 zonelists in Zone order, mobility grouping on. Total
pages: 16256

Kernel command line: console=ttyS1,115200 root=/dev/mtdblock2
rootfstype=squashfs init=/sbin/init

PID hash table entries: 256 (order: —2, 1024 bytes)

Dentry cache hash table entries: 8192 (order: 3, 32768 bytes)

Inode—cache hash table entries: 4096 (order: 2, 16384 bytes)

Primary instruction cache 64kB, VIPT, |, 4—waylinesize 32 bytes.

Primary data cache 32kB, 4—way, PIPT, no aliases, linesize 32
bytes

Writing ErrCtl register=00024c64

Readback ErrCtl register =00024c64

Memory: 61424k /65536k available (2414k kernel code, 4112k
reserved , 635k data, 160k init , Ok highmem)

NR_IRQS:128

console [ttyS1] enabled

Calibrating delay loop... 386.04 BogoMIPS (lpj=772096)

pid_-max: default: 4096 minimum: 301

Mount—cache hash table entries: 512

NET: Registered protocol family 16

bio: create slab <bio—0> at 0

Switching to clocksource Ralink Systick timer

NET: Registered protocol family 2

IP route cache hash table entries: 1024 (order: 0, 4096 bytes)

TCP established hash table entries: 2048 (order: 2, 16384 bytes)

TCP bind hash table entries: 2048 (order: 1, 8192 bytes)

TCP: Hash tables configured (established 2048 bind 2048)

TCP reno registered

NET: Registered protocol family 1

squashfs: version 4.0 (2009/01/31) Phillip Lougher

fuse init (API version 7.15)

msgmni has been set to 119

io scheduler noop registered

io scheduler deadline registered (default)

Ralink gpio driver initialized

i2cdrv_major = 218

Serial: 8250/16550 driver, 2 ports, IRQ sharing enabled

serial8250: ttyS0O at MMIO 0x10000d00 (irq = 21) is a 16550A

serial8250: ttyS1 at MMIO 0x10000c00 (irq = 20) is a 16550A

brd: module loaded

flash manufacture id: 20, device id 70 17

Warning: un—recognized chip ID, please update SPI driver!

N25Q064A13ESE40F (20 bal71000) (8192 Kbytes)

mtd .name = raspi, .size = 0x00800000 (8M) .erasesize = 0
x00010000 (64K) .numeraseregions = 0

Creating 7 MID partitions on ”raspi”:

0x000000000000—-0x000000020000 : ”boot”

0x000000020000—-0x000000160000 : ”kernel”

0x000000160000—-0x0000007c0000 : ”rootfs”

mtd: partition ”rootfs” set to be root filesystem

0x0000007c0000—-0x0000007d0000 : "config”

90

0x0000007d0000—-0x0000007e0000 : ”"romfile”
0x0000007¢0000—-0x0000007f0000 : ”rom”
0x0000007f0000—-0x000000800000 : ”radio”
Register flash device: flashO
PPP generic driver version 2.4.2
PPP MPPE Compression module registered
NET: Registered protocol family 24
Mirror/redirect action on
u32 classifier

Actions configured
Netfilter messages via NETLINK v0.30.
nf_conntrack version 0.5.0 (959 buckets, 3836 max)
ip_tables: (C) 2000-2006 Netfilter Core Team, Type=Linux
TCP cubic registered
NET: Registered protocol family 10
ip6_tables: (C) 2000-2006 Netfilter Core Team
IPv6 over IPv4 tunneling driver
NET: Registered protocol family 17
Ebtables v2.0 registered
802.1Q VLAN Support v1.8 Ben Greear <greearb@candelatech .com>
All bugs added by David S. Miller <davem@redhat .com>
VFS: Mounted root (squashfs filesystem) readonly on device 31:2.
Freeing unused kernel memory: 160k freed

starting pid 34, tty ’’: ’/etc/init.d/rcS’

cp: can’t stat ’/etc/SingleSKU_FCC.dat’: No such file or
directory

rdm_major = 253

spiflash_ioctl_read , Read from 0x007df100 length O0x6, ret O,
retlen 0x6

Read MAC from flash(7df100) 60— ffffffad —ffffffb7 —05—f{fffffb6 —3

e
GMACIMACADRH — : 0x000060a4
GMACIMACADRL — : 0xb705b63e

Ralink APSoC Ethernet Driver Initilization. v3.1 256 rx/tx
descriptors allocated , mtu = 1500!

NAPI enable, Tx Ring = 256, Rx Ring = 256

spiflash_ioctl_read , Read from 0x007df100 length O0x6, ret O,
retlen 0x6

Read MAC from flash(7df100) 60— ffffffad —ffffffb7 —05—f{fffffb6 —3

e
GMACI.MACADRH — : 0x000060a4
GMAC1 MACADRL — : 0xb705b63e

PROC INIT OK!

add domain: tplinkwifi.net
add domain: tplinkap . net

add domain: tplinkrepeater . net
add domain: tplinklogin .net
tp_domain init ok

L2TP core driver, V2.0
PPPolL2TP kernel driver, V2.0
Set: phy[0].reg[0] = 3900
Set: phy[1l].reg[0] = 3900
Set: phy[2].reg[0] = 3900

91

Set: phy[3].reg[0] = 3900

Set: phy[4].reg[0] = 3900

Set: phy[0].reg[0] = 3300

Set: phy[1].reg[0] = 3300

Set: phy[2].reg[0] = 3300

Set: phy[3].reg[0] = 3300

Set: phy[4].reg[0] = 3300

resetMiiPortV over.

Set: phy[0].reg[4] = 0lel

Set: phy[0].reg[0] = 3300

Set: phy[1].reg[4] = 0Olel

Set: phy[1l].reg[0] = 3300

Set: phy[2].reg[4] = 0lel

Set: phy[2].reg[0] = 3300

Set: phy[3].reg[4] = 0lel

Set: phy[3].reg[0] = 3300

Set: phy[4].reg[4] = 0lel

Set: phy[4].reg[0] = 3300

turn off flow control over.

starting pid 82, tty ’/dev/ttyS1’: ’/bin/sh’

“ # [util_execSystem | 141: ipt_init cmd is ”/var/tmp/dconf/rc
.router”

[dm.readFile | 2061: can not open xml file /var/tmp/pc/
reduced_data_model.xml!, about to open file /etc/
reduced_data_model . xml

spiflash_ioctl_read , Read from 0x007c0000 length 0x10000, ret O,

retlen 0x10000

spiflash_ioctl_-read , Read from 0x007c0000 length 0x10, ret O,

retlen 0x10

[dm_loadCfg | 2364: software
version = 0
[dm_readFile] 2061: can not

version is not match, in config,

open xml file /var/tmp/pc/

default_config.xml!, about to open file /etc/default_config.
xml

[parseConfigNode | 525: Meet unrecognized object node ”
PhDDNSCfg” , skip the node

[parseConfigNode | 530: Meet unrecognized parameter node ”
PhDDNSCfg” , skip the node

[parseConfigNode] 525: Meet unrecognized object node "ACL”,
skip the node

[parseConfigNode | 530: Meet unrecognized parameter node ”"ACL
”? . skip the node

[parseConfigNode | 530: Meet unrecognized parameter node ”
X_TP_TimeZoneSetByUser”, skip the node

[parseConfigNode | 530: Meet unrecognized parameter node ”
MACAddressControlEnabled”, skip the node

[parseConfigNode | 530: Meet unrecognized parameter node ”
X_TP_MACAddressControlRule” , skip the node

[parseConfigNode | 530: Meet unrecognized parameter node ”Vlan
”, skip the node

[parseConfigNode | 530: Meet unrecognized parameter node ”

MACAddressControlEnabled” ,

skip the node

92

[parseConfigNode | 530: Meet unrecognized parameter node
X_TP_MACAddressControlRule” , skip the node

[parseConfigNode | 530: Meet unrecognized parameter node ”Vlan
”? skip the node

[parseConfigNode] 530: Meet unrecognized parameter node 7
MACAddressControlEnabled” , skip the node

