
Bachelor’s Thesis Computing Science

Radboud University Nijmegen

Task Oriented Programming in Lua

Author:
Dante van Gemert
s1032684

First supervisor/assessor:
dr. Peter Achten

Second assessor:
dr. Pieter Koopman

June 27, 2022

Abstract

Task Oriented Programming (TOP) is a programming paradigm centered
around tasks. Its implementations are written in the functional language
Clean. Lua is a procedural language that is very different to Clean. This
thesis explores the design space that appears when implementing TOP in
Lua. We create a proof-of-concept implementation of TOP in Lua and show
that Lua has some benefits over Clean for implementing TOP.

Contents

1 Introduction 2

2 Preliminaries 3
2.1 Task Oriented Programming 3
2.2 Lua . 7

3 Research 13
3.1 Task types . 13
3.2 Tasks and task values . 16
3.3 Type representation . 18
3.4 Task combinators . 20
3.5 Editors and user interface . 25
3.6 LTasks . 27
3.7 Wrap-up . 33

4 Comparison 34
4.1 Editors . 34
4.2 Helper function . 35
4.3 User interface . 35
4.4 When to use which . 36

5 Related Work 38

6 Conclusions 39
6.1 Future work . 39

A Examples in LTasks and iTasks 43
A.1 Breakfast . 43
A.2 Multiple date input formats 45

B LTask code 48
B.1 task.lua . 48
B.2 types.lua . 55
B.3 ltuiEditor.lua . 58

1

Chapter 1

Introduction

Task Oriented Programming (TOP) is a programming paradigm where code
is structured using tasks. Currently, the implementations of TOP are written
as a shallowly embedded DSL in the pure, lazy, strongly typed, functional
language Clean. This gives programming in TOP a functional taste, since
using these implementations means using features of the functional host
language.

In this thesis we break away the concept of TOP from its functional
implementation by asking how we can develop a task oriented programming
implementation in the interpreted and dynamically typed procedural lan-
guage Lua. This implementation in Lua will give programming in TOP a
more procedural feel. By placing TOP in an environment that is radically
different than Clean, we can see what new and interesting design decisions
appear that were not clear when using Clean.

We first go over the preliminary knowledge in chapter 2, where we find
the essence of TOP and give a brief introduction to Lua. In chapter 3 we
explore the design space of implementing TOP in Lua. With that informa-
tion, we create a proof-of-concept implementation called LTasks for which
we explain the choices made and how it is implemented. We compare this
implementation to iTasks (one of the current implementations in Clean) in
chapter 4. Chapter 5 lists the related work, and we conclude the thesis in
chapter 6. Lastly, appendix A contains code examples in both LTasks and
iTasks and appendix B has the most important code files for LTasks.

2

Chapter 2

Preliminaries

This chapter provides the necessary background information on the two
most important topics in this thesis. Section 2.1 explains the concept of the
task-oriented programming paradigm, and section 2.2 goes over the basics
and the most important features of the Lua programming language.

2.1 Task Oriented Programming

In Task Oriented Programming [12], a task is just like a task in the real
world: a description of something that needs to be done, an abstract unit of
work. A task can have an observable intermediate value and access to shared
information. Some tasks are to be performed by a human and some can be
done by a computer. By composing tasks in various ways, it is possible to
create complex applications.

There are two implementations of TOP: iTask [11], written in the func-
tional language Clean, is used for developing interactive distributed appli-
cations. mTask [6, 7], written in Clean and C++, is used for IoT devices
which are constrained in their resource usage. Both of them are a shallowly-
embedded domain-specific language (EDSL). In this thesis we will primarily
be comparing against iTasks.

A TOP implementation must provide the concept of tasks, ways to com-
pose the tasks where one task can read the value of another task, shared data
sources and for interactive TOP systems also some form of user interface.

2.1.1 Task value

Tasks can have an intermediate value. A task value can be in one of three
states: no value, unstable value or stable value [1, §4.3]. A task can
switch between no value and an unstable value, and it can switch to a stable
value. Tasks with a stable value have a final result and do not change
anymore. Figure 2.1 shows this graphically. Even when a task has no stable

3

no
value

unstable
value

stable
value

Listing 2.1: The possible states of task values

value yet, its intermediate value can be observed. Tasks can observe the
value of other tasks.

In iTasks, tasks can also throw exceptions, implemented as returning an
exception value [12, §3.1.1]. When it is clear that a task will never result in
a meaningful value, it can raise an exception. This can happen for instance
when a network connection fails.

2.1.2 Task composition

Tasks can be composed in multiple ways, falling in one of these categories:
sequential composition and parallel composition. They both use the fact
that a task’s value can be observed. Sequential composition is named step

in iTasks. We can provide it with multiple continuation tasks, one of which
will be executed based on the observed task value. Parallel composition
executes all provided tasks. The values of these tasks are combined to form
the value of the parallel task, and these values can also be observed by the
provided tasks. There is a way to create tasks with a stable value, called
return in iTasks. The value and type of a task can be transformed with
iTasks’ @ operator.

We use the example of having breakfast, adapted from Naus [10]. To
make breakfast, you first make something to drink. This can be either tea
or coffee. You also make something to eat, a sandwich in this example. You
can do that already while you are waiting for your drink to be ready. When
you have your drink and your sandwich, you can eat it. The whole operation
of having breakfast can be seen and modelled as a task, composed of smaller
tasks.

The breakfast example using the combinators >>- (sequential), -&&- (par-
allel and) and -||- (parallel or) from iTasks looks like listing 2.2.

A task composed sequentially does not have to wait for the first task to
complete before starting. It can even be the case that task 2 becomes stable

4

(makeTea -||- makeCoffee) -&&- makeSandwich >>- eatBreakfast

Listing 2.2: Example: making breakfast.

when task 1 still has an unstable value. For example, task 1 could give an
overview of free hospital beds. Task 2 could then decide to continue (have
a stable value) once there is a suitable bed available, while the overview of
hospital beds will never be stable. This situation looks like this in iTasks:

hospitalBeds >>* [OnValue (ifValue (\beds = length beds > 0)

(\beds = return (hd beds)))]

Or think of a task that waits for a specific time before returning a value.
Task 1 (a task that yields the current time) will always have an unstable
value (because time keeps changing), but eventually the waiting task be-
comes stable.

2.1.3 Shared data sources

Tasks are distributed and concurrent. For instance, in a multi-user system,
two tasks that are composed in parallel could be done by two different users
at the same time. Note that a TOP implementation does not have to be
a multi-user system. While iTasks is multi-user, mTasks is not (because
having users makes little sense in an IoT environment).

Sharing data between tasks is done with shared data sources like files or
sensors. These can interact with tasks. Not all shared data sources have to
be both readable and writable; the current date and time are examples of
read-only shared data sources. When tasks are composed in parallel, they
get a read-only shared data source that reflects the current value of each
other [12, §2.1]. The following is an example of a SDS that is both readable
and writable, letting the user input a list of words and immediately showing
the sentence made from these words.

wordsSDS :: SimpleSDSLens [String]

wordsSDS = sharedStore "wordsSDS" []

wordsTask = (updateSharedInformation [] wordsSDS <<@ Title "enter words")

-|| (viewSharedInformation [ViewAs (foldl (+++) "")] wordsSDS

<<@ Title "sentence view")

2.1.4 User interface

Interaction of tasks with humans happens with interactive tasks called edi-
tors. An editor task is a bridge between the internal world of tasks and the
external real world. A TOP framework automatically generates an appro-
priate user interface with these editors. They also allow users to interact
with shared data sources.

5

An editor task never has a stable value. When an editor task is composed
sequentially, even when the user has pressed a “continue” button and the
sequential task has moved on to the next task, the editor stays unstable
behind the scenes.

User interfaces of combined tasks are composed of the user interfaces of
the components. For example in iTasks, if two tasks assigned to the same
user are combined in parallel, they are shown next to each other. [10, §4.2.4]

Since iTasks is written in the statically typed language Clean, the pos-
sible values a task can have are predetermined by its type. This allows us
to make use of the existing HTML form input fields when generating a web
interface. This is useful for two reasons. First, these form fields only allow
valid input, i.e. you can’t input arbitrary text in a number field. Second,
they improve usability by adapting the input method, for instance displaying
a date picker.

This generation of different HTML form fields is done automatically in
iTasks. This is possible because Clean has generic types and is statically
typed—types are available statically, before any value is present.

2.1.5 Implementation in iTasks

Since iTasks is written in the functional language Clean, tasks are modelled
as functions. Functions in Clean are pure; they cannot mutate existing
values. Instead, a task is implemented as a function that can process an
event, using the information stored in the IWorld environment, and that
results in a new version of itself, the task value, any user interface changes,
and the IWorld. In listing 2.3 we can see that the task function (Task) returns
a TaskResult and an IWorld. IWorld carries information about the entire TOP
application such as the current clock, and we will not go into it further.

A task value is either NoValue, or Value together with a value and a boolean
Stability signifying whether it is stable. Note that this models the three
possible states from 2.1.1 correctly: a task with no value also has no stability.

:: Task a (=: Task` (Event -> TaskEvalOpts -> *IWorld

-> *(TaskResult a, *IWorld)))

:: TaskResult a

= ValueResult !(TaskValue a) !TaskEvalInfo !UIChange !(Task a)

| ExceptionResult !TaskException

| DestroyedResult

:: TaskValue a

= NoValue

| Value !a !Stability

Listing 2.3: The types Task, TaskResult and TaskValue in Clean.

6

2.2 Lua

Lua is an interpreted and dynamically typed programming language. The
website lists its selling points: Lua is claimed to be fast, portable, em-
beddable, powerful but simple, small and free [5]. Lua is fast because the
LuaJIT just-in-time implementation can yield performance that can be rea-
sonably compared to that of C [2, fig. 11]. It is portable since the Lua
interpreter is written in plain C and can run on any device. Lua us built
as an extension language, so it is embeddable with the use of its C API. It
is powerful but simple: the language has little syntax and concepts, but it
provides meta-mechanisms which let you implement features yourself. The
language is small since the interpreter and libraries take less than 800kB,
and it is free because it is distributed under the MIT license.

The next subsections will cover the aspects and concepts of Lua that are
most relevant for this thesis. Details that are not necessary are left out, but
can be found in the reference manual [4].

Lua is a powerful, efficient, lightweight, embeddable
scripting language. It supports procedural program-
ming, object-oriented programming, functional pro-
gramming, data-driven programming, and data de-
scription. [5]

The Lua logo

2.2.1 Where is Lua used?

Lua is described by the authors as an extensible extension language [3]. This
means that it is made to be extended (for instance with bindings to libraries
written in C), and to be used within other applications.

Lua is used for example as a language for making games (Roblox1,2,
Love2D3), as a scripting language within games (Minecraft mods4,5), as a
scripting language in other programs (Adobe Photoshop Lightroom6, Lua-
TeX7, OpenResty8) and also in microcontrollers for IoT projects (NodeMCU9).

1https://www.roblox.com/
2https://luau-lang.org/
3https://love2d.org/
4https://computercraft.cc/
5https://oc.cil.li/
6https://www.adobe.com/products/photoshop-lightroom.html
7http://www.luatex.org/
8https://openresty.org/en/
9https://nodemcu.readthedocs.io/en/release/

7

https://www.roblox.com/
https://luau-lang.org/
https://love2d.org/
https://computercraft.cc/
https://oc.cil.li/
https://www.adobe.com/products/photoshop-lightroom.html
http://www.luatex.org/
https://openresty.org/en/
https://nodemcu.readthedocs.io/en/release/

2.2.2 Basics

Lua has 8 basic types: nil, boolean, number, string, function, userdata,
thread, and table [4, §2.1].

Some interesting notes: The type nil (which has a single “value”, nil)
signifies the absence of a value (null or undefined in other languages).
Any variable or field with no value implicitly holds nil, and a non-existing
variable or field cannot be distinguished from one with an explicit nil value.
Lua has only a single number type, which internally switches from integers
to floating point numbers automatically. In versions prior to 5.3, numbers
were always floats. userdata is the type of data that comes from C, we can
ignore it here. function, thread and table will be covered in depth in the
next sections. All values are first-class: they can be stored in variables and
tables, passed to functions and returned from functions.

By default, variables are global. To make them local, you put local in
front of them: local localVar = "local" instead of globalVar = "global". This
also works for functions, though that is not as common. Lua supports par-
allel assignment: you can swap variables without using a temporary variable
by writing x, y = y, x.

