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Abstract

This research investigates the utility of several one-class classification al-
gorithms in distinguishing human-made paintings from AI-generated ones.
This investigation questions the general use of one-class-based novelty detec-
tion algorithms while aiming for an analysis based on the metadata captured
during this research. The research utilizes several classification algorithms,
namely One-Class SVM, Isolation Forest, Local Outlier Factor, One-Class
Neural Network, and Robust Convolutional Autoencoder. This study was
conducted due to the insufficient amount of literature available on the var-
ied applications of such algorithms and the researcher’s own fascination with
artworks. For the experiments, we use a collection of paintings gathered from
WikiArt and OpenArt websites with the extra data related to these paint-
ings. Then, we propose several detectors to make the distinguishing between
real and fake paintings. The best-performing detector extracts the features
of the images with a residual neural network. Following this extraction, it
standardizes these extracted features and reconstructs them afterward by
an autoencoder we introduce. Finally, the one-class classifier, built into the
detector, gives a final decision on the class of the data given as input. While
feature extraction makes this research computationally feasible, input pro-
cessing with an autoencoder increases the final accuracy of the model. The
majority of the test results show a high rate of false positives and false neg-
atives. Although the AUC scores indicate that these algorithms perform
better than random guessing, they demonstrate a significantly lower accu-
racy compared to a multi-class classifier. Based on the accuracy and the
occurrences in the experiments, the paper provides a metadata analysis. In
conclusion, the overall status of one-class classification is uncertain, and it
is evident that multi-class classifiers excel in this particular task.
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Chapter 1

Introduction

Text-to-image AI models are getting more popular day by day. In the middle
of 2022, with the release of Midjourney, DALL-E, and Stable Diffusion, the
popularity of these models increased rapidly, see Figure 1.1. America and
Europe are interested in DALL-E while Asian countries are mostly interested
in Midjourney. And Stable Diffusion is the most popular one in very few
countries, such as Japan and South Korea. Interestingly Stable Diffusion
is an open-source model, while the others are unfortunately not. And yet
Stable Diffusion is the least favorite among these models. Nevertheless, some
people embraced it and published their own modified versions of it1.

Figure 1.1: Search trends of text-to-image models in the world by Google2

The images created by these models are not perfect, in the sense that
they are distinguishable to some degree with our very human eyes, whether
these images are artificially created or not. On this matter, computers are
better than humans to make this differentiation. Binary classifiers built by

1https://huggingface.co/models?other=stable-diffusion
2Interest over time: Numbers represent search interest relative to the highest point on

the chart for the given region and time. A value of 100 is the peak popularity for the
term. A value of 50 means that the term is half as popular. A score of 0 means there was
not enough data for this term. (Defined by Google)
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other scientists give 86% accuracy scores[1]. The same type of classifiers are
also built by us. And the results are nearly consistent with each other with
a score of 93%. Confidently, we can call these models quite successful.

However, the focus of this paper is not building on top of these binary
models. We want to emphasize the very first time we have seen the images
created by text-to-image models. Naturally, we found them easily differen-
tiable by their essence. But how did we make such a differentiation? We all
have a variety of ideas of what an image should look like in our experiences.
We had never seen an AI-made image once. We had this pile of memory
of images and nothing much else. We compared what we see in front of
our eyes with the ones we saw in the past. And at the end, we concluded
they could not be normal images. These artificial images were outside of
the definition of the images we know. Or they had certain anomalies that
can be easily detected. For example, poor representation of a human face,
distortions, sharpness, or blurry parts of an image are ways to detect these
abnormalities in human face imitation. Figure 1.2 shows an example of such
cases. Briefly, the detection of an abnormality by knowing only one side like
the aforementioned is called novelty detection.

Figure 1.2: Video compression results of forged media using H.264 codec.
DeepFake shows inconsistent sharpness along the borderline of the facial re-
gion whereas Face2Face contains some artifacts. The compression laundries
the manipulation traces from the data. [2]

Although the terms abnormality detection and anomaly detection are
generally used as the synonym of outlier detection, in this paper they are
used as the synonym of novelty detection. In this detection, we use one-class
classification (OCC) methods where the model is trained with one type of
class only. Applications of anomaly detection are numerous and are mainly
around cyber security, e.g., fraud detection, intrusion detection, diagnosing
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patients, and applying law... There are a variety of techniques that can
be applied in order to achieve this detection. Commonly used methods
are support vector machines (SVMs), density-based techniques like local
outlier factor (LOF) and isolation forest (IF), and neural networks. A decent
ratio of high positive or strong negative utility would lead to success with
these algorithms. However, the possibility of convergence to the training set
picked is a dangerous potential and is very likely to be happening. Therefore,
parameter tuning, proper data set selection, and neural network structure (if
applicable) are vital for healthy abnormality detection outcomes. As a result
of the training with one class only, the definition of normal is constructed.
Then, anything outside of the norms designated by the algorithm is counted
as an anomaly. By the specifics of how novelty detection is defined, we find
it close to human nature. Therefore, we found it interesting. Moreover,
we want to see if this problem-solving technique can be used in any case
or not. Eventually, this research questions the generality of the one-class
classification algorithms while creating an automated Turing test for text-
to-image models.

The reason we chose specifically the paintings is our interest in art. And
not just us but the people were quite interested in this matter with the rise of
NFTs in 20213 and the aforementioned text-to-image models release. With
the public release of ChatGPT4, we believe the spotlight on the prompt-
based models is now on ChatGPT. This research started earlier than the
rising popularity of this chatbot model, so we kept our focus specifically on
this issue with paintings.

So, ultimately, the main research question of this paper is can we distin-
guish artificially-made paintings that are created by various text-to-image
models from human-made paintings with one class classification algorithms?
(RQ-1)

In the following section, the background knowledge is supported for the
people unaware of one-class classification algorithms, residual networks, and
text-to-image models and how they work. Then, we introduce the images
we use in this research. Afterward, we show the detectors we built to answer
RQ-1 and the environments that these detectors run in. Later on, the results
that are produced by the detectors we built are introduced. Following that,
the analysis of the metadata is shown in detail. Finally, the limitations and
future work are discussed.

3https://trends.google.com/trends/explore?date=today5-y&q=nft,/g/

11rsc2xsp1&hl=en
4https://chat.openai.com/
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Chapter 2

Preliminaries

This chapter explains one-class classification algorithms, residual neural net-
works, and text-to-image models that are related to this research.

2.1 One-class classification (OCC) algorithms

One-class classification algorithms are designed for scenarios where data
from a single class is available for training a model. The primary objective of
these algorithms is to construct a model capable of differentiating instances
that belong to the target class from those that do not. In essence, their
purpose is to identify and flag outliers or anomalies within a data set.

By introducing different algorithms, we also want to answer another
question which is ’can we spot a performance division between differentiating
algorithms? (RQ-2)’. The first three methods, OC-SVM, IF, and LOF, are
imported from the scikit-learn (sklearn) Python library[3]. And the rest of
the two methods are imported from the implementation of other researchers.
There is also the Elliptic Envelope method from sklearn, which did not cope
with our coding setup due to internal errors and unappreciated computation
time.

