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Abstract

In this thesis we conclude that an MCTS-based algorithm can solve fully co-
operative games that have information fog. For this purpose we take a look
at The Crew, a cooperative card game where players have limited informa-
tion. We analyse where these algorithms struggle, and the effectiveness of
improving parts of the algorithm. Determining which parts are more crucial
that others. We demonstrate that MCTS-based AI is effective in solving
this game. We conclude that its simulation-based decisions make it versa-
tile, which contributes to this effectiveness in this environment. Finally we
conclude that it has the drawback of not being able to take into account
how other players gaining new information leads to them playing better.
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Chapter 1

Introduction

Game trees are used when algorithmically solving games. These trees con-
sists of nodes representing the current game state. Each node either offers
one or more state transitions leading to another node or they are leaves in
which case there is a value assigned to it. In a classic game tree there are
two players one has the goal to reach the highest possible value the other
to reach the lowest value possible. Both players take alternating turns, in
their turns they choose which of the possible state transitions is the best
for them and then the current game state transitions accordingly. Then the
other player does the same until an endpoint is reached, at which point a
winner is determined.

We are interested in how you can optimally traverse this tree when the
game played is cooperative and has information fog.

A cooperative game, for the purposes of this thesis, is defined as a game
in which all players have to work together to achieve a common goal in
which they either win as a team or lose as a team. A game with information
fog is defined as a game in which the players have limited information such
that only a partial game state can be determined by each player. When
games are cooperative and have information fog this changes how the trees
are traversed and/or how those trees will look like.

The information fog has the most impact as no full game state can be
determined by a player, therefore they can only construct a part of the game
tree. Switching to cooperative games does not change the structure of the
game trees directly, however it does change how they are searched as all
parties will be trying to reach an endpoint with a value as high as possible.
For example, a commonly used method to make tree searches more efficient
is Alpha-Beta pruning [4], however this technique relies on your opponent
trying to reach the opposite goal than you, which of course will not happen
in a cooperative game.

This makes cooperative games with information fog very different when
compared to games like chess for example, and in order to algorithmically
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solve them we will adapt an existing solution to this new environment. For
this solution we have chosen MCTS[4].

First we explain the rules of The Crew. Then we will explain how MCTS
works and how we will adapt it for our environment. This is followed by an
explanation of the implementation we made to test how well our algorithm
works. Then we will discuss how our algorithm performed and its strengths
and weaknesses. We will talk about what existing research there is with
regard to MCTS and finally we will discuss what can be done to improve
the algorithm, its strengths and weaknesses with regards to our environment.
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Chapter 2

Preliminaries

2.1 The Crew

In order to put the algorithms to the test, we need an environment to test
them on, for this purpose we have chosen The Crew1 the dutch version is
published by 999 games2. The Crew is a cooperative game where information
is limited by information fog and we have created an environment which
closely resembles the rules of the game, with some exceptions which will be
explained below.

2.1.1 Concepts

The deck contains all cards which fulfill the following definition. deck =
{(color, number)|number ∈ N, 0 < number < 10, color ∈ {”pink”, ”yellow”
, ”blue”, ”green”, ”black”}, color = ”black” → number < 5}
The color number tuple is a card, we will abbreviate cards to the first and
last letter of the color followed by the number, e.g. a yellow 9 becomes Yw9
and a black 4 becomes Bk4.

Starting hands Starting hands are a partition of the deck, where the
number of subsets is equal to the number of players and the size of those
subsets is as equal to each other. Some starting hands contain one card more
than the others, if and only if the deck size is not divisible by the number
of players.

2.1.2 The Rules

Playing the game The crew is played in rounds, each round consists of a
opportunity to communicate and a trick phase. A player can communicate

1https://cdn.1j1ju.com/medias/8f/13/09-the-crew-the-quest-for-planet-nine-
rulebook.pdf

2https://www.999games.nl/de-crew-kaartspel.html
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once each game, in order to communicate a player shows one of their cards
and indicates whether that card is the highest, lowest or only card from
that color. The communicated card has to fulfill one of those conditions
and cannot be black. In the trick phase the lead player, the player who won
the previous trick, plays a card from their hand. Whenever a card is played
it is removed from that players hand. Then, in clockwise order, the other
players play a card in the same color as the card played by the lead player,
if possible. Otherwise they play any card in their hand. The exception to
this rule are black cards, which can be played even if the player has the
leading color. Then a winner is determined based on the cards that were
played, this player wins all the cards played this round. The highest black
card wins, if there is no black card the highest card of the leading color wins.
Rounds continue until the game ends. The game ends if there is a player
with no more cards in their hand, or if the game is won/lost, see below.

