
Bachelor’s Thesis Computing Science

Educational Escape Rooms in Secondary
Computer Science Education

A content analysis, design of an escape room, and evaluation of learning outcomes

Stefan Vlastuin
s1044388

June 10, 2022

First supervisor/assessor:
Dr. Mara Saeli

Second assessor:
Prof. Erik Barendsen

Abstract

Recently, teachers have started bringing escape rooms into their classrooms.
Due to its novelty, research on this topic is limited. Specifically, not much
research has been done on the question of how to use this teaching method
in secondary computer science education. We answered this question in
two phases. First, we developed content criteria for using an escape room
as a teaching method, by studying characteristics of the content of exist-
ing computer science escape rooms. Second, we created an escape room
and evaluated its learning outcomes, in two ways: using learner reports, in
which students could report about a variety of possible learning outcomes,
and using exercises, that objectively measured achievement of the learning
objectives. We concluded that the learning objectives were achieved. Stu-
dents also reported learning about content themselves. Moreover, we found
that escape rooms can be used as a self-reflection tool for students, as stu-
dents reflect on their own knowledge and skills. The results inform teachers
on when and how to use escape rooms in secondary computer science edu-
cation.

Acknowledgements

I would like to thank my supervisor Mara Saeli for always guiding and sup-
porting me in the process of writing my thesis. Several other staff members
of the Science Education Research group helped me as well, which was highly
appreciated. I also owe many thanks to Renske Weeda for allowing me to
test the escape room in her classroom. Finally, I want to thank Martin
Bruggink, for his extremely useful advice and feedback on the design of the
escape room.

3

Contents

1 Introduction 6
1.1 Escape Rooms & Education 6
1.2 Research Questions . 7
1.3 Structure of Thesis . 8

2 Related Work 9
2.1 Educational Escape Rooms 9

2.1.1 Goals of Educational Escape Rooms 9
2.1.2 Debriefing . 11
2.1.3 Design of Educational Escape Rooms 11
2.1.4 Escapp Web Platform 13
2.1.5 Examples in Computer Science 14
2.1.6 Evaluation Methods 15

2.2 Computer Science Education 16

3 Content Analysis 18
3.1 Methodology . 18
3.2 Results . 19

3.2.1 Computer Science ERs 19
3.2.2 Groups . 19
3.2.3 Technical vs. Social Topics 22
3.2.4 Content Criteria . 22

4 Design of an ER 24
4.1 Choice of Topic . 24
4.2 Methodology . 24
4.3 Results . 26

4.3.1 Participants . 26
4.3.2 Objectives . 27
4.3.3 Theme . 29
4.3.4 Puzzles . 30
4.3.5 Equipment . 33

4

4.3.6 Evaluation . 34

5 Evaluation of Learning Outcomes 35
5.1 Methodology . 35

5.1.1 Data Collection . 35
5.1.2 Data Analysis . 37

5.2 Results . 37
5.2.1 Exercises . 38
5.2.2 Learner Reports . 39

6 Discussion 42
6.1 Interpretation of Results . 42
6.2 Implications . 43
6.3 Limitations . 44
6.4 Recommendations . 45

7 Conclusions 46
7.1 Content Criteria . 46
7.2 Achieved Learning Outcomes 47
7.3 Integration of ERs into Education 48

A Exam Program 53

B Computer Science ERs 55

C Material of the ER 58

D Evaluation Form 71

5

Chapter 1

Introduction

1.1 Escape Rooms & Education

In recent years, the popularity of escape rooms as a leisure activity has
rapidly increased. An escape room, abbreviated as ER, is a ’live-action
team-based game where players discover clues, solve puzzles, and accomplish
tasks in one or more rooms in order to accomplish a specific goal in a limited
amount of time’ (Nicholson, 2015). Each clue or solution to a puzzle leads
to the next step. Teamwork and communication are essential to complete
all steps and escape within the time limit.

Nowadays, ERs are used in more ways than just as a leisure activity. They
have found their way into the classroom, in several subjects, including com-
puter science. For example, ERs have been used to teach about cryptog-
raphy concepts (Borrego et al., 2017; Deeb and Hickey, 2019; Ho, 2018;
Seebauer et al., 2020; Streiff et al., 2019). In several university courses re-
lated to software engineering, ERs were used as a method to reinforce the
course material (Gordillo et al., 2020; López-Pernas et al., 2019a,b). Other
ERs let students practice with problem-solving in computer science (Hacke,
2019) or general ICT competences (Musil et al., 2019).

ERs present several advantages. For example, students can both learn cur-
riculum content and skills, and develop soft skills, such as teamwork and
communication skills. Teachers also use ERs as an active learning environ-
ment, or as a means to increase the motivation and engagement of students
(Taraldsen et al., 2020; Veldkamp et al., 2020). Interestingly, none of these
ER benefits is unique on its own. It is their combination that is unique and
appealing to teachers (Veldkamp et al., 2020), which explains why ERs have
started appearing in classrooms.

6

1.2 Research Questions

Most existing studies on educational ERs are case studies that create and
evaluate an ER. Informally, we can say that they try to answer the question:
’Does this work?’ (Taraldsen et al., 2020). Unfortunately, the number of
such studies for secondary computer science education is limited. Only three
examples were found (Hacke, 2019; Michaeli and Romeike, 2020; Streiff et al.,
2019), each with their own limitations. In order to gain more knowledge on
the use of ERs in this educational setting, more well-designed and evaluated
ERs are needed.

There is another issue with the current state of the research area. Although
case studies provide useful insights, other, more general, research is needed
as well. In order to bring the research area into a new phase, research on
how, why and when to use ERs as a didactic tool is necessary, according
to Taraldsen et al. (2020). Such research leads to more general results, and
helps to improve the usage of ERs in the classroom.

In order to address both aforementioned issues, this thesis answers the fol-
lowing research question and sub-questions:

How can we integrate educational escape rooms
into secondary computer science education?

• What are content criteria for using an educational escape room in
secondary computer science education?

• What are the achieved learning outcomes of an educational escape room
for secondary computer science education?

The answer to the first sub-question will give information on how and when
ERs can be used in secondary computer science education. This is an ex-
ample of the previously mentioned general research requested by Taraldsen
et al. (2020), on the use of ERs as a didactic tool. In this way, this thesis
goes a step further than the case studies.

We also need more example ERs, due to the limited number of ERs in sec-
ondary computer science education. Therefore, by answering the second
sub-question, we create and evaluate an example ER. This ER differs from
the three existing examples for secondary computer science education, be-
cause it is used as a teaching method on a single topic, contrary to the
existing ERs (the differences are explained in more detail in section 2.1.5).
Besides creating a new ER, we also evaluate the learning outcomes, in order
to get more general insights into what can be taught using ERs. Finally, the
main question, on how to integrate educational escape rooms into secondary

7

computer science education, is answered by combining the answers to both
sub-questions.

Since this thesis contains an analysis, design and evaluation of a learning
activity, it can be classified as educational design research (van den Akker
et al., 2013). The advantage of this research approach is that we both create
an activity usable in educational practice, and advance our knowledge in
order to inform future work, for instance on how to design and use these
activities.

1.3 Structure of Thesis

In Chapter 2, we discuss existing work on educational ERs and consider
secondary computer science education in the Netherlands. The research
of this study consists of three phases, and is described in Chapters 3 to
5. Each phase has their own chapter, describing the research methods and
results. In Chapter 3, we investigate the content of existing computer science
ERs, in all educational settings, in order to extract content criteria. Then,
we design an actual ER for secondary computer science education. The
design process and results are described in Chapter 4. The evaluation on
learning outcomes of this ER is outlined in Chapter 5. Finally, the results
are discussed in Chapter 6, and the conclusions are described in Chapter 7.

8

Chapter 2

Related Work

2.1 Educational Escape Rooms

Although educational ERs are relatively new, some research has already
been done on this topic. In this section, we explore several aspects of this
research. We also encounter some existing examples of ERs in computer
science.

2.1.1 Goals of Educational Escape Rooms

The use of an ER in education can serve several goals. According to a
literature review on ERs in education by Veldkamp et al. (2020), educators
used an ER ’1) to explore an active learning environment which is said 2)
to increase student’s motivation and/or engagement, 3) to foster learning,
while 4) practising or developing teamwork and communication skills’ in
36 out of 39 studies. The review also described different types of learning
goals, which differ from the above-mentioned reasons to implement an ER.
For example, increasing motivation is not a learning goal in itself, but can be
an intention to use an ER in the classroom. The following types of learning
goals were identified (Veldkamp et al., 2020):

• Specific content knowledge and content related skills
Most ERs (32) with content-related learning goals were used to foster,
demonstrate or assess students’ knowledge and skills. Fewer (10) were
used to introduce, extend or integrate knowledge and skills.

• General skills
Common examples are teamwork and communication skills, problem-
solving, critical thinking and analytic thinking/reasoning.

9

• Affective goals
This type of goal occurs most often in medical ERs. It relates to career
situations, such as performing under pressure, which is highly relevant
in medical education.

Another literature review on educational ERs, by Taraldsen et al. (2020),
identified four fields of research attention:

• Scenario
Students are exposed to real-life scenarios. Skills as working together,
trusting each other and handling time constraints are important. This
is relevant in a profession like health care.

• Curriculum
The focus is on knowledge and skills. The ER provides an opportunity
to apply the curriculum content.

• 21st-century skills
Mentioned examples are critical thinking, creativity, group dynamics,
initiative and problem-solving.

• Motivation
An ER creates a fun experience, generating enthusiasm and curiosity.

The aspects identified in the two literature reviews overlap. Both reviews
mention the integration of curriculum content (both knowledge and skills)
in ERs. Moreover, general skills, not specific to a subject, are identified as
a goal of ERs in both reviews, as well as increasing motivation. Finally, the
affective goals of Veldkamp et al. (2020) can be combined with the scenario
aspect of Taraldsen et al. (2020), since both are about students experiencing
a real-life situation that is relevant for their profession. Therefore, the goals
of using an educational ER can be summarized into four aspects:

• Knowledge and skills in the curriculum

• General skills

• Motivation

• Real-life scenario

10

2.1.2 Debriefing

In recreational ERs, there is usually a debriefing at the end (Nicholson,
2015). In the review by Veldkamp et al. (2020), 25 out of 39 educational ERs
used some form of debriefing. Students indicate that debriefing is important
in the learning process. In the recommendations for implementing an ER,
the implementation of a debrief is mentioned as a crucial element. It is not
only a source of feedback, but also supports students in actively linking and
decontextualizing knowledge (Sanchez and Plumettaz-Sieber, 2018).

This raises the question: what happens during the debriefing? First, there is
often a cooling down period after the intense activity. The participants can
also exchange their experiences and ask questions. It is possible to discuss
and explain the puzzles themselves, but the focus can also be on learning
aspects: which knowledge and skills were needed to solve the puzzles? In
this regard, relation to the learning goals is important. Moreover, the en-
countered concepts can be related to each other, or to other contexts. There
might also be room for feedback on students’ performances or reflection on
the learning process. (Sanchez and Plumettaz-Sieber, 2018; Veldkamp et al.,
2020)

There is no unique approach for debriefing. It can be implemented in sev-
eral forms. A structured debriefing could have the form of a PowerPoint
presentation. However, some teachers apply more unstructured methods, in
which the students’ questions and comments are leading, while the teacher
acts as a guide rephrasing students’ ideas or introducing scientific vocab-
ulary. Teachers also mention the use of concept maps, infographics, or
brainstorming sessions with post-its during the debriefing. (Sanchez and
Plumettaz-Sieber, 2018)

2.1.3 Design of Educational Escape Rooms

Researchers have started to create frameworks for designing educational ERs
(Taraldsen et al., 2020). An example is the EscapED framework (Clarke
et al., 2017), shown in Figure 2.1. This model takes a step-by-step ap-
proach, resulting in clarity during the design process. However, such a linear
approach has disadvantages as well, since some aspects, such as goals, puz-
zle path and teacher support, occur in more complex, non-linear patterns
(Veldkamp et al., 2020).

11

Figure 2.1: EscapED Framework (Clarke et al., 2017)

A different approach is used in the SEGAM model (Guigon et al., 2018),
depicted in Figure 2.2. An ER is split up into ’levels’, which contain riddles
and clues. Therefore, contrary to EscapeED, this model puts more emphasis
on the structure of the ER. Guigon et al. also describe other aspects, such
as the learning objectives and theme, but these are not part of the model
itself. Debriefing is mentioned as an important step, whereas this is not part
of EscapED.

Figure 2.2: SEGAM Model (Guigon et al., 2018)

12

Another framework is based on the theory of intrinsic integration, mean-
ing that educational learning and the game mechanics should be integrated
(van der Linden et al., 2018). In order to achieve this, there must be align-
ment between the game goal, learning goal, pedagogical approach and game
mechanics, as shown in Figure 2.3.

Figure 2.3: Intrinsic Integration Framework (van der Linden et al., 2018)

This framework was created for educational games in general, but can be
applied to ERs. Educational ERs have the game goal of escaping, but also
have learning goals. Students should only escape if the learning goals have
been achieved. Game mechanics, such as the team size and puzzle structure,
play a role as well. For example, it was shown that the team size (game
mechanic) impacted the achievement of collaborative learning (pedagogical
approach) (Veldkamp et al., 2020).