[parseConfigNode | 530: Meet unrecognized parameter node ”
X_TP_MACAddressControlRule” , skip the node

[parseConfigNode] 530: Meet unrecognized parameter node ”Vlan

”

, skip the node

[parseConfigNode] 525: Meet unrecognized object node
X_TP_QuickSave”, skip the node

[parseConfigNode | 525: Meet unrecognized object node
X_TP_QuickSave”, skip the node

[parseConfigNode | 525: Meet unrecognized object node
X_TP_-WANUSB3gLinkConfig” , skip the node

[parseConfigNode] 525: Meet unrecognized object node
QueueManagement” , skip the node

[parseConfigNode | 525: Meet unrecognized object node
X TP IPTV”, skip the node

[parseConfigNode | 525: Meet unrecognized object node
VoiceService”, skip the node

[parseConfigNode] 530: spiflash_ioctl_-read , Read from 0
x007df100 length 0x6, ret 0, retlen 0x6

Meet unrecognizspiflash_ioctl_read , Read from 0x007df200 length

0x4, ret 0, retlen 0x4

ed parameter nodspiflash_ioctl_-read , Read from 0x007df300 length
0x4, ret 0, retlen 0x4

e 7" VoiceService” spiflash_ioctl_read , Read from 0x007df400 length
0x10, ret 0, retlen 0x10

, skip the node

spiflash_ioctl_read , Read from 0x007df500 length 0x29, ret O,
retlen 0x29

[parseConfigNospiflash_ioctl_read , Read from 0x007df600 length
0x21, ret 0, retlen 0x21

de | 525: Meet spiflash_ioctl_-read , Read from 0x007df700 length
0x10, ret 0, retlen 0x10

unrecognized objspiflash_ioctl_read , Read from 0x007df700 length
0x10, ret 0, retlen 0x10

ect node ”Storagspiflash_ioctl_-read , Read from 0x00020000 length
0x1d0, ret 0, retlen 0x1dO

eService”, skip spiflash_ioctl_-read , Read from 0x007df100 length
0x6, ret 0, retlen 0x6

the node

[parseConfigNode | 525: Meet unrecognized object node
X_TP_SpeedDialCfg”, skip the node

[parseConfigNode | 525: Meet unrecognized object node
X_TP_MultilspDialPlan”, skip the node

[parseConfigNode] 525: Meet unrecognized object node
X_TP_CallLogCfg”, skip the node

”

”

”

[parseConfigNode | 530: Meet unrecognized parameter node ”
X_TP_Band”, skip the node
[parseConfigNode | 530: Meet unrecognized parameter node ”

93

X_TP_Band”, skip the node

[parseConfigNode | 530: Meet unrecognized parameter node
X_TP_Band”, skip the node

[parseConfigNode | 530: Meet unrecognized parameter node
WEPKeylIndex” , skip the node

[parseConfigNode] 530: Meet unrecognized parameter node
WEPKeyIndex” , skip the node

[parseConfigNode] 530: Meet unrecognized parameter node
WEPKeyIndex” , skip the node

[parseConfigNode | 530: Meet unrecognized parameter node
WEPKeylIndex” , skip the node

[parseConfigNode] 530: Meet unrecognized parameter node
X_TP_Band”, skip the node

[parseConfigNode | 530: Meet unrecognized parameter node
WEPKeyIndex” , skip the node

[parseConfigNode | 530: Meet unrecognized parameter node
WEPKeyIndex” , skip the node

[parseConfigNode] 530: Meet unrecognized parameter node
WEPKeyIndex” , skip the node

[parseConfigNode | 530: Meet unrecognized parameter node
WEPKeyIndex” , skip the node

—=>Enter Router mode

[oal_sys.readMacFlash | 1934: 7df100 set flash mac : 60:A4:B7
:05:B6:3E.

[oal_sys.readMacFlash | 1934: 7df100 set flash mac : 60:A4:B7
:05:B6:3E.

sendto: No such file or directory

pid 81 send 2001 error

[util_execSystem | 141: oal_startDynDns cmd is ”dyndns /var/
tmp/dconf/dyndns. conf”

Get SNTP new config
[util_execSystem | 141: oal_startNoipDns cmd is ”noipdns /var/
tmp/dconf/noipdns. conf”

[util_execSystem | 141: oal_startCmxDns cmd is ”cmxdns /var/
tmp/dconf/cmxdns. conf”

ioctl: No such device
[util_execSystem | 141: oal_br_addBridge cmd is ”brctl addbr
brO; brctl setfd brO0 0;brctl stp br0 off”

[util_execSystem | 141: oal_.ipt_addLanRules cmd is ”iptables —
t filter —A INPUT —i br+ —j ACCEPT

[util_execSystem | 141: oal_intf_setIntf cmd is ”ifconfig br0
192.168.0.1 netmask 255.255.255.0 up”

[util_execSystem | 141: oal_util_-setProcLanAddr cmd is ”echo ”

br0 16820416,” > /proc/net/conRaeth v3.1 (

ntract_LocalAddrNAPI

94

[util_exec ,SkbRecycleSystem] 141: o)

al_intf_enableln
phy_tx_ring = 0x030d2000,
tf cmd is ”ifcon

phy_rx_ring0 = 0x030d3000,

fig eth0 up”

tx_ring = 0xa30d2000

rx_ring0 = 0xa30d3000

[fe_sw_init:5357]rt305x_esw_init .

disable switch phyport ...

GMACIMACADRH — : 0x000060a4
GMACIMACADRL — : 0xb705b63e
RT305x.ESW: Link Status Changed

[rsl_getUnusedVlan | 1079: GET UNUSED VLAN TAG 1
[rsl.getUnusedVlan | 1079: GET UNUSED VLAN TAG 2
[rsl_getUnusedVlan | 1079: GET UNUSED VLAN TAG 3
[rsl_getUnusedVlan | 1079: GET UNUSED VLAN TAG 4
[i

util_execSystem | 141:
eth0 3”7

[util_execSystem | 141:
eth0.3 up”

set if eth0.3 to xnot wan
[util_execSystem | 141:
eth0 47

[util_execSystem | 141:
eth0.4 up”

set if eth0.4 to xnot wan
[util_execSystem | 141:
eth0 5”7

[util_execSystem | 141:
eth0.5 up”

set if eth0.5 to xnot wan
[util_execSystem | 141:

oal_addVlanTaglIntf cmd

oal_intf_enablelntf cmd is ”ifconfig

dev
oal_addVlanTaglntf cmd is ”vconfig add

oal_intf_enablelntf cmd is ”ifconfig

dev
oal_addVlanTaglntf cmd is ”vconfig add

oal_intf_enablelntf cmd is ”ifconfig

dev
oal_addVlanTagIntf cmd is ”vconfig add

eth0 6”7
[util_execSystem | device eth0.3 entered promiscuous mode
141: oal_intf_edevice eth0 entered promiscuous mode

nablelntf cmd isbrO: port
7ifconfig ethO.br0: port
6 up7)

set if eth0.6 to *not wan

[util_execSystem | 141:
promiscuous mode

Intf cmd is ”vcobrO: port

nfig add ethO 2”br0: port

[util_execSystem | 141:

1(eth0.3) entering forwarding state
1(eth0.3) entering forwarding state

dev
oal_addVlanTagdevice eth0.4 entered

2(eth0.4) entering forwarding state
2(eth0.4) entering forwarding state

oal_intf_enablelntf cmd is ”ifconfig

95

eth0.2 up”
device eth0.5 entered promiscuous mode

set if eth0.2 tbr0: port 3(eth0.5) entering forwarding state
o wan dev

[vlabrO: port 3(eth0.5) entering forwarding state
n_addLanPortsIntoBridge | 606: add lan Port 255 from br0

[util_execSystem | ldevice eth0.6 entered promiscuous mode
41: oal_br_addIbrO: port 4(eth0.6) entering forwarding state
ntfIntoBridge cmbr0: port 4(eth0.6) entering forwarding state
d is ”"brctl addif br0 eth0.3”

[util_execSystem | 141: oal_br_addIntfIntoBridge cmd is ”brectl
addif br0 eth0.4”

[util_execSystem | 141: oal_br_addIntfIntoBridge cmd is ”brectl
addif br0 eth0.5”

[util_execSystem | 141: oal_br_addIntfIntoBridge cmd is ”brectl
addif br0 eth0.6”

[util_execSystem | 141: rsl initIPv6CfgObj cmd is ”echo 1 > /
proc/sys/net/ipv6/conf/all/disable_ipv6”

[util_execSystem | 141: oal_eth_setIGMPSnoopParam cmd is ”for
i in /sys/devices/virtual/net/+/bridge/multicast_snooping;do
echo 1 > $i ; done”

[util_execSystem | 141: oal_-wlan_ra_setCountryRegion cmd is ”

cp /etc/SingleSKU_CE.dat /var/Wireless /RT2860AP/SingleSKU . dat

[util_execSystem | 141: oal_-wlan_ra_setCountryRegion cmd is ”

iwpriv ra0 set CountryRegion=1”
ra0 no private ioctls.