2.1.1 One class support vector machines (OC-SVM)

Support vector machines (SVMs)[4] are commonly used for generalizing in-
put data. For non-linear classification, SVM applies the kernel trick first.
The kernel-trick is a method where non-linear data is projected onto a high
dimensional space. The trick aims to make the classification linearly divid-
able by a plane. After these high-dimensional feature spaces are created,
SVMs start defining a set of hyper-planes in the multidimensional space
to make the classifications. Optimally, the gap between these hyper-planes
should be as high as possible in order to minimize generalization because
generalization leads to error. Data points that are closest to a hyperplane are
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called support vectors. And based on the kernel function chosen, boundaries
are decided for the final classification.

With OC-SVM, firstly, we apply the same kernel-trick. Then, we sepa-
rate all data points from the origin in the feature space using a hyper-plane.
Points below the hyper-plane and closer to the origin are called outliers.
In this research, the implementation of scikit-learn is used, which uses the
version of Schölkopf et al.[5].

2.1.2 Isolation forest (IF)

Isolation Forest[6] is a variation of the decision tree algorithm. Outliers get
isolated by a randomly selected feature from the given feature space and
then randomly selected a split value between the minimum and maximum
values of that feature. More specifically, via parameter-controlled random
subsampling, binary trees are created. Afterward, for each point in the data
set, the average path length required for the decision is calculated. This is
also known as the anomaly score of a data point. The lower the anomaly
score, the algorithm marks those points as outliers.

2.1.3 Local outlier factor (LOF)

Local outlier factor algorithm[7] also uses the term anomaly score. This
score measures how much the density of a particular sample deviates from
its neighboring samples. The concept of locality is crucial here, as the
anomaly score relies on the degree of isolation of a sample within its imme-
diate neighborhood. To estimate this locality, the LOF algorithm considers
the distances to the k-nearest neighbors and uses them to gauge the local
density. By comparing the local density of a sample to the densities of its
neighbors, we can identify samples that exhibit significantly lower density
values. Such samples are considered outliers.

2.1.4 Robust convolutional autoencoder (RCAE)

RCAE[8] is a model that initially aims to strengthen principal component
analysis (PCA). PCA is a powerful tool to perform dimension reduction and
feature extraction but it is sensitive to outliers. Moreover, it has a linearity
assumption, which might cause terrible results in nonlinear variations. By
introducing robust PCA, they allow some input to be randomly distorted,
which might create testing errors in the end. Then, by establishing an au-
toencoder that absorbs the created noise, they aim to make learning possible
in a nonlinear subspace. However, such noise injection and absorption, and
the following autoencoder method are designed to be used in anomaly de-
tection. Therefore, while its state for general usage is questionable, it solves
the problem for our task. Moreover, RCAE is introduced to be superior to
the other one-class algorithms, which is highlighted in Figure 2.1.
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Figure 2.1: Average AUCs in % with StdDevs (over 10 seeds) per method
on GTSRB stop signs[9] with adversarial attacks. [8]

2.1.5 One class neural network (OC-NN)

OC-NN is a model for unsupervised anomaly detection introduced by Cha-
lapathy et al.[10], which is inspired by his previous work with RCAE. It
combines OC-SVM and autoencoders by creating its own loss function. OC-
NN refines features of objects to aim anomaly detection with the objective
it defines. But by doing that they give up on reaching global optima. When
convergence occurs, the line between what is normal and abnormal is de-
cided, and it classifies the data points.

Even though it is introduced later than RCAE, it does not come up
with better results on the same tasks. And when it comes to comparing it
with other algorithms like OC-SVM and IF, depending on the task, it either
outperforms these algorithms or stays somewhere near them, see Figure 2.1.

2.2 ResNet

2.2.1 What is ResNet?

ResNet is basically the abbreviation of residual networks, which are made
up of Residual Blocks[11]. Residual blocks allow the network to directly
propagate the original input to the deeper layers of the network, which is
called skipping connections with identity mapping. These blocks enable effi-
cient training in very deep networks. Figure 2.2 represents a simple residual
building block.
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Figure 2.2: Residual learning: a building block with identity function x and
deeper residual function F . [12]

Most of the popular residual networks combine these blocks with convo-
lutional layers to extract features from images or any other multidimensional
feature space. ResNet[12] is the most famous example of this category and is
commonly used in object detection, image segmentation, and image classifi-
cation. These tasks can succeed after adding 1 to 3 additional layers to the
end (after the extraction of features) and training with an appropriate data
set afterward. Consisting of 1000 classes and 14 million images, ImageNet1

is the most famous example used for multi-class image classification. Such a
classification would suit our research problem here if it was not multi-class in
its sense. Therefore, we only used it for feature extraction for the artworks
collected. See Figure 2.3 for architectural details of different ResNet builds.

Figure 2.3: ResNet architectures for ImageNet. Building blocks are shown
in brackets with the number of blocks stacked. Downsampling is performed
by conv3 1, conv4 1, and conv5 1 with a stride of 2. [12]

1https://www.image-net.org/
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2.2.2 The most appropriate version of ResNet for this project

By expanding the number of residual blocks, it is possible to have a much
deeper feature extraction. One of the famous neural network Python li-
braries TensorFlow 2[13] implements ResNet-50, ResNet-101, and ResNet-
152. The numbers dictate the number of layers in the network. Using
ResNets or convolutional neural networks(CNNs) solely for image classifi-
cation shows that as the amount of layers increases the better accuracy we
get in the end, see Table 2.1.

Table 2.1: Error rates (%, 10-crop testing) on ImageNet validation. Other
networks are included for comparison purposes. ResNet-34 is option A.
ResNet-50/101/152 is option B which only uses projections for increasing
dimensions.[12]

Obviously, ResNet is not a one-class classifier. But with the combination
of the algorithms mentioned earlier, it can be a part of the process. Maybe
because of this combination, digging into deep features does not provide a
performance rise specifically on this task. On top of that, without staying
neutral, a performance decline can be observed in some cases, like our task,
see Table 6.2 for exact numbers in the result chapter.

2.2.3 Other networks for feature extraction

TensorFlow 2 provides other famous networks as well, such as Xception[14],
EfficientNet[15], and VGG[16] as deep CNNs. And also DenseNet[17] which
is a residual neural network like ResNet. The outcome of these models highly
depends on the task. All of the individual papers of these models compared
themselves to the other models in the past. Some are even superior to
ResNet. Hence, we wanted to use those models for the feature extraction as
well. However, in the end, ResNet-50 is picked in this research for the feature
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extraction task. Because the final results achieved by ResNet-50 surpass the
other models on the one-class classification problem on artworks. In the
results chapter, the outcomes of these different models are introduced, see
Table 6.3.

