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Abstract

Quandles are algebraic structures that arise in the fields of knot theory, statistical me-
chanics, and mathematical chemistry; other than being interesting algebraic objects.
Quandles can therefore benefit from the help of computational tools, much like groups.
This thesis introduces QuandleRUN, a modern tool dedicated to the study of quandles
built on the solid mathematical foundations of the most recent developments in Quandle
Theory, and Universal Algebra. QuandleRUN is built as a module for the computer al-
gebra system Magma and it aims to improve Rig, the only package explicitly dedicated
to quandles. By building on tools such as Magma and Rig that have withstood the test
of time, and taking inspiration from modern tools such as CREAM, QuandleRUN offers
algorithms to compute the key structures of any algebraic object such as the automor-
phism group, the set of subalgebras, the set of congruences and it also allows to find
monomorphisms and isomorphisms between quandles, if they exist. This thesis also in-
troduces a novel algorithm to compute the set of congruences of a quandle. The powerful
underlying system, Magma, as well as a careful implementation of the algorithms allow
QuandleRUN to outperform both Rig and CREAM, in most cases.
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Chapter 1

Introduction

Quandles are relatively modern algebraic structures. They were independently described
by David Joyce in [23] and Sergei V. Matveev in [29]. In the field of knot theory, the
quandle axioms are equivalent to the three Reidemeister moves, in the context of Tietze
transformations [13, 31]. In [23], David Joyce indicates quandles as a classifying invariant
of knots which means that they play a role in what still is one of the fundamental
problems of knot theory, the classification of knots – a computationally hard problem.
Virtual knot theory, introduced by Louis H. Kauffman in [26] generalises classical knot
theory to the point that many structures in classical knot theory generalize to the virtual
domain; in fact, one can extend quandles to virtual quandles that yield generalizations
of several invariants of traditional knots [24].

In the quest to solve the knot classification problem, knot invariants related to statis-
tical mechanics arose [22, 25, 37]. A central theme of statistical mechanics is the Yang-
Baxter equation [40], of which quandles arise as set-theoretical solutions [16]. Quandles
also arise in connection to Hopf algebras and Nichols algebras [2] and as a useful tool in
studying the relation between a Lie Algebra and its Lie Group [13]. Quandles can also
be adapted to distinguish the topological types of proteins, thus obtaining bondles [1].

This motivates the efforts in the study of quandles and the creation of computational
tools that can help in such an endeavour. At the time of writing, Rig [38], a package for
the computer algebra system GAP [27], seems to be the only tool explicitly dedicated
to the study quandles.

Computer algebra involves developing algorithms to carry out exact computations
involving algebraic structures, such as groups, graphs and, algebraic curves which play
an important role in modern mathematics. Contrary to results of numerical methods,
which concern themselves with approximate solutions, computer algebraic procedures
can help in solving decision problems such as Is a defined quandle Q connected? or, Is
quandle Q’ a subalgebra of quandle Q?.

This work is interested in developing solid foundations on which future computational
work on quandles can be built and does so by combining results from the mathematical
theory of quandles and adapting existing computer algebraic methods. QuandleRUN, a
module for the computer algebra system Magma [11], aims to improve Rig and be-
come a real research instrument. QuandleRUN draws inspiration from Rig itself and
from CREAM [14], a very recent and versatile package for the computer algebra system
GAP, that works with any unary and/or binary algebra.
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QuandleRUN builds on some of their techniques and introduces new algorithms based
on the most recent developments in the theory of quandles. In this way, it can achieve a
competitive speed in the most important tasks. QuandleRUN outperforms Rig in every
task and CREAM in most tasks, which means that it has the potential to be the go-to
tool of future quandle theorists. All of QuandleRUN’s algorithms directly work, or can
be easily adapted to work, on left quasigroups.

This is a self-contained introduction to QuandleRUN. In Section 2, there is a short
presentation of the underlying mathematics. The concepts of left quasigroup, subalge-
bras, quotient structures, and homomorphisms will accompany the reader throughout
the entire document, the interested reader can find out more in [12, 15, 36]. Section 3
describes the computer representation of quandles and the algorithms to compute infor-
mative groups, subalgebras, congruences, and quotient algebras. Section 4 shows some
practical capabilities of QuandleRUN. Section 5 presents a brief comparison in terms of
running times of QuandleRUN, Rig, and CREAM.

3



Chapter 2

Preliminaries

For any non-empty set S, one can define particular functions known as operations. A
function f : S → S is known as a unary while a binary operation on S is a function
f : S × S → S.
This work will only discuss finite binary algebras, that is finite sets endowed with binary
operations. This is convenient because binary operations on finite sets can be repre-
sented by their Cayley table.
Define S = {x1, x2, . . . , xn} and · a binary operation on S.
Let (S, ·) denote the set S endowed with the binary operation ·.
The following is the Cayley table of (S, ·):

· x1 x2 . . . xn

x1 x1 · x1 x1 · x2 · · · x1 · xn
x2 x2 · x1 x2 · x2 · · · x2 · xn
...

...
... . . . ...

xn xn · x1 xn · x2 · · · xn · xn

Definition 2.1. line

a. Let S be a non-empty set endowed with two binary operations · and \ such that

∀x, y ∈ S x · (x\y) = y = x\(x · y)

then (S, ·, \) is called a left quasigroup.

b. Let (S, ·, \) be a left quasigroup. If

∀x, y, z ∈ S x · (y · z) = (x · y) · (x · z) (left distributivity of ·),

then (S, ·, \) is called a rack.

c. Let (S, ·, \) be a rack. If

∀x ∈ S x · x = x (idempotency of ·),

then (S, ·, \) is called a quandle.
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It is appropriate to describe the idea of (left-)translation map Lx, defined as Lx(y) = x·y
for any elements x, y of a left quasigroup A = (S, ·, \). Left translation maps are of
primary importance in the theory to be discussed. They are bijections. Definition 2.1a
suggests y = x\z as a solution, whenever x, z ∈ S are given. Definition 2.1a also excludes
the existence of any other solution t: t = x\(x · t) = x\z = y. This gives insight into
how division (\) is defined for a left quasigroup (S, ·, \):

x\y = L−1
x (y) for all x, y ∈ S

Left translation maps are the generators of the Left multiplication group
LMlt(A) = 〈Lx : x ∈ A〉. It will play a fundamental role throughout this work because it
is involved in several computations and allows to distinguish connected left quasigroups:
a left quasigroup A is called connected if the action of its Left multiplication group is
transitive. The class of quandles involved with classifying invariants of knots mentioned
in Section 1 is that of connected quandles; connectedness is also an algebraically relevant
property according to the characterization of Mal’cev varieties of left quasigroups [6].
The definition of left division given above makes it possible to cut down the symbols
used, thus any left quasigroup (S, ·, \) can be denoted by the pair (S, ·) [6, 8].
This does not affect the structure of finite left quasigroups.

Example 2.2. [4, 23, 28]line
Dihedral quandle of order n. The set {1, 2, . . . , n} associated with the operation
x · y = 2x− y mod n form a quandle of order n denoted by Rn.
The Cayley table of R3 = ({1, 2, 3}, ·) is

· 1 2 3
1 1 3 2
2 3 2 1
3 2 1 3

Trivial quandle of order n. The set {1, 2, . . . , n} with the operation x · y = y form a
quandle of order n denoted by Tn.
The Cayley table of T3 = ({1, 2, 3}, ·) is

· 1 2 3
1 1 2 3
2 1 2 3
3 1 2 3

Other constructions, perhaps more used by mathematicians, arise from groups.

Let G be a group.

Core Quandle. The underlying set of G and the operation x · y = xy−1x form a
quandle, denoted by Core(G).

n-Conjugation Quandle. Let n ∈ N. The underlying set of G and the operation
x · y = xnyx−n form a quandle denoted by Conjn(G).
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Coset Quandle. Let f ∈ Aut(G) and H ≤ G such that ∀x ∈ H f(x) = x.
The left coset G/H and the operation xH · yH = xf(x−1y)H form a quandle, denoted
by QHom(G,H, f).