Preparing the game Before we start the rounds we do some prepara-
tion. First we create starting hands for each player. The player with the Bk4
announces this and becomes the captain, further communication regarding
the cards in players hands is prohibited. Then a number of task cards are
shown. Then the captain chooses one task, this continues clockwise until all
the shown tasks have been divided.

Task cards taskCard ∈ {c ∈ deck|color ̸= ”black”} A task card is com-
pleted successfully if and only if the player that has the task card wins the
card from the deck with corresponding number and color. Before a game
begin a mission is chosen, which determines how many task cards need to
be divided.

Winning the game The players collectively win the game if and only if
they completed all the task cards successfully. A task card is completed if
the player who chose it wins the corresponding card, if another player wins
it the task card cannot be won and thus the game can no longer be won
resulting in an early end.

Example Now we will provide an example of how this would look like, a
number of rounds have already been played.

• Alice has a Be4, Yw9, Gn9, Bk1
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• Bob has a Pk3, Be6, Yw3

• Charlie has a Be1, Be8, Gn5

Furthermore Bob has the task card Be4.
A new round starts.
First everyone has the opportunity to communicate. Bob decides to do so
and communicates its Be6 with the token in the middle, indicating that this
is the last blue card he has. The other players decide not to communicate.
Charlie won the previous round so is now the starting player and can play
any of his cards, as there is no leading color yet. Charlie decides to play
Gn5.
Alice has two options now, playing Gn9 or Bk1, and decides to play Gn9.
Bob does not have a green card and is therefore free to play any of his cards.
In order to save the blue card for the task, Bob decides to play Pk3.
No one played a black card, so the highest green card wins. Alice played a
9 which is higher than the 5 so Alice wins this round.
There is again a possibility for communication, but no one decides to do so.
Currently these are the hands of the players.

• Alice has a Be4, Yw9, Bk1

• Bob has a Be6, Yw3

• Charlie has a Be1, Be8

A new round starts.
Alice won the previous round so can play any card and goes first. Alice
decides to play the Be4.
Bob now has no other option to play the Be6.
Charlie now has two options, playing the Be8 would win him the round, but
as the Be4 is already played Bob should win this round, or that task fails.
So Charlie decides to play the Be1 instead.
Again no black card was played so the highest blue card wins. The 6 played
by Bob is the highest. So Bob wins this round and completes the last task
successfully. This ends the game and the players win.
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The Rules we ignore (and why)

There are a number of rules we decided to ignore for the purposes of this
thesis. This is mostly done because they would change the game, but have
little impact on how the MCTS based algorithms would function. For some
rules there were more reasons and below is a list of the rules we ignore and
what additional reasons were for ignoring them, if applicable.

The game has a lot of challenges, most missions other than deciding how
many task cards are used also decide which of these challenges are used for
this game. Some examples of these challenges are: communication can be
forbidden from occurring until the third round, some tasks might have to
be completed before others, the division of tasks could be different. The
missions we chose are without such challenges. Additional motivation for
not implementing this is that the difficulty increase is more intuitive when
it is just the number of tasks that increases.
In the rules there exists a help mechanic called distress signals. This me-
chanic can be used after the preparation phase, if it is used every player
gives one card to the player to the left or right, everyone to the same side.
This comes at the cost of adding one additional attempt to that mission. An
additional reason not to implement this is because it affects things beyond
the mission itself.
As we run our simulations with three players all rules in regard to 2 and 5
player games are also ignored.
There is a rule that says black cards can only be played if the player does
not have a card of the leading color (or the leading color is black). In our
implementation black cards can be played no matter what the leading color
is.3