2.3 Text-to-Image models

This section introduces the different text-to-image models in our test data
set. Although the mechanisms of these models are not directly relevant to
our research, we still want to elucidate them for anyone with an interest in
this matter. Conducting this preliminary research enabled us to discover
the practicality of autoencoders, which we ultimately employ to develop our
detectors.

2.3.1 Stable-Diffusion

Stable Diffusion[18] is one of the pioneers of text-to-image models. It is
open-source and widely used and modified by the community. It is one of
the first well-known models to introduce diffusion models. Diffusion models
are a type of generative model designed to generate data that resembles the
training data they were trained on. The core principle of diffusion mod-
els involves introducing Gaussian noise to the training data, progressively
deteriorating its quality, and then learning to reverse this degradation pro-
cess to recover the original data. Once trained, the diffusion model can
generate new data by applying the learned denoising process to randomly
sampled noise. The reverse degradation process for recovery is called re-
verse diffusion. Stable diffusion combines this reverse diffusion idea with a
text transformer. Specifically, another model converts prompts to tokens.
Then each token is converted to a 768-value vector called an embedding. By
using a text transformer on this embedding, the final noise becomes ready
for the reverse diffusion model. However, this process is not complete. Sta-
ble Diffusion is known for being faster and arguably more effective among
diffusion models because of its latent structure, 48 times smaller than high
dimensional image space thanks to variational autoencoding.

In each creation of an image, a random tensor is created in the latent
space. The diffusion model takes the refined text prompt and the image
created in the latent space and predicts the noise. The image in the latent
space is redefined by subtracting the predicted noise from itself. This last
process repeats itself for some iterations. In the end, the latent image gets
decoded by the variational encoder and we got to receive the final output.
See Figure 2.4 for a better understanding.

The insights from the variational autoencoder and the Stable Diffusion
inspired this research to build our own autoencoder, which is introduced in
further sections of this paper.
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Figure 2.4: Stable Diffusion generates an image from a prompt: A random
image x is encoded and transferred to latent space, while from the given
prompt a text embedding is created. After this random image is diffused,
the U-Net autoencoder that mixes embedding sequences(cross-attention) re-
builds the image. The output image x̃ is ready after the iterative denoising
step and final decoding of the denoised image into pixel space. [18]

Based on the data it trained, there are multiple versions of Stable Dif-
fusion. But LAION[19] is the provider of all these training data. Various
versions of Stable Diffusion are apparent in our test data set as well as
modified versions of it.

2.3.2 OpenAI’s DALL-E

DALL-E[20] is another example of the success of diffusion models. As most
of the terms are explained with Stable Diffusion, we can get straight with
how DALL-E 2 works.

The process starts by using the CLIP text encoder. CLIP trained with
the WebImageText data set consisting of 400 million images and their cap-
tions where the goal was capturing the relation between pixels and the nat-
ural language. Images and corresponding captions get encoded to convert
the image description into a representation in a specific space. Next, the
diffusion prior takes this CLIP text encoding and maps it to a correspond-
ing CLIP image encoding. Lastly, the modified GLIDE generation model
utilizes reverse diffusion to map from the representation space to the image
space and that is our final output. See Figure 2.5 for a better understanding.

CLIP is a vital part of this whole DALL-E 2 idea. Creating an enormous
correlation map of words and images is fascinating. Training CLIP in dif-
ferent eras would be worth-seeing research. Other than CLIP, any improve-
ment by computational means that autoencoders can supply is mentioned
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and noted by the designers of DALL-E but not applied. Yet it is still one of
the fastest and one of the most widely used models outside.

2.3.3 Midjourney

The developers of Midjourney2 do not provide any public information on
the mechanism they are using. Hence, the technical part of Midjourney is
nothing more than this. But assuming the variation system that Midjourney
has, the generative model structure can be similar to DALL-E. Moreover,
thinking about the quality of the images that Midjourney produces, they
are clean from noise and have high resolution in general. These are all the
intuitions that we believe this model is similar to DALL-E. On the other
hand, based on our personal experiences, the correlation between objects
and prompts feels off from time to time which makes us think they might
be using a different technique from OpenAI’s CLIP.

Figure 2.5: A high-level overview of unCLIP. Above the dotted line presents
the training progress of CLIP which combines texts and images in the same
space. Below the dotted line shows text-to-image generation from the text
embedding or diffusion prior, which is given as input to the final diffusion
decoder in order to create the ultimate image. [20]

2https://www.midjourney.com/
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Chapter 3

Related Work

In 2021, Seliya et al. produced a covering literature research[21] on the
applications of one-class classification. The paper discusses the issues that
may arise when using OCC methods for novelty detection on large amounts
of data. We can list some of these threats as noisy data, feature selection,
and data reduction. The issues with OCC in big data clusters can also
happen in any data set and harm OCC’s results. Therefore, we implement an
outlier removal algorithm for addressing noise reduction in our training set.
Moreover, to our detectors, we introduce applying PCA and a reconstructing
autoencoder in order to overcome feature selection and data reduction issues.

The aforementioned paper is an arguably recent literature review. As the
releases of text-to-image models explained in our research are near mid-2022,
it is not possible to find literature related to our research question (RQ-1) in
that paper. Therefore, we seek other resources, such as DE-FAKE[1], deep
learning-based OCC for fake faces[22], and the OC-NN paper[10]. These
three research papers are closest to our topic and inspired us.

DE-FAKE paper builds binary classifiers on fake images in general. Not
just that, the metadata that comes with the images is used in a hybrid ap-
proach to improve final results. Eventually, we implement a binary classifier
to make a comparison with our results, as mentioned earlier. Additionally,
even though we do not build any detectors with a hybrid approach, we
discuss it in the discussion chapter later on.

Unlike DE-FAKE, the second paper uses an OCC algorithm but specif-
ically focuses on human faces. Therefore, we realize there is a knowledge
gap in the specific area where we conduct our research.

The OC-NN paper not only offers multiple practical settings for con-
structing our detectors but also presents comprehensive data on the efficacy
of OCC algorithms applied to diverse tasks. It highlights the complexity
of our objective in contrast to others, primarily due to the high-resolution
images in our data sets.
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Chapter 4

Data

This chapter of this paper introduces the images we collected, sources of
them, and the metadata that comes along with them.

4.1 Data set of human-generated artworks

We gathered all of our human-made images from WikiArt1. WikiArt is a
digital visual art encyclopedia that consists of more than 250000 artworks by
3000 artists of various styles. In this research, only about 81000 of them are
used which is the same fraction used in artGAN once[23]. More specifically,
there are 27 different styles, 1119 artists, and 81444 unique artworks in total.

The information available from this portion of the WikiArt data set is,
per each artwork, the artist’s name, the name of the painting, the style that
is used on the painting, the width of the resolution, and the height of the
resolution. Except for the names of the paintings, the rest of the data is
used for further analysis. Further explanation on excluding names of the
paintings is given in the discussion chapter.