The types table, function, thread and userdata are reference types
(the Lua manual calls them objects [4, §2.1]). This means that {} == {}

evaluates to false because they refer to two separate tables. However "" ==

"" evaluates to true because string is not a reference type.

2.2.3 Tables

Lua’s main (and only) composite data structure is the table. A table is an
associative array and fulfills the purposes of arrays, objects and maps in
other languages. A table can store any type of key except nil, and any type
of value. Note that this means it is possible to have keys of reference types
or objects (such as tables, defined above). Having values stored by integer
keys creates a kind of list. Since Lua is dynamically typed, a table can hold
both integer keys/values and other type keys/values at the same time: a
single table can function as both a list and a map. Indexing a table with an
arbitrary type key uses square brackets (tbl[key]). There is a shorthand for
accessing string keys: tbl.key is syntactic sugar for tbl["key"].

Tables as lists are 1-indexed, though nothing prevents you from assigning
a value to key 0 (or negative numbers). Removing an item from a table can
be done by setting it to nil, and attempting to access a non-existent field in
a table results in nil. Listing 2.5 shows an example of using tables as lists.

8

-- Create a table as an array

local array = {"Hello", "world"}

array[3] = "from"

array[4] = "Lua"

-- Concatenate the elements of the table,

-- separated by a space, and append '!'

-- ('..' is the string concatenation operator)

local hello = table.concat(array, " ") .. "!"

-- Print "Hello world from Lua!" to stdout

print(hello)

Listing 2.5: Using tables as lists

2.2.4 Functions

In Lua, functions are first-class values. In fact, the function definition state-
ment (function f() ... end) is syntax sugar for assigning a function expres-
sion (f = function() ... end).

Functions can return multiple values at once. For example in the stan-
dard library, coroutine.resume() (see 2.2.6) returns a success status, fol-
lowed by the result values. Returning multiple values is done like this:
return 10, 20. On assignment, any extra values are ignored, e.g. result =

coroutine.resume(co) ignores anything after the first return value. Extra val-
ues are also ignored if the function call is wrapped in parentheses, or when
it is followed by another expression. That means y will be nil here: x, y =

(coroutine.resume(co)) and here: x, y = coroutine.resume(co), nil.
Functions are also closures: they have access to the local variables of an

enclosing scope. An example of this can be seen in listing 2.6.
Functions can also take a variable number of arguments, using a vararg

expression. Adding ... to the end of a function’s signature turns it into
a vararg function, and you can then use ... anywhere directly inside the
function to represent the extra arguments passed to the function. ... is
not a first-class citizen, though: it is not possible to use it inside an inner
function. To get around that, it is common to put the vararg in a table.
A useful function from the standard library is select(index, ...)10, which
is a vararg function itself. It has two uses: when index is the string "#",
it returns the number of arguments. When it is a number, it returns all
arguments after that index.

2.2.5 Metatables

A metatable is a normal table assigned to a value as metadata. It can
be used to override default behaviour like operators, indexing and calling.

10https://www.lua.org/manual/5.4/manual.html#pdf-select

9

https://www.lua.org/manual/5.4/manual.html#pdf-select

-- Cherry-pick indices from a table

function pick(tbl, ...)

local new = {}

-- Get number of vararg arguments

local nArgs = select("#", ...)

-- Loop from 1 to nArgs

for i = 1, nArgs do

-- Get vararg number i

local idx = select(i, ...)

new[i] = tbl[idx]

end

return new

end

-- Pick indices 1, 4 and 2 from 'array'

local array = {"Hello", "world", "from", "Lua"}

local picked = pick(array, 1, 4, 2)

-- "Hello Lua world!"

print(table.concat(picked, " ") .. "!")

function makePicker(tbl)

return function(...)

return pick(tbl, ...)

end

end

local picker = makePicker(array)

picked = picker(1, 4, 2)

-- same as before

Listing 2.6: Using vararg functions and closures

Primitive types have a metatable for the entire type, but tables have in-
dividual metatables. The metatable set on strings for instance enables
shorter OOP-like syntax, ("hello"):upper():reverse() being shorthand for
string.reverse(string.upper("hello")).

In example 2.7a, the metatable containing __add and __tostring is set as
the metatable for the table with x and y. When we do vec + vec, Lua looks
in the metatable and executes the __add function. Similarly when we print
the result, the __tostring function is executed. In this way, all operators11

can be overridden.
Not only operators can be overridden like this. It is also possible to cus-

tomise what happens when a field is not found, for example doing tbl.foo

when tbl does not contain the key foo. When Lua cannot find a key, if the
metatable’s __index is a table, it will look there. This can be used to cre-
ate a prototype inheritance chain. To facilitate this, Lua has syntax sugar:
myDog:bark() (notice the colon) is sugar for myDog.bark(myDog), and function

dog:bark() is sugar for function dog.bark(self). These concepts are demon-
strated in listing 2.7b, and this is also how the shorthand string operations
mentioned before work.

Another metamethod that can be used is the __call metamethod, which
is called when trying to call a table. This can be used for instance to create

11https://www.lua.org/manual/5.4/manual.html#2.4
12example adapted from https://www.quora.com/What-is-the-_

_call-metamethod-in-Lua-and-what-are-some-of-its-uses-and-basic-examples/

answer/Pierre-Chapuis

10

https://www.lua.org/manual/5.4/manual.html#2.4
https://www.quora.com/What-is-the-__call-metamethod-in-Lua-and-what-are-some-of-its-uses-and-basic-examples/answer/Pierre-Chapuis
https://www.quora.com/What-is-the-__call-metamethod-in-Lua-and-what-are-some-of-its-uses-and-basic-examples/answer/Pierre-Chapuis
https://www.quora.com/What-is-the-__call-metamethod-in-Lua-and-what-are-some-of-its-uses-and-basic-examples/answer/Pierre-Chapuis

local mt = {}

function vector(x, y)

return setmetatable(

{x = x, y = y}, mt)

end

function mt.__add(a, b)

return vector(

a.x + b.x,

a.y + b.y)

end

function mt.__tostring(v)

return "("..v.x..", "..v.y..")"

end

local vec = vector(2, 1)

print(vec + vec) --> (4, 2)

(a) Overriding operators

local animal = {}

animal.sound = "*silence*"

animal.name = "the animal"

function animal:eat()

print(self.name.." eats")

end

function animal:makeSound()

print(self.sound)

end

local dog = {}

setmetatable(dog, {__index = animal})

dog.sound = "Woof!"

function dog:bark()

self:makeSound()

end

local myDog = {name = "Doggo"}

setmetatable(myDog, {__index = dog})

myDog:eat() --> Doggo eats

myDog:bark() --> Woof!

(b) Creating prototype chains
local fact = { [0] = 1 }

setmetatable(fact, {

__call = function(t, n)

-- Calculate and store if it does not exist yet

if not t[n] then t[n] = n*fact(n-1) end

return t[n]

end

})

fact(10) --> 3628800

(c) Using the __call metamethod for memoization12

Listing 2.7: Using metatables

a memoised factorial function, as shown in listing 2.7c.

2.2.6 Coroutines

Lua provides asymmetric stackful coroutines. A coroutine is a first-class
value of type thread. A coroutine represents a thread of execution in
the Lua interpreter, and can be used for concurrency, but not parallelism.
Functions for creating a coroutine from a function, resuming a coroutine
and yielding from a coroutine are coroutine.create(), coroutine.resume() and
coroutine.yield() respectively.

Coroutines in Lua are asymmetric: a coroutine cannot specify where to
transfer control to, it always yields back to its caller [9].

Lua’s coroutines are stackful, which means that a yield can happen any-

11

where in the call stack. Something like 2.8 is not possible with for example
Python’s generators.

function yieldIncr(value)

coroutine.yield(value + 1)

end

function coroFunction()

yieldIncr(41)

end

-- Create a coroutine

local co = coroutine.create(coroFunction)

local success, result = coroutine.resume(co)

print(result) --> 42

Listing 2.8: Yielding from deeper into the call stack

2.2.7 Comparison between Clean and Lua for TOP

There are some important differences between Lua and Clean. The most
important one is the fact that Clean is a functional language and Lua is
procedural. Like in Clean, functions in Lua are first-class. Unlike Clean,
they can have side-effects and they can give a different output for equal
inputs.

Clean does not have coroutines and uses functions to model tasks. In
this thesis we show how we can use coroutines to model tasks (section 3.2).

Another important difference is that Clean is statically typed and com-
piled while Lua is dynamically typed and interpreted. Type information in
Lua, like most dynamically typed languages, is not precise: all tables have
type table, regardless of their contents. In section 3.1 we explore ways to
meaningfully work with this in Lua.

12

Chapter 3

Research

There are many design decisions of TOP in Lua to be explored, resulting
from the major differences between Clean and Lua. This research explores
the design space and creates a proof-of-concept of TOP in Lua based on
these decisions. The proof-of-concept is complete, when:

• it features a basic implementation of tasks,

• these tasks can be composed sequentially and in parallel (both “and”
and “or”), while making use of observable task values.

• it has a way of interacting with users (editors), and some form of
user interface that is automatically generated. Minimally, the editors
should be able to model tables, strings, numbers and booleans.

The concepts of shared data sources (§2.1.3) and exceptions (§2.1.1) in
TOP are out of scope for this bachelor thesis.

In the next section, we think about how to meaningfully work with the
dynamic type system of Lua. After that, we look how we can represent tasks
(§3.2) and task types (§3.3). Section 3.4 takes a look at task combinators,
we discuss user interfaces in section 3.5, and lastly we discuss LTasks (§3.6).

3.1 Task types

Lua is dynamically typed, so a variable or table field can hold any type of
value at any point in time. A function can take any number of arguments
and return any number of values of any type. Type information is also not
attached to variables/fields, but to the values. The consequence of this is
that there is no type information present when there are no values yet—a
field in a table without any value (i.e. the table key is assigned nil) simply
does not exist. iTasks uses types to automatically create editor UI and to
validate task inputs, but that is not possible in Lua by default. Because of
this fundamental difference between Clean and Lua, we need to rethink and

13

redesign the TOP concepts as used in iTasks. Below we explore the design
space.

3.1.1 Adding types

The programmer specifies which type a task or field is supposed to have.
The type information is given in a format similar to JSON schema1. This
type information is then attached as meta-information to a task, and checked
dynamically. This idea basically comes down to emulating a statically typed
language and comes closest to how iTasks handles TOP. Because the editor
task has an associated output type, it is possible for the implementation to
automatically generate editor UI that is appropriate and specific to the type
of value.

This is a weird direction to go into for a dynamically typed language:
instead of choosing this method in Lua, it would be a better idea to use
a statically typed language because it already has these features built-in.
Alternatively, instead of trying to fight the dynamic language, we should
embrace it. This is what the other ideas do.

3.1.2 Validator and conversion functions

The idea here is to not specify types, but validate or convert task input.
For example a task that expects a number can use the tonumber() validator
/ conversion function and fail if the provided value is not accepted by the
validator function.

Since there is no information about what type of data a task expects
or needs to output, it is impossible to automatically generate type-specific
editors. Instead, the user is in charge of selecting the right editor type. The
user interface allows the user to change the input method—for example from
text to a list (which can contain items of differing types).

This is a versatile way to enter information, compared to the static types
of Clean. For example entering a date can be done in these ways, with each
of them having their own function to check if the format is correct and to
optionally convert it to a different format:

• Basic text field: "2022-03-31"

• Date picker (with a function that outputs the date in one of these
other formats)

• Three number fields year, month and day:
{year = 2022, month = 3, day = 31}

• Two number fields year and day, and a string field month:
{year = 2022, month = "march", day = 31}

1https://json-schema.org/

14

https://json-schema.org/

This does make use of dynamic typing, but I doubt this is really useful.
Especially the usability is a problem since the user has to select the right
editor type manually. This problem is even more apparent for composite
data structures: imagine as a user having to create an editor for a person
with a birthday from scratch:

{

firstName = "John",

lastName = "Doe",

birthday = {year = 2022, month = "march", day = 31}

}

3.1.3 Interface with JSON APIs

The de-facto communication format of the web, JSON2, is also dynamic
(when not using JSON schema1). JSON is a good companion to TOP in
the dynamic language Lua, as all concepts in JSON map directly to Lua
concepts: numbers, strings, booleans, arrays (tables), objects (tables) and
null (nil). It can be used to communicate with all kinds of JSON web APIs,
such as ones providing weather conditions, address information or public
transit information.

With this approach, tasks do not have any type information attached
and can simply fail when their input is not in a format they can work with.
They can do this because we can rely on JSON APIs to yield the right
format if there was no error.