2.1.4 Escapp Web Platform

Besides frameworks for designing educational ERs, a tool for conducting
them has been developed as well. Escapp is a web platform, which assists
teachers in delivering content, checking solutions, giving hints, monitoring
progress and evaluating the activity (López-Pernas et al., 2021). The plat-
form can both be used for remote ERs and face-to-face ERs, with physical
and digital puzzles being combined in the latter. A limitation of Escapp
is the requirement that the puzzle structure must be linear, meaning that
one puzzle must be solved before the team can continue to the next. Other
puzzle structures suggested by Nicholson (2015), such as open or path-based
structures, in which multiple puzzles can be solved at the same time, are
therefore not possible using this tool. The Escapp tool has been evalu-
ated during three case studies, with 413 participants in total. Students’
responses indicate that the platform provides an enjoyable and useful expe-
rience (López-Pernas et al., 2021).

13

2.1.5 Examples in Computer Science

The existing research on the use of ERs in computer science education con-
sists of case studies, in which an ER is used to teach about one or more
computer science topics. There are few examples for secondary education,
since most ERs were made for higher education. For example, an ER was
used in a university course on software engineering, in order to reinforce the
most important concepts of the course (Gordillo et al., 2020). The learning
objectives of the ER focused on understanding, interpreting and creating
several diagrams relevant to software engineering (UML use case, sequence,
activity, class and state diagrams). This ER used the previously described
Escapp platform (López-Pernas et al., 2021).

Multiple ERs relate to security concepts (Borrego et al., 2017; Seebauer
et al., 2020; Streiff et al., 2019). For example, an ER was used to raise
awareness about potential vulnerabilities (Beguin et al., 2019). As a result,
the participants, not necessarily with a computer science background, learnt
ways to protect themselves from attacks. The teachers of a university course
about cryptography used an ER to give students practice in applying several
ciphers that were taught during the course (Ho, 2018). Applying a cipher
was also part of the ER created by Deeb and Hickey (2019).

ERs were also used to teach about front-end development (López-Pernas
et al., 2019b), back-end web development (López-Pernas et al., 2019a), de-
bugging (Michaeli and Romeike, 2020), networks (Borrego et al., 2017), logic
(Otemaier et al., 2020), or a combination of diverse computer science topics
(Combéfis and De Moffarts, 2019; Dimova et al., 2020; Hacke, 2019; Kahila
et al., 2020; Musil et al., 2019). The existing computer science ERs are
discussed more elaborately in Chapter 3.

The most common educational setting for computer science ERs is higher
education (Borrego et al., 2017; Deeb and Hickey, 2019; Gordillo et al.,
2020; Hacke, 2019; Ho, 2018; López-Pernas et al., 2019a,b; Otemaier et al.,
2020; Seebauer et al., 2020), which is consistent with educational ERs in
general (Taraldsen et al., 2020; Veldkamp et al., 2020). A reason for this
might be that teachers expect ERs to be more suitable for older students,
since participants of recreational ERs are more often adults (over 21) than
not (Nicholson, 2015). However, since ERs train general skills that are
important in secondary education, as will be discussed in section 2.2, there
is a lot of potential in the use of ERs in secondary education. Unfortunately,
the number of computer science ERs designed for secondary education level
is currently severely limited. Only three examples were found (Hacke, 2019;
Michaeli and Romeike, 2020; Streiff et al., 2019). In order to investigate the
use of this new teaching method in secondary computer science education,

14

more examples are necessary, to which this thesis contributes. The ER
created in this thesis will be used as a teaching method on a single topic.
Therefore, it differs from the existing three examples in the following ways:

• Hacke (2019) focuses on general problem-solving. The ER does not
teach about a specific topic.

• Michaeli and Romeike (2020) used their ER as a research method
rather than a teaching method.

• Streiff et al. (2019) describe some stand-alone activities that could be
used in an ER, but they are not actually incorporated into one ER.

Another new perspective of this thesis deals with the choice of topic. In the
case studies, it is not explained why the chosen topics or learning objectives
are suitable to be taught using an ER, with one exception (Beguin et al.,
2019). Therefore, this thesis also provides a novel contribution by determin-
ing content criteria for the use of ERs in computer science education.

2.1.6 Evaluation Methods

An educational ER can be evaluated in several ways. The literature reviews
by Taraldsen et al. (2020) and Veldkamp et al. (2020) indeed show that a
variety of methods is used, of which the most occurring are:

• Informal observations: The researchers, or other observers, observe the
participants during gameplay. This can be used to get some informa-
tion on student motivation or engagement, or the quality of teamwork
and communication skills, but the research value is limited.

• Feedback: Participants give feedback, in the form of a feedback session,
group discussion (possibly during the debriefing), or a post-activity
survey. Students can indicate, for example, their general opinion on
the ER, their thoughts on motivation and teamwork, and whether the
ER helped them to achieve the learning goals. Here, focus is on student
self-perception.

• Pre- and post-test: Participants make a test before and after the ER.
Improvement in content knowledge can be measured in this way. It
can also be used to measure an increase in motivation. This method
gives more valuable information than the opinions of participants,
since there is a discrepancy between perceived and actual learning
in ERs (Veldkamp et al., 2020).

The previously described Escapp platform enables an additional evaluation

15

method (López-Pernas et al., 2021). The platform automatically records
data that gives insight into student performance. For example, it keeps
track of how many teams solved the puzzles, how much time the puzzles
took and how many hints were needed. This information has been used
as part of evaluations, in addition to a pre- and post-knowledge test and
a survey on students’ opinions (Gordillo et al., 2020; López-Pernas et al.,
2019a). Escapp only gives information about the performance of students
on the puzzles; it does not provide insight into obtained knowledge outside
the context of the ER, motivation, teamwork, or other aspects. Therefore,
this evaluation method is indeed suitable to be used in combination with
other methods, but not as the only method.

2.2 Computer Science Education

Research on the didactics of computer science is limited, since computer
science is a relatively new scientific field (Barendsen and Tolboom, 2016).
This thesis contributes to research on computer science education by inves-
tigating the use of a novel didactic approach, namely educational ERs. In
order to get insight into the use of such a new teaching method, a curricu-
lum is a useful resource, because it summarizes the most important content
knowledge and skills of the subject. However, the curriculum contents differ
per country. In this thesis, we will focus on the Dutch computer science
curriculum. The research is conducted in the Netherlands, and the devel-
oped ER will be implemented in the Netherlands. Therefore, connection to
the Dutch exam program is desirable. Exploring the connection to other
curricula, that might contain different skills or content, is outside the scope
of this thesis.

The authors of the Dutch computer science curriculum identify three crucial
skills for computer science (Barendsen and Tolboom, 2016):

• Design and development (which the authors relate to problem-solving)

• See things in a computer science perspective (which the authors relate
to analytical skills)

• Collaboration and interdisciplinarity

The fact that these skills are part of the curriculum indicate that ERs can
be useful in computer science education, because there is a partial overlap
with the goals of educational ERs mentioned in section 2.1.1. For example,
ERs are used to improve problem-solving and collaboration skills (Taraldsen
et al., 2020; Veldkamp et al., 2020). Besides the development of general skills,
ERs can improve students’ content knowledge as well. In the Dutch com-

16

puter science curriculum, the content is divided into 17 domains (Barendsen
and Tolboom, 2016), which can be found in Appendix A. In the develop-
ment of content criteria for the use of ERs in computer science education,
the division of content into these domains will be used.

17

Chapter 3

Content Analysis

Research on ’the ”if, how, why, and when” regarding the use of escape rooms
as a didactic tool’ is needed to bring the research area on educational ERs
into a new phase (Taraldsen et al., 2020). In this chapter, the focus will be
on the content for which an ER is a suitable teaching approach. According
to Wiemker et al. (2015), an ER can be themed with almost any topic.
However, since all students need to experience a learning process during
the ER, content-related constraints do exist (Taraldsen et al., 2020). The
appropriateness of an ER might depend on the topic. Therefore, this chapter
investigates content criteria for the use of an ER in secondary computer
science education.

3.1 Methodology

For the content analysis, examples of computer science ERs were used. A
list of these ERs was created in a literature review by Lathwesen and Belova
(2021). Since their list is relatively recent, we assume that it is reasonably
complete. On top of the list of Lathwesen and Belova, some new examples
were added. Most descriptions of learning objectives and/or subtopics were
taken or adapted from the list of Lathwesen and Belova (2021).

The existing computer science ERs differ with regard to several aspects. For
example, the goals of these ERs are different: some were used to increase
motivation, whereas others mainly focused on content knowledge or skills.
ERs were used to introduce new concepts, but also to apply or review con-
tent. There are also differences in educational setting and game aspects.
However, in this chapter, we do not consider these differences; we purely
focus on the content of the ERs.

18

After having assembled a list of computer science ERs, we grouped them by
topic. For each group, we described the content that was included in the
ERs. In this way, we identified characteristics of the content. By finding
intersecting characteristics, we developed content criteria. Furthermore, we
mapped the content of each group to the Dutch exam program, to get insight
into the domains for which ERs are and are not used. Identifying patterns
allowed us to extract more content criteria.

3.2 Results

3.2.1 Computer Science ERs

The full list of computer science ERs can be found in Appendix B. There
is some inconsistency in the descriptions of the ERs, since the several au-
thors explained the content of their ERs in different ways: some articles
included concrete learning objectives, whereas other articles only mentioned
subtopics, and a few articles only gave some examples of puzzles. One ER
that was labelled as a computer science ER by Lathwesen and Belova (2021),
was left out, since this ER focused on research methods rather than content
specific to computer science. Also note that Borrego et al. (2017) are present
in the table twice, because the created ER included content on two different
topics.

3.2.2 Groups

In Appendix B, the ERs are grouped by general topic. The groups are
indicated by colours. The largest group, consisting of six ERs, contains the
ERs about security-related concepts. There is a group of four ERs that deal
with software development. Moreover, there is one ER about networks, and
one about maths for software engineering. Finally, five ERs do not focus on
one topic, but include various computer science topics. We will go over each
group.

Security

The ERs in this group relate to Domain N (Security) of the exam program.
However, the theme of security is present in the exam program twice more,
namely in subdomains E2 and F4. In E2, the focus lies on the technical
side, whereas F4 pays attention to the social and human aspects of security.
This distinction between the technical and human side is visible in the ERs
as well: there are four ERs about the technical side (Borrego et al., 2017;
Ho, 2018; Seebauer et al., 2020; Streiff et al., 2019), one about the human
side (Beguin et al., 2019), and one that includes aspects of both (Deeb and
Hickey, 2019).

19

An interesting observation is that in five of the six ERs, manipulation of data
plays a role. The manipulation happens in different ways: using ciphers,
compression algorithms, hash algorithms or other cryptographic methods.
An ER seems to be a suited environment for students to apply these con-
cepts. ERs consists of puzzles; using a cipher, algorithm or other method to
modify data is a puzzle in itself. The fact that there is often only one correct
answer when applying such a method is also helpful, because answers must
be easy to verify in ERs. For example, decrypting a message can directly
lead to a unique code. For these reasons, using an ER is suitable for content
related to the manipulation of data.

Software Development

This group relates to Domain D (Programming) of the exam program. How-
ever, the actual programming that students needed to do in the ERs is
limited (Gordillo et al., 2020; López-Pernas et al., 2019a,b; Michaeli and
Romeike, 2020). Students did not have to design or program large parts of
an application themselves. Such a task is not suitable for an ER, because of
the time constraints, and because it is hard to verify within an ER whether
such a task has been completed satisfactorily. Verification is necessary, be-
cause the students’ solutions must lead to a code or another puzzle in some
way.

Therefore, the ERs included different kinds of tasks, that are easier to ver-
ify. These were smaller programming tasks, such as invoking functions, de-
bugging something, modifying a function, or writing a couple lines of code
(López-Pernas et al., 2019a,b; Michaeli and Romeike, 2020). Besides mak-
ing students practice with small programming tasks, the ERs were used to
teach about concepts related to programming, such as software modelling
diagrams (Gordillo et al., 2020) or the basics of a programming language
(López-Pernas et al., 2019a,b). From the ERs in this group, we can con-
clude that ERs are not suitable for design tasks or larger programming tasks,
but they can be used for practising smaller pre-defined tasks or improving
the understanding of concepts related to programming.

Networks

The single ER in this group relates to Domain L (Networks) of the exam
program (Borrego et al., 2017). In the ER, students need to apply the skill of
sniffing a network. Students also need to understand the components of the
packets. Moreover, students need to understand the TCP protocol in order
to be able to rearrange the instructions. This shows that ERs can be used
to train skills or improve understanding of concepts related to networks.

20

Maths

The single ER in this group focused on logic (Otemaier et al., 2020), which
is related to Subdomain G3 (Logic). The students had to solve puzzles that
required them to understand propositions and predicates. This indicates
that the use of ERs is a possible teaching approach for logic.