[util_execSystem | 141: oal_wlan_ra_loadDriver cmd is ”insmod
/1lib /modules/kmdir/kernel/drivers/net/wireless/mt_wifi_ap/
mt_wifi.ko”

ADDRCONF(NETDEV.CHANGE) : eth0 .
ADDRCONF (NETDEV.CHANGE) : ethO .
ADDRCONF(NETDEV.CHANGE) : eth0 .
ADDRCONF (NETDEV.CHANGE) : ethO .

link becomes ready
link becomes ready
link becomes ready
link becomes ready

N O O

—— pAd = c085f000, size = 1509912 ——

<— RTMPAllocTxRxRingMemory, Status=0, ErrorValue=0x
<— RTMPAllocAdapterBlock, Status=0
RtmpChipOpsHook (492) : Not support for HIF MT yet!
mt7628_init ()—>

96

mt7628_init (FW(8a00) , HW(8a01) , CHIPID(7628))

e2.bin mt7628_init (1156)::(2), pChipCap—>fw_len (64848)

mt_ben_buf_init (218): Not support for HIF-MT yet!

< mt7628_init ()

[util_execSystem] 141: oal_wlan_ra_initWlan cmd is ”ifconfig
ra0 up”

TXBCN DESC a32be000 size = 320
RX[0] DESC a32c0000 size = 2048
RX[1] DESC a32c1000 size = 2048
RT_CfgSetApcliMacAddress : invalid mac setting
cfg_mode=9
cfg_mode=9
wmode_band_equal () : Band Equall!
AndesSendCmdMsg: Could not send in band command due to diable
fRTMP_ADAPTER MCU_SEND_IN_BAND_CMD
APSDCapable[0]=0
APSDCapable[1]=0
APSDCapable[2]=0
APSDCapable[3]=0
APSDCapable[4]=0
APSDCapable[5]=0
APSDCapable[6]=0
APSDCapable[7]=0
APSDCapable[8]=0
APSDCapable[9]=0
APSDCapable[10]=
APSDCapable[11]=
APSDCapable[12]=
APSDCapable[13]=
APSDCapable[14]=
APSDCapable[15]=
default ApCliAPSDCapable[0]=0
KeylStr is Invalid key length
KeylStr is Invalid key length
Key2Str is Invalid key length
Key2Str is Invalid key length

(0) or Type
(0)
(0)
(0)
Key3Str is Invalid key length(0) or Type
(0)
(0)
(0)

or Type
or Type

Key3Str is Invalid key length or Type
Key4Str is Invalid key length
Key4Str is Invalid key length
WscKeyASCII=8

WscKeyASCII=8
[RTMPReadParametersHook:297] wifi read profile faild .
load fw image from fw_header_image
AndesMTLoadFwMethod1(2263) :: pChipCap—>fw _len (64848)
FW Version:1

FW Build Date:20180704090333

CmdAddressLenReq:(ret = 0)

CmdFwStartReq: override = 1, address = 1048576
CmdStartDLRsp: WiFI FW Download Success
MtAsicDMASchedulerInit () : DMA Scheduler Mode=0(LMAC)
efuse_probe: efuse = 10000012

RtmpChipOpsEepromHook :: e2p_type=0, inf_-Type=4

or Type

97

RtmpEepromGetDefault :: e2p_dafault=2
RtmpChipOpsEepromHook: E2P type(2), E2pAccessMode = 2, E2P

default = 2
NVM is FLASH mode
1. Phy Mode = 14
exec!

spiflash_ioctl_read , Read from 0x007f0000 length 0x400,

retlen 0x400

ret O,

eeFlashld = 0x7628!

FW LOG:
FW LOG:
FW LOG:
FW LOG:
FW LOG:
FW LOG:
FW LOG:
FW LOG:
FW LOG:
FW LOG:
FW LOG:
FW LOG:
FW LOG:
FW LOG:
FW LOG:
FW LOG:
FW LOG:
FW LOG:

Country Region from e2p =

rimRF_AUX_TZ

rimRF_AUX_TZ

rimRF_AUX_TZ

rimRF_AUX_TZ

rimRF_AUX_TZ

rimRF_AUX_TZ

rimRF_AUX_TZ

rimRF_AUX_TZ

rimRF_AUX_TZ

rimRF_AUX_TZ

rimRF_AUX_TZ

rimRF_AUX_TZ

rimRF_AUX_TZ

rimRF_AUX_T7Z

rimRF_AUX_TZ

rimRF_AUX_TZ

rimRF_AUX_T7Z

rimRF_AUX_TZ

u2cfgopt=0x101
u2cfgopt=0x101
u2cfgopt=0x101
u2cfgopt=0x101
u2cfgopt=0x101
u2cfgopt=0x101
u2cfgopt=0x101
u2cfgopt=0x101
u2cfgopt=0x101
u2cfgopt=0x101
u2cfgopt=0x101
u2cfgopt=0x101
u2cfgopt=0x101
u2cfgopt=0x101
u2cfgopt=0x101
u2cfgopt=0x101
u2cfgopt=0x101
u2cfgopt=0x101

ffff

tssi_l_target_pwr_g_band = 34
2. Phy Mode = 14

3. Phy Mode =

14

NICInitPwrPinCfg(11): Not support for HIF MT yet!

NICInitializeAsic(651): Not support rtmp_mac_sys_reset ()
HIF MT yet !

mt_mac_init ()—>

MtAsicInitMac ()—>

for

98

mt7628_init_mac_cr ()—>
MtAsicSetMacMaxLen (1277): Set the Max RxPktLen=450!
<—mt_mac_init ()

WIBL Segment 1 info:
MemBaseAddr/FID:0x28000/0
EntrySize/Cnt:32/128

WIBL Segment 2 info:
MemBaseAddr/FID:0x40000 /0
EntrySize/Cnt:64/128

WIBL Segment 3 info:
MemBaseAddr/FID:0x42000 /64
EntrySize/Cnt:64/128

WIBL Segment 4 info:
MemBaseAddr/FID:0x44000/128
EntrySize/Cnt:32/128

AntCfgInit (2952): Not support for HIF_MT yet!