The definition of a few of the most fundamental notions in the field of universal algebra,
subalgebras, quotient structures and homomorphisms, will follow. Given the generality
of the matter, the interested reader can refer to [12], for all undefined notions.

Definition 2.3. [12]
Let A = (S, ·, \) be a left quasigroup. Let S′ ⊆ S. When

∀x, y ∈ S′ x · y ∈ S′ ∧ x\y ∈ S′,

that is, when S′ is closed under the operations of A, it can be associated with the
restriction of the operations of A to S′ to form B = (S′, ·|S′ , \|S′). Consequently, B is
called a subalgebra of A.
In general, any non-empty finite subset X of S can be expanded to be a subalgebra of
A:

Sg(X) =
⋂
{U : X ⊆ U ∧ U is closed under the operations of A}

(Sg(X), ·| Sg(X), \| Sg(X)) is a subalgebra of A.
The set of all subalgebras of a left quasigroup A is denoted by Sub(A).
If, for a set ∅ 6= X ⊆ S, Sg(X) = S then X is a generating set of A and its elements are
called generators.

Given a non-empty set S, one can define a relation ∼⊆ S × S on S; for two elements
x, y ∈ S, (x, y) ∈∼ is often denoted by x ∼ y.
Relations can have several properties. S relation is called reflexive when for any element
x ∈ S (x, x) ∈ ∼; symmetric when (x, y) ∈ ∼ implies that (y, x) ∈ ∼, for any two
elements x, y ∈ S; or, transitive when the fact that (x, y) and (y, z) are both elements
of ∼ implies that (x, z) is also an element of ∼. When a relation is reflexive, symmetric,
and transitive, then it is called an equivalence relation.
Such a relation ∼ on a non-empty set S is particularly important because it induces
a partition, usually denoted by S/ ∼, that is a disjoint set of sets (called equivalence
classes) such that their union is equal to S. Equivalence classes are also called blocks of
the partition and are denoted by [x]∼ = {y ∈ S : x ∼ y}, for an element x ∈ S. It is
possible to order the partitions of a set: for two partitions π1, π2 of some non-empty set
S, one says π1 ≤ π2 when each block of π1 is contained in some block of π2.

Equivalence relations that respect the operations of a left quasigroup are called con-
gruences and are defined next.

Definition 2.4. [12]line
Let A = (S, ·) be a left quasigroup and ∼ an equivalence relation on S. If

∀x, y, z, t ∈ S x ∼ z ∧ y ∼ t =⇒ x · y ∼ z · t ∧ x\y ∼ z\t,

that is, ∼ has the compatibility property, then ∼ is a congruence relation on A.
The set of all congruences on an algebra A is denoted by Con(A).
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For quandles, the blocks of the partitions induced by congruence relations, associated
with the restriction to them of the operations, are subalgebras. The definiton of congru-
ences allows the definition of a few important groups.

Definition 2.5. [9]line
Let ∼ be an equivalence relation on a left quasigroup A = (S, ·).

• Displacement group, Dis(A): 〈LxL
−1
y : x, y ∈ A〉

• Kernel relative to ∼, Dis∼: {h ∈ Dis(A) : h(x) ∼ x for every x ∈ A}

• Displacement group relative to ∼, Dis∼(A):
〈{hLxL

−1
y h−1 : x ∼ y ∧ h ∈ LMlt(A)}〉; in particular, if A is a rack, then

Dis∼(A) = 〈LxL
−1
y : x ∼ y〉.

Note: Dis(A) = Dis∼(A) when ∼ = S × S.

It is worth pointing out that, for quandles, the actions of Dis(A) and LMlt(A) have the
same orbits [9].

One can establish an algebraic structure on the set of equivalence classes obtained by
partitioning the underlying set of an an algebra according to a congruence relation. This
idea leads to the following definition of quotient structures.

Definition 2.6. [12]line
Let A = (S, ·, \) be a left quasigroup and ∼ a congruence relation on A.
Let B = (S/ ∼, ⋆, \⋆) where

[x]∼ ⋆ [y]∼ = [x · y]∼, for any [x]∼, [y]∼ ∈ S/ ∼

[x]∼\⋆[y]∼ = [x\y]∼, for any [x]∼, [y]∼ ∈ S/ ∼

B is a quotient left quasigroup of A.

Quotient structures are important in their own right. In some cases, they can be used
to obtain information about a superstructure and lead to the classification of the entire
family of a structure. For instance, the interested reader can refer to Section 4 of [7]
to see how this strategy played a fundamental role in classifying non-simple connected
quandles of size pq where p and q are different prime numbers.

The definition of homomorphisms, particular functions that preserve the operation of
the left quasigroup on which they are defined, will follow.

Definition 2.7. [12]

• Let A = (S, ·) and B = (S′, ⋆) be two left quasigroups.
Let ϕ : A→ B.
If

∀x, y ∈ A ϕ(x · y) = ϕ(x) ⋆ ϕ(y)

then ϕ is a homomorphism.
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• Let ϕ : A→ B be a homomorphism. If ϕ is injective, ϕ is called a monomorphism,
or an embedding of A into B. The image of ϕ is a subalgebra of B denoted by
ϕ(A) ≤ B.

• Let ϕ : A→ B be a homomorphism. If ϕ is surjective, ϕ is called an epimorphism.

• Let ϕ : A → B be a homomorphism. If ϕ is injective and surjective, that is, ϕ is
bijective, ϕ is called an isomorphism.
If there exists an isomorphism ϕ : A→ B, it is indicated A ∼= B.
In case A = B, ϕ is called an automorphism.
The set of all automorphisms on a left quasigroup A is a subgroup of the symmetric
group on the underlying set of A and it is denoted by Aut(A) [39].

There are two strong connections between homomorphisms and congruences on left
quasigroups. Every homomorphism h : A → B induces a congruence, called kernel, on
its domain, defined as ker(h) = {(x, y) : f(x) = f(y)}.

As explained above, congruence relations induce a partition of the set over which
they are defined. There exists a function, called canonical projection, that maps an
element to its equivalence class relative to the congruence. The canonical projection is
also an epimorphism from the original left quasigroup A to its quotient structure given
a congruence ∼, A/ ∼.

Throughout the document, and especially when dealing with homomorphisms, there
will be references to so-called invariants under homomorphism. Contrary to what the
word might suggest and to what was intended in Section 1, these invariants can change,
but in a “predictable” way.
It is possible to distinguish two types of invariants: global or element-wise.

Global invariants.
Let p be an operator that assigns a natural number to any left quasigroup. The operator
p is called a global invariant if p(A) ≤ p(B) whenever A can be embedded into B. For
example:
Let Nil(G) indicate the nilpotency class of a group G and let A and B be two left quasi-
groups such that there exists a monomorphism h : A→ B.
Then Nil(LMlt(A)) ≤ Nil(LMlt(B)). A similar fact holds for the displacement group
of the left quasigroups: let A and B be two left quasigroups such that there exists a
monomorphism h : A→ B, then Nil(Dis(A)) ≤ Nil(Dis(B)).
Restricting the focus to quandles and isomorphisms, there also exist polynomial invari-
ants of finite quandles such as the one presented in [32] by Sam Nelson which can help
in ruling out the existence of an isomorphism between two quandles A and B.
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Element-wise invariants.
Let p be an operator that assigns a map pA : A→ N to any left qusigroup A.
If for every monomorphism h : A→ B and every x ∈ A it holds that pA(x) ≤ pB(h(x))
then p is called element-wise invariant.
It is worth showing two examples of what these invariants might look like for an element
x of a left quasigroup A = (S, ·, \):

• Number of elements y ∈ S such that Lx(y) = y.

• Number of elements y ∈ S such that Ly(x) = x.