2.2 The game tree

The crew does not have a very different game tree when compared to a clas-
sical game tree. There are only two differences when compared to classical
game trees. One is that there are tree players instead of two and the second
one is that the turn order is dependent on the moves made. The problem
is that no player has the information necessary to construct this game tree,
which we will refer to as the true game tree. Instead they can construct
a tree that contains all possible game trees, see Figure 2.1. The node la-
beled R is a random node which randomly chooses one of the possible paths
to traverse. This node represents the different possible hands players can
have, one of those hand combinations is the combination that is the case
and this will lead to the true game tree although players will not now which

3This is due to a misunderstanding of the rules
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tree that is. The number of different hands the other two players can have
is

(
26
13

)
·
(
13
13

)
= 10.400.600. For all possible hand combinations there is a

game tree tailored to that division of cards. The node R leads to one of
the possible game trees. Based on the example in section 2.1.2 we created
an tree of how one of those trees will look like, see Figure 2.2. In this tree
nodes colored green are leaves where the game is won, whereas the nodes
colored red are leaves where the game is lost. Note that this is only part
of a full tree, containing just one round, therefore the uncolored nodes lead
to the next round. Additionally because communication only changes the
information players have and not which moves can be made or which effect
they have the communication phase is omitted as it has no influence on how
the game tree looks, only how the players traverse it.

Figure 2.1: Game tree of all possible situations

Figure 2.2: True game tree from section 2.1.2
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2.3 MCTS

Figure 2.3: Example tree with MCTS

In order the cope with the challenges provided by the cooperative na-
ture and information fog, we use the Monte Carlo Tree search[4]. This is
because the use of simulations lends itself well to situations where game
trees cannot be fully constructed. The three core concepts of this method
are: using simulations to determine the optimal move, the playout policy
and the selection policy. In a simulation a path of the tree is traversed,
when this path ends all previous nodes are updated depending on the re-
sult of the simulation. While simulations are running a tree is constructed,
consisting of the paths taken by the simulations, see Figure 2.3. In that
figure there is (a part of) an example tree, in an competitive environment.
The lines at the bottom lead to more of the tree. The numbers within the
nodes are the won games divided by the total attempts that passed through
that node. The selection policy chooses which part of the tree needs further
exploration, balancing places where very little simulations have been made
vs further exploring places that yielded the best results. If for each move
within this simulation the path is determined using this same method, the
number of simulations would grow exponentially. This is where the playout
policy is used. The playout policy decides which moves are played within
simulations. Preferably this policy has a bias towards good moves, but this
is not strictly required, although performance will likely suffer. In the next
chapter we will explain what changes we make to MCTS to make it work
for The Crew.
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Chapter 3

Solving The Crew

3.1 Adapting MCTS

As we employ MCTS in a cooperative environment with information fog,
we need to change certain aspects to ensure it still works. The core idea
of using simulations to determine the best move is central to MCTS and it
was the concept that makes MCTS suitable to deal with incomplete game
trees. The concept of the playout policy requires little adaption, however we
do need to create a playout policy tailored to this game. We have created
several playout policies and we will cover them in detail in section 3.2.5.
Which policy we use changes based on the algorithm. The selection policy
requires the most adapting to the new environment. This is because the
players cannot build a true game tree due to the information fog, see section
2.2. The tree they can build has random node R at the beginning, see
Figure 2.1. Given the large amount of branches in that node, exploring all
possible game trees is infeasible given the amount of computational power
available in one laptop. This means that in nearly every simulation the
game tree it traverses will be unexplored. Therefore our selection policy will
focus on determining which hand configurations are more likely to be the
actual hand configuration, or which are closer to it. We then use that to
traverse random node R such that we are more likely to end up in a game
tree closer to the true game tree. To accomplish this we do two things.
First we want to be able to avoid going to trees for which we know that
they cannot be the true game tree. We do this by keeping track of the
cards played and which player played them. This means that we can reduce
the number of hand configurations with certainty. The more rounds are
played the more configurations can be eliminated, as the only uncertainty is
which cards there are in the hands of other players and those hands become
smaller after each round. We can reduce the amount of possibilities further
by using the cards the players communicate and deduce from that what they
can/cannot have left in their hands. For the remaining configurations we
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try to focus on those that, based on how the other players play, are more
likely to be the correct configuration. This is achieved by simulating the
part of the game that has already happened with a strategy that tries to
play the same cards as in the original. For this purpose we pick a starting
hand combination that could still be the case, although we cannot do this
for every combination. Using these starting hands we attempt to play the
same moves made in the original. However we also use the playout policy to
determine whether or not the move in the original would have been made in
this situation. If any of the moves cannot be done be playing legal moves,
or a player would have played a different card following the selection policy,
we know that this is unlikely to be the correct hand configuration. By doing
more of these simulations some cards will be present more/less often in the
hands of certain players. We use this ratio to perform a weighted random
division of the hands at the other simulations. By doing this we recreate
the purpose of the selection policy, which is directing your exploration of
the tree to the places where they are the most effective.