The choice of using this set is appropriate and accurate as we know all the
images are human-made. Moreover, we believe the essence of human-made
artworks is well-represented in this collection. It contains plenty of art-
work from a variety of artists with a reasonable amount of different painting
subjects(portrait, genre painting, landscape...) and painting styles(realism,
abstract...). Famous artworks such as The Starry Night by Van Gogh, Da
Vinci’s Mona Lisa, Gustav Klimt’s The Kiss, and many more can be found
for instance. This data set can be reduced or extended by further researchers
because the motives behind our choices are subjective at points as explained.

1https://www.wikiart.org/
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4.2 Data set of AI-generated artworks

When it comes to AI-generated images, we collected all of them from Ope-
nArt2. The website collects AI-created images from various channels as well
as the metadata belonging to these images. One of the reasons we choose
this website is it contains more metadata variety in comparison to other web-
sites like Lexica3. However, this OpenArt website has one downside, it does
not specify prompt tags. For instance, Midjourney splits the prompt input
into several tags, such as subject, medium, environment, lightning, color,
mood, and composition4. Such prompt tagging would allow us to prepare
a more detailed metadata analysis at the end. Another worth mentioning
part about this website is OpenArt filters out the majority of the images
created with NSFW prompts. Therefore, nude paintings are excluded from
this website, which is completely fine as the WikiArt version that we use
also does not contain any nude paintings.

With the scraper we implemented, we scrape the images that use the
style of the most occurring 50 artists from our WikiArt set. We specifically
do that scraping by searching ”by” + ”name of the artist” and exporting
all the images and the metadata that comes along with them. Ultimately,
we collected 260240 images between 6 May 2023 and 7 May 2023, which
reduces to 130082 images after excluding duplicates. From now on, the
name OpenArt set refers to the duplicates removed version of it. Future
researchers can change their AI-made image collection as long as they keep
the style of the famous painters being used in the artificially created images
they picked.

Figure 4.1: Artworks from collected data. The first row is human-made
images from Albrecht Dürer, Pablo Picasso, Claude Monet, Gustave Doré,
and Vincent van Gogh respectively. The second row is AI-made images with
the same artist order using their styles.

2https://openart.ai
3https://lexica.art/
4https://docs.midjourney.com/docs/prompts
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4.3 Metadata

In this section, we introduce different types of metadata we collected that
came with the images in our data set. While we explain these various meta-
data one by one, we include statistical distribution for some.

Artist: For the human-made artworks, the painter’s name is used. For
the AI-made images, the style of the artist used in the creation of the image
fills this attribute.

Style: Style here is used in terms of visual arts. Therefore, it is about
the visual aspects of a work of art that link it to other artworks created by
the same artist, during the same time period, in the same place, cultural
movement, or archaeological civilization. All human-made images have this
attribute filled as WikiArt data have all images classified. However, no AI-
made image has any value at all due to the lack of tags on the OpenArt
website.

Model: For the AI-made images, the name of the text-to-image model
created the image. It can be either different versions of Stable Diffusion,
DALL-E, or Midjourney according to the OpenArt website. This attribute
is a NaN value for the human-made ones. See the Figure 4.2 for detailed
distribution of the models.

Figure 4.2: Distribution of the models in the OpenArt data set. There are
126109 images created by ’Model: Stable Diffusion’, which is the 96.95%
of the OpenArt set. All the models that do not mention Stable Diffusion,
Midjourney, or DALL-E are the modified versions of Stable Diffusion that
can be found on the Hugging Face website.
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Prompt: Sentence or sentences used to describe what we want from the
AI model to draw. When it comes to human-made images, this attribute
stays empty/NaN. See the Figure 4.3 for the most used 30 words and for
the words per prompt distribution.

Figure 4.3: The left graph shows the most used 30 words in the prompts
with a bar plot. Statistics exclude the stop words in English defined by
NLTK[24]. The right one shows the distribution of the number of words
used per prompt with a bar plot. The maximum number of words that can
be interpreted in a prompt is around 75 for all models. Statistics include
the stop words aforementioned.

Negative prompt: Sentence or sentences used to describe what we do
not want from the AI model to draw. This is an optional parameter for the
OpenArt set and NaN value for the WikiArt set. See the Figure 4.4 for the
most used 30 words and for the words per prompt distribution.

Figure 4.4: The left graph highlights the most used 30 words in the negative
prompts with a bar plot. Statistics exclude the stop words in English defined
by NLTK[24]. The right one shows the distribution of the number of words
used per negative prompt with a bar plot. The maximum number of words
that can be interpreted in a prompt is around 75 for all models. Statistics
include the stop words.
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Guidance scale: A parameter that manifests how much the image
generation process follows the prompt. As the number goes higher, the
more the model tries to follow the prompt given. There can be trade-offs in
the final quality of the image generated. This parameter has the tendency
to the default value of 7 in Stable Diffusion[18]. Not all the images created
by AI models have this attribute, see Figure 4.5 for statistical distribution.
For the majority of the images in the OpenArt set, this attribute is NaN
(128286 images, 98.62% of the set), while it is also NaN for all the images
in the WikiArt set.

Figure 4.5: Distribution of the guidance scale parameter in the OpenArt
data set. There are 1531 images created by the guidance scale 7, which is
the 1.18% of the set.

Sampler: These models generate a completely random image first. Pre-
dicted noise is subtracted from the image repeatedly to get a clean image
at the end. Samplers do the denoising part. They affect the final result
and they are entirely optional. For some images in the AI-artworks, this
attribute is NaN, while it is also NaN for all the images in the human-made
artworks. Table 4.1 shows the samplers in the OpenArt data set.

# %

DDIM 83 0.06

DPM Solver++ 1659 1.3

Euler A 35 0.03

Default/Unknown 128305 98.63

Table 4.1: Distribution of the samplers in the OpenArt data set.
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Steps: The attribute refers to the number of denoising steps applied
while creating an image by a text-to-image model which is explained in
Figure 2.4 earlier. Some AI-made images have this attribute filled while no
human-made image has any value at all.

Seed: The number is used to initialize the generation of the image
created. All AI-made images have this attribute filled while no human-made
image has any value at all.

Width: The vertical aspect of the resolution of the image created. All
images have this attribute filled.

Height: The horizontal aspect of the resolution of the image created.
All artworks have this attribute filled.

Resolution scale: The simplified fraction of the ’width’ and ’height’
attributes, also known as the resolution scale. All images have this attribute
filled. Table 4.2 highlights the most occurring resolutions across the data
we collected.

1 2 3 4 5

WikiArt set 3 x 4 (462) 1 x 1 (420) 4 x 3 (328) 5 x 4 (200) 4 x 5 (162)

OpenArt set 1 x 1 (59698) 2 x 3 (14722) 8 x 11 (7886) 3 x 2 (5796) 2 x 1 (4708)

Table 4.2: Top 5 most apparent resolution scales with their amount in paren-
theses from the WikiArt set and the OpenArt set. There are 156 unique
resolution scales for OpenArt, while WikiArt has 40039 unique resolution
scales.
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Chapter 5

Methods

This chapter introduces the detectors we built in order to answer our re-
search questions. We also explain the experiment environment, in which
these detectors run the tests.