MCS Set = ff ff 00 00 01

MtAsicSetChBusyStat (861): Not support for HIFMT yet!
FW LOG: !!!! Pass, dont need recal (total fail[0])

FW LOG: rlImRF_AUX_TZ u2cfgopt=0x101
total fail [0])

FW LOG: rlmRF_AUX_TZ u2cfgopt=0x101
total fail [0])

FW LOG: rlmRF_AUX_TZ u2cfgopt=0x101
total fail [0])

FW LOG: rlmRF_AUX_TZ u2cfgopt=0x101
total fail [0])

FW LOG: !!!! Pass, dont need recal (total fail [0])

FW LOG: rlmRF_AUX_TZ u2cfgopt=0x101
total fail [0])

FW LOG: rlmRF_AUX_TZ u2cfgopt=0x101
total fail [0])

FW LOG: rlmRF_AUX_TZ u2cfgopt=0x101
total fail [0])

FW LOG: rlmRF_AUX_TZ u2cfgopt=0x101
total fail [0])

FW LOG: !!!! Pass, dont need recal (total fail [0])
FW LOG: RxDCOC Set DC Valid (8) (2)

FW LOG: rImRF_AUX_TZ u2cfgopt=0x101
total fail [0])

FW LOG: rImRF_AUX_TZ u2cfgopt=0x101

99

total fail [0])

FW LOG: rlmRF_AUX_TZ u2cfgopt=0x101

total fail [0])

FW LOG: rlImRF_AUX_TZ u2cfgopt=0x101

total fail [0])

CmdSlotTimeSet: (ret = 0)

FW LOG: rlmRF_AUX_TZ u2cfgopt=0x101

FW LOG: rlmRF_AUX_TZ u2cfgopt=0x101

FW LOG: rlmRF_AUX_TZ u2cfgopt=0x101

FW LOG: rlmRF_AUX_TZ u2cfgopt=0x101

FW LOG: rlImRF_AUX_TZ u2cfgopt=0x101

FW LOG: rlmRF_AUX_TZ u2cfgopt=0x101

FW LOG: rlmRF_AUX_TZ u2cfgopt=0x101

FW LOG: rlImRF_AUX_TZ u2cfgopt=0x101

FW LOG: rlmRF_AUX_TZ u2cfgopt=0x101

FW LOG: rlmRF_AUX_TZ u2cfgopt=0x101

FW LOG: rlImRF_AUX_TZ u2cfgopt=0x101

FW LOG: rlmRF_AUX_TZ u2cfgopt=0x101

FW LOG: rlmRF_AUX_TZ u2cfgopt=0x101

FW LOG: rImRF_AUX_TZ u2cfgopt=0x101

FW LOG: rlmRF_AUX_TZ u2cfgopt=0x101

FW LOG: rlmRF_AUX_TZ u2cfgopt=0x101

FW LOG: rlmRF_AUX_TZ u2cfgopt=0x101

FW LOG: rlmRF_AUX_TZ u2cfgopt=0x101

FW LOG: rlmRF_AUX_TZ u2cfgopt=0x101

FW LOG: rImRF_AUX_TZ u2cfgopt=0x101

FW LOG: rlmRF_AUX_TZ u2cfgopt=0x101

FW LOG: rlmRF_AUX_TZ u2cfgopt=0x101

FW LOG: rImRF_AUX_TZ u2cfgopt=0x101

100

FW LOG:

FW LOG:

FW LOG:

FW LOG:

FW LOG:

FW LOG:

FW LOG:

FW LOG:

FW LOG:

FW LOG:

FW LOG:

FW LOG:

FW LOG:

FW LOG:

FW LOG:

FW LOG:

FW LOG:

rimRF_AUX_TZ

rimRF_AUX_TZ

rimRF_AUX_TZ

rimRF_AUX_TZ

rimRF_AUX_TZ

rimRF_AUX_TZ

rimRF_AUX_TZ

rimRF_AUX_TZ

rimRF_AUX_TZ

rimRF_AUX_TZ

rimRF_AUX_TZ

rimRF_AUX_TZ

rimRF_AUX_TZ

rimRF_AUX_TZ

rimRF_AUX_TZ

rimRF_AUX_TZ

rimRF_AUX_TZ

u2cfgopt=0x101
u2cfgopt=0x101
u2cfgopt=0x101
u2cfgopt=0x101
u2cfgopt=0x101
u2cfgopt=0x101
u2cfgopt=0x101
u2cfgopt=0x101
u2cfgopt=0x101
u2cfgopt=0x101
u2cfgopt=0x101
u2cfgopt=0x101
u2cfgopt=0x101
u2cfgopt=0x101
u2cfgopt=0x101
u2cfgopt=0x101

u2cfgopt=0x101

[PMF] ap_pmf_init :: apidx=0, MFPC=0, MFPR=0, SHA256=0

[PMF] RTMPMakeRsnleCap: RSNIE Capability MFPC=0, MFPR=0
[PMF] ap_pmf_init :: apidx=1, MFPC=0, MFPR=0, SHA256=0
MtAsicSetRalinkBurstMode (3156) : Not support for HIF-MT yet!
MtAsicSetPiggyBack (796) : Not support for HIF-MT yet!

FW LOG: rlmRF_AUX_TZ u2cfgopt=0x101

FW LOG: rlmRF_AUX_TZ u2cfgopt=0x101

FW LOG: rImRF_AUX_TZ u2cfgopt=0x101

FW LOG: rlmRF_AUX_TZ u2cfgopt=0x101

reload DPD from flash , 0x9F = [c400] doReload bit7 [0]

CmdLoadDPDDataFromFlash: Channel = 10, DoReload = 0

MtAsicSetTxPreamble (3135): Not support for HIFMT yet!

MtAsicAddSharedKeyEntry (1344): Not support for HIF.MT yet!

The 4-BSSID mode is enabled, the BSSID byte5 MUST be the
multiple of 4

101

MtAsicSetPreTbtt () : bss_idx=0, PreTBTT timeout = 0xf0

ap_ftkd> Initialize FT KDP Module...

Main bssid = 60:a4:b7:05:b6:3e€

< rt28xx_init , Status=0

@AQ ed_monitor_exit : —=>

@AQ ed_monitor_exit : <=——=

mt7628_set_ed_cca: TURN OFF EDCCA mac 0x10618 = 0xd7083f0f,
EDCCA _Status=0

WiFi Startup Cost (ra0): 3.600s

[util_execSystem | 141: oal_-wlan_ra_initWlan cmd is ”echo 1 >
/proc/tplink /led_wlan_24G”

[util_execSystem | 141: oal_-wlanSet_ed_chk_proc()::ed_chk=0
_ra_initWlan cmdmt7628_set_ed_cca: TURN OFF EDCCA mac 0x10618 =
0xd7083f0f , EDCCA_Status=0
is 7iwpriv ra0 set ed_chk=0"

[util_execSystem | 141: oal_wlan_ra_setStaNum cmd is ”iwpriv
ra0 set MaxStaNum=32"

[util_execSystem | 141: oal_br_addIntfIntoBridge cmd device
ra0 entered promiscuous mode

is ”bretl addif brO: port 5(ra0) entering forwarding state

br0 ra0”

br0: port 5(ra0) entering forwarding state

[util_execSystem | 141: oal_br_addIntfIntoBridge cmd is ”
brctldevice apcli0 entered promiscuous mode

addif br0 apcli0”

[util_execSystem | 141: oal_br_addIntfIntoBridge cmd is ”brctl
addif br0 apcli0”

brctl: bridge br0O: Device or resource busy

[util_edevice ral entered promiscuous mode

xecSystem | 141: oal_br_addIntfIntoBridge cmd is ”brctl addif
br0 ral”

[utispiflash_ioctl_-read , Read from 0x007f0000 length 0x2, ret
0, retlen 0x2

l_execSystem | 141: oal_wlan_ra_initEnd cmd is ”wlNetlinkTool
&7’

[util_execSystem | 141: oal_wlan_ra_initEnd cmd is ” killall —q
wscd”

[util_execSystem | 141: oal_wlan_ra_initEnd cmd is ”wscd —i

ra0 -m 1 —w /var/tmp/wsc_upnp/ &”

[util_execSystem | 141: rsl_initLanWlanObj cmd is ”echo 0 > /
proc/tplink /wl_-mode”

WLAN-Start wlNetlinkTool
[oal_-wlan_ra_loadDriver | 2107: no 5G chip.

102

[rsl.initLanWlanObj | 9431: perror:1

Waiting for Wireless Events from interfaces ...

swWlanChkAhbErr: netlink to do

wscd: SSDP UDP PORT = 1900

sendto: No such file or directory

pid 81 send 2030 error

sendto: No such file or directory

pid 81 send 2004 error

[util_execSystem] 141: oal_startDhcps cmd is ”dhepd /var/tmp/
dconf/udhcpd. conf”

iptables: Bad rule (does a matching rule exist in that chain?).