3.2 Implementation

3.2.1 General purpose

In order to test our adapted version of MCTS we need to implement the
game logic so that we can use it to run games using the strategy. For this
purpose we will write a java program, the source code can be found in this1

GitHub repository. In this the most important classes are the Player class
and the GameController class, the Player class is very comparable to a real
player in what it can do. The GameController class has mostly a managing
role, tells the players when to perform which actions, it determines who won
the trick, etc. When simulating games both of these classes make clones of
themselves, generated such that all lists and other variables passed by ref-
erence are remade. This ensures that the original classes remain unchanged
whenever games are simulated.

In Figure 3.1, a diagram is made representing a simplified version of the
main flow of the program. There are five numbered boxes, which will get
some elaboration. The box numbered 1 contains the three functions needing
to be called to run a game. The arrows pointing outside the box represent
the inner workings of these functions. Boxes 2, 3 and 4 each contain one of
the three situations where a player needs to make a decision, communicating,
playing a card and picking a tasks respectively. Each box has the following
pattern. The first function is the environment in which this choice needs to
be made. It then calls the second function from the desired player, which
will call upon its controller to make a decision for it. The first function

1https://github.com/iwan382/crew
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Figure 3.1: Flow overview

repeatedly does this until that choice no longer needs to be made in this
phase. The fifth box consists of two functions which simulate an entire
game. This looks basically like a copy of Figure 3.1, except no simulations
are done within simulations, so that part would not be present, instead a
playout policy decides which move is played.

3.2.2 Detailed implementation

3.2.3 The Player class

The Player class contains many functions and attributes. In Table 3.1 there
is an overview of most of the functions their return values and the arguments
they are given. The other functions are explained below.2

simulateGameSetUp First this function starts a lot of simulations, start-
ing when players are still choosing tasks. The simulation returns the history
object associated with it, which is stored in a list. As there are still history
objects in that list from earlier simulations, we check if they are still useful.
We consider simulations useful if and only if the same moves were made as
in the original. The function will remove all history objects that are not con-
sidered useful. It then calculated which chosen task had the highest success
rate and returns it. It is given several arguments.

• A GameController object, so that it can be copied and used in the
simulations.

2Additionally there are several instances where the code is built to support features we
ended up ignoring, but as these were built into the code before those decisions were made
it remains in place. As an example the code is build to work with a variable amount of
players even though we only use it in games with 3.
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Function name Return type Arguments

maxHandSizeExeeded boolean int, LinkedList<Card>

legalComm LinkedList<Communication> none

isCaptain boolean none

handEmpty boolean none

forcePlayCard void Card

forceChooseTask void Task

legalMoves LinkedList<Card> int, Player[]

getCardPlayed Card none

getComm Communication none

getPlayNum int none

getDecision int none

getWinPile Card[][] none

getHand LinkedList<Card> none

getPersonalTasks LinkedList<Task> none

getGameInfo double[][][] none

removeCardPlayed void none

setCardPlayed void Card

setGame void GameController

setDecision void int

setStrategy void Strategy

setWinPile void int, Card[]

setHand void LinkedList<Card>

clonePlayer Player GameController

Table 3.1: Player functions

13



• A list of the tasks that can be chosen.

• A number indicating how many simulations are run per task.

• An array containing the strategies to be used when simulating games.