When, for an element x of a left quasigroup A, an element-wise invariant p and a left
quasigroup B, there exists no element y ∈ B such that p(x) ≤ p(y) then the existence
of a monomorphism between A and B can be ruled out.
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Chapter 3

QuandleRUN

3.1 Algorithms
The first step in manipulating something using a computer is the creation of a suitable
representation: similar to the idea of adjancency matrices to represent graphs. In [19],
Benita Ho and Sam Nelson introduce the idea of quandle matrix, that is, essentially, the
Cayley table (the entry in row i and column j is xi · xj): Let A = ({x1, x2, . . . , xn}, ·)
be a finite quandle with n elements.
The quandle matrix MA of A is:

MA =


x1 · x1 x1 · x2 . . . x1 · xn
x2 · x1 x2 · x2 . . . x2 · xn

...
... . . . ...

xn · x1 xn · x2 . . . xn · xn


These ideas can easily be generalised to racks and left quasigroups, so much that several
of the algorithms described in this document work on all the algebraic structure defined
in Chapter 2.

Without loss of generality, one can restrict discussions about quandle matrix to
integral quandle matrix, that is, the quandle matrix of a quandle A with underlying
set S = {1, 2, . . . , n} and MA =

[
mij

]
. Given the quandle matrix of any quandle

A = ({x1, x2, . . . , xn}, ·), one can obtain an integral quandle matrix by mapping xi to
i, for 1 ≤ i ≤ n [19]. This allows QuandleRUN to have an internal representation inde-
pendent of what the actual elements of the quandles might be – hence, if it makes the
definition clearer, some algorithms might be described only in their “integral” form. In
[19], Ho et al. determine clear methods to verify whether a given quandle matrix actu-
ally represents a quandle. However, this also takes some flexibility away from the scholar.

QuandleRUN, inspired by the treatment given by Magma to permutation groups, is
the first tool trying to relax these constraints and it amortizes any additional cost that
might come out of this by following the suggestion of [20]:
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“[…] the first and principal aim before doing anything else […] is […] to move
into the best possible computational situation [Author’s Note: read represen-
tation] […].”

To do this, QuandleRUN maintains a bijective mapping from the underlying set S of the
left quasigroup to {1..|S|}, called Numbering Map and denoted by NS , this was inspired
by Magma.

3.1.1 Construction and verification of quandle axioms
Creation of a quandle

line
There are several known quandle constructions available in QuandleRUN and even more
can easily be independently developed given the available framework. The essential
components of any finite quandle are the underlying indexed set, the quandle operation
and the bijective mapping from the underlying set and the set {1..n}, where n is the
cardinality of the underlying set.
A way to create a quandle A = (S, ·) is by providing QuandleRUN with the quandle
matrix MA and the indexed set of labels.

Example 3.1. skip

1 QuandleFM([[7,9,8],[9,8,7], [8,7,9]], {@ 7, 8, 9 @});
2 // {@ 7, 8, 9 @} is the indexed set of labels the user has chosen.
3 // Internally , this is still represented in terms of {1, 2, 3}.

Another way to create a quandle A = (S, ·) is by providing QuandleRUN with an indexed
version of S and an appropriate operation on S. Such a function does not seem to be
available in any existing tool.

Example 3.2. skip

1 S := {@ "a", "b", "c" @};
2 M := map< car<S,S> -> S | [<<"a", "a">, "a">, <<"a", "b">, "c">, <<"a","c">,"

b">, <<"b","a">, "c">, <<"b","b">, "b">, <<"b", "c">, "a">, <<"c", "a">,
"b"> >, <<"c","b">, "a">, <<"c","c">, "c">]>;

3 M;
4 Mapping from: Cartesian Product <{@ a, b, c @}, {@ a, b, c @}> to SetIndx: S
5 <<"a", "a">, "a">
6 <<"a", "b">, "c">
7 <<"a", "c">, "b">
8 <<"b", "a">, "c">
9 <<"b", "b">, "b">

10 <<"b", "c">, "a">
11 <<"c", "a">, "b">
12 <<"c", "b">, "a">
13 <<"c", "c">, "c">
14 Quandle(S,M);
15 [
16 [ 1, 3, 2 ]
17 [ 3, 2, 1 ]
18 [ 2, 1, 3 ]
19 ]
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The quandle constructions outlined in Example 2.2 are all available in QuandleRUN.

Example 3.3. line

1 R_3 := DihedralQuandle({@ 1, 2, 3 @});
2 T_3 := TrivialQuandle({@ 1, 2, 3 @});
3 G := AlternatingGroup(4);
4 CoreQuandleG := CoreQuandle(G);
5 Conj3GQuandle := ConjugationQuandle(G, 3);
6 AutG := AutomorphismGroup(G);
7 // The underlying set of the Automorphism Group of a group is not
8 // an iterable object (for example a Sequence), hence some
9 // elements need to be generated "manually".

10 AutSet := [x*y : x,y in Generators(AutG)];
11 // This creates a list of functions
12 // that suit the needs of the example
13 Fs := [f : f in AutSet | #sub<G |{ (g*f(g)^-1) : g in G }> eq #G];
14 CQuandle := QuandleMatrix(CosetQuandle(G, sub<G|G.0>,Fs[1]));
15 CQuandle;
16 [
17 [ 1, 11, 10, 8, 9, 7, 6, 4, 5, 3, 2, 12 ],
18 [ 12, 2, 8, 10, 7, 9, 5, 3, 6, 4, 11, 1 ],
19 [ 10, 8, 3, 5, 4, 6, 12, 2, 11, 1, 9, 7 ],
20 [ 9, 7, 6, 4, 5, 3, 2, 12, 1, 11, 10, 8 ],
21 [ 9, 7, 6, 4, 5, 3, 2, 12, 1, 11, 10, 8 ],
22 [ 10, 8, 3, 5, 4, 6, 12, 2, 11, 1, 9, 7 ],
23 [ 3, 5, 1, 11, 2, 12, 7, 9, 8, 10, 4, 6 ],
24 [ 5, 3, 2, 12, 1, 11, 10, 8, 9, 7, 6, 4 ],
25 [ 5, 3, 2, 12, 1, 11, 10, 8, 9, 7, 6, 4 ],
26 [ 3, 5, 1, 11, 2, 12, 7, 9, 8, 10, 4, 6 ],
27 [ 12, 2, 8, 10, 7, 9, 5, 3, 6, 4, 11, 1 ],
28 [ 1, 11, 10, 8, 9, 7, 6, 4, 5, 3, 2, 12 ]
29 ]
30

31 // The construction above allows to create connected quandles
32 // with as many elements as the group G.

The construction of Coset Quandles is not cheap. QuandleRUN implements an even
slower version due to technical constraints in the underlying computer algebra system,
circumventable but outside of the scope of this thesis.
It follows the ideal way to implement the construction of a coset quandle:

Algorithm 1: Coset Quandle Construction
Input : Group G, f ∈ Aut(G), H ≤ G such that ∀x ∈ H f(x) = x;
Output: QHom(G,H, f)

/* LeftTransversal(G,H) returns an indexed set of elements
L = (li)i∈{1,...,n} forming a left transversal for G over H; and the
corresponding transversal mapping ϕ : G→ L g 7→ li such that
g ∈ liH, for any g ∈ G. */

L, ϕ ← LeftTransversal(G,H)
/* Define the quandle operation by its functional graph G(·) */
G(·) ← {((x, y), ϕ(xf(x−1y))) : x, y ∈ L}
Return: A = (L, ·)
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Verification of the quandle axioms

line
Before returning a quandle to the user, QuandleRUN checks whether the construction
actually represents a quandle. Let A = (S, ·) be a quandle.