Various Topics

Finally, some ERs do not focus on a specific topic (Combéfis and De Mof-
farts, 2019; Dimova et al., 2020; Hacke, 2019; Kahila et al., 2020; Musil
et al., 2019). The reason for this is that their goal is either to teach about
several basic computer science concepts (Combéfis and De Moffarts, 2019;
Dimova et al., 2020), or to train more general skills, such as problem-solving
and computational thinking (Hacke, 2019; Kahila et al., 2020; Musil et al.,
2019). As a result, these ERs contain several subtopics, related to different
domains of the exam program. Some of these subtopics, such as encryp-
tion/decryption, logic and programming, belong to the previously described
groups. However, some other subtopics are included as well:

• Algorithmic concepts. This includes the basic notion of an algorithm
and the working of stepwise, deterministic program execution. Exam-
ples include the bubble sort algorithm and the shortest-route problem.
These topics relate to Subdomain B1 (Algorithms).

• Finite automata, which relates to Subdomain B3 (Automata).

• Binary logic and bit flips. Since this is about binary representations,
this relates to Subdomain C4 (Standard representations).

• Digital skills. These are general skills, such as using software programs
and connecting hardware. Although such basic skills are mentioned as
skills in the exam program, they are not part of the content students
need to learn. Therefore, such skills are not relevant for the content
analysis, and will not be considered in the rest of this chapter.

Similar to the ERs about software development, the students do not have
to create something themselves in these ERs. For example, students do not
need to design an algorithm or create an automaton. Instead, these concepts
must be understood and used to solve the puzzles, by applying an existing
algorithm or tracing an automaton.

21

3.2.3 Technical vs. Social Topics

In the previous section, ERs were linked to domains of the exam program.
Several domains were not matched with an existing ER. However, this does
not imply that an ER is not a suitable teaching method for these domains;
the research field of educational ERs is relatively new and the number of
computer science ERs is severely limited. Therefore, a single domain not
being matched to an ER does not say much. Nevertheless, some conclusions
can be drawn by looking at the complete list of domains.

Previously, it was mentioned that the theme of security could be split up
into a technical and a social side. This distinction can also be made for the
complete exam program. Some domains are about technical topics, such as
domains B (Foundations), D (Programming) and E (Architecture), whereas
other domains focus on the social side, such as domains F (Interaction), O
(Usability), P (User Experience) and Q (Societal and individual influence
of computer science). Appendix B contains sixteen distinct ERs. Fourteen
of them focus on the technical side, whereas only two, both about security,
focus on the human side. These two ERs show that it is possible to teach
about some aspects of the social side using an ER (Beguin et al., 2019; Deeb
and Hickey, 2019). However, considering the fact that the large majority of
ERs is about the technical side, this side is likely to contain more suitable
content for ERs.

3.2.4 Content Criteria

Based on the content of existing computer science ERs, we can develop
criteria for content to be used in an educational ER. However, there is no
strict separation between appropriate and non-appropriate content. ERs can
be used in novel and unexpected ways. Therefore, the developed criteria are
not strict rules; they should merely be seen as an indication of suitable
content.

One characteristic of existing ERs is about the kind of tasks that are present.
Tasks that involve the reproduction of facts do not occur often, just like
design or creation tasks (e.g. designing an algorithm, developing a larger
program). Instead, most puzzles are either about understanding concepts
(e.g. interpreting diagrams, understanding the basics of a programming
language) or applying concepts (e.g. manipulating data using cryptographic
methods, using an algorithm).

Another general pattern is that the ERs contain puzzles of which the so-
lutions are easily verifiable. This is important in an ER, because a correct
solution must automatically lead to a new hint or puzzle. Verification is
more difficult for tasks in which students have much freedom, such as de-

22

sign, development or creation tasks. This explains why such tasks do not
appear in ERs often, as mentioned before. In the existing ERs, there are
many examples of puzzles of which the solution can automatically be veri-
fied. For example, applying a cipher, using an algorithm, or solving a logic
puzzle results in a unique answer (Ho, 2018; Combéfis and De Moffarts, 2019;
Otemaier et al., 2020). It is also possible to include small, pre-defined pro-
gramming tasks that can easily be verified, as some ERs did (López-Pernas
et al., 2019a,b). For example, if the correct functions are called or a bug is
fixed, a new hint or puzzle is automatically loaded.

As discussed in section 3.2.3, ERs are not often used for the domains focusing
on the social side of computer science. ERs are mostly about understanding
and applying concepts. The technical side of computer science contains a
lot of suitable concepts for this, whereas the social domains put emphasis
on other aspects, such as analysing the influence of computer science and
the use of computers by humans, which are less suited to be part of an ER.
Therefore, ERs are more suitable for the technical side of computer science.

In summary, based on the existing computer science ERs, we identified the
following content criteria:

• The content must contain concepts that students can apply, or con-
cepts of which students’ understanding can be tested using a puzzle.
Other content, for example about factual information or creation tasks,
is less suitable.

• It must be possible to easily verify correct application or understanding
of the content. This means that rather than allowing for much freedom,
the puzzles should be small, pre-defined tasks.

• Technical concepts are more appropriate for an ER than domains fo-
cusing on the social side of computer science.

23

Chapter 4

Design of an ER

After having established the content criteria, we designed an educational
ER for secondary computer science education. In this chapter, the design
process and resulting ER are described.

4.1 Choice of Topic

First, a teacher was contacted who was willing to test the ER in her class-
room. In consultation with the teacher, we decided to match the topic of the
ER with the topic that was planned in the period in which the ER would
be tested. In this way, the ER actually connects to the students’ learning
process. At the moment the ER would be tested, the students would be
learning the basics of programming in Python. Therefore, this was chosen
as the topic of the ER. A more specific description of the topic follows in
section 4.3.

The chosen topic satisfies the content criteria that were developed in Chapter
3. Although the ER cannot contain large programming tasks, it can be used
to improve or test students’ understanding of Python concepts. Moreover, it
is possible to create small tasks about such concepts that are easily verifiable.
Finally, the topic is technical rather than social.

4.2 Methodology

As discussed in section 2.1.3, several frameworks for the design of an edu-
cational ER exist. We used the EscapED framework (Clarke et al., 2017),
because it describes, contrary to the SEGAM model (Guigon et al., 2018)
and the model based on the intrinsic integration theory (van der Linden

24

et al., 2018), all steps that need to be taken in the design process. Its linear
nature has disadvantages, since the process of designing an ER might be
complex and non-linear at times. However, it is possible to slightly deviate
from the provided steps, as was shown in an account describing a use case
of the framework (Clarke et al., 2017).

The other described frameworks, the SEGAM model (Guigon et al., 2018),
and the model based on the intrinsic integration theory (van der Linden
et al., 2018), were not used directly. However, we adopted some ideas of
these frameworks. For example, debriefing is an essential part of an ER,
as described in section 2.1.2, but it is not part of the EscapED framework,
whereas it is mentioned in the explanation of the SEGAM model. Therefore,
debriefing was explicitly added to the EscapED framework. The model based
on the intrinsic integration theory was taken into consideration in the choice
of certain game mechanics, such as the group size.

The EscapED framework is illustrated in Figure 2.1. It contains the follow-
ing steps (Clarke et al., 2017):

1. Participants
The target audience needs to be analysed. For example, the user type,
which includes demographic information and educational needs, must
be determined. Since the required level of difficulty depends on the
audience, it is part of this step as well, just like other game mechanics,
such as the time and scale (number of participants). Finally, a choice
of ’mode’ needs to be made. This can, for example, be the cooperation-
based mode or the competitive-based mode.

2. Objectives
By designing the learning objectives early, they can be integrated into
the theme and puzzles. In this way, the ER is designed purposefully. It
also needs to be decided in this step whether one discipline or multiple
disciplines will be present. Moreover, choices about the role of soft
skills and problem-solving must be made.

3. Theme
A theme needs to be chosen in order to create a compelling game
experience. It can be ’Escape Mode’ (escaping a locked room) or
’Mystery Mode’ (solving a mystery). A narrative must be designed to
keep participants interested. It also needs to be decided whether the
ER is a stand-alone experience or part of a larger experience, consisting
of multiple games or ERs.

25

4. Puzzles
This step involves the creation of the actual puzzles. They must match
the learning objectives, so it is important to regularly check whether
this is still the case. Moreover, creating clear instructions and rules is
part of this step. Finally, hints and a method to deliver them must be
developed.

As mentioned before, we add a debriefing session to the EscapeED
framework. We develop the debriefing as part of this step.

5. Equipment
This step involves the choice of equipment. This includes the location
in which the ER takes place. Moreover, both physical and technical
props can be used. Real-life actors can also be used to make the
experience more believable, and possibly to indicate the time or to
give hints.

6. Evaluation
The last step is the evaluation of the ER. It needs to be tested before
the actual target audience plays it. Afterwards, a reflection with the
participants on their views and experiences can be useful. This step
also includes a formal evaluation of the learning objectives. Based
on the evaluation, adjustments can be made to the ER. Finally, the
’re-set’ involves checking whether all puzzles are in the correct state
before the ER is played again.

4.3 Results

The results for each step of the EscapED framework are described in this
section.

4.3.1 Participants

The target audience of the ER consists of students in the fourth grade of
havo or vwo1. In collaboration with a teacher, we decided to create an ER to
become part of a module about programming in Python. In order to match
the ER with the students needs, the students’ foreknowledge was considered.
Although the students have used a block-based programming environment,
they have not had previous lessons on actual imperative programming.

In the weeks before students will play the ER, the first two chapters of the

1Havo and vwo indicate levels of the Dutch education system. They can be translated as
’senior general secondary education’ and ’pre-university education’, respectively. In the
fourth grade of havo or vwo, students are generally 15 or 16 years old.

26

module about Python are covered in the classroom. The students learn to
write and run a simple Python program and use a library, called Turtle, to
draw figures in the first chapter. Afterwards, in the second chapter, they
learn about data types, printing information, user input and performing
calculations. The students also practice with the material of the first two
chapters. It was decided to start the lesson in which the students play the
ER with a short explanation about the third chapter, which covers variables.
This means that, before playing the ER, the students hear an explanation
about this topic, but they have not yet practised with it.

Besides an analysis of the participants, this step also involved the choice of
certain game mechanics. The playtime of existing educational ERs varies
from 20 to 120 minutes, with most ERs taking 60 minutes (Veldkamp et al.,
2020). However, specific pedagogical reasons for a playtime are barely ever
mentioned; some studies simply refer to classroom time slots (Veldkamp
et al., 2020). Since the duration of our ER is bounded by the duration of
the lesson, the choice of play time is primarily based on this. The lesson
takes 60 minutes, but time is needed for the explanation of the third chapter
of the module, the explanation of the ER, the debriefing and the evaluation.
A play time of 30 minutes was chosen, because this fits in the planning and
gives the students enough time to actually practice with the material in the
ER.

Another game mechanic is the team size. In most existing educational ERs,
the team size ranged from three to six students (Veldkamp et al., 2020).
Larger groups have disadvantages, such as inactivity of some students, and
a loss of communication and organization (Veldkamp et al., 2020). We
designed the ER for groups of three students.

The cooperation-based mode was chosen for the ER. As mentioned in sec-
tion 2.2, collaboration is an important aspect of computer science education.
Therefore, although improving collaboration is not an explicit goal of this
ER, a cooperation-based mode is more suitable for computer science edu-
cation than a competitive-based mode. Finally, the level of difficulty was
considered. There has to be a match between the level of difficulty of the ER
and that of the explanation and exercises in the existing Python module.
Therefore, we studied the existing content of the module before designing
the ER.

4.3.2 Objectives

The content of the ER covers the first three chapters of the existing Python
module. The first chapter consists of running simple Python programs and
drawing figures using Turtle. This chapter is covered in class before the

27

ER. Therefore, the ER is used as reinforcement. The students will practice
with running Python programs in the remainder of the module anyway.
Therefore, only drawing with Turtle is part of the ER. This results in the
following learning objective:

Objective 1: The student can trace the result of Turtle code.

The second chapter is covered in class before the ER as well. Therefore,
the ER is also used as reinforcement for this chapter. The content includes
data types, printing information, user input and performing calculations.
Therefore, the learning objective belonging to this chapter is:

Objective 2: The student can use the following concepts in a Python
program: standard data types, print statements, user input and

calculations

The content of the third chapter is new for the students. Before playing
the ER, the students get a short explanation about variables, the topic of
the chapter. The ER is their first opportunity to practice with this concept.
There are two learning objectives:

Objective 3.1: The student can trace the values of variables in a Python
program.

Objective 3.2: The student can use variables in a Python program.

The main focus of the ER lies on the third chapter, because it contains new
content for the students. Therefore, this chapter has two learning objec-
tives, whereas the first two chapters have only one each. Also note that, as
explained in Chapter 3, larger programming tasks are not suitable for an
ER. Therefore, the formulated learning objectives focus on understanding
or using concepts, rather than actually creating a larger program.

Learning objectives 1 and 3.1 involve code tracing. According to Lister
(2020), it is crucial to teach this skill to novice programmers. He argues
that students need to acquire two skills before they will be able to write
good code: tracing code and explaining code. Since explaining code is a
more open task, it is difficult to incorporate it in an ER. Tasks about tracing
code, on the other hand, are more suitable for an ER, since they have only
one correct answer. Therefore, we decided to give code tracing a substantial
place in the ER.

The other learning objectives, 2 and 3.2, are about the use of programming
concepts. A possible method to achieve these objectives is to let the students

28

write small programs that must use these concepts. Other ERs with such
small programming tasks exist (López-Pernas et al., 2019a,b). However,
setting up an environment in which students can program, and which lets the
students only progress to the next stage if they carried out the programming
task correctly, is challenging and time-consuming. Therefore, we decided to
not include actual code writing in the ER. This means that the puzzles must
teach students about the use of programming concepts, but the students
should not actually have to program themselves. Achieving this requires
creativity in the puzzle design, which is described in section 4.3.4.