5.1 Detectors

This section introduces the methods that we use to build our multiple dif-
ferent detectors. All of these detectors are built the same in their core.
They train on a given one-class-only training set, then they predict if the
objects of a test set are the same class as the training set or not. In our
specific case, they train on human-made only images and then they try to
predict the classes of images from a mixed test set. Therefore, these detec-
tors play a key role to answer our first question, which is can we distinguish
artificially-made paintings that are created by various text-to-image models
from human-made paintings with one-class classification algorithms (RQ-
1)? Then by building and testing these diverse detectors, we aim to get an
answer for our second research question, which is can we spot a performance
division between differentiating algorithms (RQ-2)?

The first type of detectors are called standard detectors, in the sense
that they do not contain any additional pre-processing steps like PCA or
reconstruction of input by autoencoders. Methods that are considered de-
fault/standard steps in this research are feature extraction, standardization
of the data, outlier removal from the training set, and the usage of one-class
classifiers. There are 3 different detectors under this category. The only
difference is the one-class classification algorithm used at the end.

The second type of detectors are called PCA detectors. All of these
detectors only add PCA on top of the standard detectors. This one also has
3 different detectors under this category. Again, the only difference is the
one-class classification algorithm used at the end.

The third type of detectors are called reconstructing detectors. All of
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these detectors only add reconstruction of the data with an autoencoder on
top of the standard detectors. Just like the previous two, it comes with 3 dif-
ferent detectors, the only difference is the one-class classification algorithm
used at the final step.

And the last type of detectors are called neural network decoders. These
detectors are quite different from our other detectors and they essentially
use neural networks in their core. There are two different detectors under
this category. One uses RCAE and the other uses OC-NN.

5.1.1 Standard detectors

Firstly, all the images get their features extracted into a 2048-dimensional
array via ResNet-50. Afterward, extracted features of given training get
normalized by StandardScaler()1. Following that, the same transforma-
tion is applied by the standard scaler gets to be used in the given test set
as well. By applying standardization, we aim to reshape the skewed output
of the ResNet-50. Then, we assume there is a 2.5% contamination in our
training set. Therefore, we get rid of them with an algorithm. We use the
interquartile range to detect outliers in every dimension. For each dimen-
sion, if an element’s value is outside of the interquartile range, its outlier
score increases. After every dimension is covered, we remove the top-scoring
2.5% elements, from the training set. See Algorithm 1 for the pseudo-code.
After these outliers are removed, we train OC-SVM, IF, or LOF with the
decontaminated training set, which means there are 3 different standard de-
tectors. Finally, we introduce the normalized test set to print results. For a
better understanding, the architecture is provided with Figure 5.1.

Algorithm 1 Algorithm for the removal of the outliers.
function OutlierRemoval(X : 2D Array)

scores← list with all zeros, size of |X0|
for each i in |X0| do

Q1← lower quarter percentile value of Xi
Q3← upper quarter percentile value of Xi
IQR← Q1− Q3

upper← indices with the values stays above Q3 + 1.5IQR from Xi
lower← indices with the values stays below Q1− 1.5IQR from Xi
for each index in upper do

scoresindex ← scoresindex + 1
end for
for each index in lower do

scoresindex ← scoresindex + 1
end for

end for
scores← scores but only the top-scoring 2.5% with their indices alone
X←X.drop(scores)
return X

end function

1https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.

StandardScaler.html
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Figure 5.1: Architecture of the standard detectors. ResNet-50 extracts the
features of the given input. Then, the standard scaler normalizes the output.
Training set gets sanitized by Algorithm 1. An OCC algorithm, IF, OC-
SVM, or LOF, trains on this cleansed set. Finally, the OCC algorithm
receives the test set and outputs predictions.

5.1.2 PCA detectors

The aforementioned PCA can help one-class algorithms in two ways we
foresee. The first one is it can help to discard noise or irrelevant features in
the feature space by reducing dimensions. In terms of variance in the data,
the top contributing attributes stay. And the second one is we can use the
reconstruction error that might occur in PCA for our anomaly detection.
The outputs with higher reconstruction errors have the potential of being
anomalies. Therefore, we add PCA for our detectors.

These detectors also apply the same procedures at the beginning. ResNet-
50 extracts the features, both sets are normalized, and outliers get removed
from the training set. Then, just before putting everything into our one-class
algorithms, we apply PCA to both the training and test set. We adjusted
PCA, so it reduces 2048 dimensions to 512 dimensions. More components
can lead to useless PCA. And fewer components can end up with informa-
tion loss. Therefore, we introduce only 512 components. However, we want
to emphasize that this parameter is not optimized, not ultimate. Hence,
better results can be achieved with other numbers.

Then, we train OC-SVM, IF, or LOF with the reshaped and polished
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training set, which means there are 3 different PCA detectors. Finally, we
introduce the test set to print results. The architecture of the PCA detectors
is shown in Figure 5.2.

Figure 5.2: Architecture of PCA detectors. ResNet-50 extracts the features
of the given input. Then, the standard scaler normalizes the output. Train-
ing set gets sanitized by Algorithm 1. After that PCA reduces the dimen-
sionality of the cleansed training and the test set. Now, an OCC algorithm,
IF, OC-SVM, or LOF, trains on the reconstructed training set. Finally, the
OCC algorithm receives the modified test set and outputs predictions.

5.1.3 Reconstructing detectors

Inspiration from the Stable Diffusion, RCAE, and the reconstruction idea of
PCA leads to our third detector. We introduce a simple and straightforward
autoencoder in order to re-explore our inputs. Architecture is provided in
Figure 5.3. Few remarks here, convolutional layers are not used in this
autoencoder as we already use them with ResNet-50. Additionally, the
amount of hidden layers is found to be sufficient as adding more or excluding
some reduces the accuracy of the whole detector.

Just like other detectors, this one also applies the same procedures ini-
tially. ResNet-50 extracts the features, both sets are normalized, and outliers
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Figure 5.3: Architecture of the autoencoder used in the reconstructing de-
coders.

get removed from the training set. Then, we reshape all of our data with
the autoencoder we defined, just before putting everything into our one-
class algorithms. Then, we train OC-SVM, IF, or LOF with the reshaped
training set, which means there are 3 different reconstructing detectors. Fi-
nally, we introduce the test set to print results. See Figure 5.4 for a better
understanding of these detectors.

5.1.4 Neural network detectors

Implementation of the OC-NN and RCAE is quite different than others. It
does not involve any ResNet-50, standardization, outlier removal, and PCA.
We use the implementation of OC-NN and RCAE 2 by Chalapathy et al.[10]
that runs on the MNIST data set[25], which is a database of handwritten
digits. We modify it to be able to import our data set. More specifically, we
adjust their autoencoder. Because the implementation of them allows 28x28
pixel gray-scale images only, we need to upgrade to 64x64 pixels and exclude
monochrome. Higher resolutions were not possible due to our insufficient
computational power.