Axiom 1: ∀x ∈ S x · x = x

Algorithm 2: Verify Axiom 1
Input : A n× n matrix M over {1..n} ⊂ Z;

An indexed set S = (xi)i∈{1..n} ⊊ Z of labels.
Output: True or False

for i← 1 to n do
if Mii 6= xi then

Return: False
end

end
Return: True

Axiom 2: ∀x ∈ S Lx is a bijection

Algorithm 3: Verify Axiom 2
Input : A n× n matrix M over {1..n} ⊂ Z;

An indexed set S = (xi)i∈{1..n} ⊊ Z of labels.
Output: True or False

for i← 1 to n do
if Mi⋆ is not a permutation of S then

Return: False
end

end
Return: True

Axiom 3: ∀x, y, z ∈ S x · (y · z) = (x · y) · (x · z)

Algorithm 4: Verify Axiom 3
Input : A n× n matrix M over {1..n} ⊂ Z;

An indexed set S = (xi)i∈{1..n} ⊊ Z of labels.
Output: True or False

G(NS) ← {(xi, i) : i ∈ {1..n}}
for i← 1 to n do

for j ← 1 to n do
for t← 1 to n do

if MiNS(Mjt) 6= MNS(Mij)NS(Mit) then
Return: False

end
end

end
end
Return: True
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It is possible to condense these three algorithms into one to save some time and com-
puting power; here they are displayed separately with clarity in mind. Furthermore, one
might decide to use only a subset of these algorithms to focus on left quasigroup and/or
racks.

3.1.2 Informative groups
line
A left quasigroup homomorphism is a map between two left quasigroups that preserves
the structure of their binary operations. Hence, it is fundamentally important to have
methods that allow researchers to find these connections since it might lead to more
information about the structure they started with. In some specific cases, certain sets
of bijective homomorphisms coupled with function composition give rise to groups that
convey important information about the left quasigroups themselves. QuandleRUN has
algorithms to compute some of the most informative groups such as the left multiplica-
tion group, the automorphism group, and more.

The left multiplication group described in Section 2.

Algorithm 5: Left Multiplication Group Construction
Input : A n× n matrix M over {1..n} ⊂ Z representing a left quasigroup A
Output: LMlt(A)

/* The left translations of the left quasigroup are the generators
of its left multiplication group. */

L ← {Mi⋆ : i ∈ [1..|M |]}
/* Subgroup(x, y) returns the subgroup generated by y within x,

thus y ⊆ x */
Return: Subgroup(S(mii){1..n} , L)

There are a few different strategies to find all the automorphisms of a left quasigroup Q.
The following notions can be found in [19] referring only to quandles but they can be
easily generalised to any binary algebra as explained in Chapter 2 of [15].

Definition 3.4 (Definition 1 in [19]). line
Let A = ({x1, x2, . . . , xn}, ·) be a left quasigroup with M its matrix, and σ ∈ Sn. Define

σ(M) = P−1
σ σ(mij)Pσ

where P is the permutation matrix relative to σ and σ(mij) indicates the matrix arising
from replacing each entry mij of M by σ(mij).

The proof of the following two statements does not rely on the axioms of racks and
quandles, thus the curious reader can refer directly to [19].

Theorem 3.5 (Theorem 4 in [19]). line
Two matrices MA,MB determine isomorphic left quasigroups of order n if and only if
there exists a permutation σ ∈ Sn such that σ(MA) = MB
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Corollary 3.6 (Corollary 5 in [19]). line
The automorphism group of a finite left quasigroup A of order n is isomorphic to the
subgroup of Sn that fixes MA.

Aut(A) ∼= {σ ∈ Sn | σ(MA) = MA}

Ho et al. in [19] thus delineate a naïve method:

Algorithm 6: Naïve Automorphism Group Algorithm
Input : A n× n matrix M over {1..n} ⊂ Z corresponding to a left quasigroup

A
Output: Aut(A) ≤ Sn

PermutationsList ← Permutations(M1⋆)
Automorphisms ← ∅
forall σ ∈ PermutationsList do

if σ(M)
?
= M then

Automorphisms ← Automorphisms ∪ {σ}
end

end
Return: Aut(A) = (Automorphisms, ◦)

However, this quickly becomes expensive as the order of the left quasigroup grows.

n n!

1 1
...

...
5 120
...

...
47 2.59·1059

Processing each of these permutations and executing two matrix multiplications for each
of them becomes infeasible but there are ways to reduce the number of permutations that
need to be processed and take advantage of the machinery provided by Magma. The two
matrix multiplications are used as a filter to decide which bijection is an automorphism.
However, it is possible to generalise Lemma 1.1 in [36] to left quasigroups which allows
for a better filtering method.

Lemma 3.7. line
If A = (S, ·, \) is a left quasigroup, then Lh(x) = hLxh

−1 for every x ∈ S and h ∈ Aut(A).

Proof. line
Let A be a left quasigroup. Let x, y ∈ S. Let h ∈ Aut(A).

hLx(y) = h(x · y)
= h(x) · h(y)
= Lh(x)h

thus hLx(y)h
−1 = Lh(x).
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It follows from Lemma 3.7, that any automorphism h of a left quasigroup A = (X, ·) can
be found inside the Normalizer of its left multiplication group, Aut(A) ≤ NSX

(LMlt(A)) =
{h ∈ SX : hLMlt(A)h−1 = LMlt(A)}.
This, potentially, reduces the number of permutations to consider to those in
NSX

(LMlt(A)) and it is, potentially, faster to compute. As a matter of fact, in some
cases, computing the normalizer of a group can be done in polynomial time [20].
Furthermore, Lemma 3.7 suggests a better way to check whether a bijective function h
(such as a permutation σ) is an automorphism or not. For a left quasigroup A, each
row i of its operation matrix M represents Lxi so, in case h is not automorphism, it is
possible to interrupt the process much earlier than computing two matrix multiplications
and the checking that the initial matrix and the resulting matrix are equal.

Algorithm 7: QuandleRUN Automorphism Group Algorithm
Input : A n× n matrix M over {1..n} ⊂ Z corresponding to a left quasigroup

A = (X = (xi){1..n}, ·)
Output: Aut(A) ≤ Sn

Permutations ← NSX
(LMlt(A))

/* Compute the left translations from M and create a map such
that for x ∈ A x 7→ Lx.
The map is defined by composing its functional graph. */

G(L ) ← {(xi,Mi⋆) : 1 ≤ i ≤ n}
Automorphisms ← ∅
forall σ ∈ Permutations do

admissible ← true
forall x ∈M1⋆ do

if σ−1L(x) σ 6= L(σ(x)) then
admissible ← false
break

end
end
if admissible then

Automorphisms ← Automorphisms ∪ {σ}
end

end
Return: Aut(A) = (Automorphisms, ◦)

3.1.3 Subalgebras and Monomorphisms
line
Generators, introduced in Section 2, are important because they can speed-up some
computations, especially those involving the search of homomorphisms. Hence being
able to find a minimal set of generators fast is of primary importance. However, these
two things do not necessarily go hand in hand – finding a minimal set of generators
might take longer than finding any set of generators. Both Rig and CREAM solve
the problem of finding a minimal generating set while QuandleRUN finds the minimal
generating set containing element 1 of the underlying set of the quandle.
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QuandleRUN’s approach is closer to the approach taken by the developers of CREAM but
it has been adapted in order to tend to quandles more. The approach taken by CREAM is
particularly interesting because it highlights some important aspects connected to the
problem of finding a monomorphism between two quandles, analysed at the end of this
subsection.

Inspired by [30], the developers of CREAM start the search of a generating set with
the computation of 17 element-wise invariants and partition the set accordingly (if two
elements have the same invariant values, they are placed in the same equivalence class).
Then they look for a minimal generating set, favouring, where possible, elements from
equivalence classes with less elements. Partitioning the underlying set is not particu-
larly helpful in the search of generators but it is extremely useful when discussing the
problem of finding a monomorphism between two left quasigroups, analysed at the end
of this subsection; furthermore, choosing generators for smaller equivalence classes of
the partition helps in the search for automorphisms [14].

QuandleRUN does not compute these element-wise invariants at all, furthermore,
QuandleRUN skips the first round of CREAM’s computation because any element of a
quandle is idempotent, thus computing the subalgebras generated by one element will
not yield any bigger subalgebra. Ultimately, QuandleRUN tries to exploit the fact that
all the elements of the superquandle are known beforehand by using a lookup table to
avoid some computations. The definitions and computations mentioned above give rise
to three algorithms.