If we restrict ourselves to only JSON web APIs (which are automatically
served by websites), there is no longer an interactive component for users.
This is problematic because we just defined (at the start of this chapter)
that interactive editors are an essential component of TOP. While JSON
can be hand-written by users as input to an editor, doing that is even less
user-friendly than 3.1.2.

3.1.4 Structural type matching

A different way to make use of the dynamic-ness of Lua is to attach a type
to all task continuations passed to the step combinator. Each continuation
can accept a different type, something that is not possible with iTasks. The
step combinator can then employ a matching algorithm to find which task
it should execute, based on the value of the previous task. The matching
algorithm should not only match primitive types, but should also be able
to match more complex structures like tables as lists, or tables with specific
fields. The major difference with the first option “adding types” (section
3.1.1) and with statically typed languages is that you can add continuations
for multiple different types to the step combinator, and that the output type
of editors can still change at runtime.

2https://www.json.org/json-en.html

15

https://www.json.org/json-en.html

There are many different ways to design such a matching algorithm, as
there are many design considerations. When multiple task continuations
match some value, the algorithm can find either the first match or the best
match. Finding the best match requires defining a measure of match quality.
What happens to tables that have more fields than the task requires?

You may think that an editor task before a step combinator can use the
type information of tasks after the combinator to automatically deduce the
right editor type to display. However, this goes against the TOP principle
that tasks are autonomous: they do not depend on other tasks. What we
can do is manually make a different editor for each type of output.

This is the direction we will go into for this thesis, for the following
reasons: it keeps the core concepts of TOP with user interaction, it makes
use of the dynamic typing of Lua, it works in a way that is not encouraged in
the current TOP implementations and lastly I think it is the most interesting
and novel idea.

3.2 Tasks and task values

Tasks in iTasks are modelled as an algebraic data type (listing 2.3). Lua does
not have algebraic data types. Moreover, in contrast to Clean, mutation is
normal and we can keep state by using tables. We can also use coroutines
which makes modelling changing tasks more convenient, as execution can
halt in the middle of a function and continue later on. There are three choices
to be made here: whether to model the task functionality as a coroutine or
as a function, whether to store that coroutine/function in a table or leave
it bare, and whether to separate the actual task value from its stability. All
three choices affect each other; only a few combinations actually make sense.

3.2.1 Functions or coroutines

Clean has no coroutines. The way that a single task can keep state and
handle multiple events during the runtime of the program is by returning a
new function to handle the next event. In Lua we can keep handling events
within a single coroutine. We can keep state using local variables within
the coroutine. If we choose to use functions, we return the task value and
stability. When using coroutines, we yield. We will use coroutines for this
thesis because they can be used to model tasks in an elegant way, which we
show in section 3.6.

3.2.2 Tasks as tables

Close to how iTasks works in Clean, we can model tasks as bare functions
or coroutines, where the task value is returned or yielded. Making use of
what Lua gives us, we can store that coroutine/function in a table alongside

16

function counter(initial)

local count = initial

return {

get = function()

return count

end,

increment = function()

count = count + 1

end

}

end

local c = counter(41)

print(c.get()) --> 41

c.increment()

print(c.get()) --> 42

(a) Using a get() function and a
direct count upvalue.

function counter(initial)

local self = {}

self.count = initial

function self.increment()

self.count = self.count + 1

end

return setmetatable({}, {

__index = self,

__newindex = function() end

})

end

local c = counter(42)

print(c.count) --> 42

c.count = 10

print(c.count) --> 42

getmetatable(c).__index.count = 10

print(c.count) --> 10

(b) Using a table with a no-op
__newindex metamethod. With
a detour, the value can still be
modified from the outside.

Listing 3.1: Two ways of making values private using closures: count cannot
be accidentally modified from the outside.

the task value and stability. The effect of this is that all tasks that have a
reference to the task can read its value at any time. In iTasks this is limited
to tasks that are linked together by a combinator. Another possibility that
this opens up is that we can now define other functions that operate on this
task’s internals, however that goes against the principle that tasks should
be autonomous.

The downside of this is that task values can now be altered from outside.
TOP means that tasks are autonomous: only the task itself can set its task
value, and one task should not be able to modify the value of another task.
This can be solved by not exposing the task value itself, but rather a function
that reads from a private task value. There are multiple ways to do this,
listing 3.1 shows two of them. They both make use of a closure to hide
the variable. Barring use of the debug library3, method 3.1a makes the count

variable truly invisible and immutable from the outside. Method 3.1b allows
us to refer to the value itself instead of having to call a getter function which
makes it transparent, but its downside is that it only hides the count variable
behind a metatable. The example shows that it is possible to modify the
variable with a detour.

Both of these methods work for preventing accidentally modifying a

3The debug library violates multiple core assumptions about Lua code [4], so including
it in considerations would not be appropriate.

17

task’s value. For the proof of concept however, we will not be using any
of these options. While that makes it possible to violate a task’s autonomic-
ity, that will not happen in normal use.

3.2.3 Value and stability

When using functions or coroutines as tasks, we can choose to return or
yield the task value and its stability separately since Lua allows returning
multiple values. Closer to what iTasks does, we could also return a table
containing the value and the stability. Returning the task value and its
stability separately is more idiomatic in Lua. However, this can lead to
problems where the value and stability need to be passed around. Especially
for the parallel combinator because its task value is a list of task values.

We will keep the actual value and the stability separate and only pack
them together when needed. In the proof of concept, this only happens in
the parallel combinator.

3.3 Type representation

Because we decided in section 3.1.4 that task continuations have an associ-
ated type, we need some way to represent Lua types at runtime. This typing
information is used by the step combinator’s type match function to decide
which task continuation it should choose. Lua has the type function that
returns the type of the value passed as a string: type(42) == "number". The
problem is that this does not give us detailed enough information for tables;
type({10, 20}) and type({hello = "world"}) both result in just "table".

Tasks and editors require a more elaborate system that can distinguish
types of composite values. We need to consider the way these types are
written, how they are represented or stored at runtime, and how they are
compared against each other. We will elaborate on multiple ways to solve
the first two considerations now, how to compare types is left for section
3.4.4.

3.3.1 LuaRocks libraries

When looking for Lua libraries, I primarily used LuaRocks4, which is the
most used Lua package manager and package repository. There are a number
of libraries that come up when searching for “types”. Three of them have
some way to represent composite types at runtime: luastruct5, struct.lua6

and Typed7.

4https://luarocks.org/
5https://luarocks.org/modules/UlisseMini/luastruct
6https://github.com/mpatraw/struct.lua
7https://luarocks.org/modules/SovietKitsune/typed

18

https://luarocks.org/
https://luarocks.org/modules/UlisseMini/luastruct
https://github.com/mpatraw/struct.lua
https://luarocks.org/modules/SovietKitsune/typed

luastruct and struct.lua

luastruct and struct.lua represent types at runtime by a default value. The
example from the LuaRocks description5 of luastruct describes the type of
a table with a name field of type string (by default "default name") and an age

field of type number (default 0):

local person = struct {

name = "default name",

age = 0

}

struct.lua works in the same way, and this example is also valid there.
This may be a very simple way to store composite types at runtime, but it
has the obvious downside that every field must have a default value. For
editors, this is not that big of a problem. But for specifying what type a
task accepts, this can be very inconvenient. Furthermore, in this place the
actual default value does not have any use: only its type will be used. A
bigger problem for representing types of tables in this thesis is that these
libraries are only about structs; they do not have a way to represent arrays.

Typed

Typed is a library for checking a function’s arguments. It gives format-
ted error messages containing information on what type was expected. The
error messages are not interesting for this thesis, but how it represents com-
posite types is. Arrays can be represented like the string "number[]", maps
are written as "table<string, boolean>". When multiple types are valid, they
can be written as "string | number". For more complicated types like what
LuaStruct and Struct.lua do, it uses schemas, for example a table that
contains the string field name and a numeric field id is written like this:
typed.Schema('test'):field('name', 'string'):field('id', 'number').

3.3.2 Lua extensions

Maidl, Mascarenhas and Ierusalimschy [8] designed a gradually typed ex-
tension of Lua called Typed Lua. It does not keep types at runtime, but it
does have its own way of representing these types in code.

Pallene, developed by Gualandi and Ierusalimschy [2], is a typed subset
of Lua. In contrast to Typed Lua, it does sometimes keep types for runtime
type checks.

Teal8 is a language that compiles to Lua, implemented in Lua. It has an
online playground9 that shows that types are removed at runtime.

8https://github.com/teal-language/tl
9https://teal-playground.netlify.app

19

https://github.com/teal-language/tl
https://teal-playground.netlify.app

Unlike Teal, Luau10 does not compile to Lua but has its own interpreter.
Like Luau however, it also does not keep types at runtime.

3.3.3 Other languages

TypeScript

TypeScript11 is a language that transpiles to JavaScript. Like Typed Lua,
Teal and Luau, its types get removed at compile time. We can still learn
from the way types are written, though.

3.3.4 Typed library

The Typed library library is the most complete of the three libraries, so we
will use it in the proof-of-concept for representing types at runtime. The
matching of types will initially also be done by the library, but later on we
will design a custom match algorithm. While the library is more complete
than the rest, it is still missing some non-essential features we would like to
have such as being able to describe a table which both has predetermined
fields and is also an array. Implementing these is out of scope for this thesis,
but the design decisions themselves will be considered in section 3.4.4.

3.4 Task combinators

3.4.1 Combinators and operators

Combinators are common in functional languages like Clean, where it is
possible to define custom operators for them. For instance, iTasks defines an
infix operator >>* for the step function. In order to be able to easily compare
the proof of concept to iTasks, we want to come close to the notation as used
in iTasks.

Lua does not allow defining custom operators, but you can change the
behaviour of the pre-existing operators. To do this, we define a task table
and use it not only to define all combinators, but also as a metatable for
tasks. For changing the behaviour of, for example, the & function, we define
the __band metamethod in this table. We let all tasks inherit from this
prototype table using the __index metatable entry, see listing 3.2.

3.4.2 Parallel

If we bring the parallel signature from iTasks down to its essence, we get
listing 3.3. It takes a list of tasks, the task it returns has as its value a list
of values of the original tasks.

10https://luau-lang.org/
11https://www.typescriptlang.org/

20

https://luau-lang.org/
https://www.typescriptlang.org/

local task = {}

task.__index = task

task.__band = function() --[[...]] end

local myTask = setmetatable({}, task)

Listing 3.2: A simplified example showing the basic structure for inheriting
the prototype and defining custom operator behaviour.

parallel :: [Task a] -> Task [TaskValue a]

Listing 3.3: The simplified parallel combinator’s signature.

Each time the parallel task is resumed (we decided in section 3.2.1 that
it is a coroutine), it resumes the input tasks one by one and updates its list
of task values. Because the resulting task needs to also contain the task
values’ stability, the value of the parallel task is a list of task value–stability
pairs. Listing 3.4 shows a very simple example of parallel “and.”

(return "A" -&&- return "B") >>- (\x -> viewInformation [] x)

Listing 3.4: A simple example of using parallel. This shows “A” and “B”
in the output.

3.4.3 Step

The step combinator executes one task and chooses another task to execute
using the observable task value of the first task. The result of the step
combinator is a task that has the value of the selected follow-up task. It is
called step because when it can execute one of the follow-up tasks, it steps
to that task and does not go back anymore.

In iTasks, the step combinator expects a list of task continuations. Such
a continuation defines a task that should be executed when some event
happens. Such an event can be when a task has a stable value or when
a task has a value that matches some predicate (OnValue). It can also be
when the user presses some button like ‘yes’, ‘no’, ‘ok’ or ‘cancel’ (OnAction).
Listing 3.6 shows an example of using multiple OnValue continuations. The
step combinator only steps to a continuation if its predicate holds. If we
simplify its signature from iTasks, we get listing 3.5.

Each time the step task is resumed before stepping, it resumes the first
task and tries to find a matching continuation task. When one such con-
tinuation task is found, it steps. Now, the step task acts as a proxy to the
continuation task: it resumes the continuation task and updates its own
task value and stability to match that task.