• Finally a Boolean value, if true the hands of the players are replaced
based on the players knowledge, otherwise the actual hands are used.

cardInfo This is not a function, but an attribute which warrants some
further explanation. This three dimensional array represents the knowledge
the player has about where the cards can and cannot be. Every player and
card combination can be found in this array. A value of 1.00 means that this
player is absolutely certain that that player has that card. A value of 0.00
means that this player is absolutely certain that that player cannot have the
card. The values 1.00 and 0.00 are only ever assigned as a consequence of a
played/communicated card. Information based on simulations always has a
false data-point for both possibilities such that these certainties cannot be
made incorrectly.

createLegalHands This function makes and returns a list of hands, based
on the knowledge it has in cardInfo. It starts with assigning all the cards
of which the player knows the true owner of. It then fills the hands with the
remaining cards, this is done using random numbers, these random numbers
are weighted by the numbers in cardInfo.

simulateGame This function act similar to the simulateGameSetUp func-
tion. There are however two key differences. The first it that returns the card
that when played has the highest success rate instead of the task. Addition-
ally, it also preforms a second set of simulations. These simulations simulate
the past to see whether or not moves/tasks in the original game could/would
have been selected with the hands it generates in createLegalHands. The
odds of a player having a certain card are then changed based on these
simulations.

updateInfoCommunication Whenever a player communicated the
gameController calls this function on all the players. This function gets as
arguments the communication that was made and the player who made it.
It then proceeds to update the cardInfo array, with the information it gains
from this. The information is, that the communicated player has the card it
communicated; that it does not have cards that would contradict its token
and that those cards might now have only one possible owner; which will
then be noted as a certainty. In the example in 2.1.2, in the first round Bob
communicated that he has a Be6 card and that he has no other card of that
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color. The player object associated with bob would then call this function
by Alice and Charlie, they would then both run this function, where they
would learn that Bob has no Blue cards except for the Be6.

updateInfoCard Whenever a player plays a card this function will be
called. It is given two arguments, the number of the player who played a card
and the card that was played. This function updates the array cardInfo

accordingly.

playCard Determine the moves that this player can make with
legalMoves. Then call the controller to determine which card should be
played based on the strategy we use. Remove that card from our hand.
In the example in 2.1.2, the first round Alice needs to play a card the
legalMoves function returned a list with a Gn9 and a Bk1, that list is
put into a function deciding which of the cards to play which returned a
Gn9 so that card was played by Alice.

chooseTask Functions very much like the playCard function, but with
tasks instead. As there are no restrictions for choosing tasks the determining
of which tasks can be chosen is skipped.

makeCommDecision Functions very much like the playCard function,
but with communications and the appropriate functions instead.

bestTask This function iterates through the list of tasks it has been given.
Each task is passed as argument to the calculateSuccesValue function,
which returns a value. The calculateSuccesValue function calculates a
value for a task, the higher this value the more favourable circumstances
exist when choosing it. The task with the highest value is returned.

bestCommunication This function iterates through the list of commu-
nications it has been given. Each communication is passed as argument to
the calculateGain function, which calculates a value based on how much
information others would gain from this communication. A bonus is given
to that value when there are tasks related to the color of that card. The
communication with the highest value is returned.

3.2.4 The GameController class

As with the Player class this class contains many functions/attributes and
we listed the functions where no explanation is given for in table 2.
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Function name Return type Arguments

chooseTask void int, Task

makeMove void int, Card

results boolean none

cardsPlayed boolean none

quickFail boolean Card, int

couldWin boolean Card, Color

winningCard boolean Color, Card

isInATask boolean Card

playerHasTask boolean Card, Player

assignTasks void int, LinkedList<Card>

createTasks LinkedList<Task> LinkedList<Card>, int, int[]

cloneGameController GameController none

getNextTask Task none

getNextMove Card none

getTaskOverview LinkedList<Task> none

getPlayer int none

getHistory History none

setGame void GameController

setLeadPlayer void none

setPreselectedTasks void LinkedList<Task>

setPreselectedMoves void LinkedList<Card>

setHands void LinkedList<LinkedList<Card>>

reassignStrategy void Strategy[]

Table 3.2: GameController functions
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runGame This function calls the three functions in box 1 from Figure
3.1. In other words it runs a game. After the game is finished the function
returns a 1.00 if the game was successful and a 0.00 otherwise.