[util_execSystem | 141: oal_lan6_startDhcp6s cmd is ”dhcpbs —c
/var/tmp/dconf/dhcp6s_br0.conf —P /var/run/dhcp6s_br0.pid
br0 &”

[util_execSystem | 141: oal_lan6_startRadvd cmd is ”radvd —C /
var /tmp/dconf/radvd_br0.conf —p /var/run/radvd_br0.pid &

[util_execSystem | 141: oal_startSnmp cmd is ”snmpd —f /var/
tmp/dconf/snmpd. conf”

mldProxy# file: src/mld_ifinfo.c;line: 102; error = No such file
or directory

mldProxy# Err: get LLA failed

radvd starting

[Jan 01 00:00:08] radvd: no linklocal address configured for br0

[Jan 01 00:00:08] radvd: error parsing or activating the config
file: /var/tmp/dconf/radvd_br0.conf

[rsl.initEwanODbj | 298: Initialize EWAN, enable(1)!

[rsl_setEwanObj | 208: Get Ethernet’s stack!

[rsl_setEwanObj | 262: enable ethernet interface now!

[oal_ewan_enable | 469: pEwan—>ifName (eth0.2)

[util_execSystem | 141: oal_br_dellntfFromBridge cmd is ”brctl
delif br0 eth0.2”

brctl: bridge br0O: Invalid argument

[rsl.setEwanObj | 268: EWAN.ifname (eth0.2)!

[wan_conn_wanIpConn_getConnectionInfo] 906: GET MAC(60:A4:B7
:05:B6:3F) successfully!

[util_execSystem | 141: oal_intf_setIfMac cmd is ”ifconfig
eth0.2 down”

[util_execSystem | 141: oal_intf_setIfMac cmd is ”ifconfig
eth0.2 hw ether 60:A4:B7:05:B6:3F up”

[util_execSystem | 141: oal_.intf_enableIntf cmd is ”ifconfig
eth0.2 up”

[rsllinitWanPppConnObj | 398: into rsl.initWanPppConnObj!

[rsl.initWanPppConnObj] 515: rsl.initWanPppConnObj successed !
[rsl.initWanPppConnObj | 398: into rsl.initWanPppConnObj!

103

[rsllinitWanPppConnObj | 515: rsl.initWanPppConnObj successed!
[rsl_initAppObj | 1065: ==> start dhcp client

[util_execSystem | 141: oal_ipt_-fwDdos cmd is ”iptables —D
FORWARD —j FIREWALL_DDOS

”

iptables: No chain/target/match by that name.

[util_execSystem | 141: oal_ipt_-forbidLanPing cmd is ”iptables
—t filter —D INPUT —i br+ —p icmp —icmp—type echo—request —
j DROP

iptables —t filter —D FORWARD —i br+ —p icmp —icmp—type echo—
request —j DROP

”

iptables: Bad rule (does a matching rule exist in that chain?).

iptables: Bad rule (does a matching rule exist in that chain?).

[util_execSystem | 141: oal_-ddos_delPingRule cmd is ”iptables
—t filter —D INPUT ! —i br+ —p icmp —icmp—type echo—request
—j ACCEPT

iptables: Bad rule (does a matching rule exist in that chain?).
[util_execSystem | 141: oal_ipt_setDDoSRules cmd is ”iptables
—F FIREWALL_DDOS”

[util_execSystem | 141: ddos_clearAll cmd is ”rm —f /var/tmp/
dosHost”

[util_execSystem | 141: oal_initFirewallObj cmd is ”ebtables —
N FIREWALL”

[util_execSystem | 141: oal_initIp6FirewallObj cmd is
ip6tables —F”

[util_execSystem | 141: oal_initIp6FirewallObj cmd is
ip6tables —X”

[util_execSystem | 141: oal_initIp6FirewallObj cmd is
ip6tables —P INPUT ACCEPT”

[util_execSystem | 141: oal_initIp6FirewallObj cmd is
ip6tables —P FORWARD DROP”

[util_execSystem | 141: oal_.initIp6FirewallObj cmd is
ip6tables —P OUTPUT ACCEPT”

[util_execSystem | 141: oal_.initIp6FirewallObj cmd is
ip6tables —N FIREWALL”

[util_execSystem | 141: oal_.initIp6FirewallObj cmd is
ip6tables —N FWRULE’

[util_execSystem | 141: oal_.initIp6FirewallObj cmd is

104

ip6tables —N SETMSS”

[util_execSystem | 141: oal_initIp6FirewallObj cmd is ”

ip6tables —A INPUT —i lo —p ALL —j ACCEPT —m comment
——comment ”loop back””

[util_execSystem | 141: oal_.initIp6FirewallObj cmd is 7
ip6tables —A INPUT -m conntrack —ctstate RELATED,
ESTABLISHED —j ACCEPT”

[util_execSystem | 141: oal_.initIp6FirewallObj cmd is 7
ip6tables —A INPUT —i br4+ —p tcp —dport 23 —j ACCEPT”

[util_execSystem | 141: oal_.initIp6FirewallObj cmd is 7
ip6tables —A INPUT —p tcp —dport 23 —j DROP”

[util_execSystem | 141: oal_.initIp6FirewallObj cmd is 7
ip6tables —A INPUT —i br4+ —p tcp —dport 22 —j ACCEPT”

[util_execSystem | 141: oal_.initIp6FirewallObj cmd is 7
ip6tables —A INPUT —p tcp —dport 22 —j DROP”

[util_execSystem | 141: oal_.initIp6FirewallObj cmd is 7
ip6tables —A INPUT —i br4+ —p icmpv6 —icmpv6—type echo—
request —j ACCEPT”

[util_execSystem | 141: oal_initIp6FirewallObj cmd is ”
ip6tables —A INPUT —p icmpv6 —icmpvb6—type echo—request —j
DROP”

[util_execSystem | 141: oal_.initIp6FirewallObj cmd is 7
ip6tables —A FORWARD —i br+ —m conntrack —ctstate RELATED,
ESTABLISHED —j ACCEPT”

[util_execSystem | 141: oal_.initIp6FirewallObj cmd is 7
ip6tables —A FORWARD —o br+ —m conntrack —ctstate RELATED,
ESTABLISHED —j ACCEPT”

[util_execSystem | 141: oal_initIp6FirewallObj cmd is ”
ip6tables —A FORWARD —j FIREWALL”

[util_execSystem | 141: oal_initIp6FirewallObj cmd is ”

ip6tables —I FORWARD 1 —j SETMSS”

[util_execSystem | 141: oal_-fw6_setFwEnabeld cmd is ”ip6tables
—D FIREWALL —j ACCEPT”

ip6tables: Bad rule (does a matching rule exist in that chain?).
[util_execSystem | 141: oal_-fw6_setFwEnabeld cmd is ”ip6tables
—F FIREWALL”

[util_execSystem | 141: oal_-fw6_setFwEnabeld cmd is ”ip6tables
—A FIREWALL —j ACCEPT”

105

[rsl.initWanL2tpConnObj | 245: L2TP Connection(ewan_12tp) is
not enable.

[rsl.initWanL2tpConnObj | 245: L2TP Connection() is not enable.

[rsl.initWanPptpConnObj | 239: PPTP Connection(ewan_pptp) is
not enable.

[rsl.initWanPptpConnObj | 239: PPTP Connection() is not enable.