The autoencoder architecture for 64x64 images is introduced in Figure
5.5. Also, to be able to use such an autoencoder, the images inside of the
training and the test sets have to be reshaped into 64x64 pixels. These
detectors process the input while loading them at the beginning in order
to achieve such reshaping. On top of that, we implemented a 32x32 pixel
version of this autoencoder to see the outcome of different resolutions. There
are only three detectors built under this category. The first uses RCAE and
the rest uses OC-NN with different resolution settings.

2https://github.com/raghavchalapathy/oc-nn
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Figure 5.4: Architecture of the reconstructing detectors. ResNet-50 extracts
the features of the given input. Then, the standard scaler normalizes the
output. Training set gets sanitized by Algorithm 1. Later on, the autoen-
coder introduced in Figure 5.3 rebuilds all of the previously processed data.
Now, an OCC algorithm, IF, OC-SVM, or LOF, trains on the adjusted
training set. Finally, the OCC algorithm receives the reconstructed test set
and outputs predictions.

Figure 5.5: Autoencoder used in RCAE and OC-NN, 64x64x3 input suitable
version built for this research.
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5.2 Environments

This section explains the two main setups that we run our detectors. By
implementing these test environments, we would like to have a conclusion
on the research questions that are proposed in this paper.

5.2.1 Feature extraction-based environment

This first experiment environment is completely built by us. It aims to run
one-class classification algorithms with the combination of feature extraction
in order to distinguish if given images are human-made or not. As a result,
we expect to see the accuracy metrics of the different detectors, which run
in this environment. In addition to that, we want to be able to analyze
the metadata collected on the results. Thus, we may improve the detec-
tors or adjust the data set in order to increase the accuracy of the overall
experiments in the future.

This environment includes every standard detector, PCA detector, and
reconstructing detector. We run each of these 9 different detectors in total
on 10 different seeds. Depending on the seed used, we get different per-
mutations when we split the WikiArt data set into two pieces. Making 10
different splits makes it possible to see the overall success of our detectors.
By calculating their average score and standard deviation across 10 seeds,
we aim to provide more insights into the performance of these models. We
find 10 seeds sufficient enough and computationally friendly for this purpose.

The first split piece, the 90% of the WikiArt set, is considered to be
our training set. And the other piece, the 10% of the WikiArt set, adds
itself to the OpenArt set in order to be used in testing. See Table 5.1
for a better understanding of split. After the training and the test set
preparation phase are done, detectors do their work. The final results we
get contain F1-score, accuracy, precision, recall, and AUC score. Moreover,
the environment allows for metadata analysis in the end. Therefore, we
are able to see two types of analysis of results, which are score-based and
metadata related.

5.2.2 Neural network-based environment

The second experiment environment is partially built by us, most of them are
built by Chalapathy et al.[10]. This environment aims to get the accuracy
metrics from RCAE and OC-NN on the task of distinguishing human-made
artworks from AI-made ones. Due to the complex nature of this environ-
ment, it was not feasible for us to implement metadata analysis for the
outcome of these detectors, which run in this environment.

4https://scikit-learn.org/stable/modules/generated/sklearn.model_

selection.train_test_split.html
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# of unique images artists styles

WikiArt set 81444 1119 27

OpenArt set 130082 50 unknown

Training set 73299 ≈1116 ≈27

Test set 138227 ≈1020 ≈27

Table 5.1: Information on the images that belong to the different data sets
gathered. The approximate signs for artists and styles state there can be
little differences based on the random state used in train test split()

function4.

The environment includes only neural network detectors, so it only runs
RCAE and OC-NN. Like in the first environment, detectors also run on
10 different seeds. Then the same train and test set splitting is applied.
However, due to computational capacities, we only take randomly selected
10000 images from each WikiArt and OpenArt set. This randomization is
also decided with seeds, so the results are reproducible. After the detectors
run, results are produced in terms of AUC score only. We are not able to
print out any of the other accuracy metrics due to the complex technicality
of the initial environment we started to build on.

5.3 Hyperparameters

Hyperparameters are significantly important, especially with machine learn-
ing algorithms. As IF, OC-SVM, and LOF are all machine learning algo-
rithms, the parameters of these algorithms may affect the final result in a
positive or a negative way. In this research, we decided to avoid hyperpa-
rameter tuning because these parameters are highly dependent on the data
sets introduced for the task. Therefore, the results may easily get distracted
by a change of sets defined. This distraction can result in a positive or neg-
ative effect in the end. That being said, tuning hyperparameters would be
completely fine if there were no future work window. But as this research is
improvable and human-made artworks are being produced every day more
than ever, we find such tuning unnecessary at the moment. So, most of the
parameters used in the environments are set to their default values. And
some parameters that affect the final outcome visibly are fixated by us in
order to provide a reference point for future researchers. Therefore, we do
not completely rely on the sklearn authors on this matter. More information
can be found in Appendix A.
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Chapter 6

Results

In this chapter, we provide the accuracy metrics of our detectors in terms of
AUC scores. Following that, metadata statistics are highlighted, which are
derived from our best results. These statistics represent the worst and the
best-performing top 5 values for each metadata attribute.

6.1 Results in terms of AUC scores

Table 6.1 highlights the performance of the detectors on the mission of distin-
guishing fake images from real ones. All of the specifications of the detectors
and the environments are kept unchanged.

Detector type Classifier AUC score

IF 0.55 (± 0.01)

Standard OC-SVM 0.56 (±0.0)

LOF 0.51 (±0.0)

IF 0.55 (±0.0)

PCA OC-SVM 0.56 (±0.0)

LOF 0.50 (±0.0)

IF 0.54 (±0.01)

Reconstructing OC-SVM 0.53 (±0.0)

LOF 0.57 (±0.0)

RCAE 0.57 (±0.02)

Neural network OC-NN (32x32) 0.55 (±0.05)

OC-NN (64x64) 0.57 (±0.05)

Table 6.1: Average AUC scores of our 12 detectors over 10 runs, standard
deviations are represented in parentheses. The best results are shown in
bold.
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Table 6.2 shows the accuracy of the standard detectors using different
versions of ResNets in the feature extraction process, which implies the spec-
ification of the standard detectors is adjusted. In order to evaluate ResNet-
50’s performance, the 152-layered ResNet and the resampler-implemented
version of the ResNet-50 replace ResNet-50.

Table 6.3 represents the performance of the standard detectors using
different models for the feature extraction, which refers to the specification
of the standard detectors being adjusted. To test the state of the ResNet-50,
DenseNet, EfficientNet, and Xception are used to fulfill ResNet-50’s duty.

IF OC-SVM LOF

ResNet-50 0.54 0.56 0.51

ResNet-152 0.51 0.54 0.51

ResNetRS-50 0.52 0.53 0.50

Table 6.2: AUC scores on the
test set we defined for this re-
search on a specific random
state. Using the standard de-
tectors with different versions
of ResNet builds for the fea-
ture extraction process on our
task to answer RQ-1. The best
results are shown in bold.