21

step :: (Task a) [TaskCont a (Task b)] -> Task b

:: TaskCont a b

= OnValue ((TaskValue a) -> ? b)

| OnAction String ((TaskValue a) -> ? b)

Listing 3.5: The simplified step combinator’s signature, together with the
type definition of TaskCont (also simplified).

enterInformation [] >>* [

OnValue (ifValue isPalindrome (showInput "palindrome: ")),

OnValue (ifValue isGreeting (showInput "greeting: "))]

(a) Using the step combinator with OnValue in iTasks. It will automatically
step once the user input is either a palindrome or a greeting. isPalindrome and
isGreeting are defined elsewhere, their implementation is not important. (A greet-
ing is something like “hello” or “I am ...”)

enterInformation [] >>* [

OnAction (Action "Check palindrome")

(ifValue isPalindrome (showInput "palindrome: ")),

OnAction (Action "Check greeting")

(ifValue isGreeting (showInput "greeting: "))]

(b) The same example as (a), but with OnAction: it will only step when the user
clicks “Check palindrome” or “Check greeting.”

Listing 3.6: OnValue and OnAction in iTasks. showInput is a convenience wrap-
per around the iTasks function viewInformation.

3.4.4 Type matching

The type of values that a continuation expects will need to be attached
to the continuation, in the format just described in section 3.3. To decide
what continuation to step to in Lua, we use a type matching function. As
hinted at in section 3.1.4, there are many different ways for a type matching
function to work. The considerations as well as the choices for this proof of
concept and the reasoning behind the choices are outlined here. The syntax
used here is hypothetical.

Best match or first match

When there are multiple continuations that match the current task value,
we need to decide which of the continuations to execute. This possibility of
having multiple continuations that match is also present in iTasks, where
the first OnValue or otherwise the first OnAction match is used. Actually, in
iTasks all continuations need to accept exactly the same type so it is not
possible to let the system automatically find a “best” match, only manually.
This is easier to do in dynamically typed languages like Lua.

We can define a better match to be a more specific one: number is more

22

specific than string | number (a union), because the first one does not accept
strings. table<string, number> (a table with string keys and number values) is
more specific than just table, and a table {id: number, age: number} (a struct)
is even more specific than both of these.

We can formalise this intuitive relation, let’s write T1 < T2 if T2 is more
specific than T1. To be able to use this relation in Lua with the table.sort

function, it needs to be a strict partial order [4, §6.6]: it must be irreflexive,
asymmetric and transitive. If some T1 and T2 do not match any of the
following rules, they are either not comparable or equivalent. T denotes any
type, t is any type except unions, F and G are pairs of key name and value
type, and k is a string key. T | T (same type on left and right side) is equal
to just T . Order does not matter for union types: T1 | T2 is equal to T2 | T1.
A struct with no pairs is equal to a table. Note that relation defined here
is intended to be simple, so it does not include things like tuple types or a
specified list length.

The any type is the least specific because it matches all types:

any < T if T ̸= any

A union of two types is less specific than a single type:

T1 | T2 < t3

For two unions with a corresponding type, one is less specific than the
other if the non-corresponding type is less specific:

T1 | T2 < T1 | T3 if T2 < T3

A table of any type is less specific than one with a list type specified:

table < table(T)

The same for a table that has a key and value type specified:

table < table(T1, T2)

A list is less specific than another list if their element types are less
specific:

table(T1) < table(T2) if T1 < T2

A table with string keys and a set value type is less specific than a struct
type (given that the struct type is not empty):

table(string, T) < {F1, . . . , Fn}

For two struct types with a corresponding pair of key and value-type,
one is less specific than the other if the rest of the struct types is less specific:

{F1, . . . , Fn, k : T} < {G1, . . . , Gm, k : T}
if {F1, . . . , Fn} < {G1, . . . , Gm}

23

For two struct types with the same number of pairs and a corresponding
key, one is less specific than the other if the value-type is less specific and
the rest of the struct is less specific:

{F1, . . . , Fn, k : T1} < {G1, . . . , Gn, k : T2}
if T1 < T2 and {F1, . . . , Fn} < {G1, . . . , Gn}

Matching lists: types and order

A list in Lua can contain values of differing types at once. What happens
if the actual list contains the right types but in a different order than asked
for? This goes wrong if the position of elements in the list has meaning.
Typescript calls this tuple types12. An example of this is a continuation
accepting a date as a table of {number, string, number} (year, month, day).
When it receives a {number, number, string} instead, it can not know which
number is the day and which is the year. Therefore, a list with a different
order of types should never match.

Matching lists: length

If the continuation specifies a list length and if the actual list is longer than
this length, does it still match? List elements may have semantics, so if we
choose to match a list that is longer than needed, we may discard important
information. This can happen for example when we have a 3D vector that
is represented as a list of its coordinates. If we have two continuations, one
for 2D vectors and one for 3D vectors, we should not choose the 2D vector
continuation. To prevent situations like this, we should not match lists that
are longer than requested. The best-match algorithm described above does
not include list length, so using that does not help.

Matching tables

Analogous to list length: when a table has more fields than required, does
it match? The same 2D/3D vector example applies here, but with tables
containing the fields x, y and z. This problem can be solved in two ways:
by using the best-match algorithm described above or by manually ordering
the continuations, placing the continuation accepting a table with the fewest
number of fields last.

12https://www.typescriptlang.org/docs/handbook/2/objects.html#tuple-types

24

https://www.typescriptlang.org/docs/handbook/2/objects.html#tuple-types

3.5 Editors and user interface

There are many different ways of interfacing with users. iTasks uses a web-
page for instance. But there are other graphical interfaces, as well as non-
graphical ones. They all differ in usability for the user and ease of program-
ming. We explored a JSON-based interface in section 3.1.3, which would be
an especially non-user-friendly user interface.

3.5.1 HTML page

There is one well-known Lua library for and for interacting with the DOM
through Javascript: Fengari13. Fengari implements a Lua VM, so Lua code
runs in the browser. We can also generate HTML using h5tk14 and serve it
using LuaSocket15, http16, Fullmoon17, Lapis18, Lor19, Sailor20 or Pegasus21.

We will not be going this way, because while it may be the most user-
friendly option and cross-platform, we estimate that the amount of work
exceeds the scope of this proof-of-concept project and other options are
usable enough for a proof of concept.

3.5.2 Native application

A native application looks about the same as a HTML page, but the differ-
ence is that interaction does not go via Javascript but via an API written in
C. There are some native UI libraries for Lua: fltk4lua22, TekUI23, AbsTK24,
libuilua25, lui26, lui27 and wxLua28 to name a few.

A native application has about the same usability as a webpage. Due
to the fact that Lua is built to interoperate with C, it is easier to build a
native application than a webpage. For this proof of concept, though, we
will use a simpler form of user interface.

13https://fengari.io/
14https://luarocks.org/modules/forflo/h5tk
15https://luarocks.org/modules/lunarmodules/luasocket
16https://luarocks.org/modules/daurnimator/http
17https://github.com/pkulchenko/fullmoon
18https://luarocks.org/modules/leafo/lapis
19https://luarocks.org/modules/sumory/lor
20https://github.com/sailorproject/sailor
21https://luarocks.org/modules/evandrolg/pegasus
22https://luarocks.org/modules/siffiejoe/fltk4lua
23https://luarocks.org/modules/luarocks/tekui
24https://luarocks.org/modules/pedroalvesv/abstk
25https://luarocks.org/modules/daurnimator/libuilua
26https://tset.de/lui/index.html
27https://github.com/zhaozg/lui
28https://github.com/pkulchenko/wxlua

25

https://fengari.io/
https://luarocks.org/modules/forflo/h5tk
https://luarocks.org/modules/lunarmodules/luasocket
https://luarocks.org/modules/daurnimator/http
https://github.com/pkulchenko/fullmoon
https://luarocks.org/modules/leafo/lapis
https://luarocks.org/modules/sumory/lor
https://github.com/sailorproject/sailor
https://luarocks.org/modules/evandrolg/pegasus
https://luarocks.org/modules/siffiejoe/fltk4lua
https://luarocks.org/modules/luarocks/tekui
https://luarocks.org/modules/pedroalvesv/abstk
https://luarocks.org/modules/daurnimator/libuilua
https://tset.de/lui/index.html
https://github.com/zhaozg/lui
https://github.com/pkulchenko/wxlua

3.5.3 Terminal text-based UI

The third way of displaying tasks somewhat graphically is by using a ter-
minal emulator. There are a couple libraries for this: AbsTK24, ltui29,
termfx30, lua-tui31. The first three are more complete UI-building libraries
while lua-tui is more of a toolbox. AbsTK is not available for windows but
I also have not been able to get it installed in Ubuntu on WSL. Termfx uses
the no-longer-maintained termbox which needs Python 2, and I have not
gotten that to work either.

For this thesis I chose to work with ltui. It is quite hard to start working
with it because it has almost no documentation, but it does have the features
needed for displaying tasks and editors. The way in which its example
applications are structured is that there is one element of each type: one
main dialog, one text input dialog, one output dialog, and so on. When one
of these elements is needed, any old contents get replaced and it gets shown
on screen.

3.5.4 Terminal command-line

Since a command-line application does not have a graphical interface and is
closer to the implementation, this is the least involved way of interfacing with
the user. The user can only type commands and the application responds.
This however does make it the least user-friendly, but for a minimal proof
of concept this matters less. Since it only involves text input and output, it
requires no libraries. Because it requires only the minimal extra setup and
effort, this is the initial interface of the proof of concept. Some features are
too advanced for such a simple interface, they will only be implemented in
a text-based UI.

3.5.5 Tables in editors

Tables can be visually represented as a sequence of key-value pairs, with a
“+” button for adding a new pair and a “−” button for removing a pair.
A value without key acts as an array entry. These entries implicitly get a
numeric key, just like in Lua. They can be displayed one after the other,
without keys displayed. Tables that contain tables can be represented in
two ways: either by a single element that, when clicked, navigates to the
inner table entirely (like entering a directory in a file explorer), or by a col-
lapsible indented list (like the sidebar in a file explorer). They both provide
the same functionality; which one to choose comes down to preference or
implementation details.

29https://luarocks.org/modules/waruqi/ltui
30https://luarocks.org/modules/gunnar_z/termfx
31https://github.com/daurnimator/lua-tui

26

https://luarocks.org/modules/waruqi/ltui
https://luarocks.org/modules/gunnar_z/termfx
https://github.com/daurnimator/lua-tui

3.6 LTasks

To continue the naming scheme of iTasks and mTasks, the proof of concept
implementation in this thesis is called LTasks32. This section goes into the
details of the LTasks library and shows that it is indeed a correct implemen-
tation of TOP. To further show that the proof of concept is indeed complete
for TOP, chapter 4 contains a case study comparison of the breakfast ex-
ample, while appendix A contains full examples in both LTasks and iTasks.
The full code is available at https://github.com/Dantevg/LTasks, the
files task.lua, types.lua and ltuiEditor.lua are attached in appendix B.

3.6.1 Tasks

Most functions in the LTask library are defined in the task module (B.1),
as functions on the task table. The function task.new (listing 3.7) creates a
task, which is a table containing the task coroutine, the task value and its
stability. The metatable of the task has a __index field pointing to the task

table, so all operations can be done as methods on a task, and chained. The
metatable also defines the custom operator behaviour (3.6.2, listing 3.9).

The function task.resume (listing 3.8) is for resuming a task’s coroutine.
When calling this function, you can give it a table of options used for the
user interface: the boolean showUI and the task parent. The options will be
explained further in section 3.6.5. When a task is resumed, it can resume
any child tasks it has. When it is done, it yields. This creates a coroutine
hierarchy.

12 function task.new(fn, name, value)

13 local self = {}

14 self.stable = false

15 self.value = value

16 self.__name = name or ""

17 self.co = coroutine.create(fn)

18 return setmetatable(self, task)

19 end

Listing 3.7: The task.new function.

3.6.2 Task combinators

While iTasks provides a lot of combinators, we do not need that for a proof
of concept so LTasks includes only the essential combinators and some con-
venience wrappers around them. Here is the list, along with their operators
in LTasks or their equivalent in iTasks:

32With capital “L” to avoid confusion with iTasks, because many fonts make the low-
ercase “l” look like a capital “I”.

27

https://github.com/Dantevg/LTasks

310 ---Resumes the coroutine of the task with the given options

311 ---@param options table

312 ---@param showUI boolean? if set, sets `options.showUI` to this value

313 ---@param parent table? if set, sets `options.parent` to this value

314 ---@return any value

315 ---@return boolean stability

316 function task:resume(options, showUI, parent)

317 if self.stable then return self.value end

318 if coroutine.status(self.co) == "dead" then return end

319

320 options = options or {}

321 if showUI ~= nil then options.showUI = showUI end

322 if parent ~= nil then options.parent = parent end

323 local success, err = coroutine.resume(self.co, self, options)

324

325 if not success then error(err) end

326 return self.value, self.stable

327 end

Listing 3.8: The task.resume function for resuming a task’s coroutine.