Since we focus on computer science ERs, the ER is single disciplinary. A final
aspect to consider in this step is the role of soft skills, such as collaboration,
and problem-solving. Of course, such skills are needed in the ER, so the ER
gives students practice in these skills. As described in section 2.2, they are
important in computer science education. However, it is advised to create
a debriefing or ER solely on soft skills, if improving them is a goal of the
ER, because ’reflection on these goals is usually lost in a reflection on other
educational goals’ (Veldkamp et al., 2020). We mainly focus on content in
this thesis. Therefore, the ER can help in improving soft skills and general
problem-solving skills, but this is not explicitly formulated as a learning
objective.

4.3.3 Theme

In the ER, the students need to recover the hacked computer system of a
hospital. The ER starts with the following introduction:

The president of a hospital just called you in a panic. The com-
puter system of his hospital was attacked by hackers. They sabo-
taged several components of the system, gravely endangering all
patients! Patients are getting the wrong amounts of medication,
measurements give incorrect results, and treatments fail. The
president counts on you to recover the system. To succeed, you
need to re-program the sabotaged components. Make sure you
succeed in half an hour, or the patients’ lives are in danger.

The hackers also blocked access to the system. This means that
your first task is to get into the system. Good luck!

Nicholson (2015) described themes for ERs. Our ER relates to the themes
’Modern Era’ and ’Technological’. The choice for these modern themes is
based on the fact that computer science and programming are relatively new.
Categories of narratives were identified by Nicholson (2015) as well. The
chosen narrative can be placed in the category of ’Help Create Something’.

29

The students are not actually locked in a room, since this is impractical in
a classroom with multiple groups playing. Therefore, the ’Escape Mode’,
as mentioned in this step of the EscapED framework, is not used in the
ER. Since the students are not escaping anything, the ’Mystery Mode’ fits
better. However, this is also not a perfect description for this ER, since the
students do not have to solve a mystery. Instead, they must carry out a task
within a time limit.

Our ER is not part of a series of ERs or other games. However, it is used
as part of a larger module. It is embedded into the lesson plan. This means
that, from an educational perspective, it is an integrated activity rather
than a stand-alone activity.

4.3.4 Puzzles

Each part of the ER is matched with a learning objective. The number of
each part corresponds to the number of the relevant learning objective. The
complete puzzles can be found in Appendix C, but we will shortly explain
them here as well:

• Part 1
The students get three pieces of Turtle code. The result of each piece
forms a number. The students need to trace the code to find the three
numbers (see Figure 4.1). These form the code that gives the students
access to the hospital system.

• Part 2
The students now have access to the system. They have to repair
several parts. Two descriptions of small programs are given, together
with some separate lines of Python code (correct and incorrect lines).
For both programs, the students need to find the correct lines of code
and put them in the correct order. Some lines are already filled in.
The programs use the concepts mentioned in the learning objective.

• Part 3.1
After the students have repaired some parts of the hospital system,
it turns out that some more parts are broken, which have an extra
protection layer. The students are given a piece of code. They need
to trace the values of the variables. If they do this correctly, they get
the code that gives access to the rest of the system.

30

Figure 4.1: Part of a puzzle about Turtle. Tracing the Turtle code on the
left results in a drawing of the number 6.

• Part 3.2
The students now have access to the last parts of the system that need
to be repaired. They get two descriptions of small programs with the
corresponding Python code. However, there are some blanks in the
places of variable names (see Figure 4.2). The students need to fill in
the correct variable names.

Figure 4.2: Part of a puzzle about variables. Given a list of variable names,
the blanks need to be filled in.

31

A match between the puzzles and the learning objectives is important. For
Parts 1 and 3.1, this match is clear: the students trace the result of Turtle
code and the values of variables, which is exactly what is mentioned in the
corresponding learning objectives. Learning objectives 2 and 3.2 were more
challenging, since the students do not actually write programs themselves.
However, the puzzles still match the learning objectives:

• In Part 2, the students need to find the correct lines of code. This
means they need to distinguish between correct lines and lines includ-
ing common mistakes. This requires students to understand how to
use the concepts mentioned in the learning objective.

• In Part 3.2, the students need to fill in the variables in a program.
This requires them to understand, for example, what the role of each
variable in the program is, which value is stored in each variable, and
how calculations are done with variables. Therefore, the students need
to understand how to use variables in a program in order to complete
this task.

Part of this step is to create instructions and rules. The ER uses the Escapp
web platform. Therefore, before playing the ER, it must be explained how
this platform works. For example, it must be indicated how to submit a
code and how to request a hint. It is not allowed to use the Internet or
other sources during the ER. Moreover, the students get some envelopes
containing printed materials; they can only be opened when indicated in
the Escapp web platform. A final rule is that it is not allowed to copy-
paste, compile and run Python code using some program, since this would
give away answers.

Moreover, arranging hints is part of this step. We created hints for each
puzzle, which are available in Appendix C (see Figure 4.3 for an example).
They are delivered through the Escapp web platform. The students can
request a hint every two minutes. They can indicate for which puzzle they
want a hint. If students need additional support, the teacher can provide
this.

Figure 4.3: Example of hints. These hints belong to a puzzle in Part 2.

32

Finally, we decided to add the preparation of a debriefing to this step. Since
explaining the material on variables and playing the ER already take up most
of the lesson, we need to keep the debriefing short. It is unstructured, so that
we can use the questions and comments of the students as a starting point,
in order to optimally connect to their experiences and learning process. The
debriefing starts with a short cooling down period. Then, students get the
opportunity to share their opinion on the ER, which gives us useful feedback.
The learning process also gets attention, by having a class discussion around
these types of questions:

• Which parts of the ER were most useful for your learning, and which
were less useful?

• Did your understanding of certain concepts improve by playing the
ER?

• Did you learn anything new?

• Did you encounter anything that you do not understand yet, or about
which you would like some explanation?

Throughout the debriefing, the students can ask questions about the ER,
the puzzles, the content, or anything else.

4.3.5 Equipment

The ER can be played in a regular classroom. It uses the Escapp web
platform, as described in section 2.1.4. Because of this, computers or laptops
must be present in the classroom, at least one per team. We deliberately
minimized the number of physical items, because teachers should be able to
use the ER without much effort or costs. Therefore, almost all materials,
such as the narrative, puzzles and hints, are available digitally, in Escapp.
Students do get some items on paper, such as the lines of code for Part
2 and the trace table for Part 3.1. They also get scrap paper. No other
physical items are required. In this way, teachers using the ER have minimal
preparation; some materials must be printed, but most of it is digital.

No real-life actors are used in the ER. Again, this choice was made to reduce
the workload and preparation time for teachers. The timer and hints are
handled by the Escapp web platform. The teacher is present during the ER
to provide support, if needed.

33

4.3.6 Evaluation

After finishing the first version of the ER, two people gave feedback: the
computer science teacher in whose classroom the ER will be evaluated, and
a former computer science teacher, who is now working in the field of escape
games. They commented on the puzzles, explanations and the narrative.
Based on this, we made some small changes to the ER. The largest update
was a reduction of the number of puzzles, because the ER was expected to
be too lengthy. After incorporating the feedback, two test rounds of the
updated version were played with a mixed group of participants, some with
a computer science background and some without prior computer science
knowledge. The general impression was positive, but, based on our obser-
vations, and the feedback of the participants, we made some more minor
changes.

The EscapED framework includes a ’re-set’ in this step. This involves re-
setting the ER for the next play. Because it is mostly digital, the re-set is
not much work. The only preparation is to print and cut the materials that
the students get on paper.

Finally, according to the EscapED framework, the learning objectives must
be formally evaluated in this step. This is described, together with a more
elaborate evaluation, in the next chapter.

34

Chapter 5

Evaluation of Learning
Outcomes

The EscapED framework contains an evaluation as its last step. This in-
cludes a formal evaluation of the learning objectives. However, there may
be learning outcomes that are not part of the learning objectives. Students
may gain unexpected or extra knowledge. Moreover, the learning objectives
focus on the curriculum content, whereas students may also learn more gen-
eral skills, such as collaboration or communication skills, or problem-solving
strategies. There is a wide range of possible learning outcomes. Evaluat-
ing them gives insight into the possibilities that the use of ERs provides in
secondary computer science education.

5.1 Methodology

5.1.1 Data Collection

After the students played the ER, they filled in a learner report, as invented
by De Groot (1980). Such a learner report distinguishes learning experi-
ences along two dimensions. First, there is a distinction between learning
about rules and learning about exceptions to rules. The second dimension
distinguishes between learning about the world and learning about oneself.
This results in four parts, as displayed in Figure 5.1. For each of the four
parts, the students are asked to create sentences about what they learnt.

Learner reports give insight into learning that is difficult to measure ob-
jectively. This makes it a suitable method for evaluating ERs. In ERs,
there is a variety of learning possibilities, including learning about content,
learning soft skills, and learning about problem-solving strategies. Because

35

Learning about rules Learning about exceptions

Learning about the world Rules about or in the world Surprises of the world

Learning about oneself Rules regarding oneself Surprises regarding oneself

Figure 5.1: Grouping of learning experiences, translated from (Gerritsen van
der Hoop, 1981)

of the wide range of possible learning experiences, measuring all of them
objectively is difficult. Therefore, learner reports are useful, because they
provide a way to get insight into the learning experiences of students. This
is necessary to draw conclusions about the learning outcomes of the ER.

For that reason, we used learner reports to evaluate the ER. Evaluating an
activity is indeed one of the goals of using learner reports (Van Kesteren,
1993). However, when using learner reports as an evaluation tool, it is rec-
ommended to also use more objective instruments to get information about
measurable knowledge (Van Kesteren, 1993). An example of measurable
knowledge is whether the learning objectives have been achieved. Therefore,
the students also made some exercises after playing the ER. The exercises
cover learning objectives 3.1 and 3.2. In the ER, the students practised with
the material on these learning objectives for the first time. Therefore, their
performance on the exercises indicates whether learning objectives can be
achieved using an ER. In the first exercise, on learning objective 3.1, the
students had to trace variables. In the exercise on learning objective 3.2, six
programs using variables were given. In five of these, a mistake in the use of
one or more variables was made. The students had to indicate the correct
program.

The exercises do not cover learning objectives 1 and 2. These learning
objectives are reinforcement; the students have already learnt about the
material and practised with it. Therefore, including exercises about these
learning objectives would not allow us to draw conclusions about the learning
outcomes of the ER, since they might be attributable to the earlier lessons.
In order to objectively measure the effectiveness of reinforcement, a pre- and
post-test evaluation would be necessary. However, due to time constraints,
we leave such an evaluation to future work, and only include exercises about
learning objectives 3.1 and 3.2. Note that we can still get information on
learning outcomes related to the first two learning objectives via the learner
reports.

In conclusion, there are two sources of data: the learner reports, and the
exercises about learning objectives 3.1 and 3.2. The results of the exer-
cises are objective and measure achievement of the learning objectives. The

36

learner reports give information about a broader range of learning outcomes.
Here, the focus is on student self-perception. The combination of these data
sources is used to draw conclusions on the learning outcomes of the ER. The
evaluation form is available in Appendix D.

5.1.2 Data Analysis

We graded the two exercises. For each exercise, there were three options:
the answer was correct, incorrect, or no answer was given. In order to keep
the evaluation short, the students were not obliged to give their intermediate
steps or to explain their reasoning. Therefore, there are no partially correct
answers, and we do not have data on the cause of mistakes. However, the
correct-incorrect grading already allows us to draw sufficient conclusions on
the achievement of the learning objectives. We consider a learning objective
to be achieved if at least 80% of the students give the correct answer to the
corresponding exercise.

We also analysed the data from the learner reports, using Atlas.ti. The
first step was to digitalize the data and translate it to English. Then, we
grouped similar statements and assigned these groups a label. Here, we no
longer distinguish between the four parts of the learner report. The parts
were useful to prompt the students to write down as many sentences as
possible, but they play no role in the analysis. After the labelling, the labels
were combined into more general themes. Based on the themes, we drew
conclusions on the learning outcomes that students experience through the
ER. The process is schematized in Figure 5.2. As indicated by the dashed
arrows in the figure, the process is not linear. We regularly went back to the
previous step, for example to move statements to other groups or to change
a label.

5.2 Results

The ER was played in the fourth grade of both a havo and a vwo computer
science class. Because of time constraints, we played a 25-minute version
instead of the original 30-minute version. To save 5 minutes, we gave the
students the last digit of the first puzzle (about Turtle) and the solution of
the second part of the second puzzle (about computing BMI). Unfortunately,
there was still no time left for a debriefing, so we omitted that.

In total, 37 students played the ER. We divided them in groups of three.
There were some groups of two as well, because the number of students
could not be divided by three. There were 14 teams. 9 of them ’escaped’ in
time, with the fastest time being 9 minutes and 13 seconds. 3 groups still
completed the ER when the 25 minutes were over. The remaining 2 groups

37

Figure 5.2: Analysis of Learner Reports

did not complete the last puzzle. Of the 37 students, 26 participated in the
evaluation.