IF OC-SVM LOF

ResNet-50 0.54 0.56 0.51

DenseNet-121 0.48 0.48 0.50

EfficientNet-B7 0.50 0.49 0.52

Xception 0.47 0.48 0.54

Table 6.3: AUC scores on the
test set defined for this re-
search on a specific random
state. Using the standard de-
tectors with different feature
extraction models on our task
to answer RQ-1. The best re-
sults are shown in bold.

6.2 Accuracy results

As the reconstructing detector that uses LOF is the best model, we provide
additional details of its results. This detector results in an accuracy score
of 58% and it has at least 56% precision for both classes in the overall test.
See Figure 6.1 for the specifics. However, all of the other versions of LOF
(standard and PCA) average an 8% accuracy. And all the other detectors
that use IF and OC-SVM score 23% on average in terms of accuracy in the
overall test. Furthermore, these unsuccessful LOF detectors predict 98% of
the test set is human-made paintings. And the incompetent IF and OC-
SVM detectors claim 83% of the test set is human-made artworks. Because
of the reasons explained in the earlier chapter, any information does not
exist for RCAE and OC-NN in terms of accuracy score.
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precision recall f1-score # images

AI-made 0.95 0.58 0.72 130082

Human-made 0.08 0.56 0.14 8145

overall accuracy 0.58 138227

Figure 6.1: On the left, confusion matrix of the predicted values from the
top-performing detector, which is the reconstructing LOF detector. On the
right, different assessment metrics are derived from the confusion matrix.
Numbers are produced over a single run.

6.3 Metadata analysis

This subsection introduces the analysis of metadata by highlighting the top
5 most easy-to-detect values of different metadata types as well as showing
the top 5 most hard-to-detect variables of distinct metadata classes. For
instance, in Table 6.4, if an image is drawn using the style of Vincent van
Gogh, the model knows if the painting is made by a human or not 87% of
the time. Following the same logic, in Table 6.5, if an image is created by
the characteristics of Ivan Shishkin, then the model predicts 29% accurate
results on if the image is AI-made or not. The rest follows the same idea
for all the attributes in these tables. According to the Table 6.1, the top
accurate model is the reconstructing detector that uses LOF. Therefore, the
statistics given are provided by the predictions of that specific detector.

Values with low occurrence and sharp outcomes are unappreciated. For
example, some resolution scales are apparent only once but have an accuracy
of 0% or 100%. Therefore, we set a threshold value for each metadata
category. These thresholds state the minimum number of images needed for
a meaningful accuracy analysis in the end. If the number of images is above
the threshold, we consider these values can generalize the behavior of the
detector. These numbers are 200 for artists, 45 for styles, 22 for models,
182 for prompt words, 15 for prompt lengths, 15 for negative prompt words,
15 for negative prompt lengths, 14 for guidance scales, 35 for samplers, 20
for resolution scales, and 10 for steps. The numbers are fixed based on our
observation of the distribution of the values in our test set.
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Top Artist Style Model Prompt word Prompt length Negative prompt word Negative prompt length Guidance scale Sampler Resolution scale Steps

1 Vincent van Gogh [0.87] Color field painting [0.77] wavymulder/modelshoot [0.7] photoy[0.99] 63[1.0] naked[0.78] 47[0.82] 30 [1.0] DDIM [0.7] 35 x 48 [1.0] 37 [0.93]

2 Gustave Dore [0.87] Minimalism [0.73] Stable Diffusion (v2.1) [0.64] lothian[0.97] 55[0.92] nude[0.78] 48[0.81] 10 [0.86] Unknown [0.58] 13 x 14 [1.0] 31 [0.92]

3 Salvador Dali [0.85] Rococo [0.67] Openjourney V2 [0.63] danilo [0.97] 66[0.89] nudity[0.68] 2[0.70] 13 [0.77] Eular A [0.49] 15 x 17 [1.0] 200 [0.87]

4 Henri de Toulouse Lautrec [0.78] Impressionism [0.65] Stable Diffusion (v1.5) [0.60] meyers[0.97] 71[0.89] split[0.5] 46[0.69] 15 [0.67] DPM Solver++[0.47] 9 x 8 [1.0] 86 [0.73]

5 Raphael Kirchner [0.75] Pointillism [0.65] Stable Diffusion [0.59] reimann [0.97] 65 [0.89] grainy [0.47] NaN [0.59] 16 [0.64] 11 x 12 [1.0] 46 [0.73]

Table 6.4: Top 5 easy-to-detect values of each metadata category. If an arbi-
trary image is created by the specifics given in the table, the reconstructing
LOF detector distinguishes if it is AI-made or not by the accuracy shown in
square brackets.

Top Artist Style Model Prompt word Prompt length Negative prompt word Negative prompt length Guidance scale Sampler Resolution scale Steps

1 Ivan Shishkin [0.29] Expressionism [0.38] SG161222/Realistic Vision V1.3 [0.09] anatomical [0.0] 74[0.42] anime[0.0] 4[0.13] 17 [0.08] DPM Solver++ [0.47] 10 x 7 [0.02] 28 [0.09]

2 Isaac Levitan [0.37] Art Nouveau Modern [0.43] DreamShaper [0.32] technology [0.0] 62[0.5] faces[0.0] 3[0.32] 5 [0.11] Euler A [0.49] 12 x 13 [0.09] 80 [0.20]

3 Camille Corot [0.38] Contemporary realism [0.43] Stable Diffusion 2.1 (768) [0.41] graffiti [0.0] 3[0.51] picture[0.0] 5[0.33] 9 [0.19] Unknown [0.58] 11 x 13 [0.1] 71 [0.20]

4 David Burliuk [0.39] Naive art primitivism [0.45] DALL·E 2 [0.44] [0.41] filmic [0.0] 4[0.51] fat[0.0] 6[0.29] 9 [0.19] DDIM [0.7] 16 x 197 [0.11] 20 [0.25]

5 Ivan Aivazovsky [0.39] Symbolism [0.45] Stable Diffusion 1.5 [0.45] burrito [0.0] 12[0.52] cropping [0.0] 75[0.36] 12 [0.42] 38 x 25 [0.13] 79 [0.27]

Table 6.5: Top 5 hard-to-detect values of each metadata category. If an arbi-
trary image is created by the specifics given in the table, the reconstructing
LOF detector distinguishes if it is AI-made or not by the accuracy shown in
square brackets.
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Chapter 7

Limitations and future work

7.1 Limitations

7.1.1 Computational overload

Using ResNet-50 not only provides a feature extraction but also grants ef-
ficient space usage for the rest of the computations. WikiArt data set by
itself is 25.6 GBs while the images from the OpenArt data set take 20.5
GBs. After the extraction, these numbers reduce to 651MBs and 2.01GBs
respectively, which makes the problem feasible for our computers. So, using
a residual network solves the memory problem. But on the other hand, it
may cause information loss. Therefore, if we had sufficient memory and
computational power, we might skip the feature extraction part. Or at least
we would have an opportunity to discuss it here after some testing. That
being said, due to using raw inputs, imbalances in the training set might
rise. Thus, there is a chance that OCC algorithms may suffer.