Algorithm 8: Expand a subalgebra by one element - Sg(M,S, x)
Input : A n× n matrix M over {1..n} ⊂ Z representing a quandle

A = ({1..n}, ·, \);
A subalgebra S of A;
x ∈ X;

Output: Sg(S ∪ {x})

LookupTable[i] ← i
?
∈ S

LookupTable[x] ← true
ToBeAdded ← {x}
while ToBeAdded 6= ∅ do

x ← Pop(ToBeAdded)
for y ∈ S do

for z ∈ {Mxy,Myx} do
if ¬LookupTable[z] then

ToBeAdded ← ToBeAdded ∪ {z}
LookupTable[z] ← true

end
end

end
S ← S ∪ {x}
if |S|+ |ToBeAdded| = n then

Return: M1⋆

end
end
Return: S
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Algorithm 8 is similar to Algorithm 18 in [14] but it has been adapted to try to be faster
in practice.
The algorithm to compute Sg(S) given a set S ⊆ X for a quandle A = (X, ·) is naïve so
it will not be outlined here.

Algorithm 9: QuandleRUN’s generating set algorithm - Generators(M)
Input : A n× n matrix M over {1..n} ⊂ Z representing a quandle

A = ({1..n}, ·, \);
Output: S such that Sg(S) = A

Subalgebra ← {1}
S ← {1}
LargestSoFar ← {1}
TemporaryGenerators ← {1}
PotentialGenerators ← {2..n}
while |Subalgebra| 6= n do

while PotentialGenerators 6= ∅ do
x ← Pop(PotentialGenerators)
TemporarySubalgebra ← Sg(M, Subalgebra, x)
if TemporarySubalgebra > LargestSoFar then

LargestSoFar ← TemporarySubalgebra
TemporaryGenerators ← S ∪ x
if |LargestSoFar| = n then

Return: TemporaryGenerators
end

end
PotentialGenerators ← PotentialGenerators \ TemporarySubalgebra

end
Subalgebra ← LargestSoFar
S ← TemporaryGenerators
PotentialGenerators ← {x : x ∈M1⋆}\ Subalgebra

end
Return: S

The problem of finding all the subalgebras of a given quandle is also connected to these
matters. The approaches taken in Rig and CREAM are wildly different. Rig finds
all subalgebras in a naïve fashion. CREAM finds all subalgebras of a quandle A by
computing all the subalgebras with 1 generator, expanding each of them by one element
from each orbit of Aut(A) and then, by applying the group action of Aut(A), it computes
all the other subalgebras generated by the same amount of generators; the algorithm
finishes when no subalgebra shows up other than A itself.

QuandleRUN tries to combine these approaches: it tries to find all the subalgebras
naïvely like Rig but, at each round, computes the generated subalgebra like CREAM.
It uses hash tables to speed up some computations – it could even use hash tables
where each bucket allows for only one element but given the widespread shortcomings
of all systems when it comes to hashing sets, this is not possible. For example, the sets
{1, 5, 9, 13} and {2, 6, 10, 14} are hashed to the same value in Magma which means that
one of them would be ignored, if they were both subalgebras of a left quasigroup A.
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For clarity, the algorithm that uses hash tables will be shown.

Algorithm 10: QuandleRUN’s Subalgebras algorithm - Sub(A)
Input : A n× n matrix M over {1..n} ⊂ Z representing a quandle

A = ({1..n}, ·, \);
Output: Sub(A), the set of subalgebras of A, as defined in [12]

Subalgebras ← [ ]
HashTable ← [ ]
for x ∈M1⋆ do

Subalgebra ← {x}
Append(Subalgebras, Subalgebra)
hash ← Hash(Subalgebra)
/* IsDefined checks whether there are entries for a specified

hash. */
if ¬IsDefined(HashTable, hash) then

HashTable[hash] ← [Subalgebra]
else

Append(HashTable[hash], Subalgebra)
end

end
index ← 1
while index ≤ |Subalgebras| do

x ← Subalgebras[index]
for y ∈M1⋆\x do

if |x| < n then
Subalgebra ← Sg(M, x, y)
hash ← Hash(Subalgebra)
if ¬IsDefined(HashTable, hash) then

HashTable[hash] ← [Subalgebra]
Append(Subalgebras, Subalgebra)

else
if Subalgebra /∈ HashTable[hash] then

Append(HashTable[hash], Subalgebra)
end

end
end

end
index ← index +1

end
Return: Subalgebras

19



An interesting decision problem with regards to subalgebras is:

Given a quandle A of order n and a quandle B of order m ≤ n.
Is B a subalgebra of A? Or rather, Is there a monomorphism from B to A?

According to Definition 2.7, one needs to be able to be able to find a monomorphism from
B to A. QuandleRUN only works with left quasigroups of finite order, so an algorithm
to find a monomophirsm allows to solve two problems:

• Find a monomorphism between two left quasigroups, if one exists.

• Find an isomorphism between two left quasigroups, if one exists.

It is appropriate, for this section, to restrict the focus on quandles alone.
Rig does have an algorithm to compute homomorphisms between two quandles, but it
acts naïvely: tries all possible images for the values in the domain and stores all those
mappings that are homomorphisms and then returns this list.

QuandleRUN’s algorithm is very similar to that of CREAM, except for some prelim-
inary steps. Practically speaking, the author has found that the element-wise invariants
proprosed in [14] are of no help for quandles; and especially connected quandles. The
author has computed the invariants suggested by [14] for the entire database of 791
connected quandles available in [38] and for several disconnected quandles and all lead
to the partition with only one equivalence class. These are the reasons why the author
has decided to save some time and computing power by cutting the computation of in-
variants out of the process.

Should effective element-wise invariants for quandles be found – the framework to
support them is mostly already in place. The following two pages will outline the three
main components in the search for a monomorphism between two quandles, since these
procedure do not rely on any property of quandles or racks, they can be applied directly
to left quasigroups.

Algorithm 11: Monomorphism Algorithm Part 1 - Monomorphism1(A,B)
Input : A n× n matrix M over {1..n} ⊂ Z representing a left quasigroup

A = ({1..n}, ·, \);
A m×m matrix F over {1..n} ⊂ Z representing a left quasigroup
B = ({1..m}, ⋆, \⋆);

Output: A list [h1, h2, . . . , hn] such that, for an element x ∈ {1..n} f(x) = hx,
where f is a monomorphism from A to B, if one exists. An empty list
[ ], otherwise.

if n > m then
Return: [ ]

end
GeneratorsA ← Generators(M)
PreImages ← ∅
Images ← [01, 02, . . . , 0n]
Return: Monomorphism2(M , F , GeneratorsA, ( Images, PreImages))
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Algorithm 12: Monomorphism Algorithm Part 2 - Monomorphism2(A,B,G,P)
Input : A n× n matrix M over {1..n} ⊂ Z representing a left quasigroup

A = ({1..n}, ·, \);
A m×m matrix F over {1..n} ⊂ Z representing a left quasigroup
B = ({1..m}, ⋆, \⋆);
A set G of generators of A;
A tuple (Images,Preimages);

Output: A list [h1, h2, . . . , hn] such that, for an element x ∈ {1..n} f(x) = hx,
where f is a monomorphism from A to B, if one exists. An empty list
[ ], otherwise.

if G = ∅ then
Return: Monomorphism3(M , F ,(Images,Preimages))

end
x ← Pop(G)
AvailableImages ← [y ∈M1⋆|y /∈ Images]
for y ∈ AvailableImages do

(Images2,Preimages2) ← P
Images2[x] ← y
Preimages2 ← Preimages2 ∪ {x}
Monomorphism ← Monomorphism2(M , F , G, ( Images2,Preimages2))
if Monomorphism 6= [] then

Return: Monomorphism
end

end

The third part of the algorithm can be found at the end of this section.
The algorithm returns a monomorphism, if one exists.