337 task.__band = task.parallelAnd

338 task.__bor = task.parallelOr

339 task.__bxor = task.step

340 task.__concat = task.step

Listing 3.9: Setting the custom operator behaviour to functions defined in
the task table.

• constant (return in iTasks)

• step (~ in LTasks, >>* in iTasks), stepStable (>>- in iTasks) and
stepButtonStable (>>? in iTasks)

• parallel, anyTask, parallelAnd (& in LTasks, -&&- in iTasks), parallelOr (|
in LTasks, -||- in iTasks), parallelLeft (-|| in iTasks) and parallelRight

(||- in iTasks)

• transform and transformValue (@ in iTasks)

These are the most important functions for building a TOP system, as
we defined at the start of this chapter.

Step

The step combinator in LTasks implements both OnValue and OnAction. When
there are multiple continuations that match some value and action, the
UI shows the user a dialog to choose one of the continuations to step to.
iTasks does not handle this well, due to what is probably a bug: it displays
two buttons with the same name, but chooses the first task continuation

28

editor.editString("") ~ {

{

action = "continue",

fn = function(value)

return isPalindrome(value)

and editor.viewInformation(value, "palindrome: ")

end

}, {

action = "continue",

fn = function(value)

return isGreeting(value)

and editor.viewInformation(value, "greeting: ")

end

}

}

Listing 3.10: The step combinator in LTasks, using multiple OnAction con-
tinuations of the same action. Listing 3.6b shows this example in iTasks.

regardless of which button is pressed. For this reason we used two different
actions in listing 3.6b.

In the example in listing 3.10, this happens when the user inputs “Madam,
I’m Adam”—which is both a palindrome and a greeting. LTasks will prompt
the user which continuation to step to.

The implementation of step can be divided into three phases: before the
step happens, choosing the continuation task, and after the step happens.
Before the step happens, each time the step task is resumed, it resumes
its first task and searches for a matching continuation task (listing 3.11).
For that matching, it uses the function matchContinuation, which finds all
continuations that have the right type and action, and have a type that is
as specific as the most specific continuation. If it has found at least one
continuation, it goes on to the continuation choosing phase. If there are
multiple continuation tasks that match, it lets the user choose which one
to step to (listing 3.12). When it has a single continuation task, it steps to
that task and acts like a proxy: it sets its own value and stability to that of
the continuation task (listing 3.13).

Parallel

The parallel task combinator in LTasks is a simplified version of the one in
iTasks, but the most common usage is present: combining tasks into a list
of task values. Listing 3.14 shows a simple example of this.

Listing 3.15 shows the most important part of the task.parallel function.
Each time it is resumed, it resumes all of its child tasks and updates its own
value to be the list of values and stabilities of the child tasks. It is itself
stable if all child tasks are stable.

29

93 local matching = {}

94 self.parent = options.parent

95 while #matching == 0 do

96 self.__name = "step (left, "..t.__name..")"

97 if options.showUI then ltuiElements.stepDialog(self, conts, t) end

98 t:resume(options, false, self)

99 if t.value ~= nil then

100 matching = matchContinuation(t.value, t.stable, options.action,

conts)↪→

101 end

102 if t.stable then break end

103 if #matching == 0 then self, options = coroutine.yield() end

104 end

105

106 if #matching == 0 then error("no matching continuation for stable task") end

Listing 3.11: The first phase of the task.step function, before the step hap-
pens.

108 -- Step happens here

109 local next, nextNames = nil, {}

110 if #matching > 1 then

111 -- Allow user to choose continuation

112 for _, nextTask in ipairs(matching) do table.insert(nextNames,

nextTask.__name) end↪→

113 app.main:insert(

114 ltuiElements.choiceEditor(nextNames[1], nextNames,

115 function(_, idx) return matching[idx] end, nil,

116 function(val) next = val end),

117 {centerx = true, centery = true}

118)

119 while not next do self, options = coroutine.yield() end

120 else

121 next = matching[1]

122 end

Listing 3.12: The continuation selection phase of the task.step function,
asking the user which continuation task to step to.

124 options.showUI = true -- Show self to reflect stepped task

125 next:show(self) -- Automatically show continuation

126

127 while not self.stable do

128 self.__name = "step (right, "..next.__name..")"

129 if options.showUI then ltuiElements.stepDialog(self, {}, next) end

130 next:resume(options, false, self)

131 self.value, self.stable = next.value, next.stable

132 self, options = coroutine.yield()

133 end

Listing 3.13: The last phase of the task.step function, after the step happens.

30

(task.constant "A" & task.constant "B") ~ {{

fn = function(x) return editor.viewInformation(x) end

}}

Listing 3.14: The parallel combinator in LTasks. The output of this is {"A",

"B"}. Listing 3.3 shows this example in iTasks.

218 self.parent = options.parent

219 self.value = {}

220 while not self.stable do

221 self.__name = "parallel ("..table.concat(getTaskNames(), ", ")..")"

222 if options.showUI then ltuiElements.parallelDialog(self, tasks) end

223 for i, t in ipairs(tasks) do

224 if not t.stable then

225 t:resume(options, false, self)

226 self.value[i] = {value = t.value, stable = t.stable}

227 end

228 end

229 self.stable = allStable(tasks)

230 self, options = coroutine.yield()

231 end

Listing 3.15: The content of the task.parallel task.

Custom operators

In Clean it is common to define lots of operators. For example, there are
eight different operators for variations of the step combinator. Lua does
allow for changing the behaviour of the standard operators, but only up
to a point. For example, the result of the comparison operators like < is
always converted to a boolean [4]. Perhaps the most notable library that
uses operators with custom behaviour is LPeg33. It is not so common to
redefine the behaviour of the operators in Lua, so LTasks only uses three
operators: ~, & and |. Using the .. operator for step more resembles the
original meaning—concatenation, putting strings after each other. However
that operator does not play well with chaining multiple operators because
it is right-associative [4, §3.4.8].

3.6.3 Type matching

For time reasons, we did not implement a custom type matching algorithm
(one that matches the empty table {} for the type "table" for example).
We just used the Typed7 library to compare types, which is very strict in
what it matches. There is a Lua library for matching data structures called
Tamale34, however it is not made for matching types and is also strict in
what it matches, so we do not use it.

33http://www.inf.puc-rio.br/~roberto/lpeg/
34https://luarocks.org/modules/luarocks/tamale

31

http://www.inf.puc-rio.br/~roberto/lpeg/
https://luarocks.org/modules/luarocks/tamale

We did implement the type specificity algorithm for ordering types from
section 3.4.4. The function types.lt in module types.lua (B.2, lines 63–136)
follows these rules, and returns true when a type is less specific than another.
It parses the types the same way as the Typed library7. This is important,
because Typed itself is first used to check whether a type is even compatible.
We do not check for list length, because the Typed library does not allow
specifying that. This type specificity algorithm can be seen in action for
example when there are two continuation tasks, one of which accepts "string
| number" and the other accepts "string". When a string value is given, the
second continuation task is chosen, even though the first one also matches.

3.6.4 Editors

Instead of providing a single function for creating all types of user input
editors like iTasks does, we provide one function per editor type: editNumber,
editTable etc. To create a table editor, the programmer has to provide the
table editor with the sub-editors. Listing 3.16 shows what this looks like.

Each editor construction function has an optional parameter for setting
the editor’s prompt (called a hint in iTasks). This is done to keep the proof-
of-concept simple: iTasks uses a tune combinator (with <<@ operator) which
can do a lot more, but that is not important for TOP.

local dateEditor = editor.editTable {

year = editor.editNumber(),

month = editor.editString(),

day = editor.editNumber(),

}

Listing 3.16: Creating a table editor with three sub-editors for year, month

and day (adapted from the date example in appendix A.2).

3.6.5 User Interface with LTUI

For simplicity with working with LTUI, we decided to only ever have one
UI element of a type at once. Instead of creating a new element every
time, the old one is re-used, displayed, and hidden when no longer needed.
These re-used elements are defined and created once in ltuiApp.lua. The
module ltuiElements.lua provides functions that use these reusable elements
and set the contents like the task name or the current value. ltuiEditor.lua

is the module that then converts these editors into tasks so they can be
used with TOP. This module provides the same functions with the same
parameters as terminalEditor.lua, which provides editors that use standard
I/O as a command-line interface instead of a textual UI. Figure 4.5 shows
the textual user interface in action.

32

function app:on_refresh()

if self.task then self.task:resume() end

ltui.application.on_refresh(self)

end

Listing 3.17: The app.on_refresh function.

When resuming a task’s coroutine, you can pass it options related to the
user interface. The boolean showUI is read by tasks that have a visible UI (so
editors and step, but not transform). When resuming any child tasks, they
set this to false. The task parent is passed by tasks that have a visible UI
to their child tasks. When a task exits its UI (by selecting “back” or when
an editor dialog closes), it resumes its parent task with showUI enabled, in
order for it to update its visible content.

To create a TOP application with a LTUI user interface, ltuiApp.lua

first creates a ltui.application. The main entry point for the application,
ltuiTest.lua, expands on this by defining app.init and app.on_refresh func-
tions. LTUI calls the app.on_refresh function multiple times per second,
which first resumes the top-level task, and then lets LTUI handle any events
and draw the UI.

3.7 Wrap-up

We explored a number of design decisions in this chapter, and decided on
them for the LTasks implementation. We defined that the proof-of-concept
needs to have a basic implementation of tasks that can be composed se-
quentially and in parallel, and it needs to have editors with a UI (start of
the chapter). For handling typed tasks and editors, we decided to imple-
ment structural type matching (section 3.1). We make use of coroutines by
modelling the task as a table containing a coroutine, the task value and its
stability (section 3.2). The types are represented at runtime using the Typed
library (section 3.3). We formalised a type specificity algorithm in section
3.4.4. We noted what happens when lists or tables have more elements than
required, and when lists have types in a different order than required. For
editors, we use a textual UI instead of a HTML page, a native application
or a command-line application (section 3.5). In the previous section (3.6)
we show how the LTasks implementation works.

33

Chapter 4

Comparison

This chapter will compare iTasks and LTasks using a case study of the
breakfast example adapted from Naus [10] in listing 2.2. To make it into
a functioning example with editors, we need to modify it a bit. makeTea,
makeCoffee and makeSandwich are here modelled as editors. In the real world,
they will be tasks that have no value initially, and a constant value once
the tea, coffee or sandwich has been made. This allows us to make use of
the standard task combinators without helper functions, like the example in
listing 2.2. This complete but contrived example is however more interesting
because it makes use of editors and the transform combinator. The entire
example can be seen in appendix A.1.

The high level overview looks like listing 4.1. As you can see, they are
almost identical. Lua uses different operators, and instead of an OnValue

there is a table with a fn field.

((makeTea -||- makeCoffee) -&&- makeSandwich) >>* [OnValue maybeEatBreakfast]

(a) In iTasks

((makeTea | makeCoffee) & makeSandwich) ~ {{fn = maybeEatBreakfast}}

(b) In LTasks

Listing 4.1: The main part of the breakfast example.

4.1 Editors

There is a bit more difference in making editors than in the basic combina-
tors. iTasks uses combinators to add hints to editors, while LTasks includes
the hints in the function signature, for simplicity. The most important dif-
ference in this example comes from the fact that Clean is statically typed,
so the transformation function cannot return different types as in Lua. In-
stead, it has to return a maybe (an algebraic data type), and we need to

34

use tvFromMaybe, which takes a TaskValue of a ?None or ?Just and turns it into
NoValue or Value, respectively. This is not needed in LTasks, where we can
simply return nil from the transformation function.

makeTea = updateInformation [] False <<@ Hint "Make tea?"

@ (\x -> if x (?Just "Tea") ?None)

@? tvFromMaybe

(a) In iTasks

local makeTea = editor.editBoolean(false, "make tea?")

:transformValue(function(x) return x and "Tea" or nil end)

(b) In LTasks

Listing 4.2: Making a boolean editor that results in either “Tea” or nothing.

4.2 Helper function

Listing 4.3 shows the helper functions that are needed in order to create
a viewInformation task only if both a food and a drink are chosen. These
functions are written differently because in iTasks we use the maybe type
and pattern matching, while we use nil in LTasks.

maybeEatBreakfast (Value (drink, food) _) = ?Just (eatBreakfast drink food)

maybeEatBreakfast _ = ?None

(a) In iTasks

local function maybeEatBreakfast(value)

if value[1] ~= nil and value[2] ~= nil then

return eatBreakfast(value[1], value[2])

end

end

(b) In LTasks

Listing 4.3: Making a boolean editor that results in either ”Tea” or nothing.