historyCheck It calls simulateGameStart to simulate a game, then it
returns false if either the chosen tasks or the played cards contain a black 9
which is a non existing card indicating that the forced card would not have
been played.

simulateGameStart This function first assigns the strategies used for the
simulations, then it simulates a game starting in the phase where players
choose tasks. After the game is finished it returns the History object from
that game.

gameSetUp This function performs the first part of the game where tasks
are generated and then divided between the players. It also sets the player
variable, which is used to determine whose turn it is, to the right number.

divideNormally Starting with the captain then continuing in ascending
order each player picks a task until all tasks are divided.

simulateDivideNormally The same as the divideNormally function,
but it copies the list of tasks beforehand so that the original list remains
unchanged. Additionally it does not necessarily start with the captain, but
instead with the player whose turn it currently is.

simulateGame Check if we should be in a trick phase, if so it calls the
trick function to perform a trick phase. Then it calls gameStart which
plays the rest of the game. This function then calculates the results before
returning the history object.

gameStart Performs a communications phase, as follows. As long as the
Boolean returned by the communication phase returns false and the progress
in the tasks does not cause the game to end. This function will continue to
run a trick phase followed by a communication phase.

communication Gives every player a chance to communicate, continues
to do this until every player has rejected this in a row. Then checks if the
players have enough cards to play another trick, if they do return false. If
any player does not have enough cards return true.
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trick Because due to simulations this function can be called in the middle
of a trick phase, first check which players have already played a card. Then
continue having players play cards until everyone has played a card. Then
determine who won the trick. Assign all the played cards to their winPile,
which is an attribute keeping tract of which cards this player won. Set the
leadPlayer to that player and then remove the cardsPlayed from all the
players.

quickFail This function is made in order to make the players play better
inside simulations by warning them if their move would cause the task to
fail. This warning consists of returning true if such a move is detected.
For this purpose it checks if there is a card needed to complete a task. If
there is and the task must be won by this player and then warns the player
if the current move is insufficient to win the trick. If another player must
win that task, this function will give a warning if the current move would
win the trick.
Additionally it has to consider the situation where the current move is play-
ing a card needed for a task. If the player who needs to win this has played
a card, we check if that player would win the trick in this situation, if not
we give a warning. If that player has not played a card yet we only give a
warning if we know that the player cannot have the cards required to win
the card. In the example in 2.1.2, in the second round Charlie can play a
Be1 or a Be8. If he plays the Be8 he wins this round, however Bob played
the Be6 which he needs to win. Therefore If Charlie plays the Be8 the play-
ers lose the game. Charlies other move, playing the Be1, would let Bob win
the Be6 instead. In this situation the move Be8 would be detected by this
function as a move that would lose the game, and since there is another
move available this function warns the player not to play it.

3.2.5 Strategy

This enum type contains the various strategies which can be used.

PLAYER Print the choice in the console and wait until input tells you
what to do. This strategy is used for debugging, but for nothing else.

Playout policies

These three strategies are the different playout policies we use with the
different strategies.

RANDOM Self explanatory, whenever presented with a choice pick a
random option.
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NOTCOMPLETELYINCOMPETENT Acts the same as RANDOM with
regards to tasks and communications, but when playing a card it will try
to detect if playing the card results in a failed task, if it does it will select
another move. If all moves fail a random move is selected.

SMART Acts the the same as NOTCOMPLETELYINCOMPETENT with regards
to the playing of cards. For tasks and communications it calls a function
that evaluates a choice and returns a score, for tasks and communications
the one with the highest score is selected.

MCTS based strategies

These four strategies use our adapted version of MCTS, each with differences
in playout policies or number of simulations.

SIMPLESIMHONEST With this strategy 100 simulations are performed
for each option per choice, except for communications in which it acts ran-
domly. The option with the highest success rate is chosen. All simulations
assume the use of the RANDOM strategy and hands are reassigned, based on
its own knowledge.

COMPETENTSIMHONEST This is an extension of SIMPLESIMHONEST,
where for its simulations it assumes that everyone uses the
NOTCOMPLETELYINCOMPETENT strategy instead. It also tries to gain informa-
tion about other players’ hands by replaying history using the
SETLISTNOTDUMB strategy.