If a monomorphism exists and the domain has just as finitely many elements as the
codomain, this suggest that the function is bijective and thus, an isomorphism.
Although element-wise invariants have proven to be of little help, it is possible to exploit
global invariants to rule out the existence of monomorphisms and thus avoid the search
altogether.
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Algorithm 13: Monomorphism Algorithm Part 3 - Monomorphism3(A,B,P)
Input : A n× n matrix M over {1..n} ⊂ Z representing a left quasigroup

A = ({1..n}, ·, \);
A m×m matrix F over {1..n} ⊂ Z representing a left quasigroup
B = ({1..m}, ⋆, \⋆);
A tuple (Images,Preimages);

Output: A list [h1, h2, . . . , hn] such that, for an element x ∈ {1..n} f(x) = hx,
where f is a monomorphism from A to B, if one exists. An empty list
[ ], otherwise.

NewElements ← {x : x ∈ Preimages}
OldElements ← {}
LookupTable[i] ← i

?
∈ Images

while NewElements 6= ∅ do
for x, y ∈ NewElements do

Pairs ← Pairs ∪ {(x, y)}
end
for x ∈ OldElements do

for y ∈ NewElements do
Pairs ← Pairs ∪ {(x, y), (y, x)}

end
end
results ← ∅
for (x,y) ∈ Pairs do

z ← Mxy
Hx ← Images(x)
Hy ← Images(y)
Hz ← Images(z)
if Hz = 0 ∧ ¬LookupTable[FHxHy] then

Images(z) ← FHxHy
Preimages ← Preimages ∪ {z}
LookupTable[FHxHy] ← true

else
if Hz 6= FHxHy then

Return: [ ]
end

end
end
OldElements ← OldElements ∪ NewElements
NewElements ← results

end
Return: Images
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3.1.4 Congruences
line
The formation of quotient structures is one of the fundamental constructions in algebra.
By definition 2.6, quotient structures are described in terms of congruence relations.
Given a congruence and a left quasigroup, computing the quotient left quasigroup rela-
tive to that congruence is simple.

Algorithm 14: Construction of a Quotient Left Quasigroup
Input : A left quasigroup A = (S, ·, \);

A congruence π on A;
Output: A/π = (S/π, ·/π)

UnderlyingSet ← {Representative(πi)}πi∈π
/* Define the operation by its functional graph G(·/π) */
G(·/π) ← {((x, y), x · y) : x, y ∈ UnderlyingSet}
Return: A/ ∼= (UnderlyingSet, ·/π, \/ ∼)

But how does one get the congruences without processing each partition of the under-
lying set? For sets endowed with unary operations, called unary algebras, Ralph Freese
in [17] proposes a very efficient algorithm to compute the smallest congruence such that
the two elements of the pair are in the same block, such a congruence is called principal
congruence generated by a pair. In [17], Ralph Freese already pointed out that the same
algorithm could be ”adapted” to work on binary algebras, such as left quasigroups, by
”unarifying” them.

The process of converting a binary operation into a set of unary operations is simple;
it consists of considering each row and each column as a unary operation, putting them
in list and removing all duplicates. It described by the following algorithm:

Algorithm 15: Unarifying a binary operation
Input : A n× n left quasigroup matrix M over {1..n} ⊂ Z corresponding to a

left quasigroup A = (X = (xi){1..n}, ·)
Output: S, the set of unary operations induced by the left quasigroup matrix

UnaryOperations ← ∅
for i = 1 to n do

row ← [ ]
column ← [ ]
for j = 1 to n do

Append(row, Mij)
Append(column, Mji)

end
UnaryOperations ← UnaryOperations ∪ {row, column}

end
Return: UnaryOperations
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For completeness, the algorithm described in [17] will be shown. It is important to note
that in order to speed-up computations, [17] represents partitions differently from the
“traditional” set of sets.
Any partition π of {1..n} is represented by a list of length n where the i-th item L[i] is
defined as follows:

L[i] =

−|πb| if i = min (πb)

min (πb) otherwise

where πb is the block of π where i is.
For example, the partition {{1}..{n}} is described by [−1, . . . ,−1] and the partition
{{1, 2}, {3, 4}, . . . , {n− 1, n}} is described by [−2, 1,−2, 3, . . . ,−2, n− 1].

Algorithm 16: Principal congruence generated by pair x, y - Cg(L, x, y)
Input : A list L of unary operations corresponding to a left quasigroup

A = (X = (xi){1..n}, ·);
A pair (x, y) ∈ X ×X

Output: The partition induced by CgA(x, y), the principal congruence on A
generated by (x, y)

Pairs ← Queue({(x, y)})
Partition ← [−11,−12, . . . ,−1n]
/* JoinBlocks(P, a, b) joins the blocks of partition P containing a

and b */
Partition ← JoinBlocks(Partition, x, y)
while Pairs 6= Queue(∅) do

(x,y) ← Dequeue(Pairs)
for f ∈ L do

/* Root(P, a) returns the root (the least element according
to [14] and the greatest element according to [17]) of the
block in P in which a is. */

z ← Root(Partition,f(x))
t ← Root(Partition,f(y))
if z 6= t then

Partition ← JoinBlocks(Partition, z, t)
Pairs ← Enqueue(Pairs, (z, t))

end
end

end
Return: Partition
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Then, following the procedure laid out by the developers of CREAM, one can compute
all principal congruences of a left quasigroup.

Algorithm 17: All principal congruences - PC(L)
Input : A list L of unary operations corresponding to a left quasigroup

A = ({1..n}, ·)
Output: S, the set of all partitions induced by principal congruences on A.

S ← ∅
for i = 1 to n− 1 do

for j = i+ 1 to n do
Congruence ← Cg(L, (i, j))
S ← S ∪ {Congruence}

end
end
Return: S

Now all the components are in place to compute all congruences of a left quasigroup.

Algorithm 18: All congruences
Input : A list L of unary operations corresponding to a left quasigroup A
Output: The set of all partitions induced by Θ(A), the set of all congruences

on A.

PrincipalCongruences ← PC(L)
Congruences ← PrincipalCongruences
index ← 1
while index < |Congruences| do

for i = 1 to |PrincipalCongruences| do
if PrincipalCongruences[i] 6≤ Congruences[index] then

/* Join(A, B) returns the smallest partition containing
both A and B */

congruence ← Join(Congruences[index], PrincipalCongruences[i])
Congruences ← Congruences ∪ {congruence }

end
end
index ← index + 1

end

Algorithm 15 to Algorithm 18 are all described in [14] and they are also implemented
in QuandleRUN; using them, QuandleRUN is able to compute the congruences on all left
quasigroups whose left multiplication group is not transitive.
Technically speaking, these algorithm are able to compute the congruences of any binary
algebra; however, the author has found a way to implement Lemma 1.5 in [8], which
allows to harness Magma’s power and to obtain the congruences in a much quicker way,
at least for connected left quasigroups.
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Before presenting Lemma 1.5, it is appropriate to introduce the notion of block system
with respect to the action of a group G. A block system is a partition π such that the
action of G on each block πb ∈ π either maps the block to itself πG

b = πb or to another
block in the same partition, thus out of itself πG

b ∩ πb = ∅.

Lemma 3.8 (Lemma 1.5 in [8]). line
Let A be a left quasigroup and ∼ an equivalence relation on A. The following are

equivalent:

1. ∼ is a congruence.

2. ∼ is a block system of LMlt(A) and Dis∼(A) ≤ Dis∼(A).

By expanding the algorithm for finding blocks of imprimitivity due to [33, 34], or even the
slower [3], one can constructs all the block systems of the left multiplication group of the
left quasigroup. This construction acts as a filter, retaining only the partitions induced
by equivalence relations that might turn out to be congruences of the left quasigroup.
Lemma 3.8 warrants the creation of methods to compute Dis∼ and Dis∼ which will be
found in the next page.

Algorithm 21 would be enough but there is the “problem” of computing the kernel
and the displacement group relative to the congruence relation. Why compute both
when it is enough x /∈ Dis∼, for an element x ∈ Dis∼, to interrupt the computation
earlier? This already suggests new ways to make the process faster but one can go a
step further and optimize the process even more such that that neither the kernel nor
the displacement group relative to the congruence relation need to be computed.