4.3 User interface

The user interface for LTasks (shown in figure 4.5) is made to serve two
purposes: to be the bare minimum for a TOP proof-of-concept, and to
make clear that the behaviour is correct for TOP. For that reason, it looks
very different to the iTasks UI.

Let us set aside the differences in visual display for now (LTasks uses a
textual UI while iTasks uses a webpage). The textual UI of LTasks shows
the structure of the task at the top. This is not only useful for seeing

35

(a) The UI showing all input fields at
once.

(b) The UI showing the output after
selecting true for makeSandwich.

Listing 4.4: The graphical web UI of iTasks.

that the structure is indeed correct, but also for keeping a mental image of
where you are navigated to. This is not necessary in iTasks because it shows
everything at once instead of entering sub-menus (fig. 4.4). iTasks hides the
way in which makeTea and makeCoffee are composed with makeSandwich, while
the LTasks UI makes this more explicit.

4.4 When to use which

In general, LTasks is more suited for problems that have a large dynamic
aspect, and for quick prototyping. Such a dynamic problem can be allowing
users to enter a date in multiple formats. It is useful for quick prototyping,
because you do not need to first define the types and derive the right classes,
as you would in iTasks (see the date example in A.2.2).

Bringing TOP to Lua is not all sunshine and roses, though. The small
standard library of Lua means that you need to define some functions your-
self, while they are provided in Clean. In the date example (A.2), Clean
has the elemIndex function, which needs to be defined manually with LTasks.
We disregard the parseDate function added by iTasks here, because LTasks
is only a proof of concept. Lastly, while Lua is more free in what you can
do, Clean—being statically typed—provides some static guarantees, which
is important in some situations.

36

(a) The UI showing that makeTea is true and that makeCoffee and
makeSandwich (selected) are both false.

(b) The UI showing the output after selecting true for
makeSandwich.

Listing 4.5: The textual UI of LTasks.

37

Chapter 5

Related Work

There are currently two implementations of TOP. The iTask system [11]
is a TOP implementation for creating distributed multi-user systems. The
mTask system [6, 7] is not an interactive one like iTasks, but it is meant for
IoT devices, which are constrained in their resource usage.

Naus describes TopHat [10], a TOP language with formal semantics.
They include a clear description of the core TOP features.

There has been some research on adding a type system to Lua. Gualandi
and Ierusalimschy introduce a typed companion language to Lua called Pal-
lene [2], and Maidl, Mascarenhas and Ierusalimschy have developed Typed
Lua [8], which is an optionally typed language.

38

Chapter 6

Conclusions

In this bachelor thesis we explored the design decisions that come up when
implementing TOP in the procedural language Lua, and we have written a
proof-of-concept TOP implementation called LTasks. LTasks contains the
most important parts for a TOP implementation: it has tasks, these tasks
can be composed sequentially and in parallel, and there is interaction with
users through editor tasks.

The first major difference between Clean and Lua is that Clean is stat-
ically typed while Lua is dynamically typed. We explored a number of
ways to work with Lua’s dynamic types. Structural type matching is the
most interesting choice here, which we use in LTasks. Lua has coroutines
while Clean does not. Coroutines are more convenient than functions for
modelling tasks, so a task in LTasks is a table with a coroutine. The most
important choice for structural type matching is whether to choose the first
match or the best match. We defined an algorithm to find that best match,
which we use in LTasks. User interaction through editors in LTasks happens
in a text-based user interface, because that is the simplest form of UI that
can display all TOP features.

6.1 Future work

The proof-of-concept implementation uses the Typed library to represent
types at runtime. However, this library can only represent a limited set
of data structures and is very strict in what it matches. Further research
could find a better way of representing types at runtime so that more Lua
features can be used, developing a less strict type matching algorithm and
a more complete type specificity relation to go along with it. One can look
at Typed Lua [8] or Pallene [2] as inspiration for the types.

This research focused only on the core concepts of TOP, and left shared
data sources and exceptions out of scope. Further research can go to ex-
panding the LTask implementation by bringing SDS and exceptions to Lua.

39

Acknowledgements

Many thanks go out to my supervisor, Peter Achten. Not only for guiding
me throughout the process and providing continuous valuable feedback on
my writing, but also for helping me understand TOP and helping me fix
errors in my Clean code. I also want to thank my parents and my friends
for their support.

40

Bibliography

[1] Peter Achten, Pieter Koopman, and Rinus Plasmeijer. An introduc-
tion to task oriented programming. In Central European Functional
Programming School, pages 187–245. Springer, 2013.

[2] Hugo Musso Gualandi and Roberto Ierusalimschy. Pallene: a compan-
ion language for lua. Science of Computer Programming, 189:102393,
2020.

[3] Roberto Ierusalimschy, Luiz Henrique De Figueiredo, and Walde-
mar Celes Filho. Lua—an extensible extension language. Software:
Practice and Experience, 26(6):635–652, 1996.

[4] Roberto Ierusalimschy, Luiz Henrique De Figueiredo, and Walde-
mar Celes Filho. Lua 5.3 Reference Manual, 2022. https://www.lua.
org/manual/5.3/manual.html.

[5] Roberto Ierusalimschy, Luiz Henrique De Figueiredo, and Walde-
mar Celes Filho. Lua: about, 2022. http://www.lua.org/about.html.

[6] Pieter Koopman, Mart Lubbers, and Rinus Plasmeijer. A task-based dsl
for microcomputers. In Proceedings of the Real World Domain Specific
Languages Workshop 2018, pages 1–11, 2018.

[7] Mart Lubbers, Pieter Koopman, and Rinus Plasmeijer. Multitasking on
microcontrollers using task oriented programming. In 2019 42nd Inter-
national Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO), pages 1587–1592, 2019.

[8] André Murbach Maidl, Fabio Mascarenhas, and Roberto Ierusalimschy.
Typed lua: An optional type system for lua. In Proceedings of the
Workshop on Dynamic Languages and Applications, pages 1–10, 2014.

[9] Ana Lúcia De Moura and Roberto Ierusalimschy. Revisiting corou-
tines. ACM Transactions on Programming Languages and Systems
(TOPLAS), 31(2):1–31, 2009.

[10] Nico Naus. Assisting End Users in Workflow Systems. PhD thesis,
University Utrecht, 2020.

41

https://www.lua.org/manual/5.3/manual.html
https://www.lua.org/manual/5.3/manual.html
http://www.lua.org/about.html

[11] Rinus Plasmeijer, Peter Achten, and Pieter Koopman. itasks: exe-
cutable specifications of interactive work flow systems for the web. ACM
SIGPLAN Notices, 42(9):141–152, 2007.

[12] Rinus Plasmeijer, Bas Lijnse, Steffen Michels, Peter Achten, and Pieter
Koopman. Task-oriented programming in a pure functional language.
In Proceedings of the 14th symposium on Principles and Practice of
Declarative Programming, pages 195–206, 2012.

42

Appendix A

Examples in LTasks and
iTasks

This appendix contains the full code of examples using both iTasks and
LTasks, in order for comparing them. A.1 shows the full code for the break-
fast example used throughout this thesis. A.2 shows an additional example
of letting the user input multiple date formats.

A.1 Breakfast

A.1.1 In LTasks

local task = require "LTask.task"

local editor = require "LTask.ltuiEditor"

local makeTea = editor.editBoolean(false, "make tea?")

:transformValue(function(x) return x and "Tea" or nil end)

local makeCoffee = editor.editBoolean(false, "make coffee?")

:transformValue(function(x) return x and "Coffee" or nil end)

local makeSandwich = editor.editBoolean(false, "make sandwich?")

:transformValue(function(x) return x and "A Sandwich" or nil end)

local eatBreakfast = function(drink, food)

return editor.viewInformation("I'm eating "..food.." and drinking

"..drink)↪→

end

local function maybeEatBreakfast(value)

if value[1] ~= nil and value[2] ~= nil then

return eatBreakfast(value[1], value[2])

end

end

return ((makeTea | makeCoffee) & makeSandwich) .. {{fn = maybeEatBreakfast}}

43

A.1.2 In iTasks

module Breakfast

import StdEnv

import iTasks

Start :: *World -> *World

Start world = doTasks breakfast world

makeTea :: Task String

makeTea = updateInformation [] False <<@ Hint "Make tea?"

@ (\x -> if x (?Just "Tea") ?None)

@? tvFromMaybe

makeCoffee :: Task String

makeCoffee = updateInformation [] False <<@ Hint "Make coffee?"

@ (\x -> if x (?Just "Coffee") ?None)

@? tvFromMaybe

makeSandwich :: Task String

makeSandwich = updateInformation [] False <<@ Hint "Make a sandwich?"

@ (\x -> if x (?Just "A Sandwich") ?None)

@? tvFromMaybe

eatBreakfast :: String String -> Task String

eatBreakfast drink food = viewInformation []

("I'm eating "+++food+++" and drinking "+++drink)

maybeEatBreakfast :: (TaskValue (String, String)) -> ? (Task String)

maybeEatBreakfast (Value (drink, food) _) = ?Just (eatBreakfast drink food)

maybeEatBreakfast _ = ?None

breakfast :: Task String

breakfast = ((makeTea -||- makeCoffee) -&&- makeSandwich)

>>* [OnValue maybeEatBreakfast]

44

A.2 Multiple date input formats

A.2.1 In LTasks

local task = require "LTask.task"

local editor = require "LTask.ltuiEditor"

local typed = require "typed"

local app = require "LTask.ltuiApp"

local months = {"jan", "feb", "mar", "apr", "may", "jun", "jul", "aug",

"sep", "oct", "nov", "dec"}↪→

local validMonths = {}

for i, m in ipairs(months) do validMonths[m] = i end

local function stringToDate(str)

local year, month, day = str:match("(%d+)-(%d+)-(%d+)")

if not tonumber(year) or not tonumber(month) or not tonumber(day) then

return nil end↪→

return {

year = tonumber(year),

month = tonumber(month),

day = tonumber(day),

}

end

local dateString = editor.editString("", "date as string:")

local dateTableNumeric = editor.editTable({

year = editor.editNumber(),

month = editor.editNumber(),

day = editor.editNumber(),

}, "date as numeric table:")

local dateTableNamedMonth = editor.editTable({

year = editor.editNumber(),

month = editor.editOptions(months[1], months, nil, "choose a month:"),

day = editor.editNumber(),

}, "date as named-month table:")

return task.anyTask {dateString, dateTableNumeric, dateTableNamedMonth} ~ {

{

type = "string",

action = "continue",

fn = function(dateStr)

local date = stringToDate(dateStr)

if date then return task.constant(date) end

end

},

{

type = typed.Schema("DateTableNumeric")

:field("year", "number")

:field("month", "number")

:field("day", "number"),

action = "continue",

fn = function(date)

45

return task.constant(date)

end

},

{

type = typed.Schema("DateTableNamed")

:field("year", "number")

:field("month", "string")

:field("day", "number"),

action = "continue",

fn = function(date)

date.month = validMonths[date.month]

return task.constant(date)

end

},

} ~ {{fn = function(date)

return editor.viewInformation(app.pretty(date))

end}}

A.2.2 In iTasks

module DateFormats

import StdEnv

import iTasks

import iTasks.Extensions.DateTime

import Data.Functor

from Data.List import elemIndex

Start :: *World -> *World

Start world = doTasks dateTask world

:: DateAsNamedMonth =

{ year :: !Int

, mon :: !String

, day :: !Int

}

:: DateFormat

= AsString !String

| AsNumeric !Date

| AsNamedMonth !DateAsNamedMonth

derive JSONEncode DateAsNamedMonth, DateFormat

derive JSONDecode DateAsNamedMonth, DateFormat

derive gEq DateAsNamedMonth, DateFormat

derive gText DateAsNamedMonth, DateFormat

derive gEditor DateAsNamedMonth, DateFormat

derive gHash DateAsNamedMonth, DateFormat

months = ["jan", "feb", "mar", "apr", "may", "jun", "jul", "aug", "sep",

"oct", "nov", "dec"]↪→

46

toMonth :: String -> ? Int

toMonth monthName = (\x -> x + 1) <$> (elemIndex monthName months)

dateString :: Task DateFormat

dateString = updateInformation [] "" <<@ Hint "date as string:"

@ AsString

dateNumeric :: Task DateFormat

dateNumeric = enterInformation [] <<@ Hint "date as numeric:"

@ AsNumeric

dateNamedMonth :: Task DateFormat

dateNamedMonth = enterInformation [] <<@ Hint "date as named-month:"

@ AsNamedMonth

toDate :: DateFormat -> ? Date

toDate (AsString date) = error2mb (parseDate date)

toDate (AsNumeric date) = ?Just date

toDate (AsNamedMonth {DateAsNamedMonth|year,mon,day}) = case toMonth mon of

?Just monthInt = ?Just {Date|year=year, mon=monthInt, day=day}

?None = ?None

toDate _ = ?None

tvToDate :: (TaskValue DateFormat) -> ? (Task Date)

tvToDate (Value date _) = case toDate date of

?Just date = ?Just (return date)

?None = ?None

tvToDate (NoValue) = ?None

dateTask = anyTask [dateString, dateNumeric, dateNamedMonth]

>>* [OnAction ActionContinue tvToDate]

>>- (\date -> viewInformation [] date)

47

Appendix B

LTask code

The full code repository can be found at https://github.com/Dantevg/

LTasks, the three most important files for this thesis are attached here:
task.lua in B.1, types.lua in B.2 and ltuiEditor.lua in B.3.