[util_execSystem] 141: setupModules c¢cmd is ”insmod /lib/
modules/kmdir/kernel /net/netfilter /nf_conntrack_ftp .ko”

[util_execSystem | 141: setupModules cmd is ”insmod /lib/
modules/kmdir/kernel /net/ipv4d/netfilter /nf_nat_ftp.ko”

util_execSystem 141: oal_openAlg cmd is "iptables —
1 S 1 Al d 7 bl D
FORWARD_VPN_PASSTHROUGH —p udp —dport 500 —j DROP”

iptables: Bad rule (does a matching rule exist in that chain?).
[util_execSystem | 141: setupModules cmd is ”insmod /lib/
modules/kmdir/kernel /net/ipv4d/netfilter /nf_nat_proto_-gre.ko”

[util_execSystem | 141: setupModules cmd is ”insmod /lib/
modules/kmdir/kernel /net/ipv4d/netfilter /nf_nat_pptp.ko”

[util_execSystem | 141: oal_-openAlg cmd is ”iptables -D
FORWARD.VPN PASSTHROUGH —p tcp ——dport 1723 —j DROP”

iptables: Bad rule (does a matching rule exist in that chain?).
[util_execSystem | 141: oal_openAlg cmd is ”iptables —D
FORWARD_ VPN PASSTHROUGH —p udp —dport 1701 —j DROP”

iptables: Bad rule (does a matching rule exist in that chain?).
[util_execSystem | 141: setupModules cmd is ”insmod /lib/
modules/kmdir/kernel /net/netfilter /nf_conntrack_tftp.ko”

[util_execSystem | 141: setupModules cmd is ”insmod /lib/
modules/kmdir/kernel /net/ipvd/netfilter /nf_nat_tftp .ko”

[util_execSystem | 141: setupModules cmd is ”insmod /lib/
modules/kmdir/kernel /net/netfilter /nf_conntrack_-h323.ko”

[util_execSystem | 141: setupModules cmd is ”insmod /lib/
modules/kmdir/kernel /net/ipv4d/netfilter /nf_nat_h323.ko”

[util_execSystem | 141: setupModules cmd is ”insmod /lib/
modules/kmdir/kernel /net/netfilter /nf_conntrack_sip.ko”

[util_execSystem | 141: setupModules cmd is ”insmod /lib/
modules/kmdir/kernel /net/ipv4d/netfilter /nf_nat_sip.ko”

[util_execSystem | 141: setupModules cmd is ”insmod /lib/
modules/kmdir/kernel /net/netfilter /nf_conntrack_rtsp.ko”

106

[util_execSystem | 141: setupModules cmd is ”insmod /lib/
modules/kmdir/kernel /net/ipvd/netfilter /nf_nat_rtsp.ko”

nf_nat_rtsp v0.6.21 loading
enable switch phyport ...

Set: phy[0].reg[0] = 3900
Set: phy[1].reg[0] = 3900
Set: phy[2].reg[0] = 3900
Set: phy[3].reg[0] = 3900
Set: phy[4].reg[0] = 3900
[cmd_dutInit ():1094] init shm

[tddp-taskEntry ():151] tddp task start
Set: phy[0].reg[0] = 3300
Set: phy[1l].reg[0] = 3300
Set: phy[2].reg[0] = 3300
Set: phy[3].reg[0] = 3300
Set: phy[4].reg[0] = 3300

resetMiiPortV over.

Set: phy[0].reg[4] = 0lel
Set: phy[0].reg[0] = 3300
Set: phy[1l].reg[4] = 0lel

[

[
Set: phy[1].reg[0] = 3300
Set: phy[2].reg[4] = 0lel
Set: phy[2].reg[0] = 3300
Set: phy[3].reg[4] = 0lel
Set: phy[3].reg[0] = 3300
Set: phy[4].reg[4] = 0lel
Set: phy[4].reg[0] = 3300

turn off flow control over.
[util_execSystem | 141: prepareDropbear cmd is ”dropbearkey —t
rsa —f /var/tmp/dropbear/dropbear_rsa_host_key”

Will output 1024 bit rsa secret key to ’/var/tmp/dropbear/
dropbear_rsa_host_key’

Generating key, this may take a while...

[util_execSystem | 141: prepareDropbear cmd is ”dropbearkey —t
dss —f /var/tmp/dropbear/dropbear_dss_host_key”

Will output 1024 bit dss secret key to ’/var/tmp/dropbear/
dropbear_dss_host_key ’

Generating key, this may take a while ...

start ntp-request

[oal_sys_getOldTZInfo | 592: Open TZ file error!

[util_execSystem | 141: oal_sys_unsetTZ cmd is “echo ”” > /etc
/TZ”

[util_execSystem | 141: prepareDropbear cmd is ”dropbear —p 22
—r /var/tmp/dropbear/dropbear_rsa_host_key —d /var/tmp/
dropbear/dropbear_dss_host_key —A /var/tmp/dropbear/
dropbearpwd”

[ntp_start] 504: ntp connect failed, return.

107

[util_execSystem | 141: oal_sys_unsetTZ cmd is ”echo ”” > /etc
/TZ”

Get SNTP start config
start ntp_-request

[util_execSystem | 141: oal_sys_unsetTZ cmd is ”echo "7 > /etc
/TZ77

[util_execSystem | 141: oal_sys_unsetTZ cmd is ”echo "7 > /etc
/TZ77

[ntp_start] 504: ntp connect failed, return.

[util_execSystem | 141: oal_sys_unsetTZ cmd is ”echo 77 > /etc
/TZ77

Get SNTP start config
start ntp-request

[util_execSystem | 141: oal_sys_unsetTZ cmd is ”echo "7 > /etc
/TZ”

[util_execSystem | 141: oal_sys_unsetTZ cmd is ”echo "7 > /etc
/TZ”

A.2 iwlist scan results

Cell 05 — Address: 60:A4:B7:05:B4:88
Channel : 2
Frequency:2.417 GHz (Channel 2)
Quality=69/70 Signal level=—41 dBm
Encryption key:on
ESSID:” TP—Link_B488”
Bit Rates:1 Mb/s; 2 Mb/s; 5.5 Mb/s; 11 Mb/s;
9 Mb/s
18 Mb/s; 36 Mb/s; 54 Mb/s
Bit Rates:6 Mb/s; 12 Mb/s; 24 Mb/s; 48 Mb/s
Mode: Master
Extra: tsf=000000006e22fb98
Extra: Last beacon: 7036ms ago
IE: Unknown: 000C54502D4C696E6B5F42343838
IE: Unknown: 010882848B961224486C
IE: Unknown: 030102
IE: Unknown: 2A0104
IE: Unknown: 32040C183060
IE: Unknown: 2
D1A6E1017FFFF000001000000000000000000000000000000000000

IE: Unknown: 3
D16020500

IE: IEEE 802.11i/WPA2 Version 1

Group Cipher : CCMP
Pairwise Ciphers (1) : CCMP

108

1E:
1E:
1E:

1E:

1E:

1E:

Authentication Suites (1) : PSK

Unknown: 7F09000000000000000000

Unknown: 0B05000000127A

Unknown :
DD180050F2020101000003A4000027A4000042435E0062322F00

Unknown: 4

AO0E14000A002C01C800140005001900

Unknown :
DD8D0050F204104A0001101044000102103B000103104700103883309230921

Unknown: DD07000C4300000000

A.3 TCP portscan results

Nmap 7.80 scan initiated Mon Oct 11 14:25:48 2021 as: nmap —sV
—sC —o0A scan —pl—65535 192.168.0.1

Nmap scan report for _gateway (192.168.0.1)

Host is up (0.0059s latency).

Not shown: 65531 closed ports

PORT STATE SERVICE VERSION

22/tcp open ssh
| ssh—hostkey:

Dropbear sshd 2012.55 (protocol 2.0)

\ 1024 0b:b6:8a:8d:d1:d0:98:0d:90:a4:a0:66:5d:95:81:06 (DSA)
| - 1040 b3:94:8a:1f8:d3:7f:6d:d4:18:46:a5:89:fe:59:04:05 (RSA)

53/tcp open domain
dns—nsid:

(unknown banner: UNKNOWN)

NSID: rec—inc—pv013—1 (7265632d696e632d70763031332d31)
id . server: rec—inc—pv013—1
bind . version : UNKNOWN

fingerprint —strings:

version
bind
_ UNKNOWN
fingerprint —strings:
GetRequest :
HTTP/1.1 200 OK

DNSVersionBindReqTCP :

Content—Type: text/html; charset=utf—8

\

\

\

\

\

\

\

\

\

80/tcp open http
\

\

\

\

| Content—Length :
\

24304

Set—Cookie: JSESSIONID=deleted; Expires=Thu, 01 Jan 1970
00:00:01 GMT; Path=/; HttpOnly
Connection: keep—alive