Algorithm 19: Displacement group relative to ∼ - DisB(M,S/ ∼)
Input : A n× n matrix M over {1..n} ⊂ Z corresponding to a connected rack

A = (S = {1..n}, ·);
The partition S/ ∼ induced by the congruence relation ∼ on A

Output: Dis∼, the displacement group of A relative to the congruence relation
∼

L ← ∅
for block ∈ S/ ∼ do

L ← L ∪ {Mi⋆M
−1
j⋆ : i, j ∈ block}

end
/* Subgroup(x, y) returns the subgroup generated by y within x,

thus y ⊆ x */
Return: Subgroup(Sn, L)
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Algorithm 20: Kernel relative to ∼ - DisT(M,S/ ∼)
Input : A n× n matrix M over {1..n} ⊂ Z corresponding to a connected left

quasigroup A = (S = {1..n}, ·);
The partition S/ ∼ induced by the congruence relation ∼ on A

Output: Dis∼, the kernel relative to the congruence relation ∼

kernel ← ∅
Dis ← DisB(M, {{1..n}})
for h ∈ Dis do

admissible ← true
for element = 1 to n do

Ha ← h(element)
round ← false
for block ∈ S/ ∼ do

if Ha ∈ block ∧ element ∈ block then
round ← true
break

end
end
admissible ← admissible ∧ round
if ¬admissible then

break
end

end
if admissible then

kernel ← kernel ∪ { h }
end

end

Algorithm 21: All congruences of a connected left quasigroup
Input : A n× n matrix M over {1..n} ⊂ Z corresponding to a connected left

quasigroup A = (S, ·)
Output: The set of all partitions induced by Θ(A), the set of all congruences

on A.

LMlt ← LMlt(M)
Congruences ← {{{x} : x ∈ S}, S}
L ← {Mi⋆ : i ∈ [1..|M |]}
/* AllPartitions(G) constructs all non-trivial block systems of

the transitive permutation group G. [11] */
BlockSystems ← AllPartitions(LMlt)
for π ∈ BlockSystems do

if DisB(M,π) ≤ DisT(M,π) then
Congruences ← Congruences ∪ {π}

end
end
Return: Congruences
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Lemma 3.9. line
Let A = (S, ·, \) be a connected quandle, ∼ be a block system of LMlt(A) and consider
[a0] ∈∼ for some a0 ∈ S.
Define H = {LbL

−1
a0 : b ∈ [a0]∼}. If H ⊂ Dis∼(A) then Dis∼(A) ≤ Dis∼(A).

Proof. line
Assume that H ⊂ Dis∼(A).
Given that [a0]∼ is a block, ∀x ∈ S ∃h ∈ Dis∼(Q) [x]∼ = h([a0]∼).
For any x ∼ y ∈ S, there exist x0, y0 ∈ [a0]∼ and h ∈ Dis(A) such that x = h(x0) and
y = h(y0):

LxL
−1
y = Lh(x0)L

−1
h(y0)

= hLx0h
−1hL−1

y0 h
−1

= hLx0L
−1
y0 h

−1

= h Lx0L
−1
a0︸ ︷︷ ︸

∈Dis∼(A)

La0L
−1
y0︸ ︷︷ ︸

∈Dis∼(A)

h−1 ∈ Dis∼(A)

Theorem 3.10. line
Let A be a connected quandle. The set Congruences returned by Algorithm 22 is the the
set of all partitions induced by the congruences of A.

Proof. line
One can assume that P = AllPartitions(LMlt) where LMlt=LMlt(A) returns the
expected result since it is based on [33, 34] and it is implemented in Magma. Take an
arbitrary a0 ∈ A.
Take an arbitrary π ∈ P . Let ∼ be the equivalence relation inducing π. Define H =
{LxL

−1
a0 : x ∈ [a0]∼}. From Definition 2.5, it follows that H ⊂ Dis∼(A) and that

H ⊂ Dis(A). In quandles, LMlt(A) and Dis(A) have the same orbits [Proposition
2.1(iv) in [21]]. Thus, for any element h ∈ H and x ∈ A, either h(x) ∈ [x]∼ and so
∀y ∈ [x]∼ h(y) ∈ [x]∼ (case 1) or h(x) /∈ [x]∼ and so ∀y ∈ [x]∼ h(y) /∈ [x]∼ (case
2). In case 2, h /∈ Dis∼(A) so H 6⊂ Dis∼(A) and π is not added to Congruences. Case
1 justifies checking only a representative for each block. If case 1 holds for any h ∈ H,
then H ⊂ Dis∼(A).
Therefore, assume that H ⊂ Dis∼(A).
Given Lemma 3.9, Dis∼(A) ≤ Dis∼(A), thus π is added to the set Congruences.
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Algorithm 22: All congruences of a connected quandle
Input : A n× n matrix M over {1..n} ⊂ Z corresponding to a connected

quandle A = ({1..n}, ·)
Output: The set of all partitions induced by Θ(A), the set of all congruences

on A.

LMlt ← LMlt(M)
Congruences ← {{{x} : x ∈ S}, S}
L ← [Mi⋆ : i ∈ [1..|M |]]
/* AllPartitions(G) constructs all non-trivial block systems of

the transitive permutation group G. [11] */
BlockSystems ← AllPartitions(LMlt)
a0 ← 1
for π ∈ BlockSystems do

admissible ← true
A ← {L[x]L[a0]−1 : x ∈ π1}
for πb ∈ π do

y ← Representative(πb)
for a ∈ A do

if a(y) /∈ πb then
admissible ← false
break

end
end

end
if admissible then

Congruences ← Congruences ∪ {π}
end

end
Return: Congruences

29



3.2 Applications
3.2.1 Visualising subalgebras
line
Let L be a set of left quasigroups.
It is possible to define a transitive relation sub = {(x, y) ∈ L×L : y is a subalgebra of x}.
The transitivity of sub outlines an elegant way to visualise the relation for any left
quasigroup A:

1. Define a directed graph G = (V = Sub(A), E = ∅).

2. Define I = (Sub(A) \ {A}) \
⋃

x∈Sub(A)

(Sub(x) \ {x}).

3. E ∪
⋃
x∈I

(x,A)

4. Repeat steps 2 and 3 for each element x ∈ I.

Step 2 is needed to avoid duplicate paths going from a vertex representing a smaller
left quasigroup to one representing a bigger left quasigroup: the set I defined for a left
quasigroup A is the set of subalgebras that can only be embedded in A and in none of
its proper subalgebras.
Since quandles are left quasigroups, one can use the strategy outlined above to visualise
sub on a large set of quandles. This can help to immediately identify quandles with
a certain characteristic; for example strictly simple quandles, quandles with no proper
subquandle with more than one element, discussed in [5].

In Figure 1, one can see a graph of subquandles for all connected quandles up to
order 12. The isolated vertices and the vertex corresponding to the quandle with only
one element have been removed. The edges going from quandles of smaller order to those
of greater order are meant to represent the monomorphisms going from subalgebra to
superalgebra.

3, 1

4, 1

6, 1

9, 1 9, 2 9, 4 9, 5 9, 6

12, 1 12, 412, 10

10, 1

12, 6 12, 8

Figure 1
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3.2.2 Visualising congruence lattices of left quasigroups
line
The algorithms to compute the congruences of a left quasigroup available in Quan-
dleRUN can be used to draw the congruence lattice of any left quasigroup. The com-
mutator theory for racks and quandles is described in [9], it is built on the commutator
theory for universal algebra developed by Smith in [35] and expanded by Freese in [18].

Restricting the focus on racks, it is possible to distinguish whether a congruence ∼
on a rack A is central, or abelian, according to group-theoretic properties of Dis∼(A) [9].
The action of a group H is ∼-semiregular for a congruence ∼ on a rack A = (S, ·) if for
every h ∈ H, if h(x) = x then h(y) = y for any two elements x, y ∈ S such that X ∼ y.
The congruence ∼ is called central if and only if the action of Dis(A) is ∼-semiregular
on A and Dis∼(A) is central in Dis(A) [9]. The congruence ∼ is called abelian if and
only if the action of Dis∼(A) is ∼-semiregular on A and Dis∼(A) is abelian [9].