On top of this information, the existence of autoencoders also pressures
memory usage. Our computers were barely capable to cope with such a
working load. Therefore, when running neural network detectors, we had to
use only 10000 images per each WikiArt and OpenArt set with 64x64 pixel
resolution.

In all of our experiments, we used a computer with 16GB RAM and 8GB
VRAM.

7.1.2 Data sets

As it is mentioned earlier, we collected the human-made artworks from the
research that imported a part of the WikiArt website, which has around
80000 images. However, the current version of this website stores more than
250000 artworks at the moment. Even though some portion of these pieces
are from other genres of art like sculptures and jewelry, we know that our
version of WikiArt misses many paintings for certain. Moreover, when we
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visit the WikiArt website and look for a specific artwork, we see there is
more side-information than what we have right now, such as date, tags, and
the location of the artwork. Such metadata information could be handy
while we were showing the details in Chapter 6.2. Or could be helpful for
the research we discuss in the following subsection 7.2.2. While we find the
version of WikiArt used in ArtGAN appropriate for our task, the lack of full
access to the whole WikiArt can be considered a drawback in our research
(in terms of results of the detectors and metadata analysis).

The lack of metadata variety also applies to our AI-made artwork set as
this matter is disclosed in Chapter 3. On the other hand, we would like to
point out a website called PromptHero1. This website is quite generous when
it comes to storing metadata. While having all the different attributes of side
information we have, it also includes separated prompt tags aforementioned.
On top of that, this website includes different categories of art styles, such as
photography, anime, fashion, architecture, landscapes, logos, interior design,
and 3D renders for interested researchers. However, this website was quite
conservative in terms of letting us scrape it, due to their premium plan
option. In the case such a premium plan is not activated in an account,
reaching images in an automatic manner, like scraping, is impossible as the
website limits the visited images per a specific time period. Therefore, we
had to move on to the OpenArt.

7.2 Future work

7.2.1 RCAE and OC-NN

Based on the results we got, neural network detectors produce better results
in comparison to most of the detectors we built. For researchers interested in
this topic, we suggest trying to optimize the current setup or running these
algorithms with a much more powerful setup. Therefore they could train
and test from the whole data sets with higher resolutions. Table 6.1 shows
the accuracy of the OC-NN algorithm in different resolutions. The statistics
support the idea of the higher the resolution, the higher the accuracy is.
However, this might not be the case. Nevertheless, these numbers should
not be slept on.

7.2.2 Class prediction and CountVectorizer (hybrid approach)

As mentioned earlier, ResNet-50 can be used for multi-class image clas-
sification and recognition (the version pre-trained with ImageNet). We
propose an approach where the 5-10 objects in the given images are rec-
ognized by ResNet-50 or some other model. Then, with an algorithm like
CountVectorizer from sklearn, all of the predicted values get encoded into

1https://prompthero.com/
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a sequence of integers. This process makes the use of OCC algorithms pos-
sible as they are not capable to receive strings as input. At least the sklearn
implementations are not capable as far as we know. Then, the one-class clas-
sification algorithms can try learning from the encoded training set. Then
try to distinguish if a given encoded input is abnormal or not. By imple-
menting this algorithm, we can observe the effect of the relation between
objects that occurs in images on the final output. However, there are two
things worth the mention. The first thing is that ResNet-50 is terrible at
recognizing objects from the artworks, see Figure 7.1. In very few cases,
like the second artwork in Figure 7.1, these predictions are partially correct.
Secondly, we have already built such a model and it results worse than all
of our built detectors. It scores 50% on average in terms of AUC score.
However, we think that if the first issue is fixed then the second issue is also
fixed. Therefore, such a model might work.

Another approach could be making these detectors hybrid. So, instead
of using images only, we can use images and tags or prompts of them to-
gether. The issue here is that AI-made images have long prompts in gen-
eral, whereas human-made artworks have short descriptive names and fewer
tags. Therefore, we intentionally gave up on the option of collecting names
of human-made artworks. Therefore having an imbalanced and obviously
detectable hybrid method would not make much sense. In the case of a
neutral image descriptor defined, learning the subjects and the contents of
the given images would be usable in a hybrid approach.

Figure 7.1: Random images from WikiArt and OpenArt set. For the left
image, ResNet-50 claims ’fur coat’, ’swimming trunks’, ’sunglass’, ’cloak’,
and ’sunglasses’ are existing in the image. For the middle one, ResNet-50
claims ’starfish’, ’goldfish’, ’lakeside’, ’coho’, and ’king crab’ are apparent
in the artwork. For the right image, ResNet-50 states ’comic book’, ’book
jacket’, ’pillow’, ’jigsaw puzzle’, and ’tray’ are located.
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Chapter 8

Conclusion

We ran 12 different setups to see if one-class classification algorithms can
distinguish human-made images from AI-generated ones. Shortly, the an-
swer to this question is ’yes, they are capable of doing that’ as can be
observed from the results chapter. Therefore, we have an answer to our
first research question (RQ-1). But how successful are they is another ques-
tion. The worst-performing detector we build has an average AUC score
of 0.50, which means it produces false positives as much as true positives.
So, its predictive ability is not any better than random guessing. On the
other hand, our three of the best detectors have an average of 0.57 in terms
of AUC score. One of these detectors is built on our original idea, which
consists of combining feature extraction and reconstruction of the image by
autoencoders before doing the classification process. And the other detec-
tors are the RCAE and OC-NN algorithms with an arguably high standard
deviation. Due to their comparably new releases, the algorithms themselves
are not popular as others.

In terms of AUC scores, all of these models look nearly precise as an-
other, not good and not terrible. However, except for the reconstructing
LOF model, all of the detectors had an accuracy of 10–20% on average in dis-
tinguishing AI-made paintings from human-made paintings correctly. The
reconstructing LOF detector provided 58% accurate results and it drifted
away from all the other detectors on this matter. Thus, we got a clear image
of the performance division between differentiating OCC algorithms. In the
end, by implementing diverse detectors and by interpreting their results on
our task, we were able to get our second research question (RQ-2) answered
as well.

We know these anomaly detection algorithms introduced here are suc-
cessful in some other tasks, such as detecting fake faces, differentiating dig-
its, or anomalies in a stop sign. Therefore, we can not generalize the claim
’observing images are too difficult for OCC algorithms’. However, when it
comes down to complex tasks like ours, these algorithms perform just slightly
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better than the random coin flip. Even though we appreciate the human-like
intelligence characteristics of these algorithms and find them interesting, we
would not recommend these algorithms unless there are no alternatives like
multi-class classifiers. That being said, the false positives and false negatives
should be well monitored in scenarios where these algorithms are used. To
conclude, the general state of one-class classification algorithms stays ques-
tionable and incompetent against the other classification methods, which
implies there is still a window open for future researchers who are interested
in this field.
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Appendix A

Appendix

Figure A.1: The fixed hyperparameters of IF, OC-SVM, and LOF algorithms
used in feature extraction-based environments.
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