<!DOCTYPE html>

<head>

\
\
| <html xmlns="http://www.w3.0rg/1999/xhtml”>
\
\

<META http—equiv=Content—Type content="text/html; charset=

utf -8 />

<META http—equiv=Pragma content=no—cache>
<MFETA http—equiv=Expires content=0>

|
|
\ <l—=
|

<link rel="stylesheet” href="../css/login.css” type="text/

109

css” />

| <link rel="stylesheet” href="../img/login/login.css” type
="text/css” />

| <link rel="Shortcut Icon” href="../img/login/favicon.ico”
type="image/jpeg” />

\ <style type="text/css”>

| body{

| font—family: Arial , sans—serief;

| background—color :#FFFFFF;

| margin:0px;

| padding:0px;

| div.loginBox

| display: block;

| position:relative;

| margin—top:10%;

| text—align :center;

| HTTPOptions, RTSPRequest:

\ HTTP/1.1 405 Method Not Allowed

| Content—Type: text/html; charset=utf—8

\ Content—Length: 124

| Set—Cookie: JSESSIONID=deleted; Expires=Thu, 01 Jan 1970
00:00:01 GMT; Path=/; HttpOnly

\ Connection: close

| - <html><head><title >405 Method Not Allowed</title ></head><
body><center ><h1>405 Method Not Allowed</hl></center ></body
></html>

| -http—title: Site doesn’t have a title (text/html; charset=utf
-8).

1900/tcp open upnp Portable SDK for UPnP devices 1.6.19 (
Linux 2.6.36; UPnP 1.0)

2 services unrecognized despite returning data. If you know the
service/version, please submit the following fingerprints at
https://nmap.org/cgi—bin/submit.cgi?new—service

NEXT SERVICE FINGERPRINT (SUBMIT INDIVIDUALLY)

SF—Port53—TCP:V=7.80%I1=7%D=10/11%Time=61642D64%P=x86_64 —pc—linux
—gnu%r (DNS

SF: VersionBindReqTCP ,34,” \ x002\0\x06\x85\x80\0\x01\0\x01
\0\0\0\0\ x07versio

SF:n\x04bind\0\0\x10\0\x03\xc0\x0c\0\x10\0\x03\0)0\0\0\0\ x08\
x07TUNKNOWN?”) ;

NEXT SERVICE FINGERPRINT (SUBMIT INDIVIDUALLY)

SF—Port80—TCP:V=7.80%I1=7%D=10/11%Time=61642D5F/P=x86 64 —pc—linux
—gnu%r (Get

SF:Request ,5FB3,”HTTP/1\.1\ x20200\x200K\r\nContent—Type:\ x20text
/html;\ x20

SF:charset=utf —8\r\nContent—Length:\ x2024304\r\nSet—Cookie:\
x20JSESSIONID=

SF:deleted;\ x20Expires=Thu,\ x2001\x20Jan\x201970\x2000:00:01\
x20GMT; \ x20Pa

SF:th=/;\x20HttpOnly\r\nConnection:\ x20keep—alive\r\n\r\n\xef\
xbb\xbf <!DOC

SF:TYPE\x20html>\x20\r\n<html\x20xmlns=\"http://www\.w3\.org

110

SF

SF:

SF:

SF:

SF:

SF:

SF:

SF:

SF:

SF:

SF:

SF:

SF:

SF:

SF:

SF:

SF:

SF:

SF:

SF

SF:

SF

SF:

SF:

SF

/1999/xhtml\”>
:\ r\n\r\n<head>\r\n<META\ x20http—equiv=Content—Type\x20content
=\"text /ht

ml;\ x20charset=utf —8\”\x20/>\r \n<META\ x20http—equiv=Pragma)
x20content=n

o—cache >\r\n<META\ x20http—equiv=Expires\x20content=0>\r\n\r\n
<!——\x20\r
\n<link\x20rel=\"stylesheet\”\x20href=\"\.\./css/login \.css
\"\ x20ty pe=\
7 text/css\”\x20/>\r\n<link\x20rel=\"stylesheet\”\x20href
—\"\"\./img/ log
in/login\.css\”\x20type=\"text/css\”\x20/>\r\n—>\r\n<link\
x20rel=\"Sho
rtcut\x20Icon\”\x20href=\"\.\./img/login/favicon\.ico\”\
x20type=\"image
/ipreg\”\x20/>\r\n<style\x20type=\"text/css\”>\r\nbody{\r\n\
x20\x20\x20\

x20font—family : Arial ,\ x20sans—serief;\r\n\x20\x20\x20\
x20background—col

or:#FFFFFF;\ r\n\x20\x20\x20\x20margin:0px;\ r\n\x20\x20\x20\
x20padding:0
px;\r\n}\r\ndiv\.loginBox\r\n{\r\n\x20\x20\x20\ x20display :\
x20block;\ 1\

n\x20\x20\x20\ x20position:relative;\r\n\x20\x20\x20\x20margin
—top:10%:;\

r\n\x20\x20\x20\x20text—align: center;\r\n}”)%r (HTTPOptions
,148 ,"HTTP/1\

.1\ x20405\x20Method\x20Not\x20Allowed\r\nContent—Type:\
x20text /html;\ x2
Ocharset=utf —8\r\nContent—Length:\ x20124\r\nSet—Cookie:\
x20JSESSIONID=d

eleted;\ x20Expires=Thu,\ x2001\x20Jan\x201970\x2000:00:01\
x20GMT; \ x20Pat

h=/;\x20HttpOnly\r\nConnection:\ x20close\r\n\r\n<html><head><
title >405\

x20Method\x20Not\x20Allowed </title ></head><body><center ><hl
>405\x20Meth

0d\x20Not\x20Allowed </h1></center ></body></html>")%r (
RTSPRequest,148 ,”H
:TTP/1\.1\x20405\x20Method\x20Not\x20Allowed\r\nContent—Type:\
x20text /ht
ml;\ x20charset=utf —8\r\nContent—Length:\ x20124\r\nSet—Cookie
:\ x20JSESSI
:ONID=deleted ;\ x20Expires=Thu,\ x2001\x20Jan\x201970\x2000
:00:01\x20GMT; \
x20Path=/;\x20HttpOnly\r\nConnection:\ x20close\r\n\r\n<html><
head><titl
e>405\x20Method\x20Not\x20Allowed </title ></head><body><center
><h1>405\x
:20Method\x20Not\x20Allowed </hl1></center ></body></html>");

MAC Address: 60:A4:B7:05:B4:88 (Unknown)
Service Info: OS: Linux; CPE: cpe:/o:linux:linux_kernel, cpe:/o:

linux:linux_kernel:2.6.36

111

Service detection performed. Please report any incorrect results
at https://nmap.org/submit/ .

Nmap done at Mon Oct 11 14:27:21 2021 — 1 IP address (1 host
up) scanned in 92.50 seconds

A.4 UDP portscan results

Nmap 7.80 scan initiated Mon Oct 11 15:18:59 2021 as: nmap —sV
—sC —oA scan—udp —sU 192.168.0.1

Nmap scan report for _gateway (192.168.0.1)

Host is up (0.0040s latency).

Not shown: 997 closed ports

PORT STATE SERVICE VERSION
53/udp open domain (unknown banner: UNKNOWN)
| dns—nsid:

| NSID: rec—inc—pv013—1 (7265632d696e632d70763031332d31)

\ id.server: rec—inc—pv013—-1

| - bind.version: UNKNOWN

| .dns—recursion: Recursion appears to be enabled

| fingerprint—strings:

\ DNSVersionBindReq:

\ version

| bind

\ UNKNOWN

| NBTStat:

| - CKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

67/udp open| filtered dhcps

1900/udp open upnp?

| upnp—info:

| 192.168.0.1

\ Server: Linux/2.6.36, UPnP/1.0, Portable SDK for UPnP
devices /1.6.19

| - Location: http://192.168.0.1:1900/ gatedesc .xml

1 service unrecognized despite returning data. If you know the
service/version, please submit the following fingerprint at
https://nmap.org/cgi—bin/submit.cgi?new—service

SF—Port53-UDP:V=7.80%I1=7%D=10/11%Time=61643E08%P=x86_64 —pc—linux
—gnu%r (DNS

SF: VersionBindReq,32,”\0\ x06\x85\x80\0\x01\0\x01\0\0\0\0\
x07version\x04bin

SF:d\0\0\x10\0\x03\xc0\x0c\0\x10\0\x03\0\0\0\0\0\ x08\x0O7TUNKNOWN
7)%r (NBTSta

SF:t,32,7\x80\xf0\x80\x90\0\x01\0\0\0\0\0\0\
XNCKAAAAAAAAAAAAAAAAAAAAAAAAA

SF:AAAAA\0\0!\0\x01");
MAC Address: 60:A4:B7:05:B4:88 (Unknown)

Service detection performed. Please report any incorrect results
at https://nmap.org/submit/ .