BULKSIMHONEST The same as COMPETENTSIMHONEST, but with the
number of simulations increased from 100 per move to 1000 per move.

SMARTSIMHONEST This is an extension of COMPETENTSIMHONEST,
where in the simulations it assumes players use the SMART strategy. Addi-
tionally when communicating it uses the same evaluation function as used
in SMART.

Forced strategies

These strategies are exclusively used during the simulations done to check
whether or not moves could/would have been made with certain starting
hands. These strategies all attempt to follow the moves that have been
played in the original game. Returning impossible values based on where
this attempt went wrong.
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SETLIST It will attempt to follow the list of moves present in the
GameController class. If the move contains a black 7 somewhere, it returns
a random card. If the move cannot be made for another reason it will return
an appropriate object containing a black 9 to signify that.

SETLISTNOTDUMB Acts the same as SETLIST with regards to tasks
and communications. However when a card needs to be played it checks
whether or not the card it should play according to the list fulfills two
conditions. The first is that this move is detected to result in a failed task.
The second is that there is another move that does not do that. If both
conditions are met a black 9 is returned instead.

SETLISTSMART Acts the same as SETLISTNOTDUMB with regards to
the playing of cards. For tasks and communications it checks if the proposed
task/communication aligns with the scores assigned to them. If this does
not align an appropriate object containing a black 9 is returned.

3.3 Results

In order to obtain our results we ran 6 different simulation with 3 different
task card amounts, see Table 3.3. For each strategy involving simulations
we attempt to run them as many times as possible during the night, roughly
7 to 9 hours. An excel file containing the raw data can also be found at the
GitHub repository3.

1 Task card 4 Task cards 9 Task cards

RANDOM 100.000 100.000 1.000.000

SMART 100.000 100.000 1.000.000

SIMPLE SIM 10.000 3000 2000

COMP SIM 2481 1000 1000

SMART SIM 2500 1000 1500

BULK SIM 1000 500 750

Table 3.3: Number of runs

From each run we save the History object and print its content to an
excel file. The data this object contains is, the starting hands of each player,
the tasks they chose (in order), the cards that were played and by who, in
which round which player communicated what, the time the game took (in
ms) and whether or not the game was won. Exceptions of this are the RANDOM
strategy and the SMART strategy, for these we only recorded the amount of

3https://github.com/iwan382/crew
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wins. There are two reasons for this, the first is that they are mainly there
for comparison sake and their inner workings are pretty directly defined, so
not much information is gained from this. The second reason is that since
both take very little time to run a single game, exporting the data would be
the large majority of the time it would be busy exporting data instead of
running games. By removing the export function a million games were run
in three and a half minute.

In Figure 3.2, 3.3 and 3.4, we have mapped the accuracy scores of all
six algorithms, for 1, 4 and 9 task cards respectively. As the percentages
where obtained by random trails we cannot be entirely certain that they are
accurate. Because of this the graphs depict a 90% confidence bound. This
means that every percentage below the box, has a 5% chance (or less) to
achieve an equal (or better) accuracy score with the same amount of runs.
The same goes for the percentages above it, except that they achieve an
equal or worse result. This is calculated using the Binom.Inv[1] function in
excel. This function calculates the minimal amount of successes needed to
get at least the given chance as result from the Binom.Dist function, which
is a Binomial Distribution functions. From the minimal amount of successes
we can calculate the corresponding percentage for which the 5% boundary
holds, but because the only return values can be whole numbers, the actual
boundary has a small deviation.

Figure 3.2: Accuracy with 1 task card
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Figure 3.3: Accuracy with 4 task cards

Figure 3.4: Accuracy with 9 task cards
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A game with 1 task card is usually very easy, however due to the way the
task cards are divided the captain always gets that task. This sometimes
leads to a much more difficult game, in this scenario the task card has a low
number e.g. a green 1 and the captain has that card in their hand. This
means that the captain will at some point have to play a green 1, if any
other player has a green card in their hand they will be forced to play it and
win the card, thereby failing the task. This situation is made easier if the
captain has a lot of that color in their hand, enabling them to root out that
color before playing. This the case where the strategies that use simulations
struggle the most with as very careful play is required.