B.1 task.lua

1 --[[--

2 This module contains functions for creating tasks and for composing

them.↪→

3]]

4

5 local ltuiElements = require "LTask.ltuiElements"

6 local app = require "LTask.ltuiApp"

7 local types = require "LTask.types"

8

9 local task = {}

10 task.__index = task

11

12 function task.new(fn, name, value)

13 local self = {}

14 self.stable = false

15 self.value = value

16 self.__name = name or ""

17 self.co = coroutine.create(fn)

18 return setmetatable(self, task)

19 end

20

21 -- Create a task that simply holds the value given.

22 -- Is stable immediately.

23 --

24 -- iTasks equivalent:

[`return`](https://cloogle.org/#return%20%3A%3A%20a%20-%3E%20Task%20a)↪→

25 -- `a -> Task a`

26 function task.constant(value)

27 return task.new(function(self)

28 self.value = value

48

https://github.com/Dantevg/LTasks
https://github.com/Dantevg/LTasks

29 self.stable = true

30 end, "constant")

31 end

32

33 ---Transform the resulting value and stability of task `t` with function

`fn`.↪→

34 ---

35 ---iTasks equivalent: [`transform`](https://cloogle.org/#transform)

36 ---`Task a, ((a, boolean) -> (b, boolean)) -> Task b`

37 ---@param t table `Task a`

38 ---@param fn function `(a, boolean) -> (b, boolean)`

39 ---@return table `Task b`

40 function task.transform(t, fn)

41 return task.new(function(self, options)

42 while not self.stable do

43 t:resume(options)

44 self.__name = t.__name -- Transform is transparent

45 self.value, self.stable = fn(t.value, t.stable)

46 self, options = coroutine.yield()

47 end

48 end, "transform")

49 end

50

51 ---Transform the result of task `t` with function `fn` without changing the

52 ---stability.

53 ---

54 ---iTasks equivalent: [`@`](https://cloogle.org/#@)

55 ---`Task a, (a -> b) -> Task b`

56 ---@param t table `Task a`

57 ---@param fn function `a -> b`

58 ---@return table `Task b`

59 function task.transformValue(t, fn)

60 return task.transform(t, function(value, stable) return fn(value),

stable end)↪→

61 end

62

63 local function matchContinuation(value, stable, action, conts)

64 local matching, matchingConts = {}, types.matchAll(value, conts)

65 table.sort(matchingConts, types.lt)

66 local bestType

67 for _, cont in ipairs(matchingConts) do

68 if bestType and types.lt(cont.type, bestType) then break end

69 if cont.action == nil or action == cont.action then

70 local next = cont.fn(value, stable)

71 if next then

72 table.insert(matching, next)

73 if not bestType then bestType = cont.type end

74 end

75 end

76 end

77 return matching

78 end

79

49

80 ---Sequential combinator. Performs task `t` followed by the task returned

by↪→

81 ---the matchng combinator from `conts`. When a match is found, the step

happens.↪→

82 ---

83 ---Custom operator: `..`

84 ---

85 ---iTasks equivalent: [`step`](https://cloogle.org/#step)

86 ---or [`>>*`](https://cloogle.org/#%3E%3E*)

87 ---`Task a, [{type: any, action: string?, fn: (a -> Task b)}] -> Task b`

88 ---@param t table `Task a`

89 ---@param conts table `[{type: any, action: string?, fn: (a -> Task b)}]`

90 ---@return table `Task b`

91 function task.step(t, conts)

92 return task.new(function(self, options)

93 local matching = {}

94 self.parent = options.parent

95 while #matching == 0 do

96 self.__name = "step (left, "..t.__name..")"

97 if options.showUI then ltuiElements.stepDialog(self, conts, t)

end↪→

98 t:resume(options, false, self)

99 if t.value ~= nil then

100 matching = matchContinuation(t.value, t.stable,

options.action, conts)↪→

101 end

102 if t.stable then break end

103 if #matching == 0 then self, options = coroutine.yield() end

104 end

105

106 if #matching == 0 then error("no matching continuation for stable

task") end↪→

107

108 -- Step happens here

109 local next, nextNames = nil, {}

110 if #matching > 1 then

111 -- Allow user to choose continuation

112 for _, nextTask in ipairs(matching) do table.insert(nextNames,

nextTask.__name) end↪→

113 app.main:insert(

114 ltuiElements.choiceEditor(nextNames[1], nextNames,

115 function(_, idx) return matching[idx] end, nil,

116 function(val) next = val end),

117 {centerx = true, centery = true}

118)

119 while not next do self, options = coroutine.yield() end

120 else

121 next = matching[1]

122 end

123

124 options.showUI = true -- Show self to reflect stepped task

125 next:show(self) -- Automatically show continuation

126

127 while not self.stable do

50

128 self.__name = "step (right, "..next.__name..")"

129 if options.showUI then ltuiElements.stepDialog(self, {}, next)

end↪→

130 next:resume(options, false, self)

131 self.value, self.stable = next.value, next.stable

132 self, options = coroutine.yield()

133 end

134 end, "step")

135 end

136

137 ---Helper function for `step` combinator. Returns a continuation

configuration↪→

138 ---that matches when the given type and action match and there is any

value.↪→

139 ---@param type any the type that the continuation accepts

140 ---@param action string? the action that is needed for the continuation

141 ---@param cont function `a -> Task b`

142 ---@return table

143 function task.onAction(type, action, cont)

144 return {

145 type = type,

146 action = action,

147 fn = function(value)

148 if value ~= nil then return cont(value) end

149 end

150 }

151 end

152

153 ---Helper function for `step` combinator. Returns a continuation

configuration↪→

154 ---that matches when the given type matches and there is a stable value.

155 ---

156 ---iTasks equivalent: [`ifStable`](https://cloogle.org/#ifStable)

157 ---@param type any the type that the continuation accepts

158 ---@param cont function `a -> Task b`

159 ---@return table

160 function task.ifStable(type, cont)

161 return {

162 type = type,

163 fn = function(value, stable)

164 if value ~= nil and stable then return cont(value) end

165 end

166 }

167 end

168

169 ---Sequential combinator with a single continuation. Continues when task

`t`↪→

170 ---has a stable value.

171 ---

172 ---iTasks equivalent: [`>>-`](https://cloogle.org/#%3E%3E-)

173 ---`Task a, (a -> Task b) -> Task b`

174 ---@param t table `Task a`

175 ---@param type any the type that the continuation accepts

176 ---@param cont function `a -> Task b`

51

177 ---@return table `Task b`

178 function task.stepStable(t, type, cont)

179 return task.step(t, { task.ifStable(type, cont) })

180 end

181

182 ---Sequential combinator with a single continuation. Continues when the

user↪→

183 ---presses "continue" (only when task `t` has a value) or when task `t` has

a↪→

184 ---stable value.

185 ---

186 ---iTasks equivalent: [`>>?`](https://cloogle.org/#%3E%3E%3F)

187 ---`Task a, (a -> Task b) -> Task b`

188 ---@param t table `Task a`

189 ---@param cont function `a -> Task b`

190 ---@return table `Task b`

191 function task.stepButtonStable(t, type, cont)

192 return task.step(t, { task.onAction("continue", type, cont),

task.ifStable(type, cont) })↪→

193 end

194

195 -- Returns whether all tasks in `tasks` have stable values.

196 local function allStable(tasks)

197 for _, t in ipairs(tasks) do

198 if not t.stable then return false end

199 end

200 return true

201 end

202

203 ---Parallel combinator. Performs all tasks in `tasks`. The result is the

list↪→

204 ---of results of `tasks`.

205 ---

206 ---iTasks equivalent: [`parallel`](https://cloogle.org/#parallel)

207 ---`[Task a] -> Task [{value: a, stable: boolean}]`

208 ---@param tasks table `[Task a]`

209 ---@return table `Task [{value: a, stable: boolean}]`

210 function task.parallel(tasks)

211 local function getTaskNames()

212 local taskNames = {}

213 for _, t in ipairs(tasks) do table.insert(taskNames, t.__name) end

214 return taskNames

215 end

216

217 return task.new(function(self, options)

218 self.parent = options.parent

219 self.value = {}

220 while not self.stable do

221 self.__name = "parallel ("..table.concat(getTaskNames(), ",

")..")"↪→

222 if options.showUI then ltuiElements.parallelDialog(self, tasks)

end↪→

223 for i, t in ipairs(tasks) do

224 if not t.stable then

52

225 t:resume(options, false, self)

226 self.value[i] = {value = t.value, stable = t.stable}

227 end

228 end

229 self.stable = allStable(tasks)

230 self, options = coroutine.yield()

231 end

232 end, "parallel")

233 end

234

235 -- Perform tasks in parallel and return the first stable value, or the

first↪→

236 -- unstable value if there are no unstable values.

237 --

238 -- iTasks equivalent: [`anyTask`](https://cloogle.org/#anyTask)

239 -- `[Task a] -> Task a`

240 function task.anyTask(tasks)

241 return task.transform(

242 task.parallel(tasks),

243 function(values)

244 local unstableValue

245 for _, v in ipairs(values) do

246 if v.value ~= nil and v.stable then

247 -- Stable value found, return immediately

248 return v.value, true

249 elseif v.value ~= nil then

250 -- Set first unstable value we find

251 unstableValue = v.value

252 end

253 end

254 -- No stable value found, return first unstable value found

255 return unstableValue, false

256 end

257)

258 end

259

260 -- Perform tasks `l` and `r` in parallel, yield both values

261 --

262 -- Custom operator: `&`

263 --

264 -- iTasks equivalent: [`-&&-`](https://cloogle.org/#-%26%26-)

265 -- `Task a, Task b -> Task (a, b)`

266 function task.parallelAnd(l, r)

267 return task.transform(

268 task.parallel {l, r},

269 function(values)

270 return {values[1].value, values[2].value},

271 values[1].stable and values[2].stable

272 end

273)

274 end

275

276 -- Perform tasks `l` and `r` in parallel, yield the first available value.