5.2.1 Exercises

The results of the exercises are summarized in Table 5.1. The first exercise,
on learning objective 3.1, was answered correctly by 24 out of 26 (≈ 92%)
students. One student did fill in some numbers in the trace table, but did
not finish the exercise. One other student gave the wrong answer. To the
second exercise, on learning objective 3.2, 23 out of 26 (≈ 88%) students
gave the correct answer. Two students gave the wrong answer, and one
student did not give an answer. We conclude that learning objectives 3.1
and 3.2 were achieved.

38

Correct answers Incorrect answers Missing answers

Exercise 1 (learning objective 3.1) 24 1 1

Exercise 2 (learning objective 3.2) 23 2 1

Table 5.1: Results of the exercises

5.2.2 Learner Reports

The analysis of the learner reports led to the grouping of learning outcomes
as depicted in Figure 5.3. There are two main themes: content and self-
reflection, both of which can be divided into two parts. Then, there are two
smaller themes, about problem-solving strategies and motivation, which did
not fit in the two main themes. Let us go over the themes one by one.

Figure 5.3: Thematized learning outcomes, according to the learner reports

Students reported learning about Python content. Before playing the ER,
the students had already studied the first two chapters of the Python mod-
ule. Some material of these chapters was present in the ER, as a means of
reinforcement. The learner reports indicate that students still learnt new
things about this material. For example, a student learnt about converting
input to an integer (’I learnt how to apply int() correctly, which I did differ-
ently before’). Another student learnt about the existence of the float data
type (’I now know that there is float as well’). Other statements are about

39

Turtle, printing output, and handling input.

The ER also contained new content, about variables, covering the third
chapter of the Python module. Students indicate that they learnt several
things regarding this new material. For example, students learnt how to
trace the values of variables (’I learnt how to trace’, ’I learnt how to use a
trace table’), and other notions about working with variables (’I learnt that
variables need good names’). The standard functions min(), max(), len()
and round() were part of this chapter of the Python module as well, and
were present in some ER puzzles. Students learnt about these functions (’I
learnt how to round a number in a specified number of decimals’, ’I learnt
that min is not subtracting’). Similary, the short-hand operators +=, -=,
*=, /= played a role in the ER, and students learnt about them (’I learnt
that x *= 3 is x times 3’, ’I learnt *= and +=’).

Some students wrote down very general statements about learning content
(’I learnt how to program certain things in Python’, ’I learnt how new pieces
of code work’). Because it is unclear to which part of the content these
statements relate, these statements might fit in either of the content groups.
However, taking only the statements into account that clearly belong in a
certain group, the majority of statements about content learning concern the
new content. Therefore, according to the students’ perception, they learnt
more things about the new content than about the reinforced content.

Self-reflection is the other main theme. Many students reflect on their
Python skills (’I noticed that I am good at Python’). Some students in-
directly reflect on their Python skills by formulating statements in terms of
their performance in the ER (’I learnt that I can make these kinds of puzzles
quite easily’). Some statements are general (’From the escape room, I learnt
that I find Python difficult’, ’I discovered that I need to go learn more for the
test’). On the other hand, some students reflect more specifically on which
topics they find easy or difficult (’I found out that I am better with variables
than with Turtle’, ’I learnt that I am good at tracing’, ’I learnt that it is not
true that I understand Turtle’).

Students also reflect on more general aspects, that are not specific to the
topic of the ER. This includes reflection on collaboration (’I learnt that
I program better in a group’, ’I learnt that I am good at collaborating’).
Some students learnt that they need to work more carefully (’I learnt that I
should work a bit less carelessly’, ’I now know that I should read the exercises
completely before I start’). Other reflective statements are ’I learnt that I
need to stay calm to work well’ and ’From the Escape Room, I learnt that I
am competitive in games’. It is clear that students reflect on a wide variety
of aspects regarding themselves.

40

Finally, besides the main themes of content and self-reflection, there are
two other themes. Two students wrote something about problem-solving
strategies (’I learnt that I should write problems down and only then solve
them’, ’So first writing down what you have, and then solving in steps’).
Moreover, there were two statements concerning motivation (’I noticed that
I like programming with Python’, ’I learnt that these kinds of lessons are fun
and educational, and a good substitute for regular lessons’). However, since
the number of students reporting learning regarding the themes of problem-
solving strategies and motivation is much lower than the number of students
reporting learning regarding the main themes of content and self-reflection,
the latter two themes are more relevant.

41

Chapter 6

Discussion

6.1 Interpretation of Results

In Chapter 3, we established content criteria for using an ER as a teach-
ing method. Their goal was to indicate for what kind of topics an ER is a
suitable teaching method. The resulting criteria are general in nature; nu-
merous topics can satisfy them. This is confirmed in the literature, in which
previous work indicates that an ER can be themed with almost any topic
(Wiemker et al., 2015). However, as reflected in the content criteria, there
do exist topics for which an ER is less suitable. For example, we found that
tasks with a lot of freedom, such as larger design or programming tasks,
are not fitted to an ER. Also, it should be possible to define a number of
small tasks with easily verifiable answers. For some topics, this is much
easier than for others. Also note that the developed content criteria should
be interpreted as guidelines rather than strict rules, because ERs might be
used in novel and unexpected ways.

After developing the content criteria, we developed an ER, and evaluated
the learning outcomes. The ER contained reinforced content, about which
the students had already learnt, as well as new content. In the learner
reports, students reported learning about both the reinforced and the new
content. The latter group was bigger, as expected. The students had already
learnt about the reinforced content and practised with it in the weeks before
playing the ER. Therefore, this material should already be familiar to them,
and in the ER, it should only be a reminder or simply some extra practice.
For that reason, it is not surprising that students reported less learning
about the reinforced content than about the new content.

Interestingly, existing work indicates that ERs are suitable to foster or assess

42

knowledge, but not to acquire new knowledge (Veldkamp et al., 2020). This
contrasts with our evaluation, in which we found that students learnt a lot
about the new content. Our conclusion is supported by both the exercises,
which show that the new learning objectives had been achieved, and the
learner reports, containing students’ reports about learning new content.
What causes the difference between our result and the result that ERs are
not suitable to acquire new knowledge? The most likely cause is the short
explanation about the new material, that we gave before the ER. Therefore,
although the ER was the students’ first opportunity to practice with the
new material, it was not completely new to them when they started playing
the ER.

In the learner reports, students did not report a lot of learning about general
skills, such as collaboration or communication skills, even though improving
such skills is one of the reasons for using an ER (Veldkamp et al., 2020;
Taraldsen et al., 2020). Only three students wrote a statement regarding
collaboration. However, we focused on content rather than soft skills in the
design of the ER, as indicated in section 4.3.2. If the goal is to improve soft
skills, it is advised to do a debriefing solely on them, as reflection on them
is lost in reflection on other learning objectives otherwise (Veldkamp et al.,
2020). The fact that we did not do this, and we did not focus on soft skills
in the design of the ER, explains why students did not report much learning
about soft skills.

Something that does occur in the learner reports is self-reflection. There is
reflection on general aspects, but most students reflect on their own knowl-
edge and skills regarding the topic of the ER. Some students specifically
reflect on which parts of the material they do or do not yet understand.
Self-reflection has not been mentioned as a reason to use an ER (Veldkamp
et al., 2020; Taraldsen et al., 2020), but our results show that an ER can be
used to let students reflect on their understanding of the content.

6.2 Implications

Of course, teachers can directly use the developed ER in their classroom. It
is unique, because, if we only consider ERs published in research, it is the
first one for secondary computer science education, that is used as a teaching
method on a single topic. Besides using this ER directly, it can also be used
as an example to create more ERs for secondary computer science education.

Besides providing an actual ER, this thesis produces more general results.
The results inform teachers about when and how to use ERs in secondary
computer science education. For example, the content criteria guide teach-
ers in deciding for which topics they could use an ER. Moreover, the results

43

of the evaluation show teachers that an ER, in combination with an expla-
nation of new material, can be used to achieve new learning objectives. It
can also be used to reinforce content, from which some students even learn
new things. Finally, teachers can use it as a self-reflection tool for students.
For instance, it can be useful to play an ER at the end of a chapter or in
preparation for a test. This enables students to reflect on their own knowl-
edge and skills. Consequently, this shows them which parts they already
understand, and which parts need to be studied again.

6.3 Limitations

The developed content criteria are only based on existing computer science
ERs that were published in research. The number of such ERs is limited.
Other sources that could influence the criteria, such as commercial educa-
tional ERs or teachers having experience using ERs, were not taken into
account. We based the criteria solely on the list of ERs in Appendix B. We
believe that these ERs already show a variety of content from which criteria
can be extracted. However, using, in addition, other sources, would have
added validity and might have resulted in slightly different criteria.

Another limitation deals with the learning outcomes of the ER. The learner
reports focus on the student’s perception. Unfortunately, there is a discrep-
ancy between perceived and actual learning of content knowledge (Veldkamp
et al., 2020). Therefore, we should be careful to draw conclusions on the
learning of content based solely on the learner reports. We partially resolve
this by also objectively measuring the achievement of learning objectives,
using exercises. Only the new learning objectives are covered in the exer-
cises, so only these are measured objectively. This means that other learning
outcomes, such as learning related to the reinforced learning objectives or
outside the learning objectives, are still only measured with the learner re-
ports.

Finally, it remains an open question to what extent the learning outcomes
can be attributed solely to the ER. As mentioned, we gave a short explana-
tion about the new material at the start of the lesson. Therefore, we cannot
attribute learning outcomes on this material to the ER alone. The learning
outcomes are the result of the combination of an explanation and an ER.
This means that we cannot draw conclusions on the learning outcomes of
solely using an ER.

The fact that no debriefing was carried out, because of time constraints,
might have influenced the achieved learning outcomes as well.

44

6.4 Recommendations

The exciting area of educational ERs is still novel. Therefore, a lot of work
remains to be done, especially in secondary computer science education.
For example, future work could build on the developed content criteria.
As explained, they are based on a limited list of computer science ERs
published in research. Other sources, such as commercial educational ERs
or teachers having experience using ERs, could give more information on
suitable content for ERs. Therefore, future work could improve the content
criteria based on these sources. Moreover, the content criteria could be
tested for correctness and completeness.

Future work could also extend the evaluation of learning outcomes. In this
thesis, we intentionally looked at learning outcomes in a general sense. Stu-
dents could report about various kinds of learning outcomes, such as learning
content, learning soft skills, and learning problem-solving strategies. Future
work could zoom in on one kind of learning, in order to draw more specific
conclusions. For example, an evaluation solely on the effect of the ER on
collaboration skills could be interesting.

Another point concerning learning outcomes is that we only tested achieve-
ment of the learning objectives on new content. We did not objectively
evaluate whether students’ understanding with regard to the reinforcement
learning objectives improved due to the ER. Future research could do a
pre-test and post-test to find this out. Furthermore, we only researched the
learning outcomes of one ER. To allow for more general conclusions, the
learning outcomes of other ERs in secondary computer science education
should be evaluated as well.

Finally, some informal observations were made when students played the ER,
that point towards interesting directions for future research. For example,
we noticed that the automatic hint system, in the Escapp web platform
(López-Pernas et al., 2021), was barely used. Instead, students asked the
teachers for help when they encountered difficulties. Future work could
investigate different approaches for delivering hints. We also observed that
many students were highly motivated to complete the ER in time. ERs
are indeed used as a means to increase motivation (Veldkamp et al., 2020;
Taraldsen et al., 2020). In this thesis, we did not formally evaluate the
impact of the ER on students’ motivation, but future work could do this.

45

Chapter 7

Conclusions

In this chapter, we first answer the two sub-research questions introduced
in Chapter 1. Afterwards, we answer the main research question.

7.1 Content Criteria

We studied the content of existing computer science ERs, in order to answer
the following question:

What are content criteria for using an educational escape room in
secondary computer science education?

Security and software development are the most occurring topics in com-
puter science ERs. A variety of other topics, including networks, logic,
algorithms and automata, are present in at least one ER as well. The simi-
larities between characteristics of popular topics led to the following criteria,
that indicate whether certain content is suitable to be taught using an ER:

• The content must contain concepts that students can apply, or con-
cepts of which students’ understanding can be tested using a puzzle.
Other content, for example about factual information or creation tasks,
is less suitable.

• It must be possible to easily verify correct application or understanding
of the content. This means that rather than allowing for much freedom,
the puzzles should be small, pre-defined tasks.

• Technical concepts are more appropriate for an ER than domains fo-
cusing on the social side of computer science.

46

Although these criteria are a useful indication of suitable content, they
should not be used as strict rules. ERs can be used in novel and unex-
pected ways.

7.2 Achieved Learning Outcomes

We designed and evaluated an ER, to provide an answer to the following
question:

What are the achieved learning outcomes of an educational escape room for
secondary computer science education?

Using the EscapED framework (Clarke et al., 2017), we designed an ER for
students in the fourth grade of havo and vwo, on the topic of programming
in Python. The ER is the first one in secondary computer science education
that is used as a teaching method on a single topic, and published in research.
It was designed to be part of an existing module on Python, and had the
following learning objectives:

• The student can trace the result of Turtle code.

• The student can use the following concepts in a Python program: stan-
dard data types, print statements, user input and calculations.

• The student can trace the values of variables in a Python program.

• The student can use variables in a Python program.