Nmap done at Mon Oct 11 15:39:13 2021 — 1 IP address (1 host
up) scanned in 1214.43 seconds

112

A.5 Third party dependencies

Table A.1 shows the list of open source dependencies, along with their ver-
sion number and release date.

Program ‘ Version ‘Ihﬂease(kne
busybox 1.19.2 2011-09-06
Ralink U-Boot | 1.1.3 / 4.3.0.0 | 2005-08-14 / unknown
linux 2.6.36 2010-10-20
uClibc 0.9.33.2 2012-05-15
wireless_tools 29 2007-09-18
dropbear 2012.55 2012-02-22
ebtables 2.0.10-4 2011-12-15
iproute2 2.6.39 2011-06-30
openssl 0.9.8zh 2015-12-03
traceroute 2.0.3 2007-01-09
1IGD unknown 2013-01-077
wsc_upnp 0.2.2 unknown
iptables 1.4.17 2012-12-25
bpalogin 2.0.2 2003
wide-dhcpv6 20080615 2008-06-15
pppd 2.4.5 2009-11-17
radvd 1.5 2009-09-10
x12tpd 1.1.12 2007-10-20

Table A.1: Open source dependencies

A.6 List of closed source binaries

/1ib/libcmm.so

/1ib/libcutil.so

/1ib/libgdpr.so

/1ib/libxml.so

/usr/bin/afcd

/usr/bin/cli

113

e /usr/bin/mxdns

e /usr/bin/cos

e /usr/bin/dhcpc

e /usr/bin/dhcpd

e /usr/bin/diagTool
e /usr/bin/dnsProxy
e /usr/bin/dyndns

e /usr/bin/httpd

e /usr/bin/igmpd

e /usr/bin/ipping

e /usr/bin/mldProxy
e /usr/bin/noipdns
e /usr/bin/ntpc

e /usr/bin/pwdog

e /usr/bin/reg

e /usr/bin/snmpd

e /usr/bin/tddp

e /usr/bin/tdpd

e /usr/bin/tmpd

e /usr/bin/wanType

A.7 Config decompression tool

#include <stdint .h>
#include <string.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib .h>

typedef unsigned char byte;
typedef uint32_t uint;

typedef struct state{

114

byte xdata;

uint pad;

uint bits;

uint bits_left;
} state_s;

// FUN_00019540
bool next_bit(state_s xstate) {

if (state—>bits_left = 0x0) {
state—>bits = ((uint)state—>data[l] x 0x100 + (uint)state—>
data[0]) ;

state—>data += 2;
state—>bits_left = 16;

}

state—>bits_left —= 1;

state—>bits <<= 1;

return (state—>bits & 0x10000) != 0;

}

// FUN_0001959¢
int next_block(state_-s *state) {
int result = 1;
do {
result = next_bit(state) 4+ result = 2;
} while (next_bit(state));
return result;

}

uint cen_uncompressBuff(byte *src,byte xdest,uint len) {
int block_offset;
int block_size;
byte xblock_ptr;
uint count;
uint src_len;
state_s state;

state.bits = 0;
state. bits_left = 0;

memcpy(&src_len ,src ,4) ;
if (src_.len <= len) {
count = 0;
if (src_len != 0) {
state.data = src + 5;
xdest++ = src [4];
count = 1;
while (count < src_len) {
if (!next_-bit(&state)) {
count += 1;
xdest++ = *xstate.data+-+;
} else {
block_size = next_block(&state) + 2;
block_offset = (next_block(&state) — 2) << 8;
block_ptr = dest — (xstate.data++ + 1 + block_offset);

115

for(int i = 0; i < block_size; ++i) {
xdest++ = xblock_ptr++;

}
count += block_size;
}
}
}
if (count == src_len) {
return count;
}

printf(”Length_is_not_match_depackLen._=_%d\tsrcDataLen _=.%d”
,count , src_len);
return 0;
}
printf(”Invalid_.file_or_file_is.too._long!\n”);
return 0;

}

#define OUTPUTLEN 1024%1024
byte output [OUTPUTLEN];

int main(int argc, char xargv[]) {
FILE «fp = fopen(argv[l], "rb”);
fseek (fp, 0, SEEKEND);
long size = ftell (fp);
fseek (fp, 0, SEEK.SET);

char xbuffer = malloc(size);
fread (buffer , size, 1, fp);
fclose (fp);

printf(”Read %ld_bytes\n”, size);

uint decomp_length = cen_uncompressBuff(buffer + 16, output,
OUTPUTLEN) ;

printf(”Decompressed %d._bytes\n”, decomp_length);
free (buffer);

fp = fopen(argv[2], "wb”);
fwrite (output, decomp_length, 1, fp);
fclose (fp);

return 0;

A.8 Firmware filesystem compare script

from hashlib import sha256
from os import walk
from os.path import join, islink

116

must be in increasing order of release
VERSIONS = [’190218’, ’190428°, ’2006237]

def get_file_list (path):
all_files = []

for (root, _dirs, files) in walk(path):
for file in files:
full_path = join (root, file)
if not islink (full_path):
all_files .append(full_path [len(path):])

return all_files

def get_file_lists (versions):
file_lists = dict ()

for version in versions:
file_list = get_file_list (version +
file_list .sort ()
file_lists [version] = file_list

"—squashfs—root 7)

return file_lists

def get_file_sha256 (path):
with open(path, ’rb’) as f:
return sha256 (f.read()).hexdigest ()

def compare_versions(old_version , new_version, file_lists):

old_files = file_lists [old_version]
new_files = file_lists [new_version]
old_index = 0

new_index = 0

files_added = []

files_.removed = []

files_kept = []
files_modified = []

print (f ’Comparing._version.{old_version}_.to_.{new_version}’)
print (f '—_Old_version_has_{len (old_files)}._files)
print (f'—_New.version_has_{len (new_files)}_files’)

while old_index < len(old_files) and new_index < len(
new_files):
old_file = old_files [old_index]
new_file = new_files [new_index|

if old_file = new_file:
old_path = join(old_version +
old_file [1:])

’—squashfs—root ’,

117

’—squashfs—root ',

new_path = join(new_version +
new_file [1:])
old_hash = get_file_sha256 (old_path)

new_hash = get_file_sha256 (new_path)

if old_hash = new_hash:
files_kept .append(old_file)
else:
files_modified .append(old_file)
old_index +=1
new_index 4= 1
elif old_file > new_file:
files_added .append (new_file)
new_index 4= 1
else:
files_.removed .append(old_file)
old_index +=1

print (f’'—_Files_.added: . {len (files_added)}’)
for file in files_added:
print (f’'..—_{file}’)
print (f’'—_Files._.removed: .{len (files_.removed)}’)
for file in files_.removed:
print (f’'..—_{file}’)
print (f'—_Files_.modified: . {len (files_modified)}’)
for file in files_modified:
print (f’'..—_{file}’)
print (f '—_Files_kept:_{len(files_kept)}\n’)

def compare(versions):
file_lists = get_file_lists (versions)

for i in range(len(versions) — 1):
compare_versions (versions|[i], versions[i+1], file_lists)

if len(VERSIONS) > 1:
compare (VERSIONS)
else:
print ('ERROR: _need_at_least _.two_versions._to_compare’)

118