When there are 9 task cards, every strategy has fallen dramatically in
accuracy, with the exception of BULK SIM, which now towers over the
others. The data collected from the history objects does not show the cause
of this. However when running separate games some output that is not
stored in the history object provides the answer for this. When running
the game like this players will print the moves they have available to them
and how high the success rate of them was in the simulations however often
every success rate will be 0.0%, see figure 3.5. This means that it will play
effectively randomly. The BULK SIM strategy has more often at least some
of those percentages higher, ensuring it will not play randomly.
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Figure 3.5: Part of the simulation success rates of a single game

24



Chapter 4

Related Work

MCTS has become a very popular method to use in various games and
other problems that are solved by algorithms. The use of simulations leads
it to be usable in a wide variety of scenarios. Its versatility led to a lot of
research being done with it. In our thesis we will attempt to make MCTS
work with the new environment ”The Crew” and take a look at its strengths
and weaknesses. In this chapter we will give a brief overview of some of the
research done with MCTS.

An overview reviewing recent modifications and applications with MCTS
is made by Maciej, Konrad, Bartosz and Jacek[8]. This study reviews many
techniques used to improve MCTS in a large amount of different environ-
ments. A way to examine how MCTS performs with limited information
is by using MCTS based algorithms to play games and then examine how
their performance is affected by limiting information. This is done by Piers
R. Williams[7]. A study that focuses on cooperative games and how various
degrees of partial observability affect performance, e.g. pac man, where they
start limiting the amount of visible tiles to see its impact. They also mix
computer agents with human players. War type games have a constraint of
imperfect information. Additionally they have players take multiple actions
per turn. This adds to the complexity as the branching factor will be much
higher because there is one branch for each combination of actions. These
studies[2][5] have a focus on this type of games. MCTS has to manage many
different tasks, balancing building with fighting and exploration and more.
With the goal to improve MCTS when there are more than 2 players, a
study[3] was done by J. A. M. Nijssen and Mark H. M. Winands. It pro-
poses and tests improvements to MCTS which help when there are more
than 2 players in the game, although our environment does not allow these
improvements to be used. How MCTS-based agents act in a cooperative
environment is examined in a study[6] by Piers, Joseph, Diego and Simon.
Here the agents try to complete a puzzle where they need to cooperate to
push buttons and open doors. The less moves they need to complete it the
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better their performance.
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Chapter 5

Conclusions

Considering the 40 to 50% win rate on the 9 task card variant, we can
conclude that MCTS can be adapted to function in an cooperative environ-
ment with information fog. We can also conclude that a situation were all
simulations return a fail is likely to occur when the goal becomes more dif-
ficult. This is due to the goal remaining the same while, in the simulation,
all players will work sub-optimally. When adapting MCTS to this environ-
ment one must take this into account. In this thesis two methods were used
to prevent that situation from occurring, increasing the competence of the
playout policy and increasing the number of simulations that were run. The
latter seemed to be the most effective in these circumstances. Although
since a random playout policy is also significantly worse when goal becomes
more difficult, we can conclude that a competent playout policy is useful for
boosting performance.
We can also see some of the strengths and weaknesses of MCTS. An im-
portant strength being that it is able to be adapted in a wide variety of
situations. Another strength is that very little needs to be changes to the
algorithm if we would change the rules of the game, or apply it to a different
game that fits in this environment. The only thing that would need real
change is the playout policy as it is tailored to The Crew. A weakness is
that, due to not being able to run simulations within simulations recursively,
moves that improve or worsen how well the other players play remain unde-
tected. This is notable here with the communication opportunities. These
would allow other players to reduce the number of possible hand distribu-
tion, however in the relatively simple playout policies there is no usage of
this as no simulations are performed. This means that simulating different
communications has no real use, hence why we do not do that.
In this thesis we restricted ourselves to only let all players use the same
strategy. An interesting avenue to pursue would be how these algorithms
perform when the players use different strategies. Additionally one could re-
place one or more players with a human player to see how this would impact
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their performance. Another interesting avenue would be to try an approach
based on a different method, one could try using a Heuristic search[4] or
neural networks instead.
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