The material on the first two learning objectives had already been discussed
in class, so this part was included as reinforcement. The last two learning
objectives were new for the students; the ER was their first opportunity to
practice with the new material on variables.

After letting students play the ER, we evaluated the achievement of the
learning objectives, focusing on the last two objectives. We conclude that
these were achieved. Therefore, it is possible to achieve learning objectives
on content for which the ER is the first opportunity for students to practice
with the material.

We also let students report about their own learning. Students report learn-
ing about both the reinforced content, and the new content, although stu-
dents learnt more in the latter category. The ER also appeared to be a
useful self-reflection tool for students. Many students reflected on their
Python skills, and sometimes specifically on which parts they find easy or

47

difficult. The ER also enabled more general self-reflection on, for example,
collaboration skills or the need to work more carefully.

7.3 Integration of ERs into Education

By combining the answers to the sub-questions, we answer the following
main research question:

How can we integrate educational escape rooms
into secondary computer science education?

We can use an ER to teach about content that satisfies the criteria described
in section 7.1. Since our ER resulted in achievement of the new learning
objectives and students themselves reported learning about the new content,
ERs can be used as a first opportunity for students to practice with new
material. Moreover, it can be used to reinforce previously discussed material,
because students also reported learning about the reinforced content.

Besides an activity that teaches content, ERs can also be used as a self-
reflection tool for students. Students can reflect on general aspects, not
specific to one topic. Moreover, an ER generates self-reflection regarding
the topic of the ER; many students reflect on their understanding of the
content. Therefore, an ER can be used to give students insight into which
parts they do and do not yet understand.

48

Bibliography

E. Barendsen and J. Tolboom. Advies examenprogramma informatica havo-
vwo: inhoud en invoering. Technical report, SLO, Enschede, 2016.

E. Beguin, S. Besnard, A. Cros, B. Joannes, O. Leclerc-Istria, A. Noel,
N. Roels, F. Taleb, J. Thongphan, E. Alata, and V. Nicomette. Computer-
Security-Oriented Escape Room. IEEE Security & Privacy, 17(4):78–83,
2019.

C. Borrego, C. Fernández, I. Blanes, and S. Robles. Room escape at class:
Escape games activities to facilitate the motivation and learning in com-
puter science. Journal of Technology and Science Education, 7(2):162–171,
2017.

S. J. Clarke, D. J. Peel, S. Arnab, L. Morini, H. Keegan, and O. Wood.
EscapED: A Framework for Creating Educational Escape Rooms and In-
teractive Games to For Higher/Further Education. International Journal
of Serious Games, 4(3):73–86, 2017.

S. Combéfis and G. De Moffarts. Learning Computer Science at a Fair with
an Escape Game. In Proceedings of the 12th International Conference
on Informatics in Schools: Situation, Evolution and Perspectives, pages
93–95, Larnaca, Cyprus, Nov. 2019.

A. D. De Groot. Over leerervaringen en leerdoelen. In Handboek Voor de
Onderwijspraktijk. Van Loghum Slaterus, Deventer, 1980.

F. A. Deeb and T. J. Hickey. Teaching Introductory Cryptography using
a 3D Escape-the-Room Game. In Proceedings of the IEEE Frontiers in
Education Conference, pages 1–6, Covington, KY, USA, Oct. 2019.

G. Dimova, M. Videnovik, and V. Trajkovik. Using Educational Escape
Room to Increase Students’ Engagement in Learning Computer Science.
In Proceedings of the 17th International Conference on Informatics and
Information Technologies, North Macedonia (Online Conference), May
2020.

J. Gerritsen van der Hoop. Een toepassing van het ’learner report’ voor het

49

vaststellen van de effekten van een kursus. Technical report, Technische
Hogeschool Eindhoven, Eindhoven, 1981.

A. Gordillo, D. López-Fernández, S. López-Pernas, and J. Quemada. Eval-
uating an Educational Escape Room Conducted Remotely for Teaching
Software Engineering. IEEE Access, 8:225032–225051, 2020.

G. Guigon, J. Humeau, and M. Vermeulen. A Model to Design Learn-
ing Escape Games: SEGAM. In Proceedings of the 10th International
Conference on Computer Supported Education, pages 191–197, Funchal,
Madeira, Portugal, Mar. 2018.

A. Hacke. Computer Science Problem Solving in the Escape Game “Room-
X”. In Proceedings of the 12th International Conference on Informatics in
Schools: Situation, Evolution and Perspectives, pages 281–292, Larnaca,
Cyprus, Nov. 2019.

A. M. Ho. Unlocking Ideas: Using Escape Room Puzzles in a Cryptography
Classroom. Problems, Resources, and Issues in Mathematics Undergrad-
uate Studies, 28(9):835–847, 2018.

J. Kahila, T. Parkki, A. Gröhn, A. Karvinen, E. Telimaa, P. Riikonen, R. Ti-
itta, P. Haantio, A. Keinänen, T. Kerkkänen, I. Jormanainen, S. Pentti-
nen, and M. Tedre. Escape Room Game for CT Learning Activities in
the Primary School. In Proceedings of the 20th Koli Calling International
Conference on Computing Education Research, pages 1–5, Koli, Finland,
Nov. 2020.

C. Lathwesen and N. Belova. Escape Rooms in STEM Teaching and Learn-
ing—Prospective Field or Declining Trend? A Literature Review. Educa-
tion Sciences, 11(6):308, 2021.

R. Lister. On the cognitive development of the novice programmer: And the
development of a computing education researcher. In Proceedings of the
9th Computer Science Education Research Conference, pages 1–15, The
Netherlands (Online Conference), Oct. 2020.

S. López-Pernas, A. Gordillo, E. Barra, and J. Quemada. Analyzing Learn-
ing Effectiveness and Students’ Perceptions of an Educational Escape
Room in a Programming Course in Higher Education. IEEE Access, 7:
184221–184234, 2019a.

S. López-Pernas, A. Gordillo, E. Barra, and J. Quemada. Examining the Use
of an Educational Escape Room for Teaching Programming in a Higher
Education Setting. IEEE Access, 7:31723–31737, 2019b.

S. López-Pernas, A. Gordillo, E. Barra, and J. Quemada. Escapp: A Web
Platform for Conducting Educational Escape Rooms. IEEE Access, 9:
38062–38077, 2021.

50

T. Michaeli and R. Romeike. Investigating Students’ Preexisting Debugging
Traits: A Real World Escape Room Study. In Proceedings of the 20th
Koli Calling International Conference on Computing Education Research,
pages 1–10, Koli, Finland, Nov. 2020.

B. Musil, S. Gartner, I. Pesek, and M. Krašna. ICT competences assess-
ment through ICT escape room. In Proceedings of the 42nd International
Convention on Information and Communication Technology, Electronics
and Microelectronics, pages 622–626, Opatija, Croatia, May 2019.

S. Nicholson. Peeking behind the locked door: A survey of escape room
facilities. http://scottnicholson.com/pubs/erfacwhite.pdf, 2015.

K. R. Otemaier, P. G. Zanese, N. S. Bosso, and E. E. Grein. Educational
escape room for teaching Mathematical Logic in computer courses. In
Proceedings of SBGames, pages 595–604, Recife, Brazil, 2020.

E. Sanchez and M. Plumettaz-Sieber. Teaching and Learning with Escape
Games from Debriefing to Institutionalization of Knowledge. In Proceed-
ings of the 7th International Conference on Games and Learning Alliance,
pages 242–253, Palermo, Italy, Dec. 2018.

S. Seebauer, S. Jahn, and J. Mottok. Learning from Escape Rooms? A Study
Design Concept Measuring the Effect of a Cryptography Educational Es-
cape Room. In Proceedings of the IEEE Global Engineering Education
Conference, pages 1684–1685, Porto, Portugal, Apr. 2020.

J. Streiff, C. Justice, and L. J. Camp. Escaping to Cybersecurity Education:
Using Manipulative Challenges to Engage and Educate. In Proceedings of
the 13th European Conference on Game Based Learning, pages 1046–1051,
Odense, Denmark, Oct. 2019.

L. H. Taraldsen, F. O. Haara, M. S. Lysne, P. R. Jensen, and E. S. Jenssen. A
review on use of escape rooms in education – touching the void. Education
Inquiry, 13(2):169–184, 2020.

J. van den Akker, B. Bannan, A. Kelly, N. Nieveen, and T. Plomp. Educa-
tional Design Research: Part A: An introduction. Technical report, SLO,
Enschede, 2013.

A. van der Linden, W. R. van Joolingen, and R. F. G. Meulenbroeks. De-
signing an Intrinsically Integrated Educational Game on Newtonian Me-
chanics. In Proceedings of the International Conference on Games and
Learning Alliance, pages 123–133, Palermo, Italy, Dec. 2018.

B. J. Van Kesteren. Applications of De Groot’s “learner report”: A tool
to identify educational objectives and learning experiences. Studies in
Educational Evaluation, 19(1):65–86, 1993.

51

A. Veldkamp, L. Van de Grint, M. C. P. J. Knippels, and W. R. Van Joolin-
gen. Escape education: A systematic review on escape rooms in education.
Educational Research Review, 31:100364, 2020.

M. Wiemker, E. Elumir, and A. Clare. Escape Room Games: ”Can you
transform an unpleasant situation into a pleasant one?”. In Game Based
Learning – Dialogorientierung & Spielerisches Lernen Digital Und Analog,
pages 55–68. Fachhochschule St. Pölten GmbH, St. Pölten, Austria, 2015.

52

Appendix A

Exam Program

This appendix contains a translated version of the Dutch exam program for
computer science in secondary education (Barendsen and Tolboom, 2016).
Domain A, about skills, is omitted.

Domain Topic Subdomain Subtopic

B Foundations

B1 Algorithms

B2 Data Structures

B3 Automata

B4 Grammars

C Information

C1 Objectives

C2 Identifying

C3 Representing

C4 Standard representations

C5 Structured Data

D Programming
D1 Developing

D2 Inspecting and adjusting

E Architecture
E1 Decomposition

E2 Security

F Interaction

F1 Usability

F2 Societal aspects

F3 Privacy

F4 Security

G Algorithmics, computability and logic

G1 Complexity of algorithms

G2 Computability

G3 Logic

53

H Databases

H1 Information modelling

H2 Database paradigms

H3 Linked data

I Cognitive computing

I1 Intelligent behaviour

I2 Characteristics of cognitive computing

I3 Applications of cognitive computing

J Programming paradigms
J1 Alternative programming paradigm

J2 Choice of programming paradigm

K Computer architecture

K1 Boolean algebra

K2 Digital circuits

K3 Machine language

K4 Variation in computer architecture

L Network

L1 Network communication

L2 Internet

L3 Distribution

L4 Network security

M Physical computing
M1 Sensors and actuators

M2
Development of

physical computing components

N Security
N1 Risk analysis

N2 Measures

O Usability

O1 User interfaces

O2 User research

O3 Design

P User experience
P1 Analysis

P2 Design

Q
Societal and individual influence

of computer science

Q1 Societal influence

Q2 Legal aspects

Q3 Privacy

Q4 Culture

R Computational science
R1 Modelling

R2 Simulating

54

Appendix B

Computer Science ERs

Article General Topic Learning Objectives / Subtopics

Computer-Security-Oriented
Escape Room (Beguin et al.,
2019)

Security discover ways to protect oneself from com-
puter attacks (defender scenario: patch-
ing vulnerabilities such as weak passwords
and computers left unlocked; attacker sce-
nario: identifying and using vulnerabili-
ties)

Room Escape at Class: Es-
cape Game Activities to Fa-
cilitate the Motivation and
Learning in Computer Science
(Borrego et al., 2017)

Information and
Security

LZ77 compression algorithm, public/pri-
vate RSA scheme, Huffman coding

Teaching Introductory Cryp-
tography using a 3D Escape-
the-Room Game (Deeb and
Hickey, 2019)

Security and
Cryptography

introduce to security problems related to
usage of the same password and disposal
of sensitive information (Dumpster div-
ing), introduce to basic concepts and vo-
cabulary of cryptography (encryption/de-
cryption, using Caesar Cipher)

Unlocking Ideas: Using Es-
cape Room Puzzles in a
Cryptography Classroom (Ho,
2018)

Cryptography application/review of content, cryptogra-
phy (Shift Decryption; Mix of Ciphers:
substitution, affine, play fair, rail fence
and Vigenère; Hill Ciphers)

55

Learning from Escape
Rooms? A Study Design
Concept Measuring the
Effect of a Cryptography
Educational Escape Room
(Seebauer et al., 2020)

Cryptography apply/revise knowledge about cryptogra-
phy (cryptography methods and hash al-
gorithms e.g. AES, RSA, SHA3)

Escaping to Cybersecurity
Education: Using Manipula-
tive challenges to Engage and
Educate (Streiff et al., 2019)

Cybersecurity cryptography (e.g. Caesar cipher, encryp-
t/decrypt public key), IoT Wifi/BT, se-
cure systems, forensics

Evaluating an Educational
Escape Room Conducted Re-
motely for Teaching Software
Engineering (Gordillo et al.,
2020)

Software Engi-
neering

reinforce most important concepts of soft-
ware modelling (understand and interpret
UML activity/class/state/sequence/use
case diagrams)

Analyzing Learning Effective-
ness and Students’ Percep-
tions of an Educational Es-
cape Room in a Programming
Course in Higher Education
(López-Pernas et al., 2019a)