277 --

53

278 -- Custom operator: `|`

279 --

280 -- iTasks equivalent: [`-||-`](https://cloogle.org/#-%7C%7C-)

281 -- `Task a, Task b -> Task (a | b)`

282 function task.parallelOr(l, r)

283 return task.anyTask {l, r}

284 end

285

286 -- Perform tasks `l` and `r` in parallel, yield only the result of task `l`

287 --

288 -- iTasks equivalent: [`-||`](https://cloogle.org/#-%7C%7C)

289 -- `Task a, Task b -> Task a`

290 function task.parallelLeft(l, r)

291 return task.transform(

292 task.parallel {l, r},

293 function(values) return values[1].value, values[1].stable end

294)

295 end

296

297 -- Perform tasks `l` and `r` in parallel, yield only the result of task `r`

298 --

299 -- iTasks equivalent: [`||-`](https://cloogle.org/#%7C%7C-)

300 ---`Task a, Task b -> Task b`

301 function task.parallelRight(l, r)

302 return task.transform(

303 task.parallel {l, r},

304 function(values) return values[2].value, values[2].stable end

305)

306 end

307

308

309

310 ---Resumes the coroutine of the task with the given options

311 ---@param options table

312 ---@param showUI boolean? if set, sets `options.showUI` to this value

313 ---@param parent table? if set, sets `options.parent` to this value

314 ---@return any value

315 ---@return boolean stability

316 function task:resume(options, showUI, parent)

317 if self.stable then return self.value end

318 if coroutine.status(self.co) == "dead" then return end

319

320 options = options or {}

321 if showUI ~= nil then options.showUI = showUI end

322 if parent ~= nil then options.parent = parent end

323 local success, err = coroutine.resume(self.co, self, options)

324

325 if not success then error(err) end

326 return self.value, self.stable

327 end

328

329 ---Resumes the task with `options.showUI` enabled

330 ---@param parent table

331 ---@return any value

54

332 ---@return boolean stability

333 function task:show(parent)

334 return self:resume({showUI = true, parent = parent})

335 end

336

337 task.__band = task.parallelAnd

338 task.__bor = task.parallelOr

339 task.__bxor = task.step

340 task.__concat = task.step -- For backwards compatibility: `..` is

right-associative↪→

341

342 return task

B.2 types.lua

1 --[[--

2 This module contains functions for comparing types and specificity.

3]]

4

5 local typed = require "typed"

6

7 local types = {}

8

9 -- taken from https://github.com/SovietKitsune/typed/blob/master/typed.lua

10 local function trim(str)

11 return string.match(str, '^%s*(.-)%s*$')

12 end

13

14 ---Get the number of fields in a Typed schema

15 ---@param schema table

16 ---@return number

17 local function schemaLength(schema)

18 local n = 0

19 for _ in pairs(schema._fields) do n = n + 1 end

20 return n

21 end

22

23 ---Transform types for use with typed

24 function types.toType(type_)

25 if type_ == nil then

26 return "any"

27 elseif type_ == "table" then

28 return "table<any, any>"

29 else

30 return type_

31 end

32 end

33

34 ---Match `value` with the continuation types in `conts`

35 ---@param value any the value to match

36 ---@param conts table the list of continuations, of form `{type = ""}`

37 ---@return table matching the list of matching continuations

38 function types.matchAll(value, conts)

55

39 -- Order is important

40 local matching = {}

41 for _, cont in ipairs(conts) do

42 local type_ = types.toType(cont.type)

43 if type(type_) == "string" then

44 if typed.is(type_, value) then table.insert(matching, cont) end

45 else

46 if type_:validate(value) then table.insert(matching, cont) end

47 end

48 end

49 return matching

50 end

51

52 ---Compare two types on their specificity, returns whether `a` < `b`.

53 ---

54 ---This relation must define a strict partial order according to the Lua

docs↪→

55 ---(https://www.lua.org/manual/5.3/manual.html#pdf-table.sort).

56 ---This means that it must be:

57 --- - Irreflexive: not `a` < `a`

58 --- - Asymmetric: if `a` < `b` then not `b` < `a`

59 --- - Transitive: if `a` < `b` and `b` < `c` then `a` < `c`

60 ---@param a any

61 ---@param b any

62 ---@return boolean lt whether `a` is less specific than `b`

63 function types.lt(a, b)

64 local aIsString, bIsString = type(a) == "string", type(b) == "string"

65 local aIsSchema = type(a) == "table" and a.__name == "Schema"

66 local bIsSchema = type(b) == "table" and b.__name == "Schema"

67

68 -- empty struct (schema) is equal to "table"

69 if bIsSchema and schemaLength(b) == 0 then

70 b = "table"

71 bIsString, bIsSchema = true, false

72 end

73

74 if a == b then

75 return false -- Irreflexivity

76 elseif a == "any" and b ~= "any" then

77 return true -- any < T if T != any

78 elseif aIsString and a:match("|")

79 and not (bIsString and b:match("|")) then

80 return true -- T_1 | T_2 < t_3

81 elseif aIsString and a:match("|")

82 and bIsString and b:match("|") then

83 -- T_1 | T_2 < T_1 | T_3 if T_2 < T_3

84 local firstA, restA = string.match(a, "(.-)%s*|%s*(.+)")

85 local firstB, restB = string.match(b, "(.-)%s*|%s*(.+)")

86 if firstA == firstB then

87 return types.lt(restA, restB) -- T_2 < T_3

88 else

89 -- First types (T_1) are not equal, cannot compare

90 -- (assume types are ordered the same)

91 return false

56

92 end

93 elseif a == "table" and bIsString and b:match("(%[%])") then

94 return true -- table < table(T)

95 elseif aIsString and a:match("%[%]")

96 and bIsString and b:match("%[%]") then

97 local listTypeA = trim(a):match("(.+)%[%]$")

98 local listTypeB = trim(b):match("(.+)%[%]$")

99 return types.lt(listTypeA, listTypeB)

100 -- table(T_1) < table(T_2) if T_1 < T_2

101 elseif a == "table" and bIsString and b:match("table<.-,%s*.->") then

102 return true -- table < table(T_1, T_2)

103 elseif aIsString and a:match("table<.-,%s*.->") and bIsSchema then

104 return a:match("table<(.-),%s*.->") == "string"

105 -- table(string, T) < {F_1, ..., F_n}

106 elseif aIsSchema and bIsSchema then

107 local fields = {}

108 for k, v in pairs(a._fields) do

109 fields[k] = fields[k] or {}

110 fields[k].a = v[1]

111 end

112 for k, v in pairs(b._fields) do

113 fields[k] = fields[k] or {}

114 fields[k].b = v[1]

115 end

116

117 -- {F_1, ..., F_n, k : T} < {G_1, ..., G_m, k : T} if {F_1, ...,

F_n} < {G_1, ..., G_m}↪→

118 local nonequalFields = {}

119 for k, v in pairs(fields) do

120 if v.a ~= v.b then nonequalFields[k] = v end

121 end

122

123 for k, v in pairs(nonequalFields) do

124 if v.a ~= nil and v.b ~= nil then

125 if not types.lt(v.a, v.b) then return false end

126 elseif v.a ~= nil and v.b == nil then

127 return false

128 end

129 end

130 return true

131 -- {F_1, ..., F_n, k : T_1} < {G_1, ..., G_m, k : T_2}

132 -- if T_1 < T_2 and {F_1, ..., F_n} < {G_1, ..., G_m}

133 else

134 return false -- If none of the above rules match, a is not less

specific than b↪→

135 end

136 end

137

138 return types

57

B.3 ltuiEditor.lua

1 --[[--

2 This module uses the UI elements from ltuiElements.lua and converts

them↪→

3 to tasks.

4]]

5

6 local task = require "LTask.task"

7 local ltuiElements = require "LTask.ltuiElements"

8 local app = require "LTask.ltuiApp"

9

10 local editor = {}

11

12 ---Show `value` to the user with a prompt before.

13 ---

14 ---iTasks equivalent: [`viewInformation`](https://cloogle.org/#parallel)

15 ---`a, String? -> Task String`

16 ---@param value string the value to display

17 ---@param prompt string?

18 ---@return table task the resulting editor task

19 function editor.viewInformation(value, prompt)

20 local function showUI()

21 app.main:insert(

22 ltuiElements.stringView(app.pretty(value), prompt),

23 {centerx = true, centery = true}

24)

25 end

26

27 return task.new(function(self, options)

28 self.value = tostring(value)

29 while true do

30 if options.showUI then showUI() end

31 self, options = coroutine.yield()

32 end

33 end, (prompt or "viewInformation").." ("..tostring(value)..")", value)

34 end

35

36 local function genericEditor(value, showUI, onAction, name)

37 return task.new(function(self, options)

38 self.parent = options.parent

39 self.value = value

40 while true do

41 self.__name = name.." ("..app.pretty(self.value)..")"

42 if options.action and onAction then

43 onAction(self, options)

44 elseif options.showUI then

45 showUI(self)

46 end

47 self, options = coroutine.yield()

48 end

49 end, name.." ("..app.pretty(value)..")", value)

50 end

51

58

52 ---An editor for strings.

53 ---@param value string? the initial value

54 ---@param prompt string?

55 ---@return table task the resulting editor task

56 function editor.editString(value, prompt)

57 return genericEditor(value, function(self)

58 local dialog = ltuiElements.stringEditor(self.value, prompt,

59 function(val)

60 self.value = val

61 self.__name = "editString".." ("..tostring(self.value)..")"

62 if self.parent then self.parent:show() end

63 end)

64 app.main:insert(dialog, {centerx = true, centery = true})

65 return dialog

66 end, nil, prompt or "editString")

67 end

68

69 ---An editor for numbers.

70 ---@param value number? the initial value

71 ---@param prompt string?

72 ---@return table task the resulting editor task

73 function editor.editNumber(value, prompt)

74 return genericEditor(value, function(self)

75 local dialog = ltuiElements.numberEditor(self.value, prompt,

76 function(val)

77 self.value = val

78 self.__name = "editNumber".." ("..tostring(self.value)..")"

79 if self.parent then self.parent:show() end

80 end)

81 app.main:insert(dialog, {centerx = true, centery = true})

82 return dialog

83 end, nil, prompt or "editNumber")

84 end

85

86 ---An editor for a pre-determined set of inputs.

87 ---@param value any the initial value

88 ---@param choices table the list of possible choices

89 ---@param converter function|table? the function to use for converting the

values↪→

90 ---@param prompt string?

91 ---@return table task the resulting editor task

92 function editor.editOptions(value, choices, converter, prompt, name)

93 return genericEditor(value, function(self)

94 local dialog = ltuiElements.choiceEditor(

95 self.value ~= nil and tostring(self.value) or "",

96 choices, converter, prompt,

97 function(val)

98 self.value = val

99 self.__name = (name or "editOptions").."

("..tostring(self.value)..")"↪→

100 if self.parent then self.parent:show() end

101 end)

102 app.main:insert(dialog, {centerx = true, centery = true})

103 return dialog

59

104 end, nil, prompt or name or "editOptions")

105 end

106

107 ---An editor for a pre-determined set of inputs.

108 ---@param value boolean? the initial value

109 ---@param prompt string?

110 ---@return table task the resulting editor task

111 function editor.editBoolean(value, prompt)

112 return editor.editOptions(value, {"true", "false"}, {true, false},

prompt,↪→

113 prompt or "editBoolean")

114 end

115

116 ---An editor for tables.

117 ---@param editors table? the sub-editors

118 ---@param prompt string?

119 ---@return table task the resulting editor task

120 function editor.editTable(editors, prompt)

121 local value = {}

122 for key, ed in pairs(editors) do

123 value[key] = ed.value

124 end

125 return genericEditor(value, function(self)

126 ltuiElements.tableEditor(self, editors or {}, prompt,

127 function(val) self.value = val end,

128 function(name)

129 editors[name] = nil

130 self:show()

131 end)

132 end, function(self, options)

133 if options.action == "add array" then

134 local dialog = ltuiElements.numberEditor(#editors+1, "enter an

index",↪→

135 function(key) self:resume {action = "add", key = key} end)

136 app.main:insert(dialog, {centerx = true, centery = true})

137 elseif options.action == "add named" then

138 local dialog = ltuiElements.stringEditor("", "enter a name",

139 function(key) self:resume {action = "add", key = key} end)

140 app.main:insert(dialog, {centerx = true, centery = true})

141 elseif options.action == "add" then

142 local dialog = ltuiElements.choiceEditor("string",

143 {"string", "number", "boolean", "table"}, nil, "choose a

type",↪→

144 function(editorType)

145 editors[options.key] = editor.editInformation(nil, nil,

editorType)↪→

146 self:show()

147 end)

148 app.main:insert(dialog, {centerx = true, centery = true})

149 end

150 end, prompt or "editTable")

151 end

152

153 ---An editor for strings, numbers, booleans or tables.

60

154 ---@param value any? the initial value

155 ---@param prompt string?

156 ---@param editorType "string" | "number" | "boolean" | "table" the type of

the editor↪→

157 ---@return table task the resulting editor task

158 function editor.editInformation(value, prompt, editorType)

159 editorType = editorType or type(value)

160 if editorType == "string" then

161 return editor.editString(value, prompt)

162 elseif editorType == "number" then

163 return editor.editNumber(value, prompt)

164 elseif editorType == "boolean" then

165 return editor.editBoolean(value, prompt)

166 elseif editorType == "table" then

167 return editor.editTable(value, prompt)

168 end

169 end

170

171 return editor

61

	Introduction
	Preliminaries
	Task Oriented Programming
	Lua

	Research
	Task types
	Tasks and task values
	Type representation
	Task combinators
	Editors and user interface
	LTasks
	Wrap-up

	Comparison
	Editors
	Helper function
	User interface
	When to use which

	Related Work
	Conclusions
	Future work

	Examples in LTasks and iTasks
	Breakfast
	Multiple date input formats

	LTask code
	task.lua
	types.lua
	ltuiEditor.lua