Figure 2 shows three possible congruence lattices of a locally strict simple quandle,
one whose all proper subquandles are strictly simple [7]. The vertices coloured in gold
(■) indicate that the congruence is central, the vertices coloured in light green (■)
indicate that the congruence is abelian.

 

 

 

 

 

 

  

 

Figure 2: (a) Simple (b) Subdirectly Irreducible (c) Subdirectly reducible

The following, more interesting, examples are the congruence lattices of the 10th con-
nected quandle of order 36 and of the 42nd connected quandle of cardinality 36.

 

  

  

    

 

 

    

    

    

 

Figure 3
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The congruence lattice of a left quasigroup can convey information about the original
structure. In the case of quandles, a congruence lattice as in Figure 2(c) indicates that
the quandle is a direct product of a pair of quandles and congruence lattice as in Figure
2(b) might indicate a connected non-abelian locally strict simple quandle [7].

3.2.3 Visualising quotient structures
line
Following this line of thought, one can visualise the factors of a quandle.
In Figure 4, one can see the graph of quotient quandles for all connected quandles up to
order 12 where the vertex representing the quandle of order 1 was removed. The edges
going from the quandles of greater order to those of smaller order are meant to represent
the epimorphisms going from structure to quotient structure.
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3.3 Comparison
This section will show a comparison between QuandleRUN, Rig and CREAM in terms of
running times on the following tasks: computation of the automorphisms group, search
of a generating set, search of all subalgebras, computation of all congruences.

Each command has been run on a shared university terminal running Ubuntu 20.04.4
LTS (Focal Fossa) with AMD EPYC 7502P 32-Core Processor and a 64GB RAM. The
algorithms have been tested on the full database of 791 connected quandles available in
Rig. The values displayed are the medians: the median time taken by the software to
carry out the tasks mentioned above for a connected quandle of order x ∈ [X,Y ] ⊂ N.
The author decided to display the median instead of the traditional mean because, due
to a few peculiar quandles in the database, the results would not have reflected the time
taken to carry out the tasks mentioned above for most connected quandles, they would
have been heavily skewed towards high untruthful values.

Order QuandleRUN(s) Rig(s) CREAM(s)
1-10 0.000 0.000 0.000
11-20 0.000 0.001 0.002
21-30 0.000 0.004 0.004
31-40 0.000 0.007∗ 0.006
41-47 0.000 7 0.009

Table 1: Running times to find a generating set.

According to Table 1, when finding a generating set, CREAM is very fast but slightly
slower than QuandleRUN. This is due to the fact that QuandleRUN skips the computation
of invariants, and the computations of subalgebras generated by one element by exploint-
ing the idempotence of quandles. Rig is slower than both because first it computes all
the subsets of the underlying set of the quandle of cardinality 1 and checks whether any
of them generates the quandle; if not, it moves to all the subsets of cardinality 2 and
checks whether any of them generates the quandle and so on until a generating set is
found.

Order QuandleRUN(s) Rig(s) CREAM(s)
1-10 0.000 0.000 0.001
11-20 0.020 0.022 0.003
21-30 0.060 0.007
31-40 0.165 0.011
41-47 0.300 0.016

Table 2: Running times to compute the automorphism group.

According to Table 2, which refers to the computation of the automorphism group, one
can see that, while QuandleRUN is faster than Rig, the only software available explicitly

∗The computation was interrupted while working on the last quandle of order 36; it reached the
pre-set memory limit.
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dedicated to the study of quandles, CREAM is definitely the winner of this competition.
This is interesting since the strategies used by Rig and CREAM are very similar and
the only differences between them are that CREAM looks for a generating set before
looking for the automorphisms, since that might reduce the number of trials necessary
to find valid homomorphisms, as explained in Section 3.1.3. Furthermore, most of the
computation of CREAM is written in the programming language C rather than the
language of the computer algebra system GAP. Rig naïvely tries to assign different
images to the values of the domain until all valid automorphisms have been found. The
use of C, combined with a different strategy, on the other hand, explains the advantage
of CREAM over QuandleRUN.

Order QuandleRUN(s) Rig(s) CREAM(s)
1-10 0.000 0.000 0.001
11-20 0.001 0.006 0.005
21-30 0.005 0.042 0.016
31-40 0.170 0.149
41-47 0.250 0.316

Table 3: Running times to find all subalgebras.

According to Table 3, QuandleRUN and Rig are the winners when computing subal-
gebras. CREAM needs to compute the automorphisms group first and then, for any
subalgebras it finds “naïvely”, it applies the action of the automorphisms group to find
all the other ones generated by the same amount of generators until it can only find
the underlying set of the superquandle. CREAM is very fast in computing the set of
automorphisms (as can be seen above) but it applies the automorphisms naïvely and
does not use hash tables to check whether it has already seen a quandle or not. These
are all contributing factors that make it the slowest of the three in the long run, while
Rig, with its simplicity, manages to almost keep up with QuandleRUN and even be
much faster in a handful of instances. For example, computing all the subalgebras of the
45th quandle of order 45 in QuandleRUN takes over 8 hours whereas Rig needs slightly
less than 3 hours. This advantage might be explained, in minimal part, by technical
differences of the underlying systems, GAP and Magma: GAP allows the user to add
elements to the list at the base of a for-loop whereas, in Magma, once a for-loop over a
list is defined, elements can be added to the list but the for loop will stop once it reaches
the elements that was the last element when the for loop was defined. This means that
to achieve a similar behaviour, QuandleRUN has to use a while loop that needs to check
the loop condition at each iteration which slows the process down.
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Order QuandleRUN(s) CREAM(s)
1-10 0.000 0.000
11-20 0.000 0.000
21-30 0.000 0.002
31-40 0.000 0.007
41-47 0.000 0.013

Table 4: Running times to compute all congruences

Finally, the system are compared based on how they perform when computing all con-
gruences. Rig cannot compute the congruences of a quandle. The difference in speed
between QuandleRUN and CREAM can be explained by the difference in strategy.
QuandleRUN relies on Magma to constructs all non-trivial partitions preserved by the
left multiplication group of the connected quandle. This ensures speed, since Quan-
dleRUN will only need to check the second condition of Lemma 3.8, and guarantees that
QuandleRUN will not have to deal with possible duplicates. CREAM, on the other hand,
needs to unarify the algebra, construct the congruences “manually” and make sure that
there are no duplicates, which takes time.
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Chapter 4

Conclusions

This document aimed to introduce QuandleRUN, a modern tool for research in the theory
of quandles. It shows how, by incorporating existing ideas, developing new ones based on
recently discovered theory, or by looking at the theory from a different perspective, one
can provide the foundations for an open and easily extendable research tool. Further-
more, being fully written in Magma, it ensures that researchers have at their disposal
the best instruments to improve upon it.

Just like Magma, QuandleRUN uses the language of sets and maps and, thus pro-
vides a natural way to any mathematician of describing computations both to improve
their own tool or to explore new ideas in quandle theory. Furthermore, QuandleRUN pro-
vides a common language for quandle theorists and a common interface to a library of
algorithms; all things bound to improve communication and favour computational exper-
imentation. This document hopes to stimulate a more experimental way of researching
and hopes that QuandleRUN can be a tool that, quoting [10]:

“[...] provides a compelling way to generate understanding and insight; to
generate and confirm or confront conjectures; and generally to make math-
ematics [Author’s note: read Quandle theory] more tangible, lively, and fun
for both the professional researcher and the novice.”

The source code of QuandleRUN along with the examples of Section 4 can be found on
GitHub.

4.1 Future Direction & Open Problems
• Adapt [3] or [33] to work on non-transitive groups. This would make Algorithm

21 work on any left quasigroup.

• Attempt to define the theoretical complexity of Algorithms 21 and 22 and compare
it with Algorithm 17.

• In order to make algorithms such as Algorithm 10 faster, hashing functions with
better collision rates for sets of integers are needed.

• Ways to reduce the search space for automorphisms of a left quasigroup are needed,
this would make Algorithm 7 even faster.

• Implement LeftTransversal(G, H) mentioned in Algorithm 1, to make the con-
struction of coset quandles faster.
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