Front-end devel-
opment

reinforce basics of web development, in-
cluding HTML, CSS, JavaSript, Node.js,
express and SQL

Examining the Use of an
Educational Escape Room
for Teaching Programming in
a Higher Education Setting
(López-Pernas et al., 2019b)

Back-end web de-
velopment

enhance (pair) programming skills, revis-
ing main concepts (Redux architecture,
HTML, CSS, JavaScript basics, react life-
cycle methods, debug a React application,
Flexbox layout mode)

Investigating Students’ Preex-
isting Debugging Traits: A
Real World Escape Room
Study (Michaeli and Romeike,
2020)

Debugging find and fix errors, (systematic or parti-
cle) troubleshooting process in debugging-
related scenarios, topographic search
strategy

Room Escape at Class: Es-
cape Game Activities to Fa-
cilitate the Motivation and
Learning in Computer Science
(Borrego et al., 2017)

Computer Net-
works

network sniffing, TCP conversation

Educational Escape Room for
Teaching Mathematical and
Logic in Computer Courses
(Otemaier et al., 2020)

Maths for soft-
ware engineering

propositional logic, predicates

56

Learning Computer Science at
a Fair with an Escape Game
(Combéfis and De Moffarts,
2019)

Basic CS concepts not fully specified, but mentioned exam-
ples are: Caesar cipher, notion of an algo-
rithm, bubble sort algorithm

Using Educational Escape
Room to Increase Students’
Engagement in Learning
Computer Science (Dimova
et al., 2020)

Various topics course material (not fully specified, but
mentioned examples are: translating bi-
nary code, working with an Excel file)

Computer Science Problem
Solving in the Escape Game
”Room-X” (Hacke, 2019)

Problem solving Caesar encryption, logic, finite automata

Escape Room Game for CT
Learning Activities in the Pri-
mary School (Kahila et al.,
2020)

Computational
thinking

several computational thinking skills (e.g.
program a repair robot (to practice step-
wise, deterministic program execution),
binary logic and bit flips, shortest-route
problem, decrypt codes)

ICT competences assessment
through ICT escape room
(Musil et al., 2019)

ICT competences testing following ICT competences: in-
formation and data literacy, communica-
tion and collaboration, digital content cre-
ation, safety and problem solving (activi-
ties include: connecting hardware, setting
up computer, using office tools, transfer-
ring a file)

57

Appendix C

Material of the ER

The following pages contain all the material that was used in the ER. The
material is in Dutch.

58

Puzzels Escape Room

Verhaal

Het computersysteem van een ziekenhuis is gehackt, waardoor alle patiënten in gevaar zijn.

De hackers hebben meerdere onderdelen van het systeem gesaboteerd en de toegang tot

het systeem geblokkeerd. De leerlingen moeten toegang krijgen en het systeem herstellen

door de gesaboteerde onderdelen opnieuw te programmeren.

Introductieverhaal dat de leerlingen te zien krijgen

De directeur van het Radboudumc heeft jullie net in paniek opgebeld. Het computersysteem

van zijn ziekenhuis is gehackt. De hackers hebben meerdere onderdelen van het systeem

gesaboteerd, waardoor alle patiënten in gevaar zijn! Patiënten krijgen de verkeerde

hoeveelheden medicatie, metingen geven foute uitslagen, en behandelingen gaan fout. De

directeur heeft jullie hulp ingeschakeld om het systeem te herstellen. Hiervoor moeten jullie

de gesaboteerde delen opnieuw programmeren. Zorg dat dit binnen een half uur lukt,

anders komen de patiënten in levensgevaar...

Houd je aan de volgende regels:

• Gebruik geen internet of andere bronnen.

• Gebruik geen programma’s of websites om Python code uit te voeren.

• Open de enveloppen pas als dat wordt aangegeven.

De hackers hebben ook de toegang tot het systeem geblokkeerd. Jullie eerste taak is dus om

in het systeem te komen. Succes!

59

Deel 1

Verhaal

De hackers hebben een toegangscode op het systeem gezet. Deze moet gevonden worden

om toegang te krijgen tot het systeem. Op het inlogscherm zijn wat rare codes te zien.

Puzzel

Er zijn drie stukjes Turtle code te zien. De output van elk stukje is een getal. Deze drie

getallen vormen de code.

Wat de leerlingen te zien krijgen

De hackers hebben een toegangscode op het systeem gezet. Op het inlogscherm zien jullie

alleen wat rare codes. Vind de code om toegang te krijgen tot het systeem!

Onthoud: Turtle begint altijd op coördinaat (0, 0), kijkend naar rechts.

Hints

1. Begin voor elk stukje code een nieuwe tekening!

turtle.pendown()

turtle.left(180)

turtle.forward(100)

turtle.left(90)

turtle.forward(200)

turtle.left(90)

turtle.forward(100)

turtle.left(90)

turtle.forward(100)

turtle.left(90)

turtle.forward(100)

turtle.done()

turtle.pendown()

turtle.left(90)

turtle.forward(200)

turtle.penup()

turtle.left(90)

turtle.forward(100)

turtle.left(90)

turtle.pendown()

turtle.forward(100)

turtle.left(90)

turtle.forward(100)

turtle.done()

turtle.pendown()

turtle.forward(100)

turtle.right(90)

turtle.forward(200)

turtle.right(90)

turtle.forward(100)

turtle.penup()

turtle.goto(0, -100)

turtle.setheading(0)

turtle.pendown()

turtle.forward(100)

turtle.done()

60

2. Dit is wat de functies doen:

3. Het resultaat van de stukjes code vormt een 6, een 4, en een 3.

Oplossing

Elk stukje Turtle code traceren leidt tot een getal. Van links naar rechts is dit 643.

turtle.pendown() Zet pen op papier, alle bewegingen hierna
worden zichtbaar.

turtle.penup() Haal pen van papier, alle bewegingen
hierna worden niet zichtbaar.

turtle.right(x) Draai x graden naar rechts.

turtle.left(x) Draai x graden naar links.

turtle.forward(x) Loop x stappen vooruit.

turtle.goto(x, y) Zet turtle op positie (x,y). Het midden van
het scherm is (0, 0).

turtle.setheading(x) Kijkrichting. 90 is naar boven, 0 is naar
rechts.

turtle.done() Klaar met tekenen.

61

Deel 2

Verhaal

De leerlingen hebben nu toegang tot het systeem. Ze kunnen nu verschillende gesaboteerde

onderdelen van het systeem herstellen.

Puzzel

De leerlingen krijgen drie keer een beschrijving van een programma en losse regels code

(zowel goede als foute regels). Voor elk programma moeten ze de juiste regels uitzoeken en

in de juiste volgorde zetten. Sommige regels zijn al op de juiste plek gezet.

Wat de leerlingen te zien krijgen

Goed gedaan, jullie kunnen nu in het systeem! Er zijn twee onderdelen die hersteld moeten

worden. Open envelop A om het eerste onderdeel te herstellen. In de envelop vind je een

deel van een programma en losse regels code. Vul het programma aan met de goede regels

code (er zitten dus ook foute regels bij!). Doe dit door de goede getallen aan de rechterkant

te zetten. Daarna kan je de oplossing van boven naar onder aflezen!

Onderdeel 1: Maximale hartslag

Mensen hebben een maximale hartslag. Als je hartslag hierboven komt, loop je gevaar.

Sommige apparaten in het ziekenhuis gebruiken dit om te detecteren wanneer iemand

gevaar loopt. De maximale hartslag kan je berekenen met de formule:

𝑚𝑎𝑥𝑖𝑚𝑎𝑙𝑒 ℎ𝑎𝑟𝑡𝑠𝑙𝑎𝑔 = 220 − 𝑙𝑒𝑒𝑓𝑡𝑖𝑗𝑑

Dit programma moet iemands leeftijd vragen en de maximale hartslag berekenen.

invoer = input("Wat is je leeftijd?")

print("Je leeftijd is", leeftijd)

62

De leerlingen krijgen de volgende losse regels code:

leeftijd = int(invoer) 1

max_hartslag = 220 - leeftijd 5

print("Je maximale hartslag is:", max_hartslag) 3

leeftijd = invoer 2

print("Je maximale hartslag is:" + max_hartslag) 4

Onderdeel 2: BMI berekenen

Goed gedaan, jullie hebben het eerste onderdeel hersteld. Open envelop B voor het

volgende onderdeel. De opdracht werkt hetzelfde als net!

Om informatie te krijgen over iemands gezondheid kan je het BMI berekenen. Dit wordt

gedaan door het gewicht in kilo’s te delen door het kwadraat van de lengte in meters:

𝐵𝑀𝐼 =
𝑔𝑒𝑤𝑖𝑐ℎ𝑡

𝑙𝑒𝑛𝑔𝑡𝑒 𝑥 𝑙𝑒𝑛𝑔𝑡𝑒

Dit programma moet de gebruiker om zijn lengte en gewicht vragen en vervolgens het BMI

printen.

invoer = input("Hoeveel kilogram weeg je?")

gewicht_in_kg = int(invoer)

print("Je gewicht is " + str(gewicht_in_kg))

print("Je lengte is " + str(lengte_in_m))

63

De leerlingen krijgen de volgende losse regels code:

invoer = input("Wat is je lengte in meters?") 7

lengte_in_m = float(invoer) 4

BMI = gewicht_in_kg / (lengte_in_m*lengte_in_m) 2

print("Je BMI is:", BMI) 3

lengte_in_m = int(invoer) 6

BMI = gewicht_in_kg / lengte_in_m*lengte_in_m 5

print("Je BMI is:" + BMI) 1

Hints

Onderdeel 1: Maximale hartslag

1. Met een plus kan je alleen strings aan elkaar plakken. Met een komma kan je dingen

van verschillende types aan elkaar plakken.

2. De invoer moet worden omgezet naar een getal.

3. De regels 2 en 4 zijn fout.

Onderdeel 2: BMI berekenen

1. Met een plus kan je alleen strings aan elkaar plakken. Met een komma kan je dingen

van verschillende types aan elkaar plakken.

2. Lengte in meters is een kommagetal.

3. Denk aan de haakjes bij het berekenen van het BMI.

4. De regels 1, 5 en 6 zijn fout.

Oplossing

Onderdeel 1: Maximale hartslag

invoer = input("Wat is je leeftijd?")

leeftijd = int(invoer) 1

print("Je leeftijd is", leeftijd)

max_hartslag = 220 - leeftijd 5

print("Je maximale hartslag is:", max_hartslag) 3

De oplossing van dit deel is 153.

64

Onderdeel 2: BMI berekenen

invoer = input("Hoeveel kilogram weeg je?")

gewicht_in_kg = int(invoer)

print("Je gewicht is " + str(gewicht_in_kg))

invoer = input("Wat is je lengte in meters?") 7

lengte_in_m = float(invoer) 4

print("Je lengte is " + str(lengte_in_m))

BMI = gewicht_in_kg / (lengte_in_m*lengte_in_m) 2

print("Je BMI is:", BMI) 3

De oplossing van dit deel is 7423.

65

Deel 3.1

Verhaal

Er zijn nog meer kapotte onderdelen gevonden. De hackers hebben hier een extra

beveiliging op gezet. De leerlingen moeten de code vinden om toegang te krijgen.

Puzzel

De leerlingen krijgen een stukje code waarin variabelen worden gebruikt. Ze moeten de

waardes traceren. De code wordt gevormd door de drie gevonden waardes van variabelen

achter elkaar te zetten.

Wat de leerlingen te zien krijgen

Jullie hebben de onderdelen succesvol hersteld! Helaas zijn er inmiddels nog meer kapotte

onderdelen gevonden. De hackers hebben hier een extra beveiliging op gezet. Op het

inlogscherm staat weer wat code. Vind de toegangscode om in de rest van het systeem te

kunnen! Open envelop C voor een hulpmiddel.

Code = abc

In envelop C zit een lege trace-tabel:

instructie a b c

a = 2

b = a

a *= 3

c = a / b

b = max(b, c)

a = b + c - a

a = 2

b = a

a *= 3

c = a / b

b = max(b, c)

a = b + c - a

66

Hints

1. a *= 3 is hetzelfde als a = a * 3. Oftewel, de waarde van a wordt met 3

vermenigvuldigd.

2. Eerste vier regels van de trace-tabel ingevuld.

3. Volledig ingevulde trace-tabel.

Oplossing

instructie a b c

a = 2 2 - -

b = a 2 2 -

a *= 3 6 2 -

c = a / b 6 2 3

b = max(b, c) 6 3 3

a = b + c - a 0 3 3

De code is 033.

67

Deel 3.2

Verhaal

De leerlingen hebben nu toegang tot de rest van het systeem. Ze kunnen nu de laatste

gesaboteerde onderdelen van het systeem herstellen.

Puzzel

De leerlingen krijgen twee keer een beschrijving van een programma met bijbehorende

code. Echter, de variabelen zijn op sommige plekken weggelaten. Voor beide programma’s

moeten ze de juiste variabelen op alle plekken invullen.

Wat de leerlingen te zien krijgen

Prima werk, jullie hebben nu toegang tot het hele systeem! Er zijn nog maar twee

onderdelen die jullie moeten herstellen. De code van deze onderdelen bestaat nog, maar de

variabelen zijn op sommige plekken verdwenen. Vul overal de juiste variabele in. Elke

variabele is gekoppeld aan een cijfer. Door de nummers van de ingevulde variabelen achter

elkaar te zetten, krijg je de oplossing.

Onderdeel 3: Aantal pillen berekenen

Een hoeveelheid medicatie wordt vaak uitgedrukt in aantal milligram. Het computersysteem

kan dit omrekenen naar het aantal pillen dat hierbij hoort. Het gewicht van een pil ligt vast.

Dit programma moet vragen hoeveel milligram iemand in moet nemen en berekent dan

hoeveel pillen dit zijn. Rond af op één decimaal (pillen kunnen in kleinere delen worden

gesneden).

Open envelop D. Vul de lege plekken in. Gebruik de volgende namen voor variabelen:

gewicht (1), GEWICHT_PIL (2), invoer (3), pillen (4). De getallen tussen haakjes zijn de

bijbehorende getallen die je nodig hebt om de code te vinden.

GEWICHT_PIL = 500

print("Hoeveel milligram moet je innemen?")

invoer = input()

gewicht = int(……………………………..)

…………………………….. = round(…………………………….. / …………………………….., 1)

print("Voor", gewicht, "milligram moet je", …………………………….., "pillen innemen.")

68

Onderdeel 4: Bloeddruk meten

Top, jullie hebben het onderdeel hersteld. Herstel nu het laatste onderdeel, op dezelfde

manier als net!

Bij het meten van bloeddruk wordt de bovendruk en de onderdruk gemeten. Hiermee

kunnen we de MAP (Mean Arterial Pressure = gemiddelde arteriële druk) berekenen:

𝑀𝐴𝑃 = 𝑜𝑛𝑑𝑒𝑟𝑑𝑟𝑢𝑘 +
1

3
(𝑏𝑜𝑣𝑒𝑛𝑑𝑟𝑢𝑘 − 𝑜𝑛𝑑𝑒𝑟𝑑𝑟𝑢𝑘)

Dit programma moet de bovendruk en onderdruk vragen en daarmee de MAP berekenen.

Open envelop E. Vul de lege plekken in. Gebruik de volgende namen voor variabelen:

bovendruk (1), gemiddelde_druk (2), invoer (3), onderdruk (4). De getallen tussen haakjes

zijn de bijbehorende getallen die je nodig hebt om de code te vinden.

Hints

Onderdeel 3: Aantal pillen berekenen

1. Deel het totale gewicht door het gewicht van een enkele pil.

2. Eerste lege plek = invoer; Tweede lege plek = pillen; Vijfde lege plek = pillen

3. Eerste lege plek = invoer; Tweede lege plek = pillen; Derde lege plek = gewicht;

Vierde lege plek = GEWICHT_PIL; Vijfde lege plek = pillen

print("Geef de bovendruk: ")

…………………………….. = input()

bovendruk = int(invoer)

print("Geef de onderdruk: ")

invoer = input()

…………………………….. = int(……………………………..)

…………………………….. = …………………………….. + 1/3 * (…………………………….. - onderdruk)

print("De gemiddelde druk is:", gemiddelde_druk)

69

Onderdeel 4: Bloeddruk meten

1. De variabele invoer kan zowel voor het vragen van de bovendruk als onderdruk

gebruikt worden.

2. Vierde lege plek = gemiddelde_druk; Vijfde lege plek = onderdruk; Zesde lege plek =

bovendruk

3. Eerste lege plek = invoer; Tweede lege plek = onderdruk; Derde lege plek = invoer;

Vierde lege plek = gemiddelde_druk; Vijfde lege plek = onderdruk; Zesde lege plek =

bovendruk

Oplossing

Onderdeel 3: Aantal pillen berekenen

De oplossing van dit deel is 34124.

Onderdeel 4: Bloeddruk meten

De oplossing van dit deel is 343241.

GEWICHT_PIL = 500

print("Hoeveel milligram moet je innemen?")

invoer = input()

gewicht = int(invoer (3))

pillen (4) = round(gewicht (1) / GEWICHT_PIL (2), 1)

print("Voor", gewicht, "milligram moet je", pillen (4), "pillen innemen.")

print("Geef de bovendruk: ")

invoer (3) = input()

bovendruk = int(invoer)

print("Geef de onderdruk: ")

invoer = input()

onderdruk (4) = int(invoer (3))

gemiddelde_druk (2) = onderdruk (4) + 1/3 * (bovendruk (1) - onderdruk)

print("De gemiddelde druk is:", gemiddelde_druk)

70

Appendix D

Evaluation Form

The following pages contain the evaluation form, consisting of two exercises
and a learner report. It is in Dutch.

71

Opdrachten

Maak de twee onderstaande opdrachten. We gebruiken dit alleen om de Escape Room te

evalueren. Maak de opdrachten individueel.

Traceren

Wat zijn de waardes van x, y en z aan het einde van het volgende programma?

Het is niet toegestaan om een programma of website te gebruiken om de code uit te voeren.

Probeer het echt zelf te doen!

x = y = z =

Je mag onderstaande trace-tabel gebruiken als hulpmiddel.

instructie x y z

x = 5

y = x - 3

x += 2

z = x * y

y = min(x, z)

Gewicht omzetten

In sommige landen drukt men gewichten uit in pounds in plaats van in grammen. We willen een

programma dat gewichten omzet van pounds naar een aantal gram. Het programma moet een

x = 5

y = x - 3

x += 2

z = x * y

y = min(x, z)

72

gewicht in pounds vragen, dit omzetten naar een aantal gram (1 pound = 453.59237 gram), en

het resultaat (afgerond op 3 decimalen) printen op het scherm.

Hieronder staan 6 programma’s. Omcirkel het juiste programma.

POUND_IN_GRAM = 453.59237

print("Geef een gewicht in pounds: ")

invoer = input()

gewicht_pounds = float(invoer)

gewicht_gram = gewicht_pounds * POUND_IN_GRAM

gewicht_gram = round(gewicht_gram, 3)

print("Gewicht in gram is:", gewicht_gram)

POUND_IN_GRAM = 453.59237

print("Geef een gewicht in pounds: ")

gewicht_pounds = input()

gewicht_gram = gewicht_pounds * POUND_IN_GRAM

gewicht_gram = round(gewicht_gram, 3)

print("Gewicht in gram is:", resultaat)

POUND_IN_GRAM = 453.59237

print("Geef een gewicht in pounds: ")

invoer = input()

gewicht_pounds = float(invoer)

gewicht_gram = gewicht_pounds * POUND_IN_GRAM

gewicht_gram = round(gewicht_gram, 3)

print("Gewicht in gram is:", resultaat)

POUND_IN_GRAM = 453.59237

print("Geef een gewicht in pounds: ")

gewicht_pounds = input()

gewicht_gram = gewicht_pounds * POUND_IN_GRAM

gewicht_gram = round(gewicht_gram, 3)

print("Gewicht in gram is:", gewicht_gram)

POUND_IN_GRAM = 453.59237

print("Geef een gewicht in pounds: ")

gewicht_pounds = float(invoer)

gewicht_gram = gewicht_pounds * POUND_IN_GRAM

gewicht_gram = round(gewicht_gram, 3)

print("Gewicht in gram is:", resultaat)

POUND_IN_GRAM = 453.59237

print("Geef een gewicht in pounds: ")

gewicht_pounds = float(invoer)

gewicht_gram = gewicht_pounds * POUND_IN_GRAM

resultaat = round(gewicht_gram, 3)

print("Gewicht in gram is:", gewicht_gram)

73

Leerrapport

Je gaat een leerrapport invullen, waarin je aangeeft wat je hebt geleerd van de Escape Room.

Dit kan van alles zijn, bijvoorbeeld:

• Dingen over programmeren/Python

• Dingen over algemene vaardigheden (samenwerken, communiceren, analyseren,

problemen oplossen, etc.)

• Dingen over jezelf

• Dingen over jullie gebruikte strategieën

• Andere dingen die niet in dit lijstje staan

Iedereen kan andere dingen geleerd hebben. Probeer zo specifiek mogelijk te zijn: maak geen

vage, algemene zinnen, maar noem concrete voorbeelden.

Het leerrapport bestaat uit onderdelen A t/m D.

74

Deel A: “Van de Escape Room heb ik geleerd dat/hoe ...”

In deel A gaat het om voorbeelden van dingen die je geleerd hebt waardoor je algemene regels,

feiten, technieken kent. Je weet hoe iets in elkaar zit, of hoe iets moet.

Voorbeeldzinnen:

- Ik heb geleerd / gemerkt/ ontdekt/ weet nu ... (dat iets zo is)

- Ik heb geleerd / gemerkt/ ontdekt/ weet nu … (dat iets zo werkt)

- Ik heb geleerd / gemerkt/ ontdekt/ weet nu … (hoe iets gedaan moet worden)

- Ik heb geleerd / gemerkt/ ontdekt/ weet nu …

(enzovoort)

Denk nu aan voorbeelden van regels en feiten die jij hebt geleerd. Gebruik de

voorbeeldzinnen hierboven om zo veel mogelijk leerzinnen te maken.

75

Deel B: “Van de Escape Room heb ik geleerd dat het niet waar

is, dat ...”

In deel B gaat het om voorbeelden van uitzonderingen die je geleerd hebt, dingen die niet zo zijn

als je altijd dacht.

Voorbeeldzinnen:

- Ik heb geleerd / gemerkt/ ontdekt/ weet nu dat het niet waar is, dat …. (iets altijd zo is)

- Ik heb geleerd / gemerkt/ ontdekt/ weet nu dat er ook … bestaan

- Ik heb geleerd / gemerkt/ ontdekt/ weet nu dat iets niet altijd op … manier, maar ook

op … manier gedaan kan worden

- Ik heb geleerd / gemerkt/ ontdekt/ weet nu dat niet …

- Ik heb geleerd dat ook …

(enzovoort)

Denk nu aan voorbeelden van uitzonderingen die jij hebt geleerd. Gebruik de

voorbeeldzinnen hierboven om zo veel mogelijk leerzinnen te maken.

76

Deel C: “Van de Escape Room heb ik geleerd dat ik ...”

In deel C gaat het om voorbeelden van wat jij door de Escape Room over jezelf hebt geleerd.

Voorbeeldzinnen:

- Ik heb geleerd / gemerkt/ ontdekt/ weet nu dat ik … vind, omdat …

- Ik heb geleerd / gemerkt/ ontdekt/ weet nu dat ik goed (slecht) ben in …

- Ik heb geleerd / gemerkt/ ontdekt/ weet nu dat ik een hekel heb aan …, omdat …

- Ik heb geleerd / gemerkt/ ontdekt/ weet nu dat ik dat probleem het beste op … manier

kan aanpakken, omdat …

- Ik heb geleerd / gemerkt/ ontdekt/ weet nu dat ik …

(enzovoort)

Denk nu aan voorbeelden van jouw persoonlijke leerervaringen. Gebruik de voorbeeldzinnen

hierboven om zo veel mogelijk leerzinnen te maken.

77

Deel D: “Van de Escape Room heb ik geleerd dat het niet waar

is, dat ik ...”

Bij deel D gaat het om voorbeelden van uitzonderingen en verrassingen die je over jezelf geleerd

hebt. Je mening over jezelf (daar ben ik slecht in, dat vind ik leuk, dat doe ik altijd zo), blijkt niet

altijd te kloppen.

Voorbeeldzinnen:

- Ik heb geleerd/ gemerkt/ ontdekt/ weet nu dat het niet waar is, dat ik altijd goed

(slecht) ben in .., omdat …

- Ik heb geleerd/ gemerkt/ ontdekt/ weet nu dat het niet waar is, dat ik nooit .., maar …

- Ik heb geleerd/ gemerkt/ ontdekt/ weet nu dat het niet waar is, dat ik altijd een hekel

heb aan … omdat ...

- Ik heb geleerd/ gemerkt/ ontdekt/ weet nu dat ik dit probleem ook op … manier kan

aanpakken

- Ik heb geleerd/ gemerkt/ ontdekt/ weet nu dat het niet waar is, dat ik …

(enzovoort)

Denk nu aan voorbeelden van uitzonderingen en verrassingen over jezelf die jij hebt geleerd.

Gebruik de voorbeeldzinnen hierboven om zo veel mogelijk leerzinnen te maken.

 78

	Introduction
	Escape Rooms & Education
	Research Questions
	Structure of Thesis

	Related Work
	Educational Escape Rooms
	Goals of Educational Escape Rooms
	Debriefing
	Design of Educational Escape Rooms
	Escapp Web Platform
	Examples in Computer Science
	Evaluation Methods

	Computer Science Education

	Content Analysis
	Methodology
	Results
	Computer Science ERs
	Groups
	Technical vs. Social Topics
	Content Criteria

	Design of an ER
	Choice of Topic
	Methodology
	Results
	Participants
	Objectives
	Theme
	Puzzles
	Equipment
	Evaluation

	Evaluation of Learning Outcomes
	Methodology
	Data Collection
	Data Analysis

	Results
	Exercises
	Learner Reports

	Discussion
	Interpretation of Results
	Implications
	Limitations
	Recommendations

	Conclusions
	Content Criteria
	Achieved Learning Outcomes
	Integration of ERs into Education

	Exam Program
	Computer Science ERs
	Material of the ER
	Evaluation